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Abstract

The Adomain decomposition method is a semi-analytical technique for solving nonlinear
differential equations. In the literature, one can find that this method is combined with
integral transforms such as Laplace, Natural, Sumudu, and Elzaki transforms.

This thesis presents some famous integral transforms couplied with the Adomain de-
composition method. These transforms include, the natural transform, the double natural
transform, Laplace transform, the double Laplace transform, Elzaki transform and Sumudu
transform. These transforms are presented with their properties. Then they are combined
with the Adomain decomposition method to solve nonlinear ordinary and partial differen-

tial equations.
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Chapter 1

Introduction

1.1 Overview

Mathematical models encountered in applied mathematics, mathematical physics and engi-
neering systems mostly tend to be nonlinear differential equations. These nonlinear equa-
tions are difficult in finding the exact or approximation solutions caused by the nonlinear

part.

There are many methods have been proposed to solve nonlinear differential equations.
The Adomain Decomposition Method (ADM) is one of these method. This method is a

semi technique based on decomposing the solution to a series of functions.

At the beginning of 1980s, Adomain proposed the ADM to solve nonlinear equations [3,5].
In this method, the given equation is decomposed in linear and nonlinear parts of the dif-
ferential equation. Inverting and applying the highest order differential operator that is
contained in the linear part of equation, it is possible to express the solution in terms of the
rest of the equation affected by the inverse operator. At this point, the solution is proposed

by means of series with terms that will be determined and that give the Adomain polyno-



1.1. OVERVIEW

mials, in this way and by means of a recurrence relations, it is possible to find the terms of

the series that give the approximate solution of the differential equation.

The ADM and its modifications [41,43]] has been used to solve linear and nonlinear dif-
ferential equations, and the theoretical treatment of the convergence of Adomain decom-
position method has been considered in [[1,/17]]. A convergence of Adomain’s technique is

ensured with week hypothesis on the nonlinear operator and on the functional equation.

Combined methods of the ADM with integral transforms have been proposed to handle
nonlinear problems, Several transforms have been used like Laplace [25, 32} 33], natu-

ral [37,38]], Sumudu [[11}28]], Elzaki [22,34],Aboodh [39],

This thesis is mainly concerned with the combined integral transform -Adomain decom-

position methods, both nonlinear ordinary and partial diffrential equations are considerd.

This thesis consist of four chapters:

Chapter 1, is an introductory chapter. The basics of the Adomain decomposition method
is presented with convergence analysis.

In Chapter 2, we consider the natural transform decomposition method (NDM). This
method is used to approximate the solutions of ordinary differential equations [37]] and
partial diferential equations [38]]. In addition, we present double natural transform decom-
position method.

In Chapter3, we consider the Laplace transform coupling with the decomposition method
and named (LDM), this method is a numerical algorithm to solve nonlinear ordinary, par-
tial differential equations, see Khuri [32,33]]. Moreover, we present the double decompo-

sition method ; the method is combination of double Laplace transform with the ADM.



1.2. ADOMAIN DECOMPOSITION METHOD

Chapter 4 is devoted to the Sumudu transform [11] and Elzaki transform [21]]. These
transforms are introduced and combined with the ADM to solve nonlinear differential

equations.

1.2 Adomain Decomposition Method

In this section, we brifely recall of the Adomain Decomposition Method (ADM), which is
a technique for solving algebraic equations, ordinary differential equations, partial differ-
ential equations, and integral equations, see [4}|6,/7]. For the material of this section we

refer to [[16].

Consider the more general nonlinear ordinary differential equation
Ly(z) + Ry(z) + Ny(z) = g(z).

where
L is the highest order derivative which is assumed to be invertible.
R 1s a linear differential operator of order less than L.
Ny represents the nonlinear terms.

g(x) represents the nonhomogeneous terms.

Solving for Ly, we get

Ly(x) = g(x) — Ry(x) — Ny(z). (L.1)



1.2. ADOMAIN DECOMPOSITION METHOD

Applying the inverse operator L~ to both sides of Equation (T.1)), we obtain
L7y = L7Yg(w)) = L7 (Ry(x)) — L (Ny(x)), (1.2)

where the integral operator L~! may be regarded as definite integral from 0 to z. Here L™

is the integration n times, where 7 is the highest order of the derivative.

Ll—/ / / dr dzx...dx
o Jo 0

Ly = y() —y(0) — 2/ (0) = Ly (0) — ..~ Ty0). (13

L™ (g()) +y(0) + zy'(0) + 54/(0)

<

—~
5]

~—
I

n

x
4.+ Fy"(O) — LY Ry(z)) — L' (Ny(x)). (1.4)
Now, replacing the unknown function y by an infinite series of y,,

y(@) = > walx). (1.5)

The nonlinear terms Ny is decomposed as an infinite series of the Adomain Polynomials,



1.2. ADOMAIN DECOMPOSITION METHOD

Al s given by
Ny - ZAn(y()vylayZ?"')' (16)
n=0

To compute A, take N'y = f(y) to be a function in y, where y = y(x), then the Taylor

series expansion of f(y) around yo is given by:

F) = £0)+ 1/ (0) o = w0) + 51" (0) g = 90 + 3" (o) = 90)* + .

Buty = yo +y1 +y2 + ..., then

f(y> = f(yo) + f/(yO)(yl + Y2 + Y3 + ) + %f”(yo)(yl + Y2 + Ys + )2
+ %f’”(yo)(yl fyrtys+ )P+
= Flu0) + £+ F o)+ o F o)+ o f ol + o o)y

1 3 1
+ ..+ §f’”(yo)yi‘ + gf’”(yo)yfyz + gf”’(yo)yfy:a + ...

Now, let ({)(4) be the order of y} and (1)(z)+ (m)(j) be the order of y/iy?.. Then A,, consists

of all terms of order n, we have
Ao = f(wo)
Ay = f'(yo)n
/ 1 " 2
Ay = f'(yo)ya + gf (vo)yi

2 1
As = f'(yo)ys + Ef”(yo)ylyz + gf’”(yo)yf



1.2. ADOMAIN DECOMPOSITION METHOD

1
Ay = ['(y0)ys f”(yo)(2y1y3 +y3) + ,f’”(yo)y%.w + /" wo)ni
Or
Ay = N(yo)
A1 = N(yo)n
! 1 1" 2
Ay = N"(yo)y2 + 5/\/ (v0)yi
lA 2 124 1 12 3
Az = N"(yo)ys + 5/\/' (Yo)y1y2 + 5/\/' (vo)yi
! 1 1 2 3 " 2 1 " 4
Ay = N"(yo)ys + 5/\/ (y0)(2y1y3 + v3) + gf\f (Yo)yiya + EN (o)1
Hence,
A, = Ay 1dn ZX” (1.7)
n — n\Yo, Y1, -- 7yn - 'd)\n Ym 70~ .

Now, substituting (1.5)) and (1.6) in (T.4)), and solve it for y to get

Dy =L g() + do — LM (Ry(x)) — L™ (Ny(x)).



1.2. ADOMAIN DECOMPOSITION METHOD

Where
)
y(0) — xy'(0)
/ $2 /!
o= ¢ Y(0) —ay'(0) — 574" (0)
x? "
| 9(0) —ay'(0) = 579"(0) — . = —y"(0) if L
Therefore
Yo = ¢o+ L_lg(ﬂﬁ)a
Yn+1 = _Lil(Ryn) - Lil(An)

Example 1.1. Consider the nonlinear differential equation

y(@) +y') = -1,

with initial condition

Solution:

We can write the equation as

d
Let L = —, then
dx

(1.8)

(1.9

(1.10)



1.2. ADOMAIN DECOMPOSITION METHOD

The Adomain polynomials are

1
Ao = 2yoys + EQZJ%

Az = 2yoys + 2y112

Take the
L_lz/ dx
0
of (I.10) we get
y(z) = L7 (=1) = L7 (y*(x))
or
Zyn(l’) =z — L_I(Z An)
n=0 n=0
Hence
Yo = —
Yy = —L_l(Ao):—/ (—x)%dr = ——
0 3
T8 ot xd
= —L'A)=- [ 22°%do=— [ 25dx=-2"
b2 (41) /0 Ty /0 3 15
z —2° 23\ ? —14z" 27 —17z7
= LAy =— [ 2— T dp = — S
v3 (4) /0 (=)—3 +<3) v {105 +63] 315



1.3. CONVERGENCE OF ADOMAIN DECOMPOSITION METHOD

Then the solution is

) = =g = e T g
B 223 16x° 27227
=TT T m T a

The computed terms in this series coincide with Maclaurine series for the function

y(x) = —tan(z).

In fact y(z) = — tan(x) is the exact solution of (1.8) with condition (1.9).

1.3 Convergence of Adomain Decomposition Method

In this section, a general proof of convergence for the ADM is introduced. This technique
was proposed by Cherruault et al [18]. They also proved some results about on speed of

convergence for this method.

Consider the following a general functional equation:

y—N(y) =/, (1.11)

where V' : H — H is the nonlinear operator and H is a Hilbert space, and f = L~ 'gisa

given function in H.

Assuming that y is the solution of (I.IT]) and the nonlinear operator N(y) are decom-

posed into infinite series

y(@) = > palo).



1.3. CONVERGENCE OF ADOMAIN DECOMPOSITION METHOD

and

N(y) = ZAna

where A,,’s are Adomain polynomials.

Now, substituting these decomposition series in (1.11]), we get

Zﬁ%z(x)_ZAn(x) = f

Then the recursive terms can be written as

y():fv

Yn+1 = An(y07 Y1y ey yn)

Let
Sp = y1F+y2+ ... + Yn.
Then the Adomain decomposition method is equivalent to

So(x) = 0,

Sn+l - N(yo + STL)7
where
n=0

S = lim,,_., S, if the limit exist in the Hilbert space H, then S is a solution of a fixed

point equation,

S=N(y+S) in H (1.12)

10



1.3. CONVERGENCE OF ADOMAIN DECOMPOSITION METHOD

Theorem 1.1. Let N be nonlinear operator on a Hilbert space H. The decomposition

series » o yn of y converges to y when

30 < @ < 1 such that ||y,1|| < ally,|| for n =0,1,2, ...

Proof. We have

SO - 0
S1 = U1
So = Y1+

Sp = y1+y+...+yn

We want need to show that {.S,,}>°  is a Cauchy sequence in the Hilbert space H.

1Sn+1 = Sull = sl < allynll < 0®[lynall < ... < o™ Hlyoll

But for any n, m € N,n > m, we have

1Sn = Sl = [[(Sn = Sn1) + (Sno1 = Sp—2) + . + (St — Sw)||
< [0S = Sl + (1S = Sna)l[ 4o 4 [[(Siasr = S|
< gl + o™ Hlgoll + - + o™ Hlyol|

= (" +a" 4+ .+ a™h |yl
= (™ 4™ o)yl

< (@4 a™ ) [yl

aerl

= Sl

11



1.3. CONVERGENCE OF ADOMAIN DECOMPOSITION METHOD

Buta < 1, so

lim ||S, — Sw|| =0,

n,Mm—00

hence {5,,}5° , is a Cauchy sequence in the Hilbert space H and this implies that

lim S, =S5, SeH

n—o0

ie. S =" un, butsolving (I.TI) is equivalent to solving (I.12) and by assuming that

N 1is a continuous operator, then

N(yo+S) = N(r}i_{rolo(yo + S,))
= 11_>m N(yo + Sn)
= hm Sn—I—I

= S

i.e. S is the solution of (1.11)). O

12



Chapter 2

Natural Transform With Adomain

Decomposition Method (NDM)

2.1 Natural Transform

Natural Transform is an integral transform similar to the Laplace transform, the Natural
Transform was introduced by Khan in 2008 [31], and its properties were investigated by
AL-Omari in 2013 [8]. This transform plays a role in techniques for solving ordinary

differential equations.

Definition 2.1. [14] Let f(¢) be a function defined for t € (—o0, o), then the Natural

Transform of f(¢) denoted by R(s, u) is defined as
N[f(t)] = R(s,u) = / flut)e™®'dt, s,u € (—o0,00). (2.1

Provided the integral is convergent, here N|[f(¢)] is called the natural transform of time

function and the variable s and u are the natural transform variables.

13



2.1. NATURAL TRANSFORM

Equation (2.1) can be written as
NIFO) = [ faedr, s (~00.0)

— [/_(; flut)e*'dt, s,u € (—00,0)] + {/OOO flut)e™'dt, s,u € (0,00)

= NT[f(O)]+ NTIf(t)]
= NfOH(=)] + N[f)H(t)]

= R (s,u) + R"(s,u),

) ) 0 for t<0
where H (-) is a Heaviside function, i.e. H(t) =

1 for t>0

If the function f(¢)H (t) is defined on the positive real axis with ¢ € R, then we define

the natural transform on the set
A={f(t): IM, 7,75 >0 such that |f(t)] < MV if t € (—1)7x[0,00), j=1,2}
by

N[f()H(t)] = NT[f(t)] = Rt (s,u) = /000 flut)e™*'dt, s,u € (0,00).

The Natural transform throughout the thesis of the function f(¢) > 0 and f(¢) = 0 for

t < 0 1s defined by
NT[f(t)] = R(s,u) = / flut)e™'dt, s> 0,u>0 (2.2)
0

Next, some examples are given.

14



2.1. NATURAL TRANSFORM

Example 2.1. Unit step function

1 for t>0,
Let u(t) =
0 for t<0.

The N-Transform of this function can be written as

N*[u()] = /0 ety

—st

. —€ ¢
= lim
c—oo  § 0
1
s

Example 2.2. Exponential function:
Let f(t) = e™ when ¢t > 0, where a is constant, the N-Transform of this function can be

written as

NT[f(@®)] = Nle"]

00
— / eaut efstdt
0

[

— lim ef(sfau)tdt
c—00 0

e—(s—au)t c 1

p— 1.
ehoo —(s5 — au)

0 S — au

In Table 2.1, N-transform for some functions are given.
Properties of N-Transform
In this section, the main properties are presented. For detailed studies of N-transform and

its properties, we refer to Belgacem and Silambarasan [[12H14]] and Khan [31]].
Theorem 2.1. Linearity Property

15



2.1. NATURAL TRANSFORM

f(t) R(s,u)
) 1
S
s
! =
w
sint
52 + u?
35
cost _
52 + u?
au
sinh at _—
2 — a2u?
3
coshat | ——
2 — a2u2
tn—l un—l
(n—1)! sm"

Table 2.1: Natural transform of some functions.

If a and b are any constants and f(t) and g(¢) are functions, then
N*[af(t) +bg(t)] = aNT[f(£)] + bN [g(t)]

Proof. NT[f(t)] = /OO f(ut)e *'dt and N*[g(t)] = /OO g(ut)e " dt.
0 0

If a and b are any constants, then

N*laf () + bg(t)] = / " laf (ut) + bg(ut)ledt

= a/ f(ut)e“dt—i—b/ g(ut)e ' dt
0 0

= aN*[f()] +bN*[g(t)]

Theorem 2.2. First Translation or Shifting Property

16



2.1. NATURAL TRANSFORM

Let f(¢) be a continuous function and ¢ > 0. Then

S — au S — au

Vo) = | ]

Proof. The N-transform of e f(t) is given by

N f(1)] = /0 " Fut)e ety

— au

Therefore, by change of variable w = i t, we get

Vsl = S [T () e

s Su
= R
s—au |s—au

Theorem 2.3. Scaling Property
Let NT[f(t)] = R(s,u). Then

Proof.

N*[f(at)] = flaut) e dt let p=at

17



2.1. NATURAL TRANSFORM

N-transform of Derivatives

Theorem 2.4. If N [f(¢)]

NI (8)] = Ru(s,u) = / " et = SRis, ) - 12

Proof.

NF[f'(t)]

= R(s,u), then

f(0)

u

/00 f'(ut)e *dt
0

lim f'(ut)e *dt Integration by parts

c—00 0

t —st ¢ c
lim Jlube™™ + f/ f'(ut)e " dt

lim {f(uc)esc B fio)} n 2 /ch(ut>e—stdt

c—00 U

SR(s,u) — @

Theorem 2.5. If N[f(t)] = R(s,u), then

NF(F(0] = Rals,u) = S5 R(s,u) = S5£(0) -

18



2.1. NATURAL TRANSFORM

mmﬁmangmmm—%?Laaw:ﬂmmm

T YT R AL
= {2 - 40 - L0
_ iM&m—%ﬂm—ff)
[
Theorem 2.6. If N[f(t)] = R(s, ), then
NI ()] = Rolo) = S Ris, ) - Z ) 23

Proof. By mathematical induction.

For n = 1 and 2 gives the Natural transform of first and second derivatives of f(¢) re-

spectively.

N[f()] = gRl(s,u)—@ 2.4)
N[f'(1)] = %Rxs,u)_%f@_@

To proceed the induction process, assuming equation (2.3)) true for n and prove it for n+1,

19



2.2. NDM FOR ORDINARY DIFFERENTIAL EQUATION

using equation (2.4),

N @) = Nf™(t)] = Ruga(s, )

/" (0)
= _Rn s -
(s.0) - L
n n=l n—(k+1) fn(o)
S |S S
= 2 |ZR — k
o | e fils w) i (0) ”
k=0
Sn—i—l n Sn—k: N
- un+1R<3’u>_ u(n—k)ﬂf (0)
k=0

Which is true for n + 1. Hence the result (2.3)) follows.

2.2 NDM For Ordinary Differential Equation

Consider the general ordinary differential equation of the form

Ly(z) + R(y(z)) + N(y(x)) = g(=),

subject to initial condition

where

n

d
L= o is the operator of highest order.
:ETL
R is a remainder of the differential operator.
¢g(x) is a nonhomogeneous term.

N (y) is a non linear term.

20
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2.2. NDM FOR ORDINARY DIFFERENTIAL EQUATION

d
Suppose L is the differential operator of the first order i.e., L = I
x

Applying the Natural transform of Equation (2.5)) we have

25/(5, u) - @ + N*[R(y)] + NTN(y)] = N*[g(2)].

By substituting (2.6)in (2.7) we obtain

u

Y(s.u) = M0 4 U] -

S S S S

Taking the inverse of the Natural transform for equation we obtain

y@) = o(x) = N7' [SNTR() + N )] -

where ¢(z) is a source term.

Rewrite y(x) as an infinite series of y,,, i.e.

EINFR(y)) - SNV (y)).

2.7)

(2.8)

2.9

(2.10)

Also the nonlinear term N (y) can be written as an infinite series of an Adomain polyno-

mials, i.e.
> Ay, Q2.11)
n=0

where A, are the polynomials of ¥, y1, . . . , ¥, Which can be calculated by the formula

A, = EWN [Z )\lyz]

A=0

21



2.2. NDM FOR ORDINARY DIFFERENTIAL EQUATION

Substituting (2.10) and (2.11)) into (2.9) to get

>oun = o)~ N FN*[RZ bl + SN A 2.12)
n=0 5 n=0 5 n=0
Now by comparing both sides of equation (2.12)) we conclude that
w(z) = ¢(z)
u u
@) = —N[ENFR((@)] + =N [Ao(x)]
u u
p@) = =N [ENFR@ ()] + N A )]
Continuing in this manner we get the general recursive relation
Ynpi(t) = —N7L %NWR(%(@] + %N‘l[An(x)] L n=0,1,2,.. (2.13)

Hence from the general recursive relation in equation (2.13]), we can easily compute the
remaining components of y(x) as y;(x), y2(x),..., where yo(x) is the given initial condi-
tion.

Finally, the exact solution is given by

y(@) = pula).

Example 2.3. Consider the nonlinear ordinary differential equation [40]

Yy =y —v, (2.14)

subject to the initial condition



2.2. NDM FOR ORDINARY DIFFERENTIAL EQUATION

Solution:
We solve this problem by the Natural Transform, taking the Natural transform to both sides

of Equation (2.14)), we have
33/(3, W) = YO 2] — v (s ) (2.15)

u

By substituting y(0) = —1 we obtain

(Co1) V(s = N2 -

u u
U 1
Y = N[y (2)] — 2.16
(0) = =N - —— 216
Then by taking the inverse of the Natural transform of the Equation (2.16) we get
= —e 4 (NNt [12(@)] | - 2.17
W) =~ (V) | N () e
Rewrite y(x) as infinite series of ¥,
y(@) = > (). (2.18)
n=0
Also decomposing the nonlinear term as
o= ) A (2.19)
n=0

23



2.2. NDM FOR ORDINARY DIFFERENTIAL EQUATION

The Adomain polynomials are

Ay = y(%(I)
Ay = 2y(x)y (o)
Ay = 2yo(x)ya(z) + yi(z)

Az = 2y0ys + 25192

By using (2.18) and (2.19)) we can write (2.17) as

U
S +

Do = e (V)| N
u
n=0

Then by comparing both side of equation (2.20) we obtain

ZAH(:E)

]

(2.20)

We can easily compute the remaining components of the unknown function y(z) as follow

niz) = (v

N )

u
s+u

V)]

u
|S+u

Nt [e—%]}

- o

s+ us+2u
s+u s+ 2u
— e—x_e—Qm

24



2.2. NDM FOR ORDINARY DIFFERENTIAL EQUATION

mle) = (V7 | N )
= 7 [N om0
— (N‘l’)*l - i UN+[_2efx(efx - 621)]1

= —e T4 26—2:{: - 6—395

mle) = (V)7 | N )]
= )N (o) + )]
— (N+>_1 E ;l: UN+[_26—27(_6—:E 4 26—237 _ 6—32:) 4 (6—23 _ 6—2x)2]

Then the approximate solution is given by

y(x) ~ Zyn(x) = yo(l‘) + yl(l’) + y2<l’) + ...

Leads to the exact solution of the form

For validation, we draw the approximate solution versus the exact solution, see Figure 2.1.

25



2.3. NDM FOR PARTIAL DIFFERENTIAL EQUATIONS

0.1 T T T T T T T T

0.05} 7

-0.051

-0.1

>-015F

-0.2 == Exact Solution

025 — Approaximate Solution 1
-0.3F i
0351 1
0.4 : ' ; ; : : ' :
1 2 3 4 5 6 7 8 9 10

Figure 2.1: comparison between the exact solution and the solution obtained by the NDM,
Example 2.3.

2.3 NDM for partial differential equations

The NDM can easily be used to solve a wide class of nonlinear partial equations and obtain

an exact or analytical solution.

Example 2.4. Consider the nonlinear partial differential equation [38]]
ug(z,t) + u(z, t)uy(z,t) = 0, (2.21)
subject to initial condition
u(z,0) = up(x) = . (2.22)

Solution:
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2.3. NDM FOR PARTIAL DIFFERENTIAL EQUATIONS

We solve (2.21) with (2.22)) by the NDM, taking the Natural transform with respect to ¢ for

both sides of equation (2.21)) , we have

* N (e, 1) - %u(x, 0) = — N*[u(, )z, ). (2.23)
By using (2.22) in (2.23)) we obtain
N*[u(z,t)] = % - %z\ﬁ [u(z, t)ug (2, 1)]. (2.24)

Then by taking the inverse of the Natural transform of the equation (2.24)) we have
w(a,t) = x— N1 §N+[u(x, g (2, z)]] . (2.25)
Now, rewrite u(z, t) is an infinite series of the form
u(z,t) = i un(z,1). (2.26)
n=0

Also assuming Adomain polynomial for the nonlinear term as
uu, = Y A, (2.27)
n=0

Where

1 d» =,
A ==L NS Ny, >
"l dw [2 y’LO’ n=0
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2.3. NDM FOR PARTIAL DIFFERENTIAL EQUATIONS

Then,

Ay = Uo(uo)z
Al = uy(ug)z + uo(ug)y
Ay = ug(ug)z + ua(ug)z + ur(ur).

Az = wus(ug)s + uo(ug)s + uz(u1)e + ur(u2)y

By using (2.26) and (2.27)) we can write Equation (2.23) as

E Up(x,t) = - N* [EN
s
n=0

Z An(u)

] (2.28)

Now,

uo(x,t) = x

E un+1(x7t) = _Nil [EN
S
n=0

S~ Au(w)

So, we can obtain first components of (2.28) as follow

wiet) = —N[ENF ()]

_ _N! :§N+ [uo(uo)x]]

~ _N1 _5N+[x]}
G
= —uat
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2.3. NDM FOR PARTIAL DIFFERENTIAL EQUATIONS

u(et) = —N7'|SNTA ()]

= —N! :gNJr[ul(uo)x + uo(ul)m]}

= —N! _ENJF[—th]]
s

= —gN7! [28—7“5}
= at?
us(w,t) = =N [ENT[As(w)]

= —Nil :gNJr [UU(Ug)x + UZ(UO)I + uy (ul)z]]

= —N! _ENJ“[xtQ + ot — xtﬂ
s

- N -%N+[—3xtz]}

In this manner, three components of the decomposition series were obtained of which

u(x,t) was evaluated to have the following expansion

u(z,t) = Zun(zt,t) =1 —at+at? —at® + ...

n=0

The exact solution of (2.21)) given (2.22)) is

or

u(z,t) =a —at+at® —at’ + ... for|t| <1

29
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

It is clear that the computed components coincide with the corresponding terms in (2.29).

For more examples see [37].

2.4 Double Natural Decomposition Method

In this section, a combined form of the double natural transform method with the Adomain
decomposition method is developed for an analytical solution of the linear and nonlinear
singular one dimensional Boussinesq equations. For this subject we refer to [36]. Exam-

ples are provided to illustrate the reliability of this method.

Definition 2.2. Let f(x,t) be a function and z, t € IR. Then the double natural transform

of f(x,t) denoted by R(p, s, u,v) is defined as

NG 0)] = R(p,s,,0) = / h / (330 (e ) dtda

we can write the equation in another form as

N [f (@, t)] = R(p, s,u,v) = / / ePTsh) f (yg vt )dtda
o Jo

Provided the integral exists
where

Re(s),Re(p) > 0,Re(u),Re(v) > 0.

Next, several examples are given.
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

Example 2.5. Let f(x,t) = 1, z,t > 0. Then

N = / / £ 50 dtdy

= — hm—e( 5t)
uv Jy =00 S

uJog S

[

= lim — e(%px)
c— 00 Sp

1

sp

0

Example 2.6. Let f(z,t) = e®*) where a and b are constants. Then the double natural

transform of the function can be written as

1
(s —bv)(p —au)’

N;—t [eax—l-bt}

Where

S
>a and - >0
v

Proof.

Wi = L[ v,
- / / E-a)e- (30 ity

= —/ |:]1m e—(%—a)x—(%—b)t
u Jo |eooos—bu
1 />~ 1 )
= —/ e (E—a)e gy
0

U s —bv
_1 P c
P 1' —(E—a)m
CLHQO (S — b'U) (p - (IU) ¢ 0

1
(s —bv)(p —au)
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

]

Example 2.7. Let f(z,t) = €' (*"**) where a and b are constants. Then the double natural

transform of the function can be written as

1
(s — bvi)(p — aui)

N;t [ei(aerbt)]

Where £>0 and f>O
U v

Proof.

N;t[ei(az+bt)] _ / / Lyt s t z(am—l—bt)dtdx
’ 0

_ / / e (E-ai)a=(50)1 gy gy

= / |:hm @7(%7“)337(%7“% ‘
0 le=oe s —bui

u
= 1/ ! e (imai)egy
u Jo s—Dbui

= lim -1 ¢~ (E—ai)e
c—oo (s — bvi)(p — aui)

1
(s = bvi)(p — aui)’

]

Example 2.8. Let f(z,t) = cos (ax + bt), where a and b are constants. Then the double

natural transform of the function can be written as

ps — abuv
(p? + a2u?)(s? + b20v?)

N5 [cos (ax +bt)] =

32



2.4. DOUBLE NATURAL DECOMPOSITION METHOD

Proof.

N ilcos (ax +bt)] = N

ei(cchrbt) + efi(a:r+bt)
2

[N;:t [ei(a:c—kbt)} + N;:t [e—i(aa:—I—bt)H

[(s - bm’)l(p — aui) * (s+ bm’)l(p + am)]

1 [ps — abuv + (aus + pbv)i  ps — abuv — (aus + pbv)i
21 (p?+ a?u?)(s? + b*v?) (p? + a?u?)(s? + b*v?)

3 e )

ps — abuv
(P2 + a2u2)(s% + b202)’

]

Example 2.9. Let f(z,t) = sin (ax + bt), where a and b are constants. Then the double

natural transform of the function can be written as

aus — pbv
(P2 + a2u?)(s? + b202)

N [sin (ax + bt)] =

Proof.

i(ax+bt) __

il —i(az+bt)
N} [sin (az +bt)] = N, [ 5
: ’ i

e

[N:,t [ez‘(ax+bt)] _ N;:t [e—i(ax+bt)ﬂ

1
2i
1 1 1
T2 {(5 — bvi)(p — aui) (s —+ bvi)(p + auz’)]
1 [ps—abuv + (aus + pbv)i  ps — abuv — (aus + pbv)i
Y [ (P +a2u?)(s2 + b22)  (p% + a2u?)(s2 + b*?) ]
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

1 2(aus — pbv)i
2i | (p? + a’u?)(s% + b*v?)

aus — pbv
(P + a?u?)(s? + b202)’

]

Example 2.10. The double natural transform of f(z,t) = x%°, ifa > —land b > —1, is

given as

u® v?

+ - -
N pa+1 8b+1

Sl = D(a+ DI+ 1),

Proof.

NI [z = / / S gttty
1 [
= —/ e Tyl (—/ evttbdt> dx
u Jo v Jo

5
by substituting P —rand 2t = q, we get
u v

1 [ “Cu (1 [ b
N[z = —/ e (ur) 4 (—/ e ? <ﬁ> qu) dr
’ u Jo v Jo s/ s
— e 5b+1 / / e Trie ¢%drdg

u® ’U
= WP(CL + 1)F(b + ].)

Where gamma function of a defined by
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

and gamma function of b is

F(b)_/ e~ g tdt, b>0
0

Note that if a is natural number, then I'(a 4+ 1) = a! []

Lemma 2.1. The double natural transform of f(x,t) = (zt)" is given by

(n!)2u™ o™

pn+1 8n+1 '

N [(xt)"] =

where n € N

Existence condition for the double natural transform
A function f(x,t) is an exponential of @ and b as x — oo, t — 00, if there exist a positive
constant k£ such that

[f(z, )] < ket

Vr > X and t > T and it is easy to get

lim e(5**=5t) |f(z,t)| <k lim e (G—a)a—(3-0)t — g,
t—o0 t—o0

«
where — > a and é > b.
U v
The function f(x,t) is called exponential order as x — oo, t — o0, it does not grow

faster than k €107 ag 1 — o0, t — o0.

Theorem 2.7. If f(z,t) is a continuous function in every finite interval (0, X') and (0,7")

ax+bt)

and of exponential order e( , then the double natural transform of f(z,t) which is

defined by N, [f(z,t)] exists forall p > «, s > fand u # 0, v # 0
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

Proof.

NS (D]l =

/ / Pa—it) (x,t)dtdx
uv

/ / p:c—it aa:-i—bt) dtdz
uv

/ / —a)z—(5—v) tdtdx
uwv Jo

(p— au)(s —bv)’

IN

IN

Double natural transform of partial derivatives

If double natural transform of the function f(z,t) is given by N[ f(x,t)] = R(p, s, u,v),
Of(w,t) 0*f(x,t) Of(w,t) O0°f(w,t)

then the double natural transforms of e O 5 92 are given
by
i) N, {aféz’ t): = PRy, 5,u0) ~ N7 F(O1)
i) Ny {82](;5;’ 2 Z—zR(p,s,u,v) — %Njf(o,t) — %Nj [afg;’ t)]
i) 85 [ L] = SR - I 10
iv) N;t {% = i—zR(p,s,u,v) - %N;f(x, 0) — —N+8f(;t 0)
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

Proof.
of(x,t)]  _ 2oye) OF (2, 1)
)N;t[ o ] = / / i g ————dzdt

= i{/ lime(” t)
uv 0 Cc— 00

/ / wetst) f(z, t)dzdt
1 oo

= _67(%t)f(07t)dt+£R(p7 S,U,U)
uv Jo U

— gR(p, S, U, V) — %N;“[f(O,t)]

| Pfx,t)] boyan) 02 (2,)
i) N;[t[ 3 } = — / / o —5a dvdt
—ﬂ/ojzf&(” \df // i axddf]

- Lo e Rl G [ e el

— __1Nt+ {8]‘(0,2&)} L P

oz U

SNL0.0]+ ERps )

P’ p 1 [W(Oat)} |

= @R(P, 5,U,V)) — @Nﬂf(oat)] - ENf .

The proof of 77 and v similar to that in ¢ and .

[
t
Theorem 2.8. The double natural transform of =" (9ff9$t, ) is given by
LOf(x,t) , d” Of (z,t)
N, {x | = (—u) deN;’t 5 . wheren =1,2,3, ...

Proof. Using the definition of double natural transform for the first order partial derivative,
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

we get
Of(x 0f (z,t)
+ x, x—i— t
Ny, { BT } / / 5 ————dtdx (2.30)
By taking the n'* derivative with respect to p for both sides of Equation (2.30), we have
dr Of (x,t) Of (x,t)
_N+ ) _ :rJr t) dtd
e | /0 I l o it
uv ot
_ / / a:+ t) af(x’t)dtdilﬁ
un ot
um ’ ot
We obtain
O(f(x,1) d" O(f(z,1)
N+ n Y — (" NT )
x,t |:'I at ( U) dpn z,t 875
[
2
t
Theorem 2.9. The double natural transform of x" % is given by
0 f(z,1) ar 0 f(z,1)
Nt |a"——2| = (—u)"— N}, | —=~ =1,2,3, ..
x,t |:$ atg :| ( U) dpn x,t |: (9752 ) where n ) 737

Proof. Using the definition of double natural transform of the second order partial deriva-
tive, we get
N+

x,t

ot? wUv ot?

[aZf(xvt)} = i/OOO/OOO (o) I@) (2.31)
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

By taking the n'”* derivative with respect to p for both sides of Equation (2.31), we have

i T N
- == // Byts t)aQ%C(Q >dtd

- m,/ / Pyys t)82(£(2 >dtd

- Wy [P t>]7

ot?

we obtain
nan('rv t) n dn + an(.T, t)
] - o [

Theorem 2.10. The double natural transform of z" g(z,t) is given by

dr

N (o) = (-

— N, [9(z,1)] where n=1,2,3, ...

Proof. The proof is similar to that in Theorem (2.8) and Theorem (2.9) and therfore is

omitted. ]

Consider the following general form of the nonlinear singular one dimensional Boussinesq
equation
0
x¢tt ("L‘wx) + ICL( )wzxx:c - xb(l‘)wacztt + xc(£)¢t¢xw

+ 2d(x) Y = xg(x,t), (2.32)
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

subject to condition

0.0 = g, L0 g 33

where a(x), b(x), ¢(x) and d(x) are arbitrary functions.

Solution:
Applying double natural transform to (2.32)), we have

N+t Ty —

z,

Using the differential property of double natural transform

OF@ O] L [0(0)
i [ 5 = o [

and initial condition in (2.33)), we get

d 1d v d v?

o [R(p,s,u,v)] = E%Nj(w(x>0))+§d_pN;<wt<$’O))_EN;t 9]
oy ), (2.34)
82 dp p7 87 u’/l) b M

where

By 1ntegrat1ng both sides of (2.34)) from 0 to p, we have

1 v?
R(p> S,U,’U) = gN;(gl(l')) + — N+ 92 U82/ dp+ ?g(pﬂg?uav)'
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

Using double inverse natural transform, we obtain

us2

2 2 P
Bat) = (o) + t0o) + 8 | Satos.w)| = Nt | [Pzl an).

Note that
NS (z)] = / / weit) gy (z)dtde
0
= — hm—e< pf”*%t)gl(x) “dx
wv J, cooo s 0
1 & —p
= — Ee<7x)gl<l‘>dx
w J, s
LIE [T ez
- |- : d
iy
Loy
= N o)
So
_ 1 _
Voo |3V @] = Nk [N (0)]) = o)
and
1 o o _ Em s
N ltga(z)] = —/ / e (5o 3 gy (2) dtda
w Jo  Jo
1 > - —-p s 2 —p s ¢
= — lim ﬂe(T’”_ t)—%e(TI_vt> gg(:v)} dx
uv Jy e—oo | s s 0
1 001)2 P,
= i Ee(u )gg(:z:)d:v
v |1 [ (=
= 2 {a/o e<u )gg(x)dx}
v
= N (o)
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

So

Nyt | SN [02@)]| = Nyt [N ftga(@)] = tga(a).

Rewrite ¢)(x, t) as an infinite series 1, (z, t)

= tn(z,t), n=0,1,2,.. (2.35)

Also the nonlinear terms 1,1, and ,1,; can be written as an infinite series of an Ado-

main polynomials

n=0

wxwmt = N2 - ZBru
n=0

where A/ s and B/ s are the polynomials that are given by

1dn [ &
Ay =~ ;w g

1dn [ &
By = ——oN, ;Awi g

By substituting (2.36) and (2.35)), we get

2
wn(itvt) :gl(x)+tg2( )+Npsluv |:1;29(p,8,u,’0):|
2 D *
U (AS G A
+Npsuvusg/0 Nx,t [0x (xax;wn(xat)>]d
. v [P °
+Np3“”u52/0 o |za(z anxt — xb(x anxt dp
TTTT xxtt

2 P o
4 v
+Nu/ +, [x (ZA ) 4 wd(z <ZB,L>

dp, (2.37)
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

where A,, and B,, are given by

AO — ¢0t¢0w:p
Al = ¢Otw1mﬁ + wlt,lvb():cx
Ay = Yooge + V1th1zs + V2rPors

As = Vorses + V1tozs + Vourize + V3togs

and

BO - ¢Oxw0xt
Bl - wogﬂ/)lxt + ¢1$¢Omt
By = o022t + V1pViar + Youthout

Bs = YosVspr + V12V2pt + VorVigt + VspWout

Now, by comparing both sides of (2.37]), we conclude that

o[
list) = on(e) + () + Ny L | S50

us?

2 P
_ a1l v + i g
2 P

F N [N ) (0l 0) sy = 20(2) (1)) ]

B U2 P
N [N fael) (Ad) + ad(o) (Bo) d,
0
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2 P
v |9 (,9
¢2(x t) Npsuvusg/(; Na:,t |:al, ($a$¢1($,t)):| dp

2 P

<+M$Wﬁ2()N&@M@@A@J»mm—xmwumwinmJ@

us?

N s [N o) (A1) + (o) ()] d

and

2 P o
Y (AR NG A
wn+1(x7t) Npsuvusg/o Nx,t [(‘31: (xaxzown(mat>>] d
. U2 P
—i—Npsqu/O o |za(x anaﬁt — xb(x anxt dp
TTTT xxtt
L ,02 p
+Np5“”us2 i ot |ze(x ZA + zd(x ZB

Hence from the general relation in (2.38]), we can compute the remaining components

dp, (2.38)

of Y(x,t) as Ps(x,t),14(x,t), where ¥, (x, t) is always the initial given condition.

Example 2.11. Consider nonlinear singular one dimensional Boussinesq equation [23|]

10

¢tt__

Tr O

Subject to initial condition

U(x,0) =0, y(z,0) = 2> (2.40)

solution:
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

Multiplying both sides of (2.39) by = and applying double Natural transform, we have

N;t [Tty — 8

Using the differentiation property of double Natural transform and initial condition given

in (2.40) we get

v d v? + v? +
—R(p,s,u,v) = ?%Nx@b(wao) - @Nx,t[_élxt] - @Nx,t[¢]> (242)

0

Then by integrating both sides of (2.42)) from 0 to p with respect to p, we have

R(p,s,u,v) = % (22 u32 / —dxt]dp — E p. (2.43)
Using double inverse natural transform for (2.43)), we obtain
2 O
Y(w,t) = 2t — §t3 ), N7, 0] dp (2.44)
Rewrite v)(z, t) as an infinite series 1, (z, t)
t) = iwn(a:,t), n=0,1,2,.. (2.45)
n=0

Also the nonlinear terms 1,1, and ,1,; can be written as an infinite series of an Ado-

main polynomials

Ve = Ny =Y An, by = No = By, (2.46)
n=0

n=0
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where A/ s and B s are the polynomials that are given by

where A,, and B,, are given by

Ao

and

By

By

1 d» L
Ay = oM Zzlwi g
1d [, ]
By = ——ooN, ;Awi g
w0t¢0wx
¢Otw1xx + wlt'lvb():cx

¢Ot¢2wx + ¢1t¢1m + ¢2t¢0xa:

¢Otw3xx + ¢1t¢2xw + w%wlx:p + ¢3t,¢}0x1’

wawat
woﬂvz)lwt + 1/}1$¢0:vt
wawZ’rzt + wlxqplxt + wawO:tt

YorW3et + VizWozt + Vopize + Usaogt

The double natural decomposition method leads to the following

2
Yoz, t) = 2%t — §t3
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

and

2 D o o0
+ Ny [% /0 N [x (Z%(m,t)) —m(Z%(xi)) ]dp]

n=0 n=0
dp] :

9 P 0o oo
-1 v
— Np,s,u,v [E/O N;:t [41’ (Z An) —2x (Z Bn)

n=0

The first iteration is given by

Y (z,t) = — psw{ /N+ [4zt] d ]

+Np§uv{v /N+ [0- O]dp}
e US 0

- Np_suv [ / . [162t%] dp}

2 4
t)=t* — —t°
¢1($7 ) 3 5

In similar manner,

v? 3 5
Vo, t) = =Nyt LLSQ/O N, [16:ct — 32at°] dp]

v? 3‘uv 5luv®
— N7t — 16 — 32 d

! luy”
= —N;! [163—“—325“” } ,

P,8,U0 psb ps®
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Similarly,

2 P
BN Ky v
’l7b3($,t) — Np7s,’uﬂ} |:'U/S2 /0\ Nl’at |:a$ <x3$¢2):| dp:|

2 D
- Np_,sl,u,fu |:U_ /0 Na—:i:t [Z’ (wQ)a:xmc - (¢2)xxtt] dp:|

us?
v? [P
— leslauﬂ) |:—2/ N;t [41’142 — 21'32] dp:| ,
us? J,
5 32 7
Therefore, Ay = ¢0t¢2zz + ¢1tw1mm + thwax = 8t” — ?t and Bs = 0 Then we have

16,, 16,

t) = —t" — —
Vsl 1) = o7t = oot

The series solution are therefore is given by

- 2 2 4 4
Zl/}n(x,t):1/)1+¢2+1/)3—|—...:xzt—§t3+§t3—5t5+5t5+...:x2t.
n=0

48



Chapter 3

Laplace Decomposition Method (LDM)

3.1 Laplace Transform

Definition 3.1. Let f(¢) be a function defined for all real numbers ¢ > 0. Then the Laplace

transform of f(¢) denoted by F'(s) = L{f(t)} is defined by

F(s) = L{f(t)} = /0 T et ()dt, Re(s) > 0

Laplace Transform of Derivatives
If the Laplace of the function f(¢) is given by L{f(¢)} = F'(s), then the Laplace trans-
forms of f'(t), f"(t), f"(t), are given by [9]

i) L)} = sL{Uf)} - f(0)
i) L{f"(t)} = L)} — sf(0) = f(0)
i) L{M0Y = s"L{f(6)} =" F(0) — .. — fO7(0)
The following table gives the Laplace transform of some functions calculated by Definition
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3.2. LAPLACE DECOMPOSITION METHOD (LDM)

3.1).
f(t) L{f(t)} | conditions
1
1 - s>0
s
1
t ; s > O
n!
t pEs, neZ>0
" ['(a+1)
t e Re(a) > —1
at 1
e s>a
s—a
5 w
sin wt m s > Im(W)
cos wt _5 w e R
52 4+ w?
- o
sinh wt - 3 s > Im(w)
s2 —w
cosh wt - i 5 s > Re(w)
s2 —w

Table 3.1: Laplace transform of some functions

3.2 Laplace decomposition method (LDM)

In this section, we present the Laplace decomposition method for solving nonlinear par-
tial differential equations, this method joint the Laplace transform to ADM. This method
provides the solution in the form of rapidly convergent series. An illustrative example is

given. For this section we refer to [29]

Consider the second order nonlinear partial differential equation

Lu(x,t) + Ru(z,t) + Nu(z,t) = h(z,t), 3.1
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3.2. LAPLACE DECOMPOSITION METHOD (LDM)

subject to initial condition

u(x,O) - f(]}), ut(x70) = g(‘T)? (3.2)

where

2
L = — is a differential operator.

0x?

R is a remaining Linear differential of order less than/L.
Nu is a general non linear differential operator.

h(z,t) is a source term.

2
Suppose L is the differential operator of second order, so L = ETEh

Applying the Laplace transform with respect to t for (3.1, we get

s*L{u(z,t)} — su(z,0) — uy(x,0) + L{Ru(z,t)}

+ L{Nu(z,t)} = L{h(z,t)}. (3.3)
By using in (3.3) we obtain
SL{u(z, 1)} — sf(x) — 9(x) + L{Ru(x, D} + L{Nu(z, )} = L{h(z, 1)}

or

L{u(z,t)} = %I) + 9(@) _ S—lzﬁ{Ru(:c, t)}— 8—12£{Nu(x, t)}+ éﬁ{h(m, . (3.4
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3.2. LAPLACE DECOMPOSITION METHOD (LDM)

Taking the inverse of the Laplace transform for (3.4) we get

S

w( ) — A*{ﬂﬁ+ggl+éqm@m}—LA{écmm%w@y-EJ{équLw@

= k(z,t)— L7 {5—12£[Ru(x,t)]} — L1 {lﬁ[NU(x,t)}} ;

g2

where k(z,t) represents the terms arising from source term and prescribed initial condi-

tion. i.e.

k(x,t) =L {@ + % + S—lzﬁ{h(a:, t)}} .

We represent the solution as an infinite series given below

u(z,t) = Zun(x,t). (3.6)
n=0

The nonlinear operator is decomposed as
Nu(z,t) = > A, (3.7)
n=0

Where A,, are Adomain polynomials of wug, uq, us, ..., u, they can be calculated by the

following formula

1 a =
A, = ——— ", > (.
"= d)\"N [;)\m] , n>0

A=0

Using (3.6) and (3.7) in (3.5) we get

S (e t) = k(z ) — £ {Si?.c{Ru(x,t)}} e {é/:

>4,
n=0

} (3.8)
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Now, by comparing both sides of (3.8) we have

uo(z,t) = k(z,t)=L"" {@ + 9(@) + Slﬁ{h(x,t)}}

52

ui(x,t) = —E‘l{éE{Ruo(x,t)}}—E‘l{éﬁ[AO]}
uy(w,t) = —E‘l{éﬁ{Rul(x,t)}}—5_1{8—12£[A1]}
us(z,t) — —El{éﬁ{Rug(a:,t)}}—ﬁ1{5—12£[A2]}

In general, the recursive relation is given by

Ui (2,8) = —L1 {5_125{3“”(“”} - {5_125{‘4"}} >0

given

uo(w,t) = k(z,t) = L7! {@ + % + S—iﬁ{h(x, t)}} :

Example 3.1. Consider the nonlinear partial differential equation
u(x,t) +u(z, t)u(x,t) = —cost, (3.9)
subject to initial condition

u(z,0) =1, wuy(z,0)=0. (3.10)
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Solution: By using the recursive equation, we get:

uo(z,t)

oo
Z Un+1 (I7 t)
n=0

= cost
P I P
n=0

So, we can obtain first components of equation, as follow

uy(z,t)

us(x, t)

ug(x,t)

- [
LS

- _r]

L]
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3.2. LAPLACE DECOMPOSITION METHOD (LDM)

Then
3
Zun(x,t) = cost,
n=0

The exact solution of (3.9) give (3.10) is
u(z,t) = cost.
Example 3.2. Consider the nonlinear partial differential equation [42]
up(2,t) + ulz, tug(z,t) = o+ at?,
subject to initial condition

u(z,0) = 0.

Solution

Apply the Laplace transform to (3.11]), we have

sC{u(z,t)} —u(x,0) = L{z+zt*} — L{u(z, t)u(z,1)}.

By using (3.12) in (3.13)) we obtain

Clu )y = L+ 2 e (e, ).

2 st s
Then by applying the inverse of the laplace transform of (3.14)) we have

xt3

u(e,t) = wtt oL {S—lzL{u(:z:,t)ux(x,t)}} |
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Now, we decompose the solution as an infinite sum given by

> un(a,t). (3.16)
n=0

Also the nonlinear term can be written as an infinite series of Adomain polynomials

> A (3.17)
n=0
where
— ¢ > 0.
A, n,w [Zw] ¢ n=0
Then.

Ay = Uo(uo)x
Ay = up(ug)s + uo(ur)s
Ay = wup(u2)s + ua(ug)s + ur(ug)y

As = wug(ug)s + uo(us)s + uz(ur)s + ug(u2)y

By using (3.16) and (3.17) we can write (3.15)) as

o0 3
Zun(x,t) = xt—i—% — L {éﬁ{uux}}
n=0
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3.2. LAPLACE DECOMPOSITION METHOD (LDM)

Now,

uo(z,t)

uy(x,t)

oo
Z Unp+1 (:L‘7 t)
n=0

xt

2ol
gl

So, we obtain first components of equation as follow

uy(z,t)

So

oo e )

xt3

- St

Ups1(z,t) =0, n>0.

In view of above modified recursive relation we get exact solution

u(z,

t) = Zun(x,t) = zt.
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3.3 Double Laplace Decomposition Method

In this section, the Adomain decomposition methods and the double Laplace transform

method are combined in double Laplace decomposition methods see [26].

Definition 3.2. Let f(x,t) be a function where x,¢ > 0. Then the double Laplace trans-

form of f(z,t) denoted by F'(p, s) is defined as

Lol {f(2.8)} = Flp,s) = / e / e~ (. 1)dtdr,

Provided the integral exists. Here p and s are complex numbers.
Next, some examples are given [19].

Example 3.3. If f(z,t) = 1 forxz > 0 and ¢ > 0, then

1
1 = —
‘Cmﬁt{ } p57

Example 3.4. If f(z,t) = e® " for all z and ¢, then the double Laplace transform of the

function can be written as

»Ca:*ct {eax+bt} — m’

Where p>a and s>b

Example 3.5. If f(x,t) = €@+ for all 2 and ¢, then the double Laplace transform of

the function can be written as

1
—ia)(s —ib)’

Exﬁt {ei(aac—l—bt)} — (p

Where p>0 and s>0
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Example 3.6. If f(z,t) = cos(ax + bt) where a and b are constants, then the double

Laplace transform of the function can be written as

ps — ab

L.L;{cos(ax +bt)} = ROk

Example 3.7. If f(x,t) = sin(ax + bt) where a and b are constants, then the double

Laplace transform of the function can be written as

as + pb
7+ )7+ B

L. Li{sin(ax + bt)} =

Example 3.8. If f(z,t) = 2* t*ifa > —1 and b > —1 are real numbers, then the double

Laplace transform of the function is given as

) Ta+1) T(b+1)
Emﬁt {.75 tb} = pa+1 Sb+1 ’

where I'(a) is the Euler gamma function defined by the uniformly convergent integral.

F(a):/ s e%ds
0

Remark 3.1. The double Laplace transform of (z¢)" is given as

L.LA(xt)"} = / e P ah da:/ e St dt
0 0

n! n!

pn—i-l Sn+1

Double Laplace transform of partial derivatives
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Theorem 3.1 [271f £,£, {{(.1)} = F(p,s). then the double Laplace of /{7 i
Xz
given by
Of (.t
Proof.

.cx,ct{—af (m>} = / T / T —8fé§t> drdt
0 0

ox
— / / e—p:c—st af(l’, t) dﬂi’dt
o Jo ox

= / [lim e Prt f(x,t) C} dt+/ / pe P f(x,t) dudt
0 0 0o Jo

c— 00

_ _/Oo e £(0,1) dt + pF(p, s)
0

= pF(p,s) = L{f(0,1).}

[l
0*f(x,1) .
Theorem 3.2. [27] If L.L; {f(z,t)} = F(p, s), then the double Laplace of — g2 S
x
given by
0% f(,1) 9f(0,1)
et { T = 2r ) - e t10.0) - £ { 20,
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3.3. DOUBLE LAPLACE DECOMPOSITION METHOD

Proof.

£m£t{%} = / / e ax2 L
- / Llfiz e 2800 ]d” / / e O e

_ > _w0f(0,1) df(x,t)
[ e )

_ o, {af g) t) } +p[pF(p.s) — £, {£(0,)}]

af(0,t
= PP -0t (100} - £ {220
T
[]
Of (z.t) .

Theorem 3.3. [24] If £L,L;{f(x,t)} = F(p,s), then the double Laplace of 5 S
given by

et L) = sk - £ 00} G.19
Proof.

£x£t{%} = / / e st —)dtd
_// *stt—)dtd

- / [bhm e Pt f(x, t)) ] d:17+/oo/oos e Pt f(w,t) dadt
0 o0 0 Jo

— _/ooe_Stf(x,O) dz + sF(p, s)
0

= sF(p,s) = Lo {f(2,0)}.
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O
Theorem 3.4. [26] If £oLy {f(z.8)} = F(p,s), and LoL {a / f;t 1) } — Flps) -
2
L;{f(x,0)} then the double Laplace of % is given by
f(x, ) df(x,0)
Proof. The proof is similar to the previous theorem. ]

Lemma 3.1. Double Laplace transform of the non constant coefficient second order partial

derivative SBT% is given as
L0 f(ayt L dr 0f(x,0
L.L, {x %} = (1o [SQF(p, s) — 8Ly {f(2,0)} — L {%H

Proof. By taking the v derivative with respect to p for both sides of equation, we have

e TR < e [ T e
_ / / e Sta%;(ﬂ Yt
_ /0 h /0 o) e—m—st% dtdz
iy [ [ e ()

(3.19)

So,

dr 02 ) 7’82 )
(1) el {%} = L.L, {x %} .
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Lemma 3.2. [20] Double Laplace transform of the function z" f(x, t) is given as

T

oL f (1)) = <—1>Qf—ﬁ Lol (. t)}].

Proof. The proof is similar to the previous lemma and therefore is omitted. ]

Example 3.9. Consider the singular nonlinear one dimensional of hypolic equation [27]

2 2

o2 z Oz ZE% x 0x0t x%

subject to initial condition

ou(x,0
u(z,0) = fi(z), E% ) _ fa(), (3.21)
ou\ . :
where —— ( z— | is Bessel operators, f(z,t) and a(z) are known functions.
xO0x \ Oz
Solution

Solving this problem by Laplace double transfom, Multiplying (3.20) by x and applying

the Laplace double transform for (3.20), we have

Pu 0 [ Ou 02 du du )
L.L, {xw ~ (x%> ~ it <x8—$> — a:a(x)u% + zu } = L.Li{xf(x,t)}.

Using the differential property of double Laplace transform

L 0%u o dr 0%u
e = o lea{ 5]

and using definition of the double Laplace transform of partial derivative for (3.18)) and
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single Laplace transform for initial condition, we get

d d 1 d
d—pU(]% s) = gd—pfl(p) + —Qd—f 2(p)
0 ( ou 0? ou ou )
,C Et{ Ep (x%> ~ it <m%) - xa(x)ua—x + zu }
1 d
+8—2d—pF(p, s) (3.22)

By integrating both sides of (3.22)) from 0 to p, we have

1 1
U(p,s) = —fl(p) + —2f2( )
1 0 [ Ou 0? ou ou )
2, Emﬁt{ E (:E%) ~ 5dt (x%) - xa(x)u% + zu }dp

1 (7 d
— [ = F(p, s)dp.
+82/0dp (p, s)dp

Using the double inverse Laplace transform, we obtain

u(z,t) = fi(z) + tfa(x)

i 1/ 4 A0 WL
Ly £s {s S 820 896875 Ty ) T ral@ug e pdp

d
+L'C]! {?/0 d—F( )dp} (3.23)

Note that

cedi@) = [0 et p) i
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So,
£ L AR | = £ L R0 = Aile)
and,
Lol {th(z)} = / h / T et 4 h(0) dbda
0 0
Lo e
= 5[ erht) b
1
So,

£ {5 ()} = £ 1 RN = thia).

Rewrite u(z, t) as an infinite series u, (x,t)

u(z,t) = Zun(:z:,t), n=20,1,2,..
n=0

Also the nonlinear terms can be defined as follows

uuy, = Np = iA”’ u? = N, :iBn-
n=0 n=0
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Where A,, and B,, are denoted by

1 d° ;
A, = EWM Z)\ u; . (3.25)
L =0 dx=0
1 d" .
L =0 dx=0
Then,
Ay = uguo,
Al = wUiy + Uy
Ay = uglgy + Uiy + Ugtloy
As = ugUsy + UiUgy + UsUiy + UsUoy
and,
BO = U%
Bl = 2U1U0
B2 = 2u2u0 + u%
Bg = QU3U0 + 2U2U1

66



3.3. DOUBLE LAPLACE DECOMPOSITION METHOD

By substituting (3.24)) and (3.25)) into (3.23)), we obtain

i 1r 0 0 —
u(z,t) = fi(z) +tfalz) — L1L {?/0 L.L, {% (a:%) Zun}dp}
1 (7 0? 0 —
_p-lp-1) 1 —_
L'c; {52/0 Exﬁt{@x@t (xax > g dp}

_ ﬁ;lf,s—l {3% /p L.L, {a(az) <i An>

In particular,

w = hte) +ifule) + £ [ F i)

and

1 [P 0 0
)= —£olet ] = (= d
ul(x’ ) ‘Cp ‘Cs {82\/0 Exﬁt{aﬂf (zax) uO} p}
Ly £ {52 0 Lol Oxot 17830 to  dp

e { [ ettt (o

Sy {5_12 /O Loy (o (Bo)} dp}

a1 [P d
—LEM P s)dp
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In general, we have

a1 0 0 —
Uny1(2,t) = =L, L] = i L.L, B x% Zun dp
n=0

7 Jo
- Lttt E pL[, x EOO B
1 [P d
_p—1lp-1) _F
g {5 [ rsin)

By calculating the terms ug, u1, ..., we obtain the solution as
u(z, t) = ug 4+ ug + ...

Example 3.10. Consider the following nonlinear partial differential equation [24]

4 1 1
g (zuy), — FTu + u? = 0, (3.26)

subject to initial condition

u(z,0) = 2°. (3.27)

2
Solution: Multiplying (3.26) by % and applying the double Laplace transform, we have

3 2
L.L, {ut — 2 (zu,), — %uuw + %uQ} = 0,

Using the definition of the double Laplace transform for partial derivative and single
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Laplace transform for initial condition, we get

3 2
Ulp,s) = —L {u(z,0)} + E Et{ (zuy), + %uum - %u2} (3.28)
Applying the inverse double Laplace transform, we obtain
23 x?
u(z,t) =2+ L'L]! { L. L, { (vug), + g Wa — ZUQ}} . (3.29)
Using the decomposition series for u(x, ) which defined by
> un(rt), n=0,1,2,.. (3.30)
Also the nonlinear term can be defined as follows
=Y A, W*=Ny=)> B, (3.31)
n=0 n=0

Using (3.30) and (3.31)) into ( , we get

{w{ (E))
e 5
el

bS]
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the other terms are given by

Uy = 1’2,

Un1(w, 1) =£;1£;1{§Lrﬁt{§ (x i“) ) }}

0
R {lc ct{‘ﬁiB }} (3.32)
] s s xT 4 n

where A,, and B,, are given by

Ay = uouoy
Al = wUiy + Uy
Ay = ugugy + Uity + Uy
As = ugUsy + UiUgy + UsUiy + UsUoy
and,
9
BO = UO
Bl = 2UOU1
Bg = ZUOU/Q + u%
Bg = 2U3U0 + 2UQU1
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The other components of the solution can be found using (3.32) as follow

Uy

U2

us

and so on.

o {%Lxﬁt {z (2100,

£e! {%Lxct {xz}}

1
cc {gﬁxﬁt {f (ztiz),

4
(1 x2t?
£ {gﬁwﬁt {T}}
x2t3
6

71
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The series solution is given by

u(x,t) = Upt+uy+utus+..

B
= 2 (1+t+—=+—+..
2 6

In fact, the exact solution is

u(z,t) = 2%
2 43

t
2

= P4t +—=+..).
Pttt s+ o+
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Chapter 4

Other Transforms

In literature one can find many transforms, like Aboodh transform [2], Wavelet transform

[35]. In this chapter we present the famous transform Sumudu and Elzaki .

4.1 Sumudu Transform

Sumudu transform is an integral transform which is applied to find the solution of ordinary
and partial differential equations. It has many applications in science and engineering. The

Sumudu transform was introduced by Wamgula in 1933 [30].

Definition 4.1. The Sumudu transform of a function f(¢) denoted by G(u) over the set A
A={f(t):IM, 7, > 0,and/or 5 >0, such that |f(t)] < MelV/ if t € (=1)7x[0,00) j = 1,2}

is defined by
Gu) = S[F(t)] = /O Fut) et dt, we (—r7).

We can write the above equation in other form:
1 [~ _t
Glu) = U] = [ f®) ¥ dt, we (-r),
0
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In Table 4.1, Sumudu transform for some functions are given.

f(t) G(u)
1 1
t U
tnfl )
um"
(n—1)!
6az‘, 1
1—au
tn—leat un—l
(n—1! (1—au)”
sin at _
1+ a2u?
; 1
cosa _—
1+ a?u?
au
inh at o
sinh a T~ 22
1
cosh at —_—
“ 1 — a?u?

Table 4.1: Sumudu transform of some functions.
1

Properties of Sumudu Transform

In next theorems, we presented the main properties of the Sumudu transform, see [10].

Theorem 4.1. Linearity property

If a and b are any real and f(¢) and g(t¢) are functions in A, then

Slaf(t) +bg(t)] = aS[f ()] + bS[g(t)]
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Proof. If a and b are any constants, then

Slaf(t) + bg(t)] — /0 " laf (ut) + bg(ut)letdt

= a/ooo fut)e tdt + b/ooo g(ut)e "dt

= aS[f(t)] + bS]y (t)].

Theorem 4.2. First Scale Preserving Property

Let the Sumudu transform of f(t) € A is G(u), then
S[f(at)] = G(au)
Proof.

Slf(at)] = /000 flaut) e *dt
G(au).

Theorem 4.3. First Shifting Property

Let the Sumudu transform of f(¢) € Ais G(u), then

S 0] = = 6 1]

1—au 1—au

Proof. The Sumudu transform of e f(t) is given by

e s0) = [ gty e = [ g 0ot a
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Letw =t(1 —au) and t =

, then we obtain

—au

Sle™ f(t)]

B /Oof uw_\ dw
Jo 1—au 1—au
1 o
= / f( )e‘wdw
1 —au j, 1 —au

1 u
= G .
1 —au {1—@14]

Sumudu Transform of Derivatives

letf(t) be acontinoues function having exponential order, if G(u) is Sumudu transform of

f(t), then Sumudu Transforms of derivatives of that fuction are given as follows:

Theorem 4.4. If S[f(t)] = G(u), then

Proof.

S =

/000 f'(ut)e " dt
[f (ut)e™

lim
cC— 00

_T(O) +Law)

Glw) 1)
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Theorem 4.5. If S[f(t)] = G(u), then

Proof.

S () = / " Pty
= lim {—fl(m)e_t

c—00 U

¢ L[, —t
0}—}—5/0 f(ut)e™"dt

L O, e g0

u u u u

Gu) _ f(0) _ f1(0)

u? u? U

Theorem 4.6. If S[f(t)] = G(u), then

Sumudu decomposition method (SDM)

The Sumudu Decomposition Method (SDM), is a combination of Sumudu Transform
Method and Adomain decomposition method.

The nonlinear term can easily be handled by the use of Adomain polynomials. The tech-

nique is described and illustrated in the next examples.

Example 4.1. Consider the nonlinear partial differential equation [15]]

Ye + YYz = Yaas 4.1)
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with the initial condition

y(xz,0) = 2z, t>0.

Solution:

Taking the Sumudu transform to both sides of (4.1, we have

Sly(z,t)]  y(x,0)

" » [YYa] + Syaa]
By substituting y(z, 0) = 2z we obtain
Sly(z, 1)l = 2z — uS[yys] + uS[Ysa].

Then by taking the inverse of the Sumudu transform of the (4.3)) we have
y(x,t) = 22— S [uSlyy.]] + S [uS[ye] .
Rewrite y(x, t) as infinite series of y,(z, t)

y(x,t) = Zyn(x,t), n=20,12,..
n=0

The nonlinear term can be written by
o0

YYp = Z A,.

n=0
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The Adomain polynomials are

Ay =
A =
Ay =

Ay =

YoYoz
Yoz + Y1Yoz
YoY2: + Y1Y12 + Y2Yoz

YoY3z + Y1Y2: + YoY1z + Y3You

By using (@.5]) and we can write (4.4) as

io:yn = 20 -5~
n=0

So we get the iterations as follows

yo(z,t) =

yl(x’t) =

yQ(xat) =

1

uS + 57 |usS

>4,
n=0

Sl

2
—S71 [uS [Ag]] + S [uS [yo),,)
—S§1 [uS[leH

—4xt

_S_l [uS [Al]] + S_l [US [yl]:cw]
— 57 [uS[—-16xt]]

8xt?
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ys(z,t) = =S [uS [Ao]] + 57 [uS [y,
= =5 [uS[48xt?]]

= —16xt>.

Thus, summing the above iterations we obtain
3
D e, t) =2z (1 -2t + (2)* — (20)°) .

n=0

The exact solution is

ylzt) = 1ix2t
— 2a(1— (26) + (20 — (2P + ), |t <%

The computed terms coincide with the first terms in the exact solution.

4.2 Elzaki Transform

Tarig Elzaki introduced an integral transform named the Elzaki transform in 2011 [21].

This transform is applied to the solve of ordinary and partial differential equations.

Definition 4.2. The Elzaki transform of a function f(¢) over the set A of functions given

by

A={f(t):3M, ki, ky > 0 such that | f(t)] < Me* if t € (=1)7 x [0,00)}

80



4.2. ELZAKI TRANSFORM

is defined by

E[f(t)] = T(w) = v / TRt et d ve (“huky),

we can write the equation in other form

E[f(t)] = T(v) = v* /000 flot) e7tdt, v e (—ki,ky).

The following table Elzaki transform for some functions are given.

Special function Elzaki transform
f(t) E[f(t)] =T(v)
1 v?
t v3
t", n=0,1,2,... nly"t?
eat Uz
1—av
tnfl at n+1
¢ =12 v
(n—1)! (1 —av)r
i at av?
sina —_—
1+ a?v?
t v
cos a —
1+ a?u3

Table 4.2: Elzaki transform of some functions.

Elzaki transform of derivatives

If the Elzaki transform of the function f(¢) is given by T'(v), then Elzaki Transforms of

derivatives of that fuction are given as follows:
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4.2. ELZAKI TRANSFORM

Theorem 4.7. If E[f(t)] = T'(v), then

Proof.

= ll)m vf(t) / f(t) e_fdt
- Ti“) —uf(0).
[
Theorem 4.8. If E[f(t)] = T'(v), then
T
£l 0] = T (0) ~ or0
Proof.
= U/o fr(t)e v dt
4.7)
let
g(t) = f'(t)
then

gl = 22 g0
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4.2. ELZAKI TRANSFORM

we find that by using previous theorem we get

B 0] = T2~ 5(0) ~of(0).
]
Theorem 4.9. If E[f(t)] = T'(v), then
Blfp) = T3 piqo),
k=0

Elzaki decomposition method (EDM)

We conclude this section by introducing Elzaki decomposition method. This method is
a combination of Elzaki transform and the Adomain decomposition method, it is used to

solve linear and nonlinear partial differential equations [22]].

Example 4.2. Consider the nonlinear partial differential equation [44]
Up + Uy — Uy = 0, 4.8)
with the initial condition

u(z,0) = . 4.9)

Solution:

Applying the Elzaki transform coupled with the ADM to (4.8)), we have

T(z,v)

—vu(x,0) + Eluu,] — Eluzz] =0
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4.2. ELZAKI TRANSFORM

By substituting u(z,0) = = we obtain

T(x,v) = vz —vE[uu,] +vEu.,

Then by taking the inverse of the Elzaki transform of the equation (4.10) we get

u(z,t) = x— E ' [vE[uur] — [uzz]]].
Rewrite u(z, t) as an infinite series of u, (x,t)

u(z,t) = Zun(x,t), n=20,12,..
n=0

Also the nonlinear term can be written by

o0
N =uu, = E A,.
n=0
The Adomain polynomials are

Ay = uouoy

Al = Uiy + Uy

Ay = ugugy + Uity + Uy

As = ugUsy + UiUgy + UsUiy + UsUoy

By using (4.12)) and (@.13)) we can write (4.11]) as

Zun(x,t) = v—E'|vE
n=0
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4.2. ELZAKI TRANSFORM

We now express few components as follow

up(z,t) = =
ur(@,t) = —E7 [vEAy(u) = (to)aa(, )]
= —E'[wE(x-0)
= —at
up(e,t) = —E7 [E [Ai(u) — (u1)eo(,1)]]
= —E'[uB(-2at —0)]
= qt?

us(w,t) = E7H 0B [As(w) = (u2)ea (2, 1)]]
= —E ' [vE(zt® - 0)]]

= —zt

The first four terms of the decomposition series solution for Equation (4.8)) is given by
u(z,t) = o — xt +at® — at® + ...

The exact solution is



Chapter 5

Conclusion

In this thesis, a general review of the integral transforms combind with the Adomain de-
composition method were presented . Started with the Natural decomposition method fol-
lowed by the Laplace decomposition method, Sumudu decomposition method, and finally
Elzaki decomposition method.These methods were applied for several nonlinear ordinary
and partial differential equations. In addition, we employed the double Natural decom-
position method and double Laplace decomposition method to solve nonlinear Bossinesq
equation.

All the above methods are semi-analytical techniques, based on decomposing the solution
to aseries of functions. The terms of the solution are obtained by a recurrence relation.
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