
Palestine Polytechnic University

Deanship of Graduate Studies and Scientific Research

Master of Informatics

Using Reinforcement Learning to Learn Seega

Board Game

Submitted by:
Mahdi Attawna

Thesis submitted in partial fulfillment of requirements of the
degree Master of Science in Informatics

Aug, 2020

The undersigned hereby certify that they have read, examined and recom-

mended to the Deanship of Graduate Studies and Scientific Research at Palestine

Polytechnic University the approval of a thesis entitled: Using Reinforcement

Learning to Learn Seega Board Game, submitted by Mahdi Attawna in

partial fulfillment of the requirements for the degree of Master in Informatics.

Graduate Advisory Committee:

Dr. Hashem Tamimi (Supervisor), Palestine Polytechnic University.

Signature: Date:

Dr. Alaa Halawani, Palestine Polytechnic University.

Signature: Date:

Dr. Jihad El-Sana, University of the Negev.

Signature: Date:

Thesis Approved

Dr. Murad Abusubaih

Dean of Graduate Studies and Scientific Research

Palestine Polytechnic University

Signature: Date:

i

DECLARATION

I declare that the Master Thesis entitled ”Using Reinforcement Learning to

Learn Seega Board Game” is my original work, and hereby certify that un-

less stated, all work contained within this thesis is my own independent research

and has not been submitted for the award of any other degree at any institution,

except where due acknowledgement is made in the text.

Mahdi Lutfi Attawna

Signature: Date:

ii

STATEMENT OF PERMISSION

TO USE

In presenting this thesis in partial fulfillment of the requirements for the master

degree in Informatics at Palestine Polytechnic University, I agree that the library

shall make it available to borrowers under rules of the library.

Brief quotations from this thesis are allowable without special permission,

provided that accurate acknowledgement of the source is made.

Permission for extensive quotation from, reproduction, or publication of this

thesis may be granted by my main supervisor, or in his absence, by the Dean

of Graduate Studies and Scientific Research when, in the opinion of either, the

proposed use of the material is for scholarly purposes.

Any coping or use of the material in this thesis for financial gain shall not be

allowed without my written permission.

Mahdi Lutfi Attawna

Signature: Date:

iii

�
	

jÊÖÏ @

ZA¿
	
YË@ð ú

Í
�
B@ ÕÎª

�
JË @ ÐY

	
j

�
J�

�
� ú

�
æË @

�
éª

KA

�
�Ë@

�
HBAj. ÖÏ @ Yg

@ Q

�
KñJ
J.ÒºË@ H. AªË

@ Yª

�
K

ú

�
æË @

�
éÊÒ

�
JjÖÏ @ ©

	
�@ñÖÏ @ 	áÓ Q�
J.» XY« úÎ« H. AªË

B@ è

	
Yë 	áÓ YK
YªË@ ø

ñ

�
Jm�

�
' . ú

«A

	
J¢�B@

�
éj. J
�Ë@ . AêÒÊª

�
Kð AêÊm�'

. Ðñ
�
®
�
K

	
à@

�
é
�
®

KA

	
®Ë @ Q

�
KñJ
J.ÒºË@

�
è 	Qêk.

B

�
éJ.�

	
�ËAK. ú

�
æk @

�
Yg.

�
èQ�
J.» AêÊªm.

�
�
'

�
éK. ñª� Q�

�»

@ Y«@ñ

�
¯ AîE
YË 	áºËð l .

�
	
'Q¢

�
�ËAK.

�
éîD
J.

�
�

	á�
J.«CË@
�
éJ

KA

	
J
�
K

�
éK
Qå�Ó

�
éJ
kñË

�
éJ.ªË ù

ë

	á» AÓB@ ú

	
¯ hñÊË@ úÎ«

�
èPAj. mÌ'@

	
àñJ.«CË@ ©

	
��
 úÍðB@

�
éÊgQÖÏ @ ú

	
¯ ,

	
àA

�
JÊgQÓ AêËð ,

Qm.
k A

�
®

�
JËB A

�
J

�
®

	
¯

@ ð

@ A

�
J
�

@P Ñî

�
EPAm.

k ½K
Qj
�
JK.

	
àñJ.«CË@ Ðñ

�
®K

�
éJ

	
K A

�
JË @

�
éÊgQÖÏ @ ú

	
¯ ,

�
é

	
«PA

	
®Ë @

. Õæ�
	
mÌ'@

l .
×A

	
KQK. AÒëð Q

�
KñJ
J.ÒºË@ l .

×@QK.
	áÓ

	á�

	
J
�
K @ I. K
PY

�
K ú

	
¯ 	P 	QªÖÏ @ ÕÎª

�
JË @ A

	
JÓY

	
j

�
J�@ , ÉÒªË@ @

	
Yë ú

	
¯

A
	
JÔ

�
¯ , ø

Qå

�
��. É

	
gY

�
K

	
àðYK. AëY«@ñ

�
¯ ÕÎª

�
Kð

�
éj. J
�Ë@

�
éJ.ªË

	
àA

�
®
�
KB

©
	

�ñÒ
�
JË @ l .

×A
	
KQK. ð ½K
Qj

�
JË @

Õç
�
'ð , hñÊË@ úÎ«

�
éJ.�A

	
JÖÏ @ 	á» AÓ

B@ ú

	
¯ I. «CË@ PAm.

k

@ ©

	
�ð

�
éJ

	
®J
» ©

	
�ñÒ

�
JË @ l .

×A
	
KQK. Õæ

Êª

�
JK.

	Pñ
	
®Ë @ð Õæ�

	
mÌ'@ PAm.

k

@ A

�
®

�
JËB

�
éJ

	
¯ @Q

�
�g@

�
é
�
®K
Q¢�. PAm.

k

B@ ½K
Qm�

�
' �

éJ

	
®J
» ½K
Qj

�
JË @ l .

×A
	
KQK. Õæ

Êª

�
K

.
�
éJ.ªÊË @ ú

	
¯

@
	
Yë ZA

	
J
�
K

@ AêÒJ
Êª

�
K Õç

�
' ú

�
æË @ l .

×@Q�. Ë @ Z @X

@

�
é

�
�

�
¯A

	
JÓð Aë

ð@Qk. @

Õç

�
' ú

�
æË @ H. PAj.

�
JË @ l .

�

'A

�
J
	
K

	
�QªK. A

	
JÔ

�
¯

. ÉÒªË@

iv

Abstract

Computer games are one of the popular fields which use machine

learning and artificial intelligence. Many of these games have a large

search space, which makes them too vast for even supercomputers

to brute force. Seega is an ancient Egyptian two-player board game

similar to chess but has more difficult rules. It has two stages, In the

first stage, the players position their stones on the board in strategic

manner. In the second stage, the players move their stones vertically

or horizontal to capture the opponent stones. In this work, we used

deep reinforcement learning to train two co-operative agents to mas-

ter the game of Seega and learn the game rules. We compared our

proposed approach with the classical mini-max algorithm. We found

that our approach is much more practical to be adopted to be used

in Seega in terms of computational time and needed resources.

Dedicated to my children Khaled and Tawq.

Acknowledgements

I would like to take this opportunity to acknowledge all those who

helped me during this thesis work. I would like to thank my supervi-

sor Dr. Hashem Tamimi for introducing me to the world of machine

learning, his valuable suggestions, outstanding and insightful guid-

ance during this thesis work which facilitated my achievement of this

dissertation.

Finally, I must express my very profound gratitude to my parents

and my wife for providing me with unfailing support and continuous

encouragement throughout my years of study and through the process

of researching and writing this thesis. This accomplishment would not

have been possible without them. Thank you.

Contents

1 Introduction 1

1.1 Main Contributions . 2

1.2 Thesis Structure . 3

2 The game of Seega 5

2.1 Seega Game . 5

2.1.1 Seega History . 6

2.1.2 Seega Components . 6

2.1.3 Seega Stages and Rules . 7

3 Background and Literature Review 10

3.1 Introduction to Reinforcement Learning 10

3.2 Markov Decision Process . 12

3.3 Q-value function and Bellman equation 14

3.4 Classes of RL Algorithms . 14

3.5 Monte Carlo Tree Search . 15

3.6 Convolutional Neural Network . 17

3.7 Related work . 20

viii

CONTENTS

3.7.1 AI in board games . 20

3.7.2 Work on Seega game . 24

3.8 Tools and Frameworks . 27

4 Methodology 30

4.1 Environment Representation . 31

4.2 RL Architecture . 32

4.2.1 Training The Moving Agent 35

4.2.2 Training The Positioning Agent 38

4.3 Evaluation Criteria . 40

5 Experiments and Results 42

5.1 Computing environment . 42

5.2 Moving Agent Training Results 43

5.2.1 Positioning Agent Training Results 46

5.3 Minimax Results . 48

5.4 Discussion . 50

6 Conclusions 52

6.1 Future Work . 53

A Result tables 55

References 68

ix

List of Figures

2.1 Seega game board, carved on the wall of Elkab Temple of Amen-

hotep III, Elkab, Egypt. Photo: Bruce Allardice, July 2, 2013.

[1] . 6

2.2 Seega 7x7 game board example, each player has 24 tile with same

color (black/white). 7

2.3 Example of playing positioning stage of the game. 9

3.1 Reinforcement Learning basic elements [2]. 11

3.2 The basic MCTS process [3] . 15

3.3 Steps of Monte Carlo Tree Search [4] 17

3.4 Architecture overview of Convolutional Neural Network (CNN) [5] 18

3.5 Rectified Linear Unit (ReLu) [5]. 19

3.6 Example of max-pooling layer [5]. 19

3.7 Architecture illustration of DeepChess [6]. 21

3.8 Go game board example, each player can position his tile with the

same color (black/white). 22

3.9 The neural network training pipeline and architecture used in the

AlphaGo program.[7] . 23

x

LIST OF FIGURES

3.10 Table shows the weight vectors for white and black players [8]. . 26

3.11 Policy Iteration Algorithm used in [9] 27

3.12 Tensorflow logo. 28

3.13 Tensorflow 2.0 architecture [10]. 29

4.1 The Seega board representation. 31

4.2 Overview of Self-play reinforcement learning in Seega. 32

4.3 MCTS Steps implemented on Seega game. 33

4.4 MCTS self-play, a MCTS play until the end of the game. b the

self play data is collected to be used to train the NN. where st is

the board state, π is the probabilities of actions at each state, z is

the winner of the game. 34

4.5 The architecture of deep neural network used in training the Mov-

ing Model. 36

4.6 The architecture of deep neural network used in training the Po-

sitioning Model. 38

4.7 MCTS self-self play, a MCTS play until the board is full of pices,

then the board is passed to the neural network which previously

trained to predict the winner z of the game. b the self play data is

collected to be used to train the NN. where st is the board state, π

is the probabilities of actions at each state, z is the winner of the

game. 39

5.1 Elo rating per iteration for the Moving Agent 45

5.2 Example game to test the Moving Agent 45

5.3 Elo rating per iteration for the Positioning Agent 48

xi

LIST OF FIGURES

5.4 The actions taken by mini-max at different levels of tree depth. . 49

xii

List of Tables

5.1 The training results for the Moving Agent. 44

5.2 The results of training the Positioning Agent. 47

5.3 The computation time needed for mini-max at different levels of

tree depth. 48

5.4 The predicted best actions by mini-max at different levels of tree

depth. 49

xiii

Chapter 1

Introduction

Computer games are one of the popular fields which use machine learning and

Artificial Intelligence. AI become an essential part of the game industry which

attracted the interest of computer scientists, software developers, and machine

learning researchers to dive into it. Many of the developed games have a large

search space which makes them too vast for even supercomputers to brute force.

This encourages the researcher to develop and propose different methods and

techniques that overcome this problem.

There are different types of computer games. Board games have gained the

attraction of the researchers since many years. Using heuristics and rules was

one of the methods that made computer games possible; specially for games with

small search spaces. Minimax and alpha-beta pruning are good examples of such

algorithms.

For games with huge search spaces, such algorithms will need high compu-

tation time beyond the player’s patience or even beyond their age. Machine

learning was introduced to solve this issue by providing less computationally ex-

1

1.1 Main Contributions

pensive algorithms that can learn from the prepared datasets of expert players.

But such datasets are not available for many games such as the game of Seega,

which makes the use of traditional supervised machine learning not a choice.

The problem of the absence of datasets for this game makes the reinforcement

learning based on self-play games the best method to train our agent. Reinforce-

ment Learning has been improved over the last decade. Many algorithms and

methods developed in this area, especially the methods that use deep learning.

Seega is an interesting game. Unlike chess, the game has two stages. In the

first stage, the players position their stones on the board in a strategic manner.

In the second stage, the players move their stones vertically or horizontally to

capture the opponent’s stone.

Using a mini-max for each stage separately will not guarantee to win the

game, because the first mini-max will not deal with heuristic on the second stage.

On the other hand, using one mini-max for the two stages will need a very large

search space.

Therefore, we will introduce a new solution to the Seega game using deep

reinforcement learning. The proposed approach has one agent for each stage of the

game and does not require a prepared dataset since it gets trained simultaneously

by playing with another computer agent.

1.1 Main Contributions

In this thesis, we developed two computer agents that can play the Seega game.

The first agent can play stage-1 of the game (Positioning Agent). The second

agent can play the stage-2 of the game which we call Moving Agent. We used

2

1.2 Thesis Structure

reinforcement learning to train the two agents on self-play games without human

data or guidance. This work used the Monte Carlo tree search to play and

simulate games, and deep convolution neural networks to train the agents.

The training process is divided into two steps. We trained stage-2 then stage-1

as follows: First, we trained the Moving Agent using self-play games on randomly-

generated boards; which trained the agent to select the best moves of the stones

to win the game. Then we trained the Positioning Agent using self-play games

starting from an empty board to select the best cell index to place the player piece

in the perspective of the current player. The trained Moving Agent is also used

during the training of Positioning Agent to predict the winner of the game when

the players finish positioning all their stones instead of playing the full game.

1.2 Thesis Structure

This thesis is composed of five chapters. Chapter 1 gives an introduction, dis-

cusses the problem statement, and explains the main contribution in this thesis.

Chapter 2 contains a brief historical background and explains some fundamental

concepts related to the Seega game. Chapter 3 explains some concepts used in

this thesis and discusses the related studies. Chapter 4 explains the methodol-

ogy used in the work, it shows the system architecture and describes in detail

the proposed architecture of the developed system and the implementation of

the theoretical model used on the matter. Chapter 5 presents experiments and

results that describe several case studies made, showing result analysis and the

solutions obtained. Finally, Chapter 6 summarizes the respective work, the fol-

lowing conclusions about the results obtained and the approaches used, together

3

1.2 Thesis Structure

with several future work propositions.

4

Chapter 2

The game of Seega

In this chapter, a detailed discussion about the history and rules of Seega game

with examples to clarify the challenges in this work are presented. Then we will

discuss some of the related studies achieved on Seega game and explain other

reinforcement learning researches that have been done in the field of computer

games and board games.

2.1 Seega Game

Seega is a two-player board game that is popular in many countries of middle-

east and Africa such as Egypt, Sudan, Libya, Somalia, Jordan, and some parts

of Palestine. People in these countries used to play this game for hours during

the day. The game has many similarities with other board games such as chess.

It needs a lot of focus and thinking to win the match.

5

2.1 Seega Game

2.1.1 Seega History

The history of the game is unknown but some of Seega boards were found carved

in many different Egyptian temples built since the 1300s BCE. Figure 2.1 shows

Seega game board, carved on the wall of Elkab Temple of Amenhotep III, Elkab,

Egypt.

Figure 2.1: Seega game board, carved on the wall of Elkab Temple of Amenhotep
III, Elkab, Egypt. Photo: Bruce Allardice, July 2, 2013. [1]

Seega has very complex rules, some researchers consider it harder than chess [11].

The game rules and literature first appearance was in in a book by Edward

William Lane, called “An Account of the Manners and Customs of the Modern

Egyptians” in 1830 [12], later in 1892, More details about its rules and strate-

gies were discussed by ”H Carrington Bolton” in his book “Games Ancient and

Oriental, and How to Play Them” [13].

2.1.2 Seega Components

Similar to most board games, Seega has two components: The board and stones,

Figure 2.2 shows an example of Seega board with its components.

6

2.1 Seega Game

1. The board: the game comes in many different variations, a 5× 5 grid and

24 playing stones of two different colors, 12 stones per player. a 7×7 board

with 48 stones, 24 stones per player, and a 9×9 board with 80 stones, 40

stones per player. all the versions share the same rules.

2. Stones: depends on the size of the board, each player has a known number

of stones called Kelab, they should be different in color or shape for each

player.

Figure 2.2: Seega 7x7 game board example, each player has 24 tile with same
color (black/white).

2.1.3 Seega Stages and Rules

Seega could have different rules and variations, but the core rules are shared

among all variation in all countries, Following are the main rules:

7

2.1 Seega Game

• Seega is a two-player game.

• Each player owns a fixed number of stones that have the same color or

shape that is different from the opponent’s stones.

• The objective of each player is to capture as many as he can from the

opponent player’s stones.

• The game ends when one player has less than two stones on the board.

• At the end of the game, the player with more stones is the winner.

• The game has two distinct phases: The positioning phase and the moving

phase.

• In the Positioning phase, each player takes a turn and places two stones on

any empty cells on the board except the central cell. They continue adding

stones in turn until they fill all board cells (except the center). This will

lead the game to phase two. Figure 2.3 shows an example of the actions

taken by the players in the positioning stage.

• In the Moving phase:

– In turn, each player starts to move his stones on the board to surround

the other player stones.

– The movement of the piece will be from an occupied cell to an empty

adjacent cell, e.g, in figure 2.2 move E4 to D4.

– Stones can only move horizontally or vertically, and not diagonally.

– The movement will be one cell a time.

8

2.1 Seega Game

– When the player moves a piece, if any opponent stones are surrounded

by the player stones (horizontally or vertically) as a result of the move

it will be captured and removed from the board, e.g: in figure 2.2 when

moving E4 to D4 the white stones at C4, D3, and D5 will be removed.

– In the same turn, The player can continue to capture more opponent

stones with the same stone, eg: after moving E4 to D4 and removing

the surrounded white stones, then the player can continue and move

from D4 to C4 since C5 can be removed.

Figure 2.3: Example of playing positioning stage of the game.

9

Chapter 3

Background and Literature

Review

In this chapter, we will explain some of the machine learning concepts that are

are related to this work. We will discuss the different types of machine learning

algorithms, explain the reinforcement learning components and methods, and

clarify the Monte Carlo tree search and convolutional neural network (CNN).

3.1 Introduction to Reinforcement Learning

Reinforcement Learning (RL) is a sub-type of machine learning, which is ideal

to be used in sequence decision making. The learning model is discovered by

the agent without prior examples or training data. RL is based on two main

components, Agent and Environment. The Agent explores the Environment by

sending actions and getting feedback from the Environment called Reward. The

Reward gives the Agent a note about how good the action was. The goal of the

10

3.1 Introduction to Reinforcement Learning

Agent is to learn the best model which is called Policy, that maximizes the total

rewards it earns. The Policy is simply a mapping from states to action and the

Agent will learn it by trial and error [14].

As described in [14], RL has five main elements: an environment, an agent, a

policy, a reward signal, and a value function. Figure 3.1 shows the basic elements

of Reinforcement Learning and shows how they interact with each other.

Figure 3.1: Reinforcement Learning basic elements [2].

• Environment: In RL, the environment is the world which the agent will

explore to learn it’s rules and policies. In other words, the environment

contains the problem that the agent is trying to solve. At any time t, the

environment will have a state, s, that agent will observe, and according

to this observation, the agent will act by sending an action, a. After each

action by the agent, the environment should return a value that represents

the reward to the agent.

• Agent: The agent is the RL algorithm used to explore the environment

11

3.2 Markov Decision Process

and learn how to act at a certain observation (state s).

• Policy The policy can be described as a mapping from the states of the

environment to action, it is used by the agent to take the right action

when it observes the state of the environment. The policy is the core of

Reinforcement learning. It is the knowledge that the agent collects during

the learning process. It can be as simple as a lookup table or can be more

complex and include advanced searching algorithms.

• Rewards/Goal: The reward is a single value sent from the environment

immediately to the agent to define what is the good and bad action. The

goal of the agent is to maximize the total rewards it receives during the

learning process. The agent will receive a positive reward when its action

is considered good behavior, and it will receive a negative value from the

environment when its action is considered bad behavior.

• Value function: The value function is sometimes used to determine what

is good for the agent in the long run. it can be described as the total

amount of the rewards that can be expected to be collected by the agent in

the future based on the current state.

3.2 Markov Decision Process

Markov Decision Process (MDP) is the mathematical formulation of RL problem.

An MDP satisfies the Markov property, which mean that the current state com-

pletely characterises the state of the world. MDP can be used to show how much

reward is collected through a particular sequence of actions that we sampled.

12

3.2 Markov Decision Process

MDP can be defined by a tuple of objects (S,A,R,P, γ), where :

• S : is a set of possible states,

• A: is a set of possible actions.

• R: is a distribution of reward given (state,action) pair, it is a mapping from

(state,action) to reward. it tell us what is the immediate reward we expect

to get from state S at the moment.

• P : is a transition probability or distribution over next state given (state,action)

pair.

• γ: is a discount factor, it means how much the agent cares about future

rewards.

Algorithm 1 describes the steps of MDP. The goal of the algorithm is to find

the optimal policy π* that maximizes the total reward.

Algorithm 1: Markov Decision Process (MDP) algorithm

- Initialization the policy π;

- At time step t=0, initialize environment state s0 and P (s0) ;

while t != End do

- Agent selects action at, based on the policy π ;

- Environment creates reward rt;

- Environment creates next state st+1;

- Agent receives reward rt and next state st+1.

end

13

3.3 Q-value function and Bellman equation

3.3 Q-value function and Bellman equation

The Q-value function is used calculate the expected total cumulative rewards

when taking action a on state s and following the policy, it is similar to value

function but it also takes the action into the consideration.

During the learning process, the policy will be changed by time and the expe-

rience the agent gets, this will give us different value function each time. finding

the optimal value function which gives the max value compared to all other value

functions is challenging.

Many RL algorithms such as Qlearning [15] and TD Learning [16] rely on the

foundation of MDP.

3.4 Classes of RL Algorithms

There are two categories of reinforcement learning algorithms based on how the

agent learns the optimal policy. These categories are Model-free Learning Method

and Model-based Learning.

In Model-free Learning category, the agent will learn from experience by inter-

acting with the environment directly and collecting the rewards (positive/negative).

Based on the collected reward it updates its policy or value function. This cate-

gory of RL can be applied to any RL problem since it does not need any model of

the environment, but it needs much more time to learn. Examples of algorithms

in this class are Q-Learning [15], and SARSA.

In Model-based Learning, the algorithm tries to learn the transition proba-

bility between states. It uses Model-free in its early stages of learning to build

14

3.5 Monte Carlo Tree Search

the model, then it uses the model to predict the rewards without interacting

with the environment, this will make the learning process take less time com-

pared to model-free methods. Examples of algorithms in this class are Dyna-

architecture [17] and Dyna-Q algorithms.

3.5 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is an algorithm that can select the best action

out of a set of actions available for a specific state. This search algorithm depends

on probabilities at its core. It uses RL principles in combination with the classical

search techniques to improve the performance and overcome the computation

limitations found in other tree search algorithms such as mini-max.

Figure 3.2: The basic MCTS process [3]

This algorithm uses exploration-exploitation strategy, It exploits the best ac-

tions and strategies that are found till the current iteration, and also continue

to explore the space for alternative decisions that can be better than the current

best actions and strategies and replace the current best.

Over the last few years, MCTS proved to be successful in many fields especially

in computer games. It succeeded in playing general games, specific games, and

15

3.5 Monte Carlo Tree Search

complex games (eg: GO, and chess). Also, it succeeded in real world fields such as

real-world planning, optimization, and control problems. [18]. This great success

made it an important part of the AI researcher’s toolkit.

In the MCTS search tree, the nodes are the building blocks. They represent

the states of the problem as shown in Figure 3.2. The algorithm is repeatedly

trying to improve its policy by exploring these nodes.

The process of this algorithm has four main steps that are repeated until a

good policy is delivered or the max number of iteration is reached. The steps of

MCTS are explained is shown in Figure 3.3.

• Selection: In this step, the MCTS algorithm tries to select a node on the

tree that has the highest possibility of winning. It traverses the current tree

using a strategy starting from the root node. This specific strategy selects

the nodes that have the highest estimated value using the evaluation func-

tion. When MCTS reaches a leaf node (The nodes that are not expanded

till this time) it jumps into the expansion step which is described next.

• Expansion: In this step, MCTS algorithm starts from the selected node in

the previous step and expands the tree by adding its children. This step is

meant to increase the options further in the game.

• Simulation: In this step, MCTS algorithm will simulate to play the game

until it reaches the end of the game and collects the result (win/lose). In

the early iterations of the algorithm, the simulation will be random and RL

could be used to improve it.

• Back Propagation: In this step, The algorithm will use the value obtained

16

3.6 Convolutional Neural Network

from the previous step to update the values of all parent nodes back to the

root.

Figure 3.3: Steps of Monte Carlo Tree Search [4]

As a result, instead of visiting and evaluating many many paths to find the

best path, as in the case of mini-max, MCTS uses RL and the policy to choose

the best path from the current state in the tree.

3.6 Convolutional Neural Network

Convolutional Neural Network(CNN) is a special type of neural networks mostly

used in areas such as image recognition and classification. Many algorithms

and applications successfully used CNN such as face recognition [19], sentiment

analysis [20], action recognition, and much more. Many different architectures

of CNNs were proposed in the last few years such as LeNet, AlexNet, VGGNet,

GoogLeNet, ResNet, ZFNet.

In CNN, the basic idea is to extract the features in the input record, then

use the extracted features to understand and classify the data, This reduces the

input data into small features using two operations (layers) called ‘convolution’

and ’pooling’.

17

3.6 Convolutional Neural Network

CNN architecture overview

As shown in figure 3.4, CNN has four components or layers:

Figure 3.4: Architecture overview of Convolutional Neural Network (CNN) [5]

• Convolution layer: The objective of this layer is to extract the low-level

features from the image such as edges. It is done by using Filter (sometimes

called Kernel), a filter is passed over the image, and each time we move the

filter we perform a matrix multiplication operation between the filter and

the portion of the image over which the filter is hovering. The results are

summed up into one number that represents all the pixels the filter observed.

In the end, this process generates a matrix that is much smaller in size than

the original input image.

• Activation layer: In this layer, an activation function used to format

the matrix introduced in the previous step, such activation function is a

Rectified Linear Unit (ReLu). The ReLU function returns x for all values

of x > 0, and returns 0 for all values of x 6 0 as shown in figure 3.5.

• Pooling layer: The goal of this step is to down-sample and reduce the

size of the matrix which makes the training of the network much faster by

focusing on the most important information in each feature of the image.

The most common type of pooling layer is a max-pooling; A filter is passed

18

3.6 Convolutional Neural Network

Figure 3.5: Rectified Linear Unit (ReLu) [5].

over the matrix and selects the max number out of each group of values.

figure 3.6 show an example of max-pooling.

Figure 3.6: Example of max-pooling layer [5].

• Fully connected layer: At the end of the CNN, a traditional neural

network is used to classify or give the probabilities of labels, it takes the

output of the previous layers as input, and output a list of probabilities for

different possible labels attached to the input.

In this work, we utilize both the MCTS algorithm and CNN to train the agents

on how to play the Seega game. Since CNN is a supervised learning algorithm,

and since we don’t have a prepared dataset for the Seega game we will rely on

MCTS to generate enough datasets and provide them to the CNN. The RL is

used to improve the policy in MCTS. In the next chapter, we will explain how

we used MCTS and CNN in mode details.

19

3.7 Related work

3.7 Related work

3.7.1 AI in board games

Chess is is the most widely-studied game in the history of artificial intelligence.

Many types of research were done using different methods to develop a computer

program that can defeat the human in this game. The most interesting methods

were these methods that use deep learning such as David et. al. 2016 [6]. In

this work, the researchers proposed a new deep learning model refereed to as

DeepChess. This model is trained using supervised learning on a large data-set

that contains millions of chess games, the training is done without any knowledge

of the game rules. In their paper, the researcher developed an evaluation function

that takes a chess position as input and returns a heuristic value or score as

output. This evaluation function will be used to compare positions. They used

this concept to propose a novel training method to train a model that receives

two chess positions as input and predicts which position is better. The proposed

training methodology consists of two stages. In the first stage, they trained a deep

auto-encoder (refer to as Pos2Vec) using a data-set of millions of samples. This

auto-encoder is used as a feature extractor which converts a given chess position

into a vector of features. In the second stage, they trained a neural network to

predict which of the two input positions will result in a win. The Architecture

of these networks is shown in figure 3.7. In this work, the team used alpha-beta

search algorithm[21] to select the right position from the search tree. They used

a modified version of alpha-beta that does not require any position scores for

performing the search, instead, it depends on DeepChess to compare and select

the right position.

20

3.7 Related work

Figure 3.7: Architecture illustration of DeepChess [6].

Another game that got the interest of the researchers is the game of GO. GO

is very old two-player board game that originated from China and is still played

today. The game consists of a 19x19 board, and each player controls one color

of stones (black/white) and places them on the board. Each player will try to

surround his opponent’s stones with his stones or surround the empty cells to

make points of territory. Figure 3.8 show an example board from Go game.

Lately, some research tried to teach the computer to play the Go game, such

research is the work of Silver et. al. 2016 [7]. The team in a company called

deepmind (later acquired by Google) developed a program that masters the Go

game and beat the human. AlphaGo became the first program to defeat a world

champion in the game of Go. They used Monte-Carlo search tree [22] to sim-

ulate and play thousands of Go games. To do the simulation and compare the

players progress, the researchers developed two neural networks, the first one is

value network that evaluates the board positions and calculates a value to rate

the board, and the second one is the policy network to select the best moves.

21

3.7 Related work

Figure 3.8: Go game board example, each player can position his tile with the
same color (black/white).

Then they needed to develop a new search algorithm that combines Monte-Carlo

simulation with the value and policy networks. In this work, the researchers used

data collected from expert human players to train the policy network using su-

pervised learning (SL). The SL trained policy network used in the early stages

of training the player, then they trained the policy network using reinforcement

learning (RL), which improves the SL policy network by optimizing the outcome

of games of self-play. In the end, they used the reinforcement learning (RL) policy

network to train the value network by playing many games against itself. This

results with a value network that can predict the winner of the games. Figure 3.9

shows the neural network training pipeline and architecture used in the AlphaGo

program.

Later in 2017, the team improved there work in new research [23]. They

trained an RL agent to play the Go game by itself, unlike there previous work [7]

22

3.7 Related work

Figure 3.9: The neural network training pipeline and architecture used in the
AlphaGo program.[7]

in which the network was trained on data collected from human players. They

introduced a new algorithm called AlphaGo Zero which uses one neural network

to replace both policy network and value network used in [7]. The network Al-

phaGo Zero trained solely by self-play RL, starting from random play, without

any supervision or use of human data. this methodology no longer depends on

Monte- Carlo search. It uses another simpler search tree that is built within the

same neural network to evaluate positions and select moves. As a result, this

new model AlphaGo Zero defeated the previous versions of AlphaGo, which were

trained on a data-set of human data using handcrafted features.

The same team continued the improvement of the algorithm in 2018. In

this paper [24], the researchers proposed a new algorithm called AlphaZero that

considered a general version of there previous algorithm AlphaGo Zero that was

introduced in [23]. This new algorithm can play games of chess and shogi [25] as

well as Go using the same network architecture for all three games. It is trained

using self-play games which started randomly without any human data or any

handcrafted evaluation functions.

AlphaZero uses a deep neural network to replace the traditional handcrafted

features and game-specific rules. This neural network takes the board position

23

3.7 Related work

as input and returns a vector of probabilities of moves for each action. It also

returns the expected estimated result of the game from a position. The weights in

this deep neural network are trained using reinforcement learning from self-play

games, starting from randomly initialized parameters.

This algorithm uses a general-purpose tree search algorithm based on Monte

Carlo tree search (MCTS) algorithm that searches a series of simulated self-play

games which in result return a vector representing a probability distribution over

moves.

3.7.2 Work on Seega game

Few researchers tried to develop a computer program that can play Seega game.

In 2013, abdelbar et. al [11] was the first attempt to solve the problem of Seega

game. They proposed a methodology that is based on mini-max algorithm to

search and select the best move for each board state. They defined a set of

features for the board, some of these features are atomic and the others are

compound and calculated from the atomic features. Based on these features they

can calculate the heuristic of the board for each player at any given time. In their

paper, they used 5× 5 board.

They proposed 13 features for the board. These features have different weights.

a particle swarm optimization algorithm [26] is used to generate the weight vector

for these features for stage-1 and stage-2 of the game.

The proposed features are:

• Corners (f1): Corner domination.

• Boarders (f2): Border domination.

24

3.7 Related work

• Clustering (f3 .. f6): This feature counts adjacent player stones horizontally

and vertically, (f3, f5) are the vertical for player1 and player2 and (f4, f5)

are the horizontal for player1 and player2 and

• Massdist (f7, f8): In this feature, the center of mass is calculated for each

player then the magnitude of the difference is returned for horizontal (f7)

mass-distance and for vertical (f8) mass-distance.

• Entrapment (f9, f10): This feature gives a measure of how a color dominates

the outer part of the board, (f9) is used for horizontal and (f10) for vertical.

• Material (f11): This feature computes the difference between the number

of black and white stones on the board.

• Phase two starts (f12): This feature reflects how many captures player1 will

make on the first move in phase two.

• Black can start (f13): This feature returns 0 if the four squares around the

middle square are occupied by White, and returns 1 otherwise.

These features are used by higher-level configurations through addition and/or

multiplication. The authors proposed two different equation using these features

for phase-one and phase-two of the game as follow:

For phase one, [s1 = (−→w1)
T−→c1]

and for phase two: [s2 = (−→w2)
T−→c2]

where si is the board score, −→ci is the vector of compound features, and −→wi is

the weight vector.

The −→w vectors that is used in phase-one and phase-two is calculated and

optimized using Co-Evolutionary Particle Swarm Optimization algorithm.

25

3.7 Related work

Later, in 2004, the same team continued their work in [8]. In this work, the

researchers expanded and improved the program, they used the same methodol-

ogy and same set features that proposed in [11] on a larger board 7x7. A small

change was done on the swarm configuration to improve the performance and

reduce the computation time. As a result, they proposed a set of weights for each

feature in phase-1 and phase-2 as shown in table 3.10.

Figure 3.10: Table shows the weight vectors for white and black players [8].

They tested this program by playing against human players who started learn-

ing and practicing the game of Seega for few weeks, the program behavior during

playing showed that it has a strategy in positioning and moving the stones and

not random. The program won some games and lost others.

In 2020, Aljaafreh et. al in their work [9] developed a computer program

that can play the first phase of Seega game using mini-max and deep RL. Their

methodology is divided into two steps. In step-1 they trained an agent to play

the Positioning stage of the game. They used the methodology proposed in Alp-

haZero [23] to train the agent by implementing self-play reinforcement learning.

26

3.8 Tools and Frameworks

In this approach MCTS is used to run and simulate self-play games. The data

collected from MCTS is used in training the neural network. In step-2, they used

min-max to play Moving stage of the game, they run mini-max algorithm on the

board generated in step-1. The depth of the mini-max tree that is explored is

limited; max number of actions to finish the game is 50 according to Seega expert.

Figure 3.11 shows an overview of Policy Iteration Algorithm used in this work.

Figure 3.11: Policy Iteration Algorithm used in [9]

3.8 Tools and Frameworks

Machine learning is a complex discipline. This encouraged many big companies

such as Google, Microsoft, IBM and AWS to offer machine learning frameworks

and API’s to make it easy for developers and data scientists to experiment ML in

its different steps including the process of acquiring data, training models, serving

predictions, and refining future results.

Many good frameworks are available nowadays with, different concepts and

architectures that fit most needs of the people in this field. Examples include

Theano [27], Scikit Learn [28], Caffe framework [29], but the most popular frame-

27

3.8 Tools and Frameworks

work used in development and production nowadays is Google’s TensorFlow [30]

which we used in this thesis.

Tensorflow

Figure 3.12: Tensorflow logo.

TensorFlow is an open-source library for numerical computations and large-

scale machine learning developed by the AI team inside Google to be used in

their products such as search engines, images search, and other services. This

library offers easy and standard ways to build machine learning models especially

neural networks and deep learning models. It also contains many pre-built ML

algorithms that can run on CPU and GPU. In this framework the developers and

researchers can use the most popular language in this field which is Python to

write their program, while the framework executing those applications in high-

performance C++.

TensorFlow allows developers to create their program using dataflow graphs.

Each node in the graph represents a mathematical operation (eg: wx + b), and

each edge between nodes is a multidimensional data array called tensor which

most the time represents the weights.

Figure 3.13 shows the architecture of the framework, Tensorflow provides high-

level APIs: Keras and Estimator for creating deep learning models. Then, tf.data

and other APIs for data pre-processing. At the lowest level, each Tensorflow

operation is implemented using a highly efficient C++ code.

28

3.8 Tools and Frameworks

Figure 3.13: Tensorflow 2.0 architecture [10].

Most of the time, we use high-level APIs only, but when we need more flex-

ibility like handling the tensors directly, we can use lower-level APIs like tf.nn,

tf.GradientTape(), etc. Tensorflow provides extensive libraries like TensorBoard

for visualization, Tensorflow Hub for downloading and reusing pre-trained mod-

els [10].

Keras

Keras[31] is a python library that provides high-level API to write deep learning

applications, it allows developers and researchers to design, develop, train, eval-

uate, and run most sorts of deep neural networks. In this thesis, we used Keras

as front-end and Tensorflow as back-end to perform the experiments.

29

Chapter 4

Methodology

In this chapter, we will discuss the methodology used in the study, the stages by

which the methodology was implemented, and the research design. First, we will

introduce the representation of the environment we used, then we will explain

the architecture of the environment and the neural networks used. Finally, we

will discuss the tools and evaluation methods used in this study.

As we discussed earlier in this thesis, most of the previous researches and

work on the development of automated computer gaming. Especially in the field

of board games are based on training using data-sets of human play, but in

our case, such data set is not available for the game of Seega. This makes the

reinforcement learning on self-play games the best method to train our agents.

Seega game has two stages, each stage has different rules, input, and output.

For this reason, we will develop two separate models for each stage of the game;

namely Moving Agent and Positioning Agent. The training process will be divided

into two steps, first, we will train the Moving Agent using self-play games on a

randomly-generated board; in which we will train the agent to select the best

30

4.1 Environment Representation

moves of the pieces to win the game and predict the winner of the game. Then in

the second step, we will train the Positioning Agent using self-play games starting

from an empty board to select the best cell to place the pieces in the perspective

of the current player. The trained Moving Agent will also be used during the

training of Positioning Agent to predict the winner of the game when the players

finish positioning all their pieces instead of playing the full game.

4.1 Environment Representation

The Board:

The environment of the game is basically the board; which will represent the state

of the game s at a given time t, we used a two-dimensional array (n×n) to store

the game state, we used the value 1 for player-1 pieces, the value -1 for player-2

piece’s, and 0 for the empty cell of the board. Figure 4.1 shows an example of

game board with its internal representation values. In this example n = 5.

Figure 4.1: The Seega board representation.

31

4.2 RL Architecture

The Actions:

The actions are different for each stage, In the Positioning Agent the actions will

be the index of the cell in the form of (x, y), and the value will be +1 for player-1

and -1 for player-2. We converted the (x, y) into a linear value index to be used

in the output layer of the neural network using the following equation.

index = x× n+ y (4.1)

In the Moving Agent, the actions are in the form of (index, direction), the

index is the selected cell position and calculated by applying equation 4.1 on cell

(x, y), direction ∈ [0, 1, 2, 3] is the direction of the moving, 0=UP, 1= DOWN,

2= LEFT, and 3= RIGHT.

4.2 RL Architecture

Figure 4.2: Overview of Self-play reinforcement learning in Seega.

Our work is inspired by the ideas from AlphaZero [24]. We applied them

during the training of the Moving Agent and the Positioning Agent. Figure 4.2

show the general architecture of the process of reinforcement learning used in the

training of the two models.

32

4.2 RL Architecture

Figure 4.3: MCTS Steps implemented on Seega game.

The process has a loop of three steps. Step a is the core of the reinforcement

learning in which MCTS interacts with the environment and plays many self-play

games. MCTS internal steps are shown in figure 4.3. It starts with a random

policy to select the best action a for the current state st, and with time the

algorithm will explore and simulate more states to improve the accuracy of its

policy. MCTS will continue playing until it reaches the end of the game and a

winner z is found at the end. The algorithm will store all visited states st with

its selected best action at and winner z to be used in the training of the deep

neural network. Figure 4.4 show the building blocks of the process done in this

step. MCTS algorithm is discussed in detail in section 3.5.

In step b, a neural network is trained using the data collected in step a.

The goal of this step is minimize the error between the predicted values from the

network and the correct values from the MCTS. The training data is stored in

the form (st,
−→π , z) where st is the game state, −→π is the probabilities of each

action for a given state, and z is the winner of the game. The trained network

will be used to predict the probabilities of each action for a given state Pt and

33

4.2 RL Architecture

the winner of the game z.

In step c, the newly-trained model will be validated, it will play against the

previously trained model for the number of k games. If it wins 60% of the games

it will be accepted and used in the next iteration, if not, it will be rejected and

the old model will be used in the next iteration.

The trained network will be used as a policy in MCTS in the next iteration.

MCTS has a policy that determines the best path or action to take at a given

state, this policy will improve by time by using the trained and accepted NN

model as a policy, this will result in better examples in the next iterations.

This general process will be used in training the two agents (Moving Agent,

and Positioning Agent) for this game with some customization that will be dis-

cussed later in this chapter.

Figure 4.4: MCTS self-play, a MCTS play until the end of the game. b the
self play data is collected to be used to train the NN. where st is the board state,
π is the probabilities of actions at each state, z is the winner of the game.

34

4.2 RL Architecture

4.2.1 Training The Moving Agent

The goal of this step is to develop a neural network f0 and tune its θ parameters

to be able to play stage-2 of the game and predict the best move to take in a given

state st. This neural network will take as input a board state st, and outputs two

values:

• Policy ~Pθ(st) : A vector of probabilities over all possible moves for the

state st.

• Value vθ(st) : The continuous value vθ(st) ∈ [−1, 1] is the expected winner

of the game given this state st, this value will be used later in training of

Positioning Agent.

Training steps:

At the beginning, the network weights θ is initialized randomly, The Monte Carlo

tree search algorithm (MCTS) is used to simulate and run a lot of self-play games

and provide training examples to the neural network to be trained on.

The MCTS generated examples have the form (st, ~π, zt) where st is the start-

ing state of the game (current state), −→π is the improved policy estimate after

running MCTS, zt is the winner of the game, and t is the iteration.

During the training and at each epoch, the input state st is provided to MCTS

and the neural network to get the results which include the probabilities of actions

p and the winner of the game z, after they finish the process we compare the

MCTS search probabilities πt and the neural network policy vector ~Pθ(st) and

update the weights θ of the neural network to decrease the difference between

35

4.2 RL Architecture

its result and the MCTS output and minimize the error between the predicted

winner vt form the neural network and the game-winner z from self-play MCTS.

Gradient descent is used to adjust the neural network weights based on a loss

function L that sums over mean-squared error and cross-entropy losses respec-

tively, The following equation is used to compute the loss function L

L = (z − v)2 − πT logp+ c||θ||2 (4.2)

where z is the winner of the game from MCTS, v is the predicted winner from

the neural network, p is The vector of move probabilities, and c is a parameter

controlling the level of L2 weight regularisation (to prevent over-fitting).

Figure 4.5: The architecture of deep neural network used in training the Moving
Model.

As shown in figure 4.5, the neural network used in this work consists of 5

layers CNN network with relu activation function, followed by two Dense layers.

The input layer of the network accepts a n × n matrix that represents the

board state st, the output layer will contain n × n × 4 nodes, where n is the

board dimension and the number 4 is the directions of movements for each cell,

36

4.2 RL Architecture

direction ∈ [0, 1, 2, 3]. For example, if we used 5 × 5 board then the input layer

will have 25 nodes, and the output layer will have 25 × 4 nodes. The index of

each node nid in the output layer is calculates using the following equation which

generates the index based on the action (index, direction) pair.

nid = index+ direction (4.3)

Later, we will use the node nid with the highest probability to be the best action

for the state s,

The node index nid is used as the action, when the player executes the action

it is needed to convert nid to the form (index, direction), nid can be used to

extract the board cell index and the direction using the following equations:

index =

⌊
nid

4

⌋
(4.4)

direction = nid mod 4 (4.5)

For example, suppose that the network predicted node nid = 45 to be best

action, then board cell index index =
⌊
45
4

⌋
, and direction = 45 mod 4, this

mean we need to move cell index=11 to Right. The index also can be formatted

as (x, y) using the following equation:

x =

⌊
index

n

⌋
, y = index mod n (4.6)

37

4.2 RL Architecture

4.2.2 Training The Positioning Agent

At this stage we will use the same approach used in the training of Moving Agent,

we will use MCTS to simulate self-play games and generate a lot of games data

to be used to train the neural network.

The goal of this step is to train a neural network to play the stage-1 of Seega

game in which the agent needs to select the best positions to place its pieces on

the board that leads to winning the game at the end of the moving stage.

As shown if figure 4.6, The neural network used in this step consist of 5 CNN

network with relu activation function, followed by two Dense layers.

Figure 4.6: The architecture of deep neural network used in training the Posi-
tioning Model.

The input layer of the network accepts a n × n vector that represents the

board cells status st, the output layer will contain n×n nodes. The index of each

node nid in the output layer represents the cell index in the board.

We used the same process shown in figure 4.2 to train this agent, some modifi-

cation is added in this step in the implementation of the neural network which is

in the output layer, the output layer consists of n×n node as shown in figure 4.6.

38

4.2 RL Architecture

Figure 4.7: MCTS self-self play, a MCTS play until the board is full of pices,
then the board is passed to the neural network which previously trained to predict
the winner z of the game. b the self play data is collected to be used to train the
NN. where st is the board state, π is the probabilities of actions at each state, z
is the winner of the game.

Another modification is done in MCTS, As shown in figure 4.7. The algorithm

will run self-play game starting from an empty board, when the algorithm reaches

a board state st in which all cells are filled, it will use the previously trained

Moving Agent to predict the winner of the game. This step will improve the

speed of training the model since we do not need to play the moving stage of the

game to calculate the winner.

The data collected in this step will be used to train the Agent as discussed

earlier in this chapter.

39

4.3 Evaluation Criteria

4.3 Evaluation Criteria

Elo is a rating system that is named after its creator Arpad Elo. It was first

introduced in 1960 as a rating system for chess [32]. Later it became widely used

to rate players in other games such as football[33], video games[34], and other

board games like Go[35]. This system is used to rank players, also it can be used

to predict the winning probabilities for the players.

Elo system is easy to understand and to use and it is a standard rating all

over the world. The system mainly has two steps:

Step 1: Score Prediction, the Elo system can predict the winner and

expected score of a match based on the difference in rating between two players.

For example, if A score is higher than B, then A is more likely to win. Elo system

uses a logistic function to transform the difference between A and B rating into

a “score estimation”, the result of the logistic function E will be between 0 and

1. The greater value means more probability to win. The following equations are

used to calculate the estimated match result for player-1 EA and player-2 EB.

EA =
1

1 + 10(RB−RA)/400
(4.7)

EB =
1

1 + 10(RA−RB)/400
(4.8)

where EA is the estimated result for player-A, RA is the current rating for player-

A, and RB is the current rating for player-B. The estimated values will be used

in the next step to update the rating for the players.

Step 2: Update the players Rating: After the end of the match, we

40

4.3 Evaluation Criteria

compare the estimated result EA with the actual results RA, if RA > EA this

means that the system undervalues the player A so we need to increase his rating.

But if RA < EA then the system overvalues the player A we need to decrease his

rating. The same comparison is done for player B. In the Elo system, we use the

following equation to update the players rank:

R′A = RA +K(SA − EA) (4.9)

R′B = RB +K(SB − EB) (4.10)

where R′A, R
′
B are the updated rank for the players, RA, RB are the old ratings of

the players before the match, SA, SB are the score of the match for the players,

EA, EB the the predicted score for the players(calculated in step1 of Elo system),

and K (called K-factor) is a constant used to determine the speed with which the

player rate is adjusted after each game. for example in chess K = 16.

The Initial Score for the players can be any value such as zero, but most

developers avoid zero value and use a standard number such as 500 to prevent

negative rating for the players.

In this work, we will use Elo rate the agents in Seega, it will be used during

the training and evaluating of the agent. After each iteration of the training, we

will calculate the Elo rating for the new agent by playing many games against

the agent from the previous iterations, based on the results of these games we

will give the new and old agents the Elo rating.

41

Chapter 5

Experiments and Results

Summary

This chapter will show the experimental results of our proposed Reinforcement

Learning approach for the game of Seega. First section 5.1 describes the com-

puting environment and experimental settings that were used to conduct this

work. Then, section 5.2 shows the results of training the Moving Agent, Finally,

in section 5.3 we will describe the results of training the Positioning Agent.

5.1 Computing environment

All the machine learning algorithms, that were used in our experiments, were

implemented using Python 3.7 under Ubuntu 20.04 with intel core i7-8700U CPU

3.20GHz, 32GB RAM memory shipped with Nvidia GeForce GTX 1050 GPU card

that comes with 640 NVIDIA CUDA Cores, 2 GB GDDR5 and 7 Gbps Memory

Speed.

42

5.2 Moving Agent Training Results

Python is widely used in the field of machine learning. Many libraries are

developed and tested in this language. In our experiments, we have used Keras

on top of Tensorflow 2.1 library in order to implement the neural networks. Ten-

sorflow core engine is built using C-language which make it very efficient and can

utilize the GPU, it provide the developers a high-level python interface to develop

and configure many different types of neural networks, more details about this

tool in chapter-4.

5.2 Moving Agent Training Results

This section will show the results of training our Moving Agent which is trained

to select the best move that leads to winning. We implemented the proposed

reinforcement learning methodology which was described in the previous chapter

to train our Moving Agent. The Training took approximately 2.5 weeks, started

from completely random behavior, and continued without human intervention.

We developed the convolution neural network which its architecture consist of

5 layers (25 × 512 × 512 × 512 × 101) and total parameters is 8,197,221. During

the training, the MCTS algorithm played 15 iterations and generated around 1.7

million of self-play games. At the end of each iteration, we saved a checkpoint

of the agent and evaluate the new neural network checkpoint against the best-

reached network fθ so far. As shown in the table 5.1, the newly trained model

played against the best model reached so far 70 games, if the new model wins 0.6

of the games we accept it and replace the best model.

The plot in figure 5.1 shows the performance of the agent from each iteration

of learning of the stage-2 of the game. Elo ratings were computed from the result

43

5.2 Moving Agent Training Results

Table 5.1: The training results for the Moving Agent.

iteration samples new-model wins old-model wins accepted?
1 58,542.00 35 35 NO
2 105,231.00 33 37 NO
3 142,020.00 32 38 NO
4 210,393.00 37 33 NO
5 236,467.00 28 42 NO
6 274,192.00 37 33 NO
7 314,434.00 42 28 YES
8 453,873.00 41 29 NO
9 653,658.00 41 29 NO
10 812,582.00 44 26 YES
11 993,996.00 43 27 YES
12 1,153,714.00 42 28 YES
13 1,292,100.00 43 27 YES
14 1,473,442.00 45 25 YES
15 1,639,451.00 42 28 YES

of playing evaluation games between different versions of the agent.

To test the agent in a real-world game, we generated a test board with its

stones arranged on selected cells, this generated board has many available stones

to move, the goal of the test was to show that the agent can select the best

action a from a list of allowed actions A. Figure 5.2 a shows the testing board

provided to the agent to predict the best move, in this example the allowed

actions for the agent; assuming that the agent owns the black stone, are A =

[(B4, UP), (C4, LEFT), (D3, UP), (D3, DOWN), (E4, LEFT)].

When the example board provided to the agent to play its predicted best

action a, the agent selected the action (D3, UP) among all other allowed actions.

Figure 5.2 b shows the board after the agent play it best predicted action which

is (D3, UP), this action enabled the agent to capture its opponent stone at C2

and in figure5.2 c the agent continue moving the same stone from C3 to D3 and

44

5.2 Moving Agent Training Results

Figure 5.1: Elo rating per iteration for the Moving Agent

Figure 5.2: Example game to test the Moving Agent

45

5.2 Moving Agent Training Results

captured two opponent stones at D2 and D4, and finally figure 5.2 c show the

agent move the same stone from D3 to D3 and captures the opponent stone at

E2, this make the total captured stone equal 4 from the same action.

The resulting board clearly shows that agent action a selected based on the

knowledge it learned and it could lead the agent to win the game.

5.2.1 Positioning Agent Training Results

In this section we will discuss the results of training our Positioning Agent which

trained to select the best board index to place its stone which could in result lead

to win the game.

We used and implemented the same methodology used in training the Mov-

ing Agent in the previous section. The Training took approximately 1.5 weeks,

started from completely random behavior, and continued without human inter-

vention. The Players started from an empty board, and in turn, they placed two

pieces at a time until all their stone placed at the board, to get the winner of the

game we used the Moving Agent which trained in the previous section to predict

the winner instead of playing the stage-2 of the game, this saved a lot of time

and processing during the training. We developed the convolution neural network

which its architecture consists of 5 layers (25 × 512 × 512 × 512 × 25) and total

parameters is 5,251,217. Each CNN layer has 512 filter with a kernel size is 3,

and ReLu is used as activation function.

During the training, the MCTS algorithm played 110 iterations and generated

around 264,000 games of self-play. Same as in the previous model, at the end of

each iteration, we saved a checkpoint of the agent and evaluate the new neural

46

5.2 Moving Agent Training Results

iteration samples new-model wins old-model wins accepted?
1 2,400.00 35 35 NO
2 14,400.00 38 32 NO
3 16,800.00 45 25 YES
4 19,200.00 36 34 NO
5 21,600.00 35 35 NO
6 26,400.00 40 30 YES
7 28,800.00 29 41 NO
8 40,800.00 31 39 NO
9 43,200.00 41 29 YES
10 45,600.00 31 39 NO
11 48,000.00 39 31 YES
12 50,400.00 32 38 NO
13 52,800.00 33 37 NO
14 55,200.00 36 34 NO
15 57,600.00 39 31 YES

Table 5.2: The results of training the Positioning Agent.

network checkpoint against the best-reached network fθ so far. Table 5.2 shows a

sample of the results which got during the training. You can find the full table in

the appendix. It also shows for each iteration the number of samples and whether

the new model is accepted or rejected. The newly trained model played against

the best model reached so far 70 games, if the new model wins 0.6 of the games

we accept it and replace the best model.

The plot in figure 5.3 shows the performance of the agent for each iteration

of the learning process. Elo ratings were computed from the result of playing

evaluation games between different versions of the agent.

47

5.3 Minimax Results

Figure 5.3: Elo rating per iteration for the Positioning Agent

Depth (level) Avg time(ms) Avg time (minutes)
2 66 0.0011
4 873 0.01455
6 48642 0.8107
8 2900940 48.349

Table 5.3: The computation time needed for mini-max at different levels of tree
depth.

5.3 Minimax Results

We developed a mini-max version of Moving agent to test the computing time

and the playing skills of the agent. Table 5.3 show the time needed to calculate

and predict the best action using mini-max, we calculated the average time by

running the algorithm with same setup 10 times, we tried mini-max with 4 setups,

started with a 2-levels search depth of the tree, then increased the depth until

8-levels.

48

5.3 Minimax Results

Depth (level) move # stones captured
2 (B3,Down) 2
4 (B4,Up) 1
6 (B3, Down) 2
8 (D3,UP) 4

Table 5.4: The predicted best actions by mini-max at different levels of tree
depth.

We also tested the skills of mini-max to compare it with the agent we trained

previously. The same board which used to evaluate the RF agent is used with

mini-max. Table 5.4 shows the selected action and the number of opponent stones

captured at each mini-max setup.

Figure 5.4: The actions taken by mini-max at different levels of tree depth.

Figure 5.4 illustrate the actions predicted by mini-max after running the al-

gorithm with different tree depth. A: show min-max with 2 levels depth. The

algorithm moved the stone from B3 down to C3 which resulted in capturing two

of opponent stones at B2 and C2. B: show min-max with 4 levels depth, the

algorithm moved the stone from B4 Up to A4 and the opponent stone at A3 is

captured. In C: min-max with 6 levels depth is used, the algorithm moved its

stone from B3 down to C3, the two opponent stone at B2 and C2 is captured.

D: min-max using 8 levels depth, the algorithm moved the stone from D3 up to

49

5.4 Discussion

C3, this action captured 4 of the opponent stone at C2, D2, D4, and E2.

5.4 Discussion

In this section, we will discuss the results of the proposed approach, The two

agents are trained with random policy and without any human intervention. the

goal for the two agents is to learn the rules of the game which prevent them from

taking wrong actions such as placing the stone at the center cell of the board.

Also to learn to take the best actions that leads to win the game and defeat the

opponent player.

The results for both agents shown that they learned the rules of the game and

their action based on the knowledge that they learned.

In the first few iteration shown in table 5.1 and table 5.2 depicts that the

agents were defeated by the initial random policy since they didn’t learned from

enough samples. We adapted the 0.6 as threshold to accept or reject the newly

trained model. To accept the agent it should win at least 60% of the games, this

threshold prevent us from accepting a model that won randomly by chance.

Also, we used the Elo ranking system to evaluate the agents, as shown in

figure 5.1 and figure 5.3, the agents skills are improved over time.

When compared to mini-max, the mini-max algorithm needed 48 minutes to

get the same result of our trained model which needed 13 ms. As shown in table

5.3 the time needed to predict the action is dramatically increased when the depth

of search is increased which makes this methodology not acceptable in the real

world game. When using a small value search depth, the results of the algorithm

will be naive and could not lead to winning the game since the algorithm explored

50

5.4 Discussion

only a small part of the tree.

51

Chapter 6

Conclusions

In this thesis, we used the Reinforcement Learning method to develop a computer

program that can play Seega Game; which is one of the oldest board games. This

game is similar to chess but with more complex rules. Seega has two stages;

In the first stage, the players position their stones on the board in a strategic

manner. In the In the second stage, the players move their stones vertically or

horizontal to capture the opponent’s stones.

We developed two computer agents that can play Seega game, the first agent

can play stage-1 of the game namely Positioning Agent, the other agent can play

the stage-2 of the game namely Moving Agent. We used reinforcement learning

to train the two agents on self-play games without human data or guidance.

In this work, we proposed using the Monte Carlo tree search to play and

simulate games, and deep convolution neural networks to train the agents. We

have divided the training process into two steps; In the first step, we trained

the Moving Agent using self-play games on randomly-generated boards; which

trained the agent to select the best moves of the piece’s to win the game. In the

second step, we trained the Positioning Agent using self-play games starting from

an empty board to select the best cell to place the piece’s in the perspective of

52

6.1 Future Work

the current player. The trained Moving Agent is also be used during the training

of Positioning Agent to predict the winner of the game when the players finish

positioning all their pieces instead of playing the full game. During the training

and after each iteration we evaluated the newly trained model and compared it

with the best-selected model so far by playing many games against it, the newly

trained model is accepted as the best-model if it wins 60% of the games, the Elo

rating system is used to calculate the points for each model. This evaluation

step improved the training process since the accepted model is used in the next

iterations to generate better playing samples to train the neural network.

To evaluate our methodology, we developed another computer program that

plays Seega game using the classical tree search algorithm mini-max. We used a

board with the same arrangement of its stones to compare the playing skills of

the trained model and the mini-max algorithm.

The experiment results show that the two agents learned the rules of the

game, and their actions clearly show the knowledge they got during the training.

This makes our methodology suitable to be used in real-world games in terms

of accuracy of playing and the low computing power and time needed to use the

trained models compared with the traditional mini-max algorithm.

This work is good evidence of using reinforcement learning to solve board

games similar to Seega. especially those that lake the pre-collected training date

data.

6.1 Future Work

Although the provided analysis and methodologies are quite good and constitute

a powerful proof of the skills of the trained agents, there are some improvements

53

6.1 Future Work

that can still be made. Different experiments have been left for the future because

of a lack of time.

We suggest the following future extensions to our work:

• We suggest running the same experiments on a server with more computer

power and for more period of time. This could lead the agents to get more

knowledge and improve their playing skills.

• Try another neural network architectures to train the two agents.

• Another work that can be done is to develop an actual game with a graphical

user interface (UI) that can use the trained model to play against the actual

people.

54

Appendix A

Result tables

iteration samples new-model wins old-model wins accepted?

1 2,400.00 35 35 NO

2 4,800.00 33 37 NO

3 7,200.00 36 34 NO

4 9,600.00 35 35 NO

5 14,400.00 38 32 NO

6 16,800.00 35 35 NO

7 16,800.00 45 25 YES

8 19,200.00 36 34 NO

9 21,600.00 35 35 NO

10 24,000.00 28 42 NO

11 26,400.00 40 30 YES

12 28,800.00 29 41 NO

13 31,200.00 32 38 NO

14 33,600.00 30 40 NO

15 36,000.00 29 41 NO

16 38,400.00 29 41 NO

55

17 40,800.00 31 39 NO

18 43,200.00 41 29 YES

19 45,600.00 31 39 NO

20 48,000.00 39 31 YES

21 50,400.00 32 38 NO

22 52,800.00 33 37 NO

23 55,200.00 36 34 NO

24 57,600.00 39 31 YES

25 60,000.00 38 32 NO

26 62,400.00 42 28 YES

27 64,800.00 39 31 YES

28 67,200.00 37 33 NO

29 69,600.00 46 24 YES

30 72,000.00 34 36 NO

31 74,400.00 32 38 NO

32 76,800.00 36 34 NO

33 79,200.00 31 39 NO

34 81,600.00 30 40 NO

35 84,000.00 23 47 NO

36 86,400.00 36 34 NO

37 88,800.00 32 38 NO

38 91,200.00 35 35 NO

39 93,600.00 37 33 NO

40 96,000.00 38 32 NO

56

41 98,400.00 28 42 NO

42 100,800.00 40 30 YES

43 103,200.00 35 35 NO

44 105,600.00 35 35 NO

45 108,000.00 36 34 NO

46 110,400.00 35 35 NO

47 112,800.00 31 39 NO

48 115,200.00 43 27 YES

49 117,600.00 36 34 NO

50 120,000.00 34 36 NO

51 122,400.00 40 30 YES

52 124,800.00 43 27 YES

53 127,200.00 38 32 NO

54 129,600.00 38 32 NO

55 132,000.00 39 31 YES

56 134,400.00 45 25 YES

57 136,800.00 40 30 YES

58 139,200.00 22 48 NO

59 141,600.00 37 33 NO

60 144,000.00 35 35 NO

61 146,400.00 40 30 YES

62 148,800.00 33 37 NO

63 151,200.00 37 33 NO

64 153,600.00 37 33 NO

57

65 156,000.00 27 43 NO

66 158,400.00 30 40 NO

67 160,800.00 37 33 NO

68 163,200.00 31 39 NO

69 165,600.00 42 28 YES

70 168,000.00 27 43 NO

71 170,400.00 32 38 NO

72 172,800.00 32 38 NO

73 175,200.00 37 33 NO

74 177,600.00 32 38 NO

75 180,000.00 35 35 NO

76 182,400.00 33 37 NO

77 184,800.00 30 40 NO

78 187,200.00 36 34 NO

79 189,600.00 32 38 NO

80 192,000.00 34 36 NO

81 194,400.00 32 38 NO

82 196,800.00 35 35 NO

83 199,200.00 36 34 NO

84 201,600.00 39 31 YES

85 204,000.00 49 21 YES

86 206,400.00 28 42 NO

87 208,800.00 31 39 NO

88 211,200.00 26 44 NO

58

89 213,600.00 453 -383 YES

90 216,000.00 24 46 NO

91 218,400.00 31 39 NO

92 220,800.00 30 40 NO

93 223,200.00 39 31 YES

94 225,600.00 32 38 NO

95 228,000.00 31 39 NO

96 230,400.00 29 41 NO

97 232,800.00 37 33 NO

98 235,200.00 30 40 NO

99 237,600.00 37 33 NO

100 240,000.00 32 38 NO

101 242,400.00 34 36 NO

102 244,800.00 35 35 NO

103 247,200.00 29 41 NO

104 249,600.00 34 36 NO

105 252,000.00 30 40 NO

106 254,400.00 27 43 NO

107 256,800.00 31 39 NO

108 259,200.00 32 38 NO

109 261,600.00 31 39 NO

110 264,000.00 36 34 NO

111 266,400.00 29 41 NO

59

References

[1] “Seega,(al-sija) - ancient games - playing the board games of the an-

cient world.” https://www.ancientgames.org/seega/. (Accessed on

09/25/2020). x, 6

[2] “Reinforcement learning for control systems ap-

plications - matlab & simulink.” https://www.

mathworks.com/help/reinforcement-learning/ug/

reinforcement-learning-for-control-systems-applications.html.

(Accessed on 09/25/2020). x, 11

[3] H. Baier and P. D. Drake, “The power of forgetting: Improving the last-

good-reply policy in monte carlo go,” IEEE Transactions on Computational

Intelligence and AI in Games, vol. 2, no. 4, pp. 303–309, 2010. x, 15

[4] M. Koch, T. Duigou, and J.-L. Faulon, “Similarity-guided monte carlo tree

search for bio-retrosynthesis,” bioRxiv, p. 800474, 2019. x, 17

[5] “Convolutional neural network tutorial: From ba-

sic to advanced - missinglink.ai.” https://

missinglink.ai/guides/convolutional-neural-networks/

60

https://www.ancientgames.org/seega/
https://www.mathworks.com/help/reinforcement-learning/ug/reinforcement-learning-for-control-systems-applications.html
https://www.mathworks.com/help/reinforcement-learning/ug/reinforcement-learning-for-control-systems-applications.html
https://www.mathworks.com/help/reinforcement-learning/ug/reinforcement-learning-for-control-systems-applications.html
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/

REFERENCES

convolutional-neural-network-tutorial-basic-advanced/. (Ac-

cessed on 09/25/2020). x, 18, 19

[6] O. E. David, N. S. Netanyahu, and L. Wolf, “Deepchess: End-to-end deep

neural network for automatic learning in chess,” in International Conference

on Artificial Neural Networks, pp. 88–96, Springer, 2016. x, 20, 21

[7] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driess-

che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,

“Mastering the game of go with deep neural networks and tree search,” na-

ture, vol. 529, no. 7587, p. 484, 2016. x, 21, 22, 23

[8] A. M. Abdelbar, S. Ragab, and S. Mitri, “Co-evolutionary particle swarm

optimization applied to the 7/spl times/7 seega game,” in 2004 IEEE Inter-

national Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541),

vol. 1, pp. 243–248, IEEE, 2004. xi, 26

[9] A. Aljaafreh and N. Al-Oudat, “Development of a computer player for seejeh

(aka seega, siga, kharbga) board game with deep reinforcement learning,”

Procedia Computer Science, vol. 160, pp. 241–247, 2019. xi, 26, 27

[10] S. Sharma, “Explained: Deep learning in tensorflow — chap-

ter 1 - towards data science.” https://towardsdatascience.com/

explained-deep-learning-in-tensorflow-chapter-1-9ab389fe90a1,

11 2019. (Accessed on 04/26/2020). xi, 29

[11] A. M. Abdelbar, S. Ragab, and S. Mitri, “Applying co-evolutionary particle

swam optimization to the egyptian board game seega,” in Proceedings of the

61

https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/
https://missinglink.ai/guides/convolutional-neural-networks/convolutional-neural-network-tutorial-basic-advanced/
https://towardsdatascience.com/explained-deep-learning-in-tensorflow-chapter-1-9ab389fe90a1
https://towardsdatascience.com/explained-deep-learning-in-tensorflow-chapter-1-9ab389fe90a1

REFERENCES

first Asian-Pacific workshop on genetic programming, no. CONF, pp. 9–15,

2003. 6, 24, 26

[12] E. W. Lane, An account of the manners and customs of the modern Egyp-

tians. Oxford University Press, 2012. 6

[13] E. Falkener, Games Ancient and Oriental, and how to Play Them: Being the

Games of the Greek, the Ludus Latrunculorum of the Romans and the Orien-

tal Games of Chess, Draughts, Backgammon and Magic Squares. Longmans,

Green and Company, 1892. 6

[14] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”

2011. 11

[15] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,

pp. 279–292, 1992. 14

[16] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning,

vol. 135. MIT press Cambridge, 1998. 14

[17] R. S. Sutton, “Dyna, an integrated architecture for learning, planning, and

reacting,” ACM Sigart Bulletin, vol. 2, no. 4, pp. 160–163, 1991. 15

[18] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling,

P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A

survey of monte carlo tree search methods,” IEEE Transactions on Compu-

tational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43, 2012. 16

[19] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recognition: A

62

REFERENCES

convolutional neural-network approach,” IEEE transactions on neural net-

works, vol. 8, no. 1, pp. 98–113, 1997. 17

[20] A. Severyn and A. Moschitti, “Twitter sentiment analysis with deep con-

volutional neural networks,” in Proceedings of the 38th International ACM

SIGIR Conference on Research and Development in Information Retrieval,

pp. 959–962, 2015. 17

[21] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,” Arti-

ficial intelligence, vol. 6, no. 4, pp. 293–326, 1975. 20

[22] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree

search,” in International conference on computers and games, pp. 72–83,

Springer, 2006. 21

[23] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go

without human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

22, 23, 26

[24] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,

M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “A general reinforce-

ment learning algorithm that masters chess, shogi, and go through self-play,”

Science, vol. 362, no. 6419, pp. 1140–1144, 2018. 23, 32

[25] H. Iida, M. Sakuta, and J. Rollason, “Computer shogi,” Artificial Intelli-

gence, vol. 134, no. 1-2, pp. 121–144, 2002. 23

[26] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings

63

REFERENCES

of ICNN’95-International Conference on Neural Networks, vol. 4, pp. 1942–

1948, IEEE, 1995. 24

[27] Theano Development Team, “Theano: A Python framework for fast com-

putation of mathematical expressions,” arXiv e-prints, vol. abs/1605.02688,

May 2016. 27

[28] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

Machine learning in Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011. 27

[29] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,

S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast

feature embedding,” arXiv preprint arXiv:1408.5093, 2014. 27

[30] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-

rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,

G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-

enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,

J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,

V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,

Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on hetero-

geneous systems,” 2015. Software available from tensorflow.org. 28

[31] A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and Ten-

64

REFERENCES

sorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems.

O’Reilly Media, 2019. 29

[32] M. E. Glickman and A. C. Jones, “Rating the chess rating system,”

CHANCE-BERLIN THEN NEW YORK-, vol. 12, pp. 21–28, 1999. 40

[33] L. M. Hvattum and H. Arntzen, “Using elo ratings for match result prediction

in association football,” International Journal of forecasting, vol. 26, no. 3,

pp. 460–470, 2010. 40

[34] M. Myślak and D. Deja, “Developing game-structure sensitive matchmaking

system for massive-multiplayer online games,” in International Conference

on Social Informatics, pp. 200–208, Springer, 2014. 40

[35] R. Coulom, “Computing “elo ratings” of move patterns in the game of go,”

ICGA journal, vol. 30, no. 4, pp. 198–208, 2007. 40

[36] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I.

Fotiadis, “Machine learning applications in cancer prognosis and prediction,”

Computational and structural biotechnology journal, vol. 13, pp. 8–17, 2015.

[37] M. Ikonomakis, S. Kotsiantis, and V. Tampakas, “Text classification using

machine learning techniques.,” WSEAS transactions on computers, vol. 4,

no. 8, pp. 966–974, 2005.

[38] P. Singhal and N. Raul, “Malware detection module using machine learning

algorithms to assist in centralized security in enterprise networks,” arXiv

preprint arXiv:1205.3062, 2012.

65

REFERENCES

[39] H. C. Bolton, “Seegà, an egyptian game,” Journal of American Folklore,

pp. 132–134, 1890.

[40] L. Shao, J. Han, P. Kohli, and Z. Zhang, Computer vision and machine

learning with RGB-D sensors, vol. 20. Springer, 2014.

[41] J. Heaton, N. G. Polson, and J. H. Witte, “Deep learning in finance,” arXiv

preprint arXiv:1602.06561, 2016.

[42] C. Biancalana, F. Gasparetti, A. Micarelli, A. Miola, and G. Sansonetti,

“Context-aware movie recommendation based on signal processing and ma-

chine learning,” in Proceedings of the 2nd Challenge on Context-Aware Movie

Recommendation, pp. 5–10, 2011.

[43] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with

double q-learning,” in Thirtieth AAAI conference on artificial intelligence,

2016.

[44] I. Ghory, “Reinforcement learning in board games,” Department of Computer

Science, University of Bristol, Tech. Rep, vol. 105, 2004.

[45] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:

A survey,” The International Journal of Robotics Research, vol. 32, no. 11,

pp. 1238–1274, 2013.

[46] L. Kaiser, M. Babaeizadeh, P. Milos, B. Osinski, R. H. Campbell,

K. Czechowski, D. Erhan, C. Finn, P. Kozakowski, S. Levine, et al., “Model-

based reinforcement learning for atari,” arXiv preprint arXiv:1903.00374,

2019.

66

REFERENCES

[47] Z. Liu, M. Zhou, W. Cao, Q. Qu, H. W. F. Yeung, and V. Y. Y. Chung,

“Towards understanding chinese checkers with heuristics, monte carlo tree

search, and deep reinforcement learning,” arXiv preprint arXiv:1903.01747,

2019.

[48] Sergio Guadarrama, Anoop Korattikara, Oscar Ramirez, Pablo Castro,

Ethan Holly, Sam Fishman, Ke Wang, Ekaterina Gonina, Neal Wu, Efi

Kokiopoulou, Luciano Sbaiz, Jamie Smith, Gábor Bartók, Jesse Berent,

Chris Harris, Vincent Vanhoucke, Eugene Brevdo, “TF-Agents: A library for

reinforcement learning in tensorflow.” https://github.com/tensorflow/

agents, 2018. [Online; accessed 25-June-2019].

[49] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level

control through deep reinforcement learning,” Nature, vol. 518, no. 7540,

pp. 529–533, 2015.

[50] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. De Fre-

itas, “Dueling network architectures for deep reinforcement learning,” arXiv

preprint arXiv:1511.06581, 2015.

[51] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,”

arXiv preprint arXiv:1509.02971, 2015.

[52] S. Fujimoto, H. Van Hoof, and D. Meger, “Addressing function approxima-

tion error in actor-critic methods,” arXiv preprint arXiv:1802.09477, 2018.

67

https://github.com/tensorflow/agents
https://github.com/tensorflow/agents

REFERENCES

[53] R. J. Williams, “Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning,” Machine learning, vol. 8, no. 3-4, pp. 229–

256, 1992.

[54] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[55] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-

policy maximum entropy deep reinforcement learning with a stochastic ac-

tor,” arXiv preprint arXiv:1801.01290, 2018.

68

	1 Introduction
	1.1 Main Contributions
	1.2 Thesis Structure

	2 The game of Seega
	2.1 Seega Game
	2.1.1 Seega History
	2.1.2 Seega Components
	2.1.3 Seega Stages and Rules

	3 Background and Literature Review
	3.1 Introduction to Reinforcement Learning
	3.2 Markov Decision Process
	3.3 Q-value function and Bellman equation
	3.4 Classes of RL Algorithms
	3.5 Monte Carlo Tree Search
	3.6 Convolutional Neural Network
	3.7 Related work
	3.7.1 AI in board games
	3.7.2 Work on Seega game

	3.8 Tools and Frameworks

	4 Methodology
	4.1 Environment Representation
	4.2 RL Architecture
	4.2.1 Training The Moving Agent
	4.2.2 Training The Positioning Agent

	4.3 Evaluation Criteria

	5 Experiments and Results
	5.1 Computing environment
	5.2 Moving Agent Training Results
	5.2.1 Positioning Agent Training Results

	5.3 Minimax Results
	5.4 Discussion

	6 Conclusions
	6.1 Future Work

	A Result tables
	References

