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Abstract

The Adomain decomposition method is a semi-analytical technique for solving nonlinear

differential equations. In the literature, one can find that this method is combined with

integral transforms such as Laplace, Natural, Sumudu, and Elzaki transforms.

This thesis presents some famous integral transforms couplied with the Adomain de-

composition method. These transforms include, the natural transform, the double natural

transform, Laplace transform, the double Laplace transform, Elzaki transform and Sumudu

transform. These transforms are presented with their properties. Then they are combined

with the Adomain decomposition method to solve nonlinear ordinary and partial differen-

tial equations.
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Chapter 1

Introduction

1.1 Overview

Mathematical models encountered in applied mathematics, mathematical physics and engi-

neering systems mostly tend to be nonlinear differential equations. These nonlinear equa-

tions are difficult in finding the exact or approximation solutions caused by the nonlinear

part.

There are many methods have been proposed to solve nonlinear differential equations.

The Adomain Decomposition Method (ADM) is one of these method. This method is a

semi technique based on decomposing the solution to a series of functions.

At the beginning of 1980s, Adomain proposed the ADM to solve nonlinear equations [3,5].

In this method, the given equation is decomposed in linear and nonlinear parts of the dif-

ferential equation. Inverting and applying the highest order differential operator that is

contained in the linear part of equation, it is possible to express the solution in terms of the

rest of the equation affected by the inverse operator. At this point, the solution is proposed

by means of series with terms that will be determined and that give the Adomain polyno-
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1.1. OVERVIEW

mials, in this way and by means of a recurrence relations, it is possible to find the terms of

the series that give the approximate solution of the differential equation.

The ADM and its modifications [41, 43] has been used to solve linear and nonlinear dif-

ferential equations, and the theoretical treatment of the convergence of Adomain decom-

position method has been considered in [1, 17]. A convergence of Adomain’s technique is

ensured with week hypothesis on the nonlinear operator and on the functional equation.

Combined methods of the ADM with integral transforms have been proposed to handle

nonlinear problems, Several transforms have been used like Laplace [25, 32, 33], natu-

ral [37, 38], Sumudu [11, 28], Elzaki [22, 34],Aboodh [39],

This thesis is mainly concerned with the combined integral transform -Adomain decom-

position methods, both nonlinear ordinary and partial diffrential equations are considerd.

This thesis consist of four chapters:

Chapter 1, is an introductory chapter. The basics of the Adomain decomposition method

is presented with convergence analysis.

In Chapter 2, we consider the natural transform decomposition method (NDM). This

method is used to approximate the solutions of ordinary differential equations [37] and

partial diferential equations [38]. In addition, we present double natural transform decom-

position method.

In Chapter3, we consider the Laplace transform coupling with the decomposition method

and named (LDM), this method is a numerical algorithm to solve nonlinear ordinary, par-

tial differential equations, see Khuri [32, 33]. Moreover, we present the double decompo-

sition method ; the method is combination of double Laplace transform with the ADM.
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1.2. ADOMAIN DECOMPOSITION METHOD

Chapter 4 is devoted to the Sumudu transform [11] and Elzaki transform [21]. These

transforms are introduced and combined with the ADM to solve nonlinear differential

equations.

1.2 Adomain Decomposition Method

In this section, we brifely recall of the Adomain Decomposition Method (ADM), which is

a technique for solving algebraic equations, ordinary differential equations, partial differ-

ential equations, and integral equations, see [4, 6, 7]. For the material of this section we

refer to [16].

Consider the more general nonlinear ordinary differential equation

Ly(x) +Ry(x) +N y(x) = g(x).

where

L is the highest order derivative which is assumed to be invertible.

R is a linear differential operator of order less than L.

N y represents the nonlinear terms.

g(x) represents the nonhomogeneous terms.

Solving for Ly, we get

Ly(x) = g(x)−Ry(x)−N y(x). (1.1)

3



1.2. ADOMAIN DECOMPOSITION METHOD

Applying the inverse operator L−1 to both sides of Equation (1.1), we obtain

L−1Ly = L−1(g(x))− L−1(Ry(x))− L−1(N y(x)), (1.2)

where the integral operator L−1 may be regarded as definite integral from 0 to x. Here L−1

is the integration n times, where n is the highest order of the derivative.

L−1 =

∫ x

0

∫ x

0

...

∫ x

0

dx dx...dx

L−1Ly = y(x)− y(0)− xy′(0)− x2

2!
y′′(0)− ...− xn

n!
y(n)(0). (1.3)

By substituting (1.3) in (1.2) we have

y(x)− y(0)− xy′(0)− x2

2!
y′′(0)− ...− xn

n!
y(n)(0)

= L−1(g(x))− L−1(Ry(x))− L−1(N y(x)).

Then,

y(x) = L−1(g(x)) + y(0) + xy′(0) +
x2

2!
y′′(0)

+ ...+
xn

n!
yn(0)− L−1(Ry(x))− L−1(N y(x)). (1.4)

Now, replacing the unknown function y by an infinite series of yn

y(x) =
∞∑
n=0

yn(x). (1.5)

The nonlinear terms N y is decomposed as an infinite series of the Adomain Polynomials,

4



1.2. ADOMAIN DECOMPOSITION METHOD

A′ns given by

N y =
∞∑
n=0

An(y0, y1, y2, ...). (1.6)

To compute An, take N y = f(y) to be a function in y, where y = y(x), then the Taylor

series expansion of f(y) around y0 is given by:

f(y) = f(y0) + f ′(y0)(y − y0) +
1

2!
f ′′(y0)(y − y0)2 +

1

3!
f ′′′(y0)(y − y0)3 + ...

But y = y0 + y1 + y2 + ..., then

f(y) = f(y0) + f ′(y0)(y1 + y2 + y3 + ...) +
1

2!
f ′′(y0)(y1 + y2 + y3 + ...)2

+
1

3!
f ′′′(y0)(y1 + y2 + y3 + ...)3 + ...

= f(y0) + f ′(y0)y1 + f ′(y0)y2 + ...+
1

2!
f ′′(y0)y

2
1 +

2

2!
f ′′(y0)y1y2 +

1

2!
f ′′(y0)y1y3

+ ...+
1

3!
f ′′′(y0)y

3
1 +

3

3!
f ′′′(y0)y

2
1y2 +

1

3!
f ′′′(y0)y

2
1y3 + ...

Now, let (l)(i) be the order of yil and (l)(i)+(m)(j) be the order of yily
j
m. ThenAn consists

of all terms of order n, we have

A0 = f(y0)

A1 = f ′(y0)y1

A2 = f ′(y0)y2 +
1

2!
f ′′(y0)y

2
1

A3 = f ′(y0)y3 +
2

2!
f ′′(y0)y1y2 +

1

3!
f ′′′(y0)y

3
1

5



1.2. ADOMAIN DECOMPOSITION METHOD

A4 = f ′(y0)y4 +
1

2!
f ′′(y0)(2y1y3 + y22) +

3

3!
f ′′′(y0)y

2
1y2 +

1

4!
f ′′′′(y0)y

4
1

...

Or

A0 = N (y0)

A1 = N ′(y0)y1

A2 = N ′(y0)y2 +
1

2!
N ′′(y0)y21

A3 = N ′(y0)y3 +
2

2!
N ′′(y0)y1y2 +

1

3!
N ′′′(y0)y31

A4 = N ′(y0)y4 +
1

2!
N ′′(y0)(2y1y3 + y22) +

3

3!
N ′′′(y0)y21y2 +

1

4!
N ′′′′(y0)y41

...

Hence,

An = An(yo, y1, ..., yn) =
1

n!

dn

dλn
N

[
∞∑
m=0

λmym

]
λ=0

. (1.7)

Now, substituting (1.5) and (1.6) in (1.4), and solve it for y to get

∞∑
n=0

yn = L−1g(x) + φ0 − L−1(Ry(x))− L−1(N y(x)).

6



1.2. ADOMAIN DECOMPOSITION METHOD

Where

φ0 =



y(0)− xy′(0) if L =
d

dx

y(0)− xy′(0)− x2

2!
y′′(0) if L =

d2

dx2
...

y(0)− xy′(0)− x2

2!
y′′(0)− ...− xn

n!
yn(0) if L =

dn+1

dxn+1

Therefore

y0 = φ0 + L−1g(x),

yn+1 = −L−1(Ryn)− L−1(An)

Example 1.1. Consider the nonlinear differential equation

y′(x) + y2(x) = −1, (1.8)

with initial condition

y(0) = 0. (1.9)

Solution:

We can write the equation as

y′(x) = −1− y2(x)

Let L =
d

dx
, then

Ly = −1− y2(x) (1.10)

7



1.2. ADOMAIN DECOMPOSITION METHOD

The Adomain polynomials are

A0 = y20

A1 = 2y0y1

A2 = 2y0y2 +
1

2!
2y21

A3 = 2y0y3 + 2y1y2

...

Take the

L−1 =

∫ x

0

dx

of (1.10) we get

y(x) = L−1(−1)− L−1(y2(x))

or
∞∑
n=0

yn(x) = −x− L−1(
∞∑
n=0

An)

Hence

y0 = −x

y1 = −L−1(A0) = −
∫ x

0

(−x)2dx =
−x3

3

y2 = −L−1(A1) = −
∫ x

0

2x
x3

3
dx = −

∫ x

0

2
x4

3
dx = −2

x5

15

y3 = −L−1(A2) = −
∫ x

0

2(−x)
−2x5

15
+

(
x3

3

)2

dx = −
[
−14x7

105
+
x7

63

]
=
−17x7

315
...

8



1.3. CONVERGENCE OF ADOMAIN DECOMPOSITION METHOD

Then the solution is

y(x) = −x− x3

3
− 2x5

15
− 17x7

315
− ...

= −x− 2x3

3!
− 16x5

5!
− 272x7

7!
− ...

The computed terms in this series coincide with Maclaurine series for the function

y(x) = − tan(x).

In fact y(x) = − tan(x) is the exact solution of (1.8) with condition (1.9).

1.3 Convergence of Adomain Decomposition Method

In this section, a general proof of convergence for the ADM is introduced. This technique

was proposed by Cherruault et al [18]. They also proved some results about on speed of

convergence for this method.

Consider the following a general functional equation:

y −N (y) = f, (1.11)

where N : H → H is the nonlinear operator and H is a Hilbert space, and f = L−1g is a

given function in H .

Assuming that y is the solution of (1.11) and the nonlinear operator N(y) are decom-

posed into infinite series

y(x) =
∞∑
n=0

yn(x),

9



1.3. CONVERGENCE OF ADOMAIN DECOMPOSITION METHOD

and

N (y) =
∞∑
n=0

An,

where An’s are Adomain polynomials.

Now, substituting these decomposition series in (1.11), we get

∞∑
n=0

yn(x)−
∞∑
n=0

An(x) = f.

Then the recursive terms can be written as

y0 = f,

yn+1 = An(y0, y1, ..., yn).

Let

Sn = y1 + y2 + ...+ yn.

Then the Adomain decomposition method is equivalent to

S0(x) = 0,

Sn+1 = N (y0 + Sn),

where

N (y0 + Sn) =
∞∑
n=0

An(x).

S = limn→∞ Sn if the limit exist in the Hilbert space H , then S is a solution of a fixed

point equation,

S = N (y0 + S) in H (1.12)

10



1.3. CONVERGENCE OF ADOMAIN DECOMPOSITION METHOD

Theorem 1.1. Let N be nonlinear operator on a Hilbert space H . The decomposition

series
∑∞

0 yn of y converges to y when

∃0 < α < 1 such that ||yn+1|| ≤ α||yn|| for n = 0, 1, 2, ...

Proof. We have

S0 = 0

S1 = y1

S2 = y1 + y2

...

Sn = y1 + y2 + ...+ yn

We want need to show that {Sn}∞n=0 is a Cauchy sequence in the Hilbert space H .

||Sn+1 − Sn|| = ||yn+1|| ≤ α||yn|| ≤ α2||yn−1|| ≤ ... ≤ αn+1||y0||

But for any n,m ∈ N, n ≥ m, we have

||Sn − Sm|| = ||(Sn − Sn−1) + (Sn−1 − Sn−2) + ...+ (Sm+1 − Sm)||

≤ ||(Sn − Sn−1)||+ ||(Sn−1 − Sn−2)||+ ...+ ||(Sm+1 − Sm)||

≤ αn||y0||+ αn−1||y0||+ ...+ αm+1||y0||

= (αn + αn−1 + ...+ αm+1)||y0||

= (αm+1 + αm+2 + ...+ αn)||y0||

≤ (αm+1 + αm+2 + ...)||y0||

=
αm+1

1− α
||y0||

11



1.3. CONVERGENCE OF ADOMAIN DECOMPOSITION METHOD

But α < 1, so

lim
n,m→∞

||Sn − Sm|| = 0,

hence {Sn}∞n=0 is a Cauchy sequence in the Hilbert space H and this implies that

lim
n→∞

Sn = S, S ∈ H

i.e. S =
∑∞

n=0 yn, but solving (1.11) is equivalent to solving (1.12) and by assuming that

N is a continuous operator, then

N(y0 + S) = N ( lim
n→∞

(y0 + Sn))

= lim
n→∞

N (y0 + Sn)

= lim
n→∞

Sn+1

= S

i.e. S is the solution of (1.11).

12



Chapter 2

Natural Transform With Adomain

Decomposition Method (NDM)

2.1 Natural Transform

Natural Transform is an integral transform similar to the Laplace transform, the Natural

Transform was introduced by Khan in 2008 [31], and its properties were investigated by

AL-Omari in 2013 [8]. This transform plays a role in techniques for solving ordinary

differential equations.

Definition 2.1. [14] Let f(t) be a function defined for t ∈ (−∞,∞), then the Natural

Transform of f(t) denoted by R(s, u) is defined as

N [f(t)] = R(s, u) =

∫ ∞
−∞

f(ut)e−stdt, s, u ∈ (−∞,∞). (2.1)

Provided the integral is convergent, here N [f(t)] is called the natural transform of time

function and the variable s and u are the natural transform variables.

13



2.1. NATURAL TRANSFORM

Equation (2.1) can be written as

N [f(t)] =

∫ ∞
−∞

f(ut)e−stdt, s, u ∈ (−∞,∞)

=

[∫ 0

−∞
f(ut)e−stdt, s, u ∈ (−∞, 0)

]
+

[∫ ∞
0

f(ut)e−stdt, s, u ∈ (0,∞)

]

= N−[f(t)] +N+[f(t)]

= N [f(t)H(−t)] +N [f(t)H(t)]

= R−(s, u) +R+(s, u),

where H(·) is a Heaviside function, i.e. H(t) =

 0 for t < 0

1 for t ≥ 0

If the function f(t)H(t) is defined on the positive real axis with t ∈ R, then we define

the natural transform on the set

A = {f(t) : ∃M, τ1, τ2 > 0 such that |f(t)| < Me|t|/τj , if t ∈ (−1)j×[0,∞), j = 1, 2}

by

N [f(t)H(t)] = N+[f(t)] = R+(s, u) =

∫ ∞
0

f(ut)e−stdt, s, u ∈ (0,∞).

The Natural transform throughout the thesis of the function f(t) > 0 and f(t) = 0 for

t < 0 is defined by

N+[f(t)] = R(s, u) =

∫ ∞
0

f(ut)e−stdt, s > 0, u > 0 (2.2)

Next, some examples are given.

14



2.1. NATURAL TRANSFORM

Example 2.1. Unit step function

Let u(t) =

 1 for t > 0,

0 for t ≤ 0.

The N-Transform of this function can be written as

N+[u(t)] =

∫ ∞
0

e−stdt

= lim
c→∞

−e−st

s

∣∣∣c
0

=
1

s

Example 2.2. Exponential function:

Let f(t) = eat when t ≥ 0, where a is constant, the N-Transform of this function can be

written as

N+[f(t)] = N [eat]

=

∫ ∞
0

eaute−stdt

= lim
c→∞

∫ c

0

e−(s−au)tdt

= lim
c→∞

e−(s−au)t

−(s− au)

∣∣∣c
0

=
1

s− au

In Table 2.1, N-transform for some functions are given.

Properties of N-Transform
In this section, the main properties are presented. For detailed studies of N-transform and

its properties, we refer to Belgacem and Silambarasan [12–14] and Khan [31].

Theorem 2.1. Linearity Property

15



2.1. NATURAL TRANSFORM

f(t) R(s, u)

1
1

s

t
u

s2

sin t
u

s2 + u2

cos t
s

s2 + u2

sinh at
au

s2 − a2u2

cosh at
s

s2 − a2u2
tn−1

(n− 1)!

un−1

sn

Table 2.1: Natural transform of some functions.

If a and b are any constants and f(t) and g(t) are functions, then

N+[af(t) + bg(t)] = aN+[f(t)] + bN+[g(t)]

Proof. N+[f(t)] =

∫ ∞
0

f(ut)e−stdt and N+[g(t)] =

∫ ∞
0

g(ut)e−stdt.

If a and b are any constants, then

N+[af(t) + bg(t)] =

∫ ∞
0

[af(ut) + bg(ut)]e−stdt

= a

∫ ∞
0

f(ut)e−stdt+ b

∫ ∞
0

g(ut)e−stdt

= aN+[f(t)] + bN+[g(t)]

Theorem 2.2. First Translation or Shifting Property

16



2.1. NATURAL TRANSFORM

Let f(t) be a continuous function and t ≥ 0. Then

N [eatf(t)] =
s

s− au
R

[
su

s− au

]

Proof. The N-transform of eatf(t) is given by

N [eatf(t)] =

∫ ∞
0

f(ut)e−(s−au)tdt.

Therefore, by change of variable w =
s− au
s

t, we get

N [eatf(t)] =
s

s− au

∫ ∞
0

f

(
usw

s− au

)
e−swdw

=
s

s− au
R

[
su

s− au

]

Theorem 2.3. Scaling Property

Let N+[f(t)] = R(s, u). Then

N+[f(at)] =
1

a
R
[s
a
, u
]
.

Proof.

N+[f(at)] =

∫ ∞
0

f(aut) e−st dt let p = at

=

∫ ∞
a

f(up) e
−s
a
p dp

a

=
1

a

∫ ∞
a

f(up) e
−s
a
p dp

=
1

a
R
[s
a
, u
]

17



2.1. NATURAL TRANSFORM

N-transform of Derivatives

Theorem 2.4. If N+[f(t)] = R(s, u), then

N+[f ′(t)] = R1(s, u) =

∫ ∞
0

f ′(t)e−stdt =
s

u
R(s, u)− f(0)

u

Proof.

N+[f ′(t)] =

∫ ∞
0

f ′(ut)e−stdt

= lim
c→∞

∫ c

0

f ′(ut)e−stdt Integration by parts

= lim
c→∞

f(ut)e−st

u

∣∣∣c
0

+
s

u

∫ c

0

f ′(ut)e−stdt

= lim
c→∞

[
f(uc)e−sc

u
− f(0)

u

]
+
s

u

∫ c

0

f(ut)e−stdt

=
s

u
R(s, u)− f(0)

u

Theorem 2.5. If N [f(t)] = R(s, u), then

N+[f ′′(t)] = R2(s, u) =
s2

u2
R(s, u)− s

u2
f(0)− f ′(0)

u

18



2.1. NATURAL TRANSFORM

Proof. N [G′(t)] =
s

u
N [G(t)]− f(0)

u
. Let G(t) = f ′(t), then

N [f ′′(t)] =
s

u
N [f ′(t)]− f ′(0)

u

=
s

u

{
s

u
N [f(t)]− f(0)

u

}
− f ′(0)

u

=
s2

u2
R(s, u)− s

u2
f(0)− f ′(0)

u

Theorem 2.6. If N [f(t)] = R(s, u), then

N [fn(t)] = Rn(s, u) =
sn

un
R(s, u)−

n−1∑
k=0

sn−(k+1)

un−k
fk(0) (2.3)

Proof. By mathematical induction.

For n = 1 and 2 gives the Natural transform of first and second derivatives of f(t) re-

spectively.

N [f ′(t)] =
s

u
R1(s, u)− f(0)

u
(2.4)

N [f ′′(t)] =
s2

u2
R2(s, u)− s

u2
f(0)− f ′(0)

u

To proceed the induction process, assuming equation (2.3) true for n and prove it for n+1,
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using equation (2.4),

N [fn+1(t)] = N [f ′n(t)] = Rn+1(s, u)

=
s

u
Rn(s, u)− fn(0)

u

=
s

u

[
sn

un
R(s, u)−

n−1∑
k=0

sn−(k+1)

un−k
fk(0)

]
− fn(0)

u

=
sn+1

un+1
R(s, u)−

n∑
k=0

sn−k

u(n−k)+1
fk(0)

Which is true for n+ 1. Hence the result (2.3) follows.

2.2 NDM For Ordinary Differential Equation

Consider the general ordinary differential equation of the form

Ly(x) +R(y(x)) +N (y(x)) = g(x), (2.5)

subject to initial condition

y(0) = h(x), (2.6)

where

L =
dn

dxn
is the operator of highest order.

R is a remainder of the differential operator.

g(x) is a nonhomogeneous term.

N (y) is a non linear term.
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Suppose L is the differential operator of the first order i.e., L =
d

dx
.

Applying the Natural transform of Equation (2.5) we have

s

u
Y (s, u)− y(0)

u
+N+[R(y)] +N+[N (y)] = N+[g(x)]. (2.7)

By substituting (2.6)in (2.7) we obtain

Y (s, u) =
h(x)

s
+
u

s
N+[g(x)]− u

s
N+[R(y)]− u

s
N+[N (y)]. (2.8)

Taking the inverse of the Natural transform for equation we obtain

y(x) = φ(x)−N−1
[u
s
N+[R(y) +N (y)]

]
. (2.9)

where φ(x) is a source term.

Rewrite y(x) as an infinite series of yn, i.e.

y(x) =
∞∑
n=0

yn(x). (2.10)

Also the nonlinear term N(y) can be written as an infinite series of an Adomain polyno-

mials, i.e.

N (y) =
∞∑
n=0

An, (2.11)

where An′s are the polynomials of y0, y1, . . . , yn, which can be calculated by the formula

An =
1

n!

dn

dλn
N

[
∞∑
i=0

λiyi

]
λ=0

.
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Substituting (2.10) and (2.11) into (2.9) to get

∞∑
n=0

yn = φ(x)−N−1
[
u

s
N+[R

∞∑
n=0

yn] +
u

s
N+[

∞∑
n=0

An]

]
(2.12)

Now by comparing both sides of equation (2.12) we conclude that

y0(x) = φ(x)

y1(x) = −N−1
[u
s
N+[R(y0(x))] +

u

s
N+[A0(x)]

]
y2(x) = −N−1

[u
s
N+[R(y1(x))] +

u

s
N+[A1(x)]

]
...

Continuing in this manner we get the general recursive relation

yn+1(t) = −N−1
[u
s
N+[R(yn(x)] +

u

s
N−1[An(x)]

]
, n = 0, 1, 2, ... (2.13)

Hence from the general recursive relation in equation (2.13), we can easily compute the

remaining components of y(x) as y1(x), y2(x),. . . , where y0(x) is the given initial condi-

tion.

Finally, the exact solution is given by

y(x) =
∞∑
n=0

yn(x).

Example 2.3. Consider the nonlinear ordinary differential equation [40]

y′ = y2 − y, (2.14)

subject to the initial condition

y(0) = −1.
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Solution:

We solve this problem by the Natural Transform, taking the Natural transform to both sides

of Equation (2.14), we have

s

u
Y (s, u)− y(0)

u
= N+[y2(x)]− Y (s, u) (2.15)

By substituting y(0) = −1 we obtain

( s
u

+ 1
)
Y (s, u) = N+[y2(x)]− 1

u
,

Y (s, u) =
u

s+ u
N+[y2(x)]− 1

s+ u
(2.16)

Then by taking the inverse of the Natural transform of the Equation (2.16) we get

y(x) = −e−x + (N+)−1
[

u

s+ u
N+

[
y2(x)

]]
. (2.17)

Rewrite y(x) as infinite series of yn

y(x) =
∞∑
n=0

yn(x). (2.18)

Also decomposing the nonlinear term as

y2 =
∞∑
n=0

An. (2.19)
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The Adomain polynomials are

A0 = y20(x)

A1 = 2y0(x)y1(x)

A2 = 2y0(x)y2(x) + y21(x)

A3 = 2y0y3 + 2y1y2

...

By using (2.18) and (2.19) we can write (2.17) as

∞∑
n=0

yn = −e−x + (N+)−1

[
u

s+ u
N+

[
∞∑
n=0

An(x)

]]
. (2.20)

Then by comparing both side of equation (2.20) we obtain

y0(x) = −e−x

We can easily compute the remaining components of the unknown function y(x) as follow

y1(x) = (N+)−1
[

u

s+ u
N+[A0(x)]

]

= (N+)−1
[

u

s+ u
N+[y20(x)]

]

= (N+)−1
[

u

s+ u
N+[e−2x]

]

= (N+)−1
[

u

s+ u

1

s+ 2u

]

= (N+)−1
[

1

s+ u
− 1

s+ 2u

]
= e−x − e−2x
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y2(x) = (N+)−1
[

u

s+ u
N+[A1(x)]

]

= (N+)−1
[

u

s+ u
N+[2y0(x)y1(x)]

]

= (N+)−1
[

u

s+ u
N+[−2e−x(e−x − e−2x)]

]
= −e−x + 2e−2x − e−3x

y3(x) = (N+)−1
[

u

s+ u
N+[A2(x)]

]

= (N+)−1
[

u

s+ u
N+[2y0(x)y2(x) + y21(x)]

]

= (N+)−1
[

u

s+ u
N+[−2e−x(−e−x + 2e−2x − e−3x) + (e−x − e−2x)2]

]
= −e−4x + 3e−3x − 3e−2x + e−x

Then the approximate solution is given by

y(x) ≈
∞∑
n=0

yn(x) = y0(x) + y1(x) + y2(x) + ...

Leads to the exact solution of the form

y(x) =
1

1− 2ex

For validation, we draw the approximate solution versus the exact solution, see Figure 2.1.
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Figure 2.1: comparison between the exact solution and the solution obtained by the NDM,
Example 2.3.

2.3 NDM for partial differential equations

The NDM can easily be used to solve a wide class of nonlinear partial equations and obtain

an exact or analytical solution.

Example 2.4. Consider the nonlinear partial differential equation [38]

ut(x, t) + u(x, t)ux(x, t) = 0, (2.21)

subject to initial condition

u(x, 0) = u0(x) = x. (2.22)

Solution:
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We solve (2.21) with (2.22) by the NDM, taking the Natural transform with respect to t for

both sides of equation (2.21) , we have

s

u
N+[u(x, t)]− 1

u
u(x, 0) = −N+[u(x, t)ux(x, t)]. (2.23)

By using (2.22) in (2.23) we obtain

N+[u(x, t)] =
x

s
− u

s
N+[u(x, t)ux(x, t)]. (2.24)

Then by taking the inverse of the Natural transform of the equation (2.24) we have

u(x, t) = x−N−1
[u
s
N+[u(x, t)ux(x, t)]

]
. (2.25)

Now, rewrite u(x, t) is an infinite series of the form

u(x, t) =
∞∑
n=0

un(x, t). (2.26)

Also assuming Adomain polynomial for the nonlinear term as

uux =
∞∑
n=0

An. (2.27)

Where

An =
1

n!

dn

dλn
N

[
∞∑
i=0

λiyi

]
λ=0

, n ≥ 0

27



2.3. NDM FOR PARTIAL DIFFERENTIAL EQUATIONS

Then,

A0 = u0(u0)x

A1 = u1(u0)x + u0(u1)x

A2 = u0(u2)x + u2(u0)x + u1(u1)x

A3 = u3(u0)x + u0(u3)x + u2(u1)x + u1(u2)x

...

By using (2.26) and (2.27) we can write Equation (2.25) as

∞∑
n=0

un(x, t) = x−N−1
[
u

s
N

[
∞∑
n=0

An(u)

]]
(2.28)

Now,

u0(x, t) = x
∞∑
n=0

un+1(x, t) = −N−1
[
u

s
N

[
∞∑
n=0

An(u)

]]
.

So, we can obtain first components of (2.28) as follow

u1(x, t) = −N−1
[u
s
N+[A0(u)]

]
= −N−1

[u
s
N+[u0(uo)x]

]
= −N−1

[u
s
N+[x]

]
= −xN−1

[ u
s2

]
= −xt
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u2(x, t) = −N−1
[u
s
N+[A1(u)]

]
= −N−1

[u
s
N+[u1(u0)x + u0(u1)x]

]
= −N−1

[u
s
N+[−2xt]

]
= −xN−1

[
2u2

s3

]
= xt2

u3(x, t) = −N−1
[u
s
N+[A2(u)]

]
= −N−1

[u
s
N+[u0(u2)x + u2(u0)x + u1(u1)x]

]
= −N−1

[u
s
N+[xt2 + xt2 − xt2]

]
= −N−1

[u
s
N+[−3xt2]

]
= −xt3.

...

In this manner, three components of the decomposition series were obtained of which

u(x, t) was evaluated to have the following expansion

u(x, t) =
∞∑
n=0

un(x, t) = x− xt+ xt2 − xt3 + ...

The exact solution of (2.21) given (2.22) is

u(x, t) =
x

1 + t
,

or

u(x, t) = x− xt+ xt2 − xt3 + ... for |t| < 1 (2.29)
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It is clear that the computed components coincide with the corresponding terms in (2.29).

For more examples see [37].

2.4 Double Natural Decomposition Method

In this section, a combined form of the double natural transform method with the Adomain

decomposition method is developed for an analytical solution of the linear and nonlinear

singular one dimensional Boussinesq equations. For this subject we refer to [36]. Exam-

ples are provided to illustrate the reliability of this method.

Definition 2.2. Let f(x, t) be a function and x, t ∈ IR. Then the double natural transform

of f(x, t) denoted by R(p, s, u, v) is defined as

N+
x,t[f(x, t)] = R(p, s, u, v) =

1

uv

∫ ∞
0

∫ ∞
0

e(
−p
u
x− s

v
t)f(x, t)dtdx

we can write the equation in another form as

N+
x,t[f(x, t)] = R(p, s, u, v) =

∫ ∞
0

∫ ∞
0

e(−px+st)f(ux, vt)dtdx ,

Provided the integral exists

where

Re(s),Re(p) > 0,Re(u),Re(v) > 0.

Next, several examples are given.
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Example 2.5. Let f(x, t) = 1, x, t > 0. Then

N+
x,t[1] =

1

uv

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t)dtdx

=
1

uv

∫ ∞
0

lim
c→∞

−v
s

e(
−p
u
x− s

v
t)
∣∣∣c
0
dx

=
1

u

∫ ∞
0

1

s
e(
−p
u
x)dx

= lim
c→∞

−1

sp
e(
−p
u
x)
∣∣∣c
0

=
1

sp

Example 2.6. Let f(x, t) = e(ax+bt), where a and b are constants. Then the double natural

transform of the function can be written as

N+
x,t[e

ax+bt] =
1

(s− bv)(p− au)
,

Where
p

u
> a and

s

v
> b

Proof.

N+
x,t[e

ax+bt] =
1

uv

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t)eax+btdtdx

=
1

uv

∫ ∞
0

∫ ∞
0

e−( pu−a)x−( sv−b)tdtdx

=
1

u

∫ ∞
0

[
lim
c→∞

−1

s− bv
e−( pu−a)x−( sv−b)t

∣∣∣c
0

]
dx

=
1

u

∫ ∞
0

1

s− bv
e−( pu−a)xdx

= lim
c→∞

−1

(s− bv)(p− au)
e−( pu−a)x

∣∣∣c
0

=
1

(s− bv)(p− au)
.
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Example 2.7. Let f(x, t) = ei(ax+bt), where a and b are constants. Then the double natural

transform of the function can be written as

N+
x,t[e

i(ax+bt)] =
1

(s− bvi)(p− aui)

Where
p

u
> 0 and

s

v
> 0

Proof.

N+
x,t[e

i(ax+bt)] =
1

uv

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t)ei(ax+bt)dtdx

=
1

uv

∫ ∞
0

∫ ∞
0

e−( pu−ai)x−( sv−bi)tdtdx

=
1

u

∫ ∞
0

[
lim
c→∞

−1

s− bvi
e−( pu−ai)x−( sv−bi)t

∣∣∣c
0

]
dx

=
1

u

∫ ∞
0

1

s− bvi
e−( pu−ai)xdx

= lim
c→∞

−1

(s− bvi)(p− aui)
e−( pu−ai)x

∣∣∣c
0

=
1

(s− bvi)(p− aui)
.

Example 2.8. Let f(x, t) = cos (ax+ bt), where a and b are constants. Then the double

natural transform of the function can be written as

N+
x,t[cos (ax+ bt)] =

ps− abuv
(p2 + a2u2)(s2 + b2v2)
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Proof.

N+
x,t[cos (ax+ bt)] = N+

x,t

[
ei(ax+bt) + e−i(ax+bt)

2

]

=
1

2

[
N+
x,t

[
ei(ax+bt)

]
+N+

x,t

[
e−i(ax+bt)

]]
=

1

2

[
1

(s− bvi)(p− aui)
+

1

(s+ bvi)(p+ aui)

]

=
1

2

[
ps− abuv + (aus+ pbv)i

(p2 + a2u2)(s2 + b2v2)
+
ps− abuv − (aus+ pbv)i

(p2 + a2u2)(s2 + b2v2)

]

=
1

2

[
2(ps− abuv)

(p2 + a2u2)(s2 + b2v2)

]

=
ps− abuv

(p2 + a2u2)(s2 + b2v2)
.

Example 2.9. Let f(x, t) = sin (ax+ bt), where a and b are constants. Then the double

natural transform of the function can be written as

N+
x,t[sin (ax+ bt)] =

aus− pbv
(p2 + a2u2)(s2 + b2v2)

Proof.

N+
x,t[sin (ax+ bt)] = N+

x,t

[
ei(ax+bt) − e−i(ax+bt)

2i

]
=

1

2i

[
N+
x,t

[
ei(ax+bt)

]
−N+

x,t

[
e−i(ax+bt)

]]
=

1

2i

[
1

(s− bvi)(p− aui)
− 1

(s+ bvi)(p+ aui)

]
=

1

2i

[
ps− abuv + (aus+ pbv)i

(p2 + a2u2)(s2 + b2v2)
− ps− abuv − (aus+ pbv)i

(p2 + a2u2)(s2 + b2v2)

]

33



2.4. DOUBLE NATURAL DECOMPOSITION METHOD

=
1

2i

[
2(aus− pbv)i

(p2 + a2u2)(s2 + b2v2)

]
=

aus− pbv
(p2 + a2u2)(s2 + b2v2)

.

Example 2.10. The double natural transform of f(x, t) = xatb, if a > −1 and b > −1, is

given as

N+
x,t[x

atb] =
ua vb

pa+1 sb+1
Γ(a+ 1)Γ(b+ 1),

Proof.

N+
x,t[x

atb] =
1

uv

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t)xatbdtdx

=
1

u

∫ ∞
0

e
−p
u
xxa

(
1

v

∫ ∞
0

e
−s
v
ttbdt

)
dx

by substituting
p

u
x = r and

s

v
t = q, we get

N+
x,t[x

atb] =
1

u

∫ ∞
0

e−r
(
ur

p

)a
u

p

(
1

v

∫ ∞
0

e−q
(vq
s

)b v
s
dq

)
dr

=
ua vb

pa+1 sb+1

∫ ∞
0

∫ ∞
0

e−rrae−qqbdrdq

=
ua vb

pa+1 sb+1
Γ(a+ 1)Γ(b+ 1).

Where gamma function of a defined by

Γ(a) =

∫ ∞
0

e−rra−1dx, a > 0,
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and gamma function of b is

Γ(b) =

∫ ∞
0

e−qqb−1dt, b > 0

Note that if a is natural number, then Γ(a+ 1) = a!

Lemma 2.1. The double natural transform of f(x, t) = (xt)n is given by

N+
x,t[(xt)

n] =
(n!)2 un vn

pn+1 sn+1
.

where n ∈ N

Existence condition for the double natural transform
A function f(x, t) is an exponential of a and b as x→∞, t→∞, if there exist a positive

constant k such that

|f(x, t)| ≤ k eax+bx

∀x > X and t > T and it is easy to get

lim
x→∞
t→∞

e(
−α
u
x−β

v
t) |f(x, t)| ≤ k lim

x→∞
t→∞

e−(αu−a)x−(βv−b)t = 0.

where
α

u
> a and

β

v
> b.

The function f(x, t) is called exponential order as x → ∞, t → ∞, it does not grow

faster than k eax+bx as x→∞, t→∞.

Theorem 2.7. If f(x, t) is a continuous function in every finite interval (0, X) and (0, T )

and of exponential order e(ax+bt), then the double natural transform of f(x, t) which is

defined by N+
x,t[f(x, t)] exists for all p > α, s > β and u 6= 0, v 6= 0
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Proof.

|N+
x,t[f(x, t)]| =

∣∣∣∣ 1

uv

∫ ∞
0

∫ ∞
0

e(
−p
u
x− s

v
t)f(x, t)dtdx

∣∣∣∣
≤ k

∣∣∣∣ 1

uv

∫ ∞
0

∫ ∞
0

e(
−p
u
x− s

v
t)e(ax+bt)dtdx

∣∣∣∣
≤ k

∣∣∣∣ 1

uv

∫ ∞
0

∫ ∞
0

e−(
p
u
−a)x−( s

v
−v)tdtdx

∣∣∣∣
=

k

(p− au)(s− bv)
.

Double natural transform of partial derivatives
If double natural transform of the function f(x, t) is given by N+

x,t[f(x, t)] = R(p, s, u, v),

then the double natural transforms of
∂f(x, t)

∂x
,
∂2f(x, t)

∂x2
,
∂f(x, t)

∂t
,
∂2f(x, t)

∂t2
are given

by

i) N+
x,t

[
∂f(x, t)

∂x

]
=

p

u
R(p, s, u, v)− 1

u
N+
t f(0, t)

ii) N+
x,t

[
∂2f(x, t)

∂x2

]
=

p2

u2
R(p, s, u, v)− p

u2
N+
t f(0, t)− 1

u
N+
t

[
∂f(0, t)

∂x

]

iii) N+
x,t

[
∂f(x, t)

∂t

]
=

s

v
R(p, s, u, v)− 1

v
N+
x f(x, 0)

iv) N+
x,t

[
∂2f(x, t)

∂t2

]
=

s2

v2
R(p, s, u, v)− s

v2
N+
x f(x, 0)− 1

v
N+
x

∂f(x, 0)

∂t
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Proof.

i) N+
x,t

[
∂f(x, t)

∂x

]
=

1

uv

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t)∂f(x, t)

∂x
dxdt

=
1

uv

[∫ ∞
0

lim
c→∞

e−( pux+
s
v
t) f(x, t)

∣∣∣c
0
dt+

p

u

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t) f(x, t)dxdt

]
=

1

uv

∫ ∞
0

−e−( sv t)f(0, t)dt+
p

u
R(p, s, u, v)

=
p

u
R(p, s, u, v)− 1

u
N+
t [f(0, t)]

ii) N+
x,t

[
∂2f(x, t)

∂x2

]
=

1

uv

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t)∂

2f(x, t)

∂x2
dxdt

=
1

uv

[∫ ∞
0

lim
c→∞

e−( pux+
s
v
t) ∂f(x, t)

∂x

∣∣∣c
0
dt+

p

u

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t) ∂f(x, t)

∂x
dxdt

]

=
1

u

[
1

v

∫ ∞
0

−e−
s
v
t ∂f(0, t)

∂x
dt

]
+
p

u

[
1

uv

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t)∂f(x, t)

∂x
dxdt

]

=
−1

u
N+
t

[
∂f(0, t)

∂x

]
+
p

u

[
−1

u
N+
t [f(0, t)] +

p

u
R(p, s, u, v)

]

=
p2

u2
R(p, s, u, v))− p

u2
N+
t [f(0, t)]− 1

u
N+
t

[
∂f(0, t)

∂x

]
.

The proof of iii and iv similar to that in i and ii.

Theorem 2.8. The double natural transform of xn
∂f(x, t)

∂t
is given by

N+
x,t

[
xn
∂f(x, t)

∂t

]
= (−u)n

dn

dpn
N+
x,t

[
∂f(x, t)

∂t

]
, where n = 1, 2, 3, ...

Proof. Using the definition of double natural transform for the first order partial derivative,
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we get

N+
x,t

[
∂f(x, t)

∂t

]
=

1

uv

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t)∂f(x, t)

∂t
dtdx (2.30)

By taking the nth derivative with respect to p for both sides of Equation (2.30), we have

dn

dpn
N+
x,t

[
∂f(x, t)

∂t

]
=

1

uv

∫ ∞
0

∫ ∞
0

dn

dpn

[
e−( pux+

s
v
t)∂f(x, t)

∂t
dtdx

]
=

(−1)n

uv

∫ ∞
0

∫ ∞
0

(x
u

)n
e−( pux+

s
v
t)∂f(x, t)

∂t
dtdx

=
(−1)n

un
1

uv

∫ ∞
0

∫ ∞
0

xn e−( pux+
s
v
t)∂f(x, t)

∂t
dtdx

=
(−1)n

un
N+
x,t

[
xn
∂(f(x, t)

∂t

]
,

We obtain

N+
x,t

[
xn
∂(f(x, t)

∂t

]
= (−u)n

dn

dpn
N+
x,t

[
∂(f(x, t)

∂t

]
.

Theorem 2.9. The double natural transform of xn
∂2f(x, t)

∂t2
is given by

N+
x,t

[
xn
∂2f(x, t)

∂t2

]
= (−u)n

dn

dpn
N+
x,t

[
∂2f(x, t)

∂t2

]
, where n = 1, 2, 3, ...

Proof. Using the definition of double natural transform of the second order partial deriva-

tive, we get

N+
x,t

[
∂2f(x, t)

∂t2

]
=

1

uv

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t)∂

2f(x, t)

∂t2
dtdx (2.31)
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By taking the nth derivative with respect to p for both sides of Equation (2.31), we have

dn

dpn
N+
x,t

[
∂2f(x, t)

∂t2

]
=

1

uv

∫ ∞
0

∫ ∞
0

dn

dpn

[
e−( pux+

s
v
t)∂

2f(x, t)

∂t2
dtdx

]
=

(−1)n

uv

∫ ∞
0

∫ ∞
0

(x
u

)n
e−( pux+

s
v
t)∂

2(f(x, t)

∂t2
dtdx

=
(−1)n

un
1

uv

∫ ∞
0

∫ ∞
0

xn e−( pux+
s
v
t)∂

2(f(x, t)

∂t2
dtdx

=
(−1)n

un
N+
x,t

[
xn
∂2f(x, t)

∂t2

]
,

we obtain

N+
x,t

[
xn
∂2f(x, t)

∂t2

]
= (−u)n

dn

dpn
N+
x,t

[
∂2f(x, t)

∂t2

]
.

Theorem 2.10. The double natural transform of xn g(x, t) is given by

N+
x,t [xng(x, t)] = (−u)n

dn

dpn
N+
x,t [g(x, t)] where n = 1, 2, 3, ...

Proof. The proof is similar to that in Theorem (2.8) and Theorem (2.9) and therfore is

omitted.

Consider the following general form of the nonlinear singular one dimensional Boussinesq

equation

xψtt −
∂

∂x
(xψx) + xa(x)ψxxxx − xb(x)ψxxtt + xc(x)ψtψxx

+ xd(x)ψxψxt = xg(x, t), (2.32)
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2.4. DOUBLE NATURAL DECOMPOSITION METHOD

subject to condition

ψ(x, 0) = g1(x),
∂ψ(x, 0)

∂t
= g2(x), (2.33)

where a(x), b(x), c(x) and d(x) are arbitrary functions.

Solution:

Applying double natural transform to (2.32), we have

N+
x,t

[
xψtt −

∂

∂x
(xψx) + xa(x)ψxxxx − xb(x)ψxxtt + xc(x)ψtψxx + xd(x)ψxψxt

]
= N+

x,t [xg(x, t)] .

Using the differential property of double natural transform

N+
x,t

[
xn
∂f(x, t)

∂t

]
= (−u)n

dn

dpn
N+
x,t

[
∂f(x, t)

∂t

]
,

and initial condition in (2.33), we get

d

dp
[R(p, s, u, v)] =

1

s

d

dp
N+
x (ψ(x, 0))+

v

s2
d

dp
N+
x (ψt(x, 0))− v2

us2
N+
x,t [φ]

+
v2

s2
d

dp
g(p, s, u, v), (2.34)

where

φ =
∂

∂x
(xψx)− xa(x)ψxxxx + xb(x)ψxxtt − xc(x)ψtψxx − xd(x)ψxψxt.

By integrating both sides of (2.34) from 0 to p, we have

R(p, s, u, v) =
1

s
N+
x (g1(x)) +

v

s2
N+
x (g2(x))− v2

us2

∫ p

0

N+
x,t [φ] dp+

v2

s2
g(p, s, u, v).
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Using double inverse natural transform, we obtain

ψ(x, t) = g1(x) + tg2(x) +N−1p,s,u,v

[
v2

s2
g(p, s, u, v)

]
−N−1p,s,u,v

[
v2

us2

∫ p

0

N+
x,t [φ] dp

]
.

Note that

N+
x,t[g1(x)] =

1

uv

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t)g1(x)dtdx

=
1

uv

∫ ∞
0

lim
c→∞

−v
s

e(
−p
u
x− s

v
t)g1(x)

∣∣∣c
0
dx

=
1

uv

∫ ∞
0

v

s
e(
−p
u
x)g1(x)dx

=
1

s

[
1

u

∫ ∞
0

e(
−p
u
x)g1(x)dx

]
=

1

s
N+
x [g1(x)].

So

N−1p,s,u,v

[
1

s
N+
x [g1(x)]

]
= N−1p,s,u,v

[
N+
x,t[g1(x)]

]
= g1(x)

and

N+
x,t[tg2(x)] =

1

uv

∫ ∞
0

∫ ∞
0

e−( pux+
s
v
t)tg2(x)dtdx

=
1

uv

∫ ∞
0

lim
c→∞

[
−tv
s

e(
−p
u
x− s

v
t) − v2

s2
e(
−p
u
x− s

v
t)
∣∣∣c
0
g2(x)

]
dx

=
1

uv

∫ ∞
0

v2

s2
e(
−p
u
x)g2(x)dx

=
v

s2

[
1

u

∫ ∞
0

e(
−p
u
x)g2(x)dx

]
=

v

s2
N+
x [g2(x)].
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So

N−1p,s,u,v

[ v
s2
N+
x [g2(x)]

]
= N−1p,s,u,v

[
N+
x,t[tg2(x)]

]
= tg2(x).

Rewrite ψ(x, t) as an infinite series ψn(x, t)

ψ(x, t) =
∞∑
n=0

ψn(x, t), n = 0, 1, 2, ... (2.35)

Also the nonlinear terms ψtψxx and ψxψxt can be written as an infinite series of an Ado-

main polynomials

ψtψxx = N1 =
∞∑
n=0

An (2.36)

ψxψxt = N2 =
∞∑
n=0

Bn,

where A′ns and B′ns are the polynomials that are given by

An =
1

n!

dn

dλn
N1

[
∞∑
i=1

λiψi

]
λ=0

Bn =
1

n!

dn

dλn
N2

[
∞∑
i=1

λiψi

]
λ=0

.

By substituting (2.36) and (2.35), we get

ψn(x, t) = g1(x) + tg2(x) +N−1p,s,u,v

[
v2

s2
g(p, s, u, v)

]
+N−1p,s,u,v

v2

us2

∫ p

0

N+
x,t

[
∂

∂x

(
x
∂

∂x

∞∑
n=0

ψn(x, t)

)]
dp

+N−1p,s,u,v
v2

us2

∫ p

0

N+
x,t

[
xa(x)

(
∞∑
n=0

ψn(x, t)

)
xxxx

− xb(x)

(
∞∑
n=0

ψn(x, t)

)
xxtt

]
dp

+N−1p,s,u,v
v2

us2

∫ p

0

N+
x,t

[
xc(x)

(
∞∑
n=0

An

)
+ xd(x)

(
∞∑
n=0

Bn

)]
dp, (2.37)
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where An and Bn are given by

A0 = ψ0tψ0xx

A1 = ψ0tψ1xx + ψ1tψ0xx

A2 = ψ0tψ2xx + ψ1tψ1xx + ψ2tψ0xx

A3 = ψ0tψ3xx + ψ1tψ2xx + ψ2tψ1xx + ψ3tψ0xx

...

and

B0 = ψ0xψ0xt

B1 = ψ0xψ1xt + ψ1xψ0xt

B2 = ψ0xψ2xt + ψ1xψ1xt + ψ2xψ0xt

B3 = ψ0xψ3xt + ψ1xψ2xt + ψ2xψ1xt + ψ3xψ0xt

...

Now, by comparing both sides of (2.37), we conclude that

ψ0(x, t) = g1(x) + tg2(x) +N−1p,s,u,v

[
v2

s2
g(p, s, u, v)

]
,

ψ1(x, t) = −N−1p,s,u,v
v2

us2

∫ p

0

N+
x,t

[
∂

∂x

(
x
∂

∂x
ψ0(x, t)

)]
dp

+N−1p,s,u,v
v2

us2

∫ p

0

N+
x,t [xa(x) (ψ0(x, t))xxxx − xb(x) (ψ0(x, t))xxtt] dp

+N−1p,s,u,v
v2

us2

∫ p

0

N+
x,t [xc(x) (A0) + xd(x) (B0)] dp,
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ψ2(x, t) = −N−1p,s,u,v
v2

us2

∫ p

0

N+
x,t

[
∂

∂x

(
x
∂

∂x
ψ1(x, t)

)]
dp

+N−1p,s,u,v
v2

us2

∫ p

0

N+
x,t [xa(x) (ψ1(x, t))xxxx − xb(x) (ψ1(x, t))xxtt] dp

+N−1p,s,u,v
v2

us2

∫ p

0

N+
x,t [xc(x) (A1) + xd(x) (B1)] dp,

and

ψn+1(x, t) = −N−1p,s,u,v
v2

us2

∫ p

0

N+
x,t

[
∂

∂x

(
x
∂

∂x

∞∑
n=0

ψn(x, t)

)]
dp

+N−1p,s,u,v
v2

us2

∫ p

0

N+
x,t

[
xa(x)

(
∞∑
n=0

ψn(x, t)

)
xxxx

− xb(x)

(
∞∑
n=0

ψn(x, t)

)
xxtt

]
dp

+N−1p,s,u,v
v2

us2

∫ p

0

N+
x,t

[
xc(x)

(
∞∑
n=0

An

)
+ xd(x)

(
∞∑
n=0

Bn

)]
dp, (2.38)

Hence from the general relation in (2.38), we can compute the remaining components

of ψ(x, t) as ψ3(x, t), ψ4(x, t), where ψn(x, t) is always the initial given condition.

Example 2.11. Consider nonlinear singular one dimensional Boussinesq equation [23]

ψtt −
1

x

∂

∂x
(xψx) + ψxxxx − ψxxtt − 4ψtψxx + 2ψxψxt = −4t, (2.39)

Subject to initial condition

ψ(x, 0) = 0, ψt(x, 0) = x2. (2.40)

solution:
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Multiplying both sides of (2.39) by x and applying double Natural transform, we have

N+
x,t[xψtt −

∂(xψx)

∂x
+ xψxxxx − xψxxtt − 4xψtψxx + 2xψxψxt] = N+

x,t[−4xt]. (2.41)

Using the differentiation property of double Natural transform and initial condition given

in (2.40) we get

d

dp
R(p, s, u, v) =

v

s2
d

dp
Nx(ψ(x, 0) − v2

us2
N+
x,t[−4xt] − v2

us2
N+
x,t[φ], (2.42)

where

φ =
∂

∂x
(xψx)− xψxxxx + xψxxtt + 4xψtψxx − 2xψxψxt.

Then by integrating both sides of (2.42) from 0 to p with respect to p, we have

R(p, s, u, v) =
v

s2
Nx(x

2) +
v2

us2

∫ p

0

N+
x,t [−4xt] dp − v2

us2

∫ p

0

N+
x,t [φ] dp. (2.43)

Using double inverse natural transform for (2.43), we obtain

ψ(x, t) = x2t− 2

3
t3 − v2

us2

∫ p

0

N+
x,t [φ] dp (2.44)

Rewrite ψ(x, t) as an infinite series ψn(x, t)

ψ(x, t) =
∞∑
n=0

ψn(x, t), n = 0, 1, 2, ... (2.45)

Also the nonlinear terms ψtψxx and ψxψxt can be written as an infinite series of an Ado-

main polynomials

ψtψxx = N1 =
∞∑
n=0

An, ψxψxt = N2 =
∞∑
n=0

Bn, (2.46)
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where A′ns and B′ns are the polynomials that are given by

An =
1

n!

dn

dλn
N1

[
∞∑
i=1

λiψi

]
λ=0

Bn =
1

n!

dn

dλn
N2

[
∞∑
i=1

λiψi

]
λ=0

.

where An and Bn are given by

A0 = ψ0tψ0xx

A1 = ψ0tψ1xx + ψ1tψ0xx

A2 = ψ0tψ2xx + ψ1tψ1xx + ψ2tψ0xx

A3 = ψ0tψ3xx + ψ1tψ2xx + ψ2tψ1xx + ψ3tψ0xx

...

and

B0 = ψ0xψ0xt

B1 = ψ0xψ1xt + ψ1xψ0xt

B2 = ψ0xψ2xt + ψ1xψ1xt + ψ2xψ0xt

B3 = ψ0xψ3xt + ψ1xψ2xt + ψ2xψ1xt + ψ3xψ0xt

...

The double natural decomposition method leads to the following

ψ0(x, t) = x2t− 2

3
t3
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and

ψn+1(x, t) = −N−1p,s,u,v

[
v2

us2

∫ p

0

N+
x,t

[
∂

∂x

(
x
∂

∂x

∞∑
n=0

ψn(x, t)

)]
dp

]

+N−1p,s,u,v

[
v2

us2

∫ p

0

N+
x,t

[
x

(
∞∑
n=0

ψn(x, t)

)
xxxx

− x

(
∞∑
n=0

ψn(x, t)

)
xxtt

]
dp

]

−N−1p,s,u,v

[
v2

us2

∫ p

0

N+
x,t

[
4x

(
∞∑
n=0

An

)
− 2x

(
∞∑
n=0

Bn

)]
dp

]
,

The first iteration is given by

ψ1(x, t) = −N−1p,s,u,v
[
v2

us2

∫ p

0

N+
x,t [4xt] dp

]
+N−1p,s,u,v

[
v2

us2

∫ p

0

N+
x,t [0− 0] dp

]
−N−1p,s,u,v

[
v2

us2

∫ p

0

N+
x,t

[
16xt3

]
dp

]
,

ψ1(x, t) =
2

3
t3 − 4

5
t5

In similar manner,

ψ2(x, t) = −N−1p,s,u,v
[
v2

us2

∫ p

0

N+
x,t

[
16xt3 − 32xt5

]
dp

]
−N−1p,s,u,v

[
v2

us2

∫ p

0

[
16

3!uv3

p2s4
− 32

5!uv5

p2s6

]
dp

]
= −N−1p,s,u,v

[
16

3!v3

ps6
− 32

5!uv7

ps8

]
,

ψ2(x, t) =
4

5
t5 − 16

21
t7
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Similarly,

ψ3(x, t) = −N−1p,s,u,v
[
v2

us2

∫ p

0

N+
x,t

[
∂

∂x

(
x
∂

∂x
ψ2

)]
dp

]
−N−1p,s,u,v

[
v2

us2

∫ p

0

N+
x,t [x (ψ2)xxxx − x (ψ2)xxtt] dp

]
−N−1p,s,u,v

[
v2

us2

∫ p

0

N+
x,t [4xA2 − 2xB2] dp

]
,

Therefore, A2 = ψ0tψ2xx + ψ1tψ1xx + ψ2tψ0xx = 8t5 − 32

3
t7 and B2 = 0 Then we have

ψ3(x, t) =
16

21
t7 − 16

27
t9,

The series solution are therefore is given by

∞∑
n=0

ψn(x, t) = ψ1 + ψ2 + ψ3 + ... = x2t− 2

3
t3 +

2

3
t3 − 4

5
t5 +

4

5
t5 + ... = x2t.
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Chapter 3

Laplace Decomposition Method (LDM)

3.1 Laplace Transform

Definition 3.1. Let f(t) be a function defined for all real numbers t ≥ 0. Then the Laplace

transform of f(t) denoted by F (s) = L{f(t)} is defined by

F (s) = L{f(t)} =

∫ ∞
0

e−stf(t)dt, Re(s) > 0

Laplace Transform of Derivatives
If the Laplace of the function f(t) is given by L{f(t)} = F (s), then the Laplace trans-

forms of f ′(t), f ′′(t), fn(t), are given by [9]

i) L{f ′(t)} = sL{f(t)} − f(0)

ii) L{f ′′(t)} = s2L{f(t)} − sf(0)− f ′(0)

iii) L{fn(t)} = snL{f(t)} − sn−1f(0)− ...− f (n−1)(0)

The following table gives the Laplace transform of some functions calculated by Definition
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(3.1).

f(t) L{f(t)} conditions

1
1

s
s > 0

t
1

s2
s > 0

tn
n!

sn+1
n ∈ Z ≥ 0

ta
Γ(a+ 1)

sa+1
Re(a) > −1

eat
1

s− a
s > a

sinwt
w

s2 + w2
s > Im(w)

coswt
s

s2 + w2
w ∈ IR

sinhwt
w

s2 − w2
s > Im(w)

coshwt
s

s2 − w2
s > Re(w)

Table 3.1: Laplace transform of some functions

3.2 Laplace decomposition method (LDM)

In this section, we present the Laplace decomposition method for solving nonlinear par-

tial differential equations, this method joint the Laplace transform to ADM. This method

provides the solution in the form of rapidly convergent series. An illustrative example is

given. For this section we refer to [29]

Consider the second order nonlinear partial differential equation

Lu(x, t) +Ru(x, t) +Nu(x, t) = h(x, t), (3.1)
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subject to initial condition

u(x, 0) = f(x), ut(x, 0) = g(x), (3.2)

where

L =
∂2

∂x2
is a differential operator.

R is a remaining Linear differential of order less thanL.

Nu is a general non linear differential operator.

h(x, t) is a source term.

Suppose L is the differential operator of second order, so L =
∂2

∂t2
.

Applying the Laplace transform with respect to t for (3.1), we get

s2L{u(x, t)} − su(x, 0)− ut(x, 0) + L{Ru(x, t)}

+ L{Nu(x, t)} = L{h(x, t)}. (3.3)

By using (3.2) in (3.3) we obtain

s2L{u(x, t)} − sf(x)− g(x) + L{Ru(x, t)}+ L{Nu(x, t)} = L{h(x, t)},

or

L{u(x, t)} =
f(x)

s
+
g(x)

s2
− 1

s2
L{Ru(x, t)}− 1

s2
L{Nu(x, t)}+

1

s2
L{h(x, t)}. (3.4)
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Taking the inverse of the Laplace transform for (3.4) we get

u(x, t) = L−1
{
f(x)

s
+
g(x)

s2
+

1

s2
L[h(x, t)]

}
− L−1

{
1

s2
L[Ru(x, t)]

}
]− L−1

{
1

s2
L[Nu(x, t)]

}
= k(x, t)− L−1

{
1

s2
L[Ru(x, t)]

}
− L−1

{
1

s2
L[Nu(x, t)]

}
, (3.5)

where k(x, t) represents the terms arising from source term and prescribed initial condi-

tion. i.e.

k(x, t) = L−1
{
f(x)

s
+
g(x)

s2
+

1

s2
L{h(x, t)}

}
.

We represent the solution as an infinite series given below

u(x, t) =
∞∑
n=0

un(x, t). (3.6)

The nonlinear operator is decomposed as

Nu(x, t) =
∞∑
n=0

An. (3.7)

Where An are Adomain polynomials of u0, u1, u2, ..., un they can be calculated by the

following formula

An =
1

n!

dn

dλn
N

[
∞∑
i=0

λiui

]
λ=0

, n ≥ 0.

Using (3.6) and (3.7) in (3.5) we get

∞∑
n=0

un(x, t) = k(x, t)− L−1
{

1

s2
L{Ru(x, t)}

}
− L−1

{
1

s2
L

[
∞∑
n=0

An

]}
(3.8)
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Now, by comparing both sides of (3.8) we have

u0(x, t) = k(x, t) = L−1
{
f(x)

s
+
g(x)

s2
+

1

s2
L{h(x, t)}

}
u1(x, t) = −L−1

{
1

s2
L{Ruo(x, t)}

}
− L−1

{
1

s2
L[A0]

}
u2(x, t) = −L−1

{
1

s2
L{Ru1(x, t)}

}
− L−1

{
1

s2
L[A1]

}
u3(x, t) = −L−1

{
1

s2
L{Ru2(x, t)}

}
− L−1

{
1

s2
L[A2]

}
...

In general, the recursive relation is given by

un+1(x, t) = −L−1
{

1

s2
L{Run(x, t)}

}
− L−1

{
1

s2
L{An}

}
, n ≥ 0.

given

u0(x, t) = k(x, t) = L−1
{
f(x)

s
+
g(x)

s2
+

1

s2
L{h(x, t)}

}
.

Example 3.1. Consider the nonlinear partial differential equation

utt(x, t) + u(x, t)ux(x, t) = −cost, (3.9)

subject to initial condition

u(x, 0) = 1, ut(x, 0) = 0. (3.10)
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Solution: By using the recursive equation, we get:

u0(x, t) = cost
∞∑
n=0

un+1(x, t) = −L−1
[

1

s2
L

[
∞∑
n=0

An(u)

]]

So, we can obtain first components of equation, as follow

u1(x, t) = −L−1
[

1

s2
L[A0(u)]

]

= −L−1
[

1

s2
L[u0(uo)x]

]

= −L−1
[

1

s2
L[0]

]
= 0

u2(x, t) = −L−1
[

1

s2
L[A1(u)]

]

= −L−1
[

1

s2
L[u1(u0)x + u0(u1)x]

]

= −L−1
[

1

s2
L[0]

]
= 0

u3(x, t) = −L−1
[u
s
L[A2(u)]

]
= −L−1

[u
s
L[u0(u2)x + u2(u0)x + u1(u1)x]

]
= −L−1

[u
s
L[0]

]
= 0

...
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Then
3∑

n=0

un(x, t) = cost,

The exact solution of (3.9) give (3.10) is

u(x, t) = cost.

Example 3.2. Consider the nonlinear partial differential equation [42]

ut(x, t) + u(x, t)ux(x, t) = x+ xt2, (3.11)

subject to initial condition

u(x, 0) = 0. (3.12)

Solution

Apply the Laplace transform to (3.11), we have

sL{u(x, t)} − u(x, 0) = L{x+ xt2} − L{u(x, t)ux(x, t)}. (3.13)

By using (3.12) in (3.13) we obtain

L{u(x, t)} =
x

s2
+

2x

s4
− 1

s
L{u(x, t)ux(x, t)}. (3.14)

Then by applying the inverse of the laplace transform of (3.14) we have

u(x, t) = xt+
xt3

3
− L−1

{
1

s2
L{u(x, t)ux(x, t)}

}
. (3.15)
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Now, we decompose the solution as an infinite sum given by

u(x, t) =
∞∑
n=0

un(x, t). (3.16)

Also the nonlinear term can be written as an infinite series of Adomain polynomials

uux =
∞∑
n=0

An, (3.17)

where

An =
1

n!

dn

dλn
N

[
∞∑
i=0

λiyi

]
λ=0

, n ≥ 0.

Then.

A0 = u0(u0)x

A1 = u1(u0)x + u0(u1)x

A2 = u0(u2)x + u2(u0)x + u1(u1)x

A3 = u3(u0)x + u0(u3)x + u2(u1)x + u1(u2)x

...

By using (3.16) and (3.17) we can write (3.15) as

∞∑
n=0

un(x, t) = xt+
xt3

3
− L−1

{
1

s
L{uux}

}
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Now,

u0(x, t) = xt

u1(x, t) =
xt3

3
− L−1

{
1

s
L

{
∞∑
n=0

A0(u)

}}
∞∑
n=0

un+1(x, t) = −L−1
{

1

s
L

{
∞∑
n=0

An(u)

}}

So, we obtain first components of equation as follow

u1(x, t) =
xt3

3
− L−1

{
1

s
L{u(u0)x}

}

=
xt3

3
− L−1

{
1

s
L{(xt)(t)}

}

=
xt3

3
− xL−1

{
2!

s4

}

=
xt3

3
− 2!

3!
xL−1

{
3!

s4

}

=
xt3

3
− xt3

3

= 0

So

un+1(x, t) = 0, n ≥ 0.

In view of above modified recursive relation we get exact solution

u(x, t) =
∞∑
n=0

un(x, t) = xt.
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3.3 Double Laplace Decomposition Method

In this section, the Adomain decomposition methods and the double Laplace transform

method are combined in double Laplace decomposition methods see [26].

Definition 3.2. Let f(x, t) be a function where x, t > 0. Then the double Laplace trans-

form of f(x, t) denoted by F (p, s) is defined as

LxLt {f(x, t)} = F (p, s) =

∫ ∞
0

e−px
∫ ∞
0

e−stf(x, t)dtdx,

Provided the integral exists. Here p and s are complex numbers.

Next, some examples are given [19].

Example 3.3. If f(x, t) = 1 for x > 0 and t > 0, then

LxLt {1} =
1

ps
,

Example 3.4. If f(x, t) = eax+bt for all x and t, then the double Laplace transform of the

function can be written as

LxLt
{
eax+bt

}
=

1

(p− a)(s− b)
,

Where p > a and s > b

Example 3.5. If f(x, t) = ei(ax+bt) for all x and t, then the double Laplace transform of

the function can be written as

LxLt
{
ei(ax+bt)

}
=

1

(p− ia)(s− ib)
,

Where p > 0 and s > 0
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Example 3.6. If f(x, t) = cos(ax + bt) where a and b are constants, then the double

Laplace transform of the function can be written as

LxLt {cos(ax+ bt)} =
ps− ab

(p2 + a2)(s2 + b2)
,

Example 3.7. If f(x, t) = sin(ax + bt) where a and b are constants, then the double

Laplace transform of the function can be written as

LxLt {sin(ax+ bt)} =
as+ pb

(p2 + a2)(s2 + b2)
,

Example 3.8. If f(x, t) = xa tb if a > −1 and b > −1 are real numbers, then the double

Laplace transform of the function is given as

LxLt
{
xa tb

}
=

Γ(a+ 1)

pa+1

Γ(b+ 1)

sb+1
,

where Γ(a) is the Euler gamma function defined by the uniformly convergent integral.

Γ(a) =

∫ ∞
0

sa−1 e−sds

Remark 3.1. The double Laplace transform of (xt)n is given as

LxLt {(xt)n} =

∫ ∞
0

e−px xn dx

∫ ∞
0

e−st tn dt

=
n!

pn+1

n!

sn+1

=
(n!)2

(ps)n+1
.

Double Laplace transform of partial derivatives
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Theorem 3.1. [27] If LxLt {f(x, t)} = F (p, s), then the double Laplace of
∂f(x.t)

∂x
is

given by

LxLt
{
∂f(x, t)

∂x

}
= pF (p, s)− Lt {f(0, t)}

Proof.

LxLt
{
∂f(x, t)

∂x

}
=

∫ ∞
0

e−px
∫ ∞
0

e−st
∂f(x, t)

∂x
dxdt

=

∫ ∞
0

∫ ∞
0

e−px−st
∂f(x, t)

∂x
dxdt

=

∫ ∞
0

[
lim
c→∞

e−px−st f(x, t)
∣∣∣c
0

]
dt+

∫ ∞
0

∫ ∞
0

p e−px−st f(x, t) dxdt

= −
∫ ∞
0

e−stf(0, t) dt+ pF (p, s)

= pF (p, s)− Lt {f(0, t).}

Theorem 3.2. [27] If LxLt {f(x, t)} = F (p, s), then the double Laplace of
∂2f(x, t)

∂x2
is

given by

LxLt
{
∂2f(x, t)

∂x2

}
= p2F (p, s)− pLt {f(0, t)} − Lt

{
∂f(0, t)

∂x

}
.
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Proof.

LxLt
{
∂2f(x, t)

∂x2

}
=

∫ ∞
0

e−px
∫ ∞
0

e−st
∂2f(x, t)

∂x2
dxdt

=

∫ ∞
0

[
lim
b→∞

e−px−st
∂f(x, t)

∂x

∣∣∣b
0

]
dt+ p

∫ ∞
0

∫ ∞
0

e−px−st
∂f(x, t)

∂x
dxdt

= −
∫ ∞
0

e−st
∂f(0, t)

∂x
dt+ pLxLt

{
∂f(x, t)

∂x

}

= −Lt
{
∂f(0, t)

∂x

}
+ p [pF (p, s)− Lt {f(0, t)}]

= p2F (p, s)− pLt {f(0, t)} − Lt
{
∂f(0, t)

∂x

}
.

Theorem 3.3. [24] If LxLt {f(x, t)} = F (p, s), then the double Laplace of
∂f(x.t)

∂t
is

given by

LxLt
{
∂f(x, t)

∂t

}
= sF (p, s)− Lx {f(x, 0)} (3.18)

Proof.

LxLt
{
∂f(x, t)

∂t

}
=

∫ ∞
0

e−px
∫ ∞
0

e−st
∂f(x, t)

∂t
dtdx

=

∫ ∞
0

∫ ∞
0

e−px−st
∂f(x, t)

∂t
dtdx

=

∫ ∞
0

[
lim
b→∞

e−px−st f(x, t)
∣∣∣b
0

]
dx+

∫ ∞
0

∫ ∞
0

s e−px−st f(x, t) dxdt

= −
∫ ∞
0

e−stf(x, 0) dx+ sF (p, s)

= sF (p, s)− Lx {f(x, 0)} .
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Theorem 3.4. [26] If LxLt {f(x, t)} = F (p, s), and LxLt
{
∂f(x, t)

∂t

}
= sF (p, s) −

Lt {f(x, 0)} then the double Laplace of
∂2f(x, t)

∂t2
is given by

LxLt
{
∂2f(x, t)

∂t2

}
= s2F (p, s)− sLx {f(x, 0)} − Lx

{
∂f(x, 0)

∂t

}

Proof. The proof is similar to the previous theorem.

Lemma 3.1. Double Laplace transform of the non constant coefficient second order partial

derivative xr
∂2f(x, t)

∂t2
is given as

LxLt
{
xr
∂2f(x, t)

∂t2

}
= (−1)r

dr

dpr

[
s2F (p, s)− sLx {f(x, 0)} − Lx

{
∂f(x, 0)

∂t

}]

Proof. By taking the rth derivative with respect to p for both sides of equation, we have

dr

dpr
LxLt

{
∂2f(x, t)

∂t2

}
=

dr

dpr

∫ ∞
0

e−px
∫ ∞
0

e−st
∂2f(x, t)

∂t2
dtdx

=

∫ ∞
0

∫ ∞
0

dr

dpr
e−px−st

∂2f(x, t)

∂t2
dtdx

=

∫ ∞
0

∫ ∞
0

(−x)r e−px−st
∂2f(x, t)

∂t2
dtdx

= (−1)r
∫ ∞
0

∫ ∞
0

e−px−st
(
xr
∂2f(x, t)

∂t2

)
dtdx.

(3.19)

So,

(−1)r
dr

dpr
LxLt

{
∂2f(x, t)

∂t2

}
= LxLt

{
xr
∂2f(x, t)

∂t2

}
.
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Lemma 3.2. [20] Double Laplace transform of the function xrf(x, t) is given as

LxLt {xrf(x, t)} = (−1)r
dr

dpr
[LxLt {f(x, t)}] .

Proof. The proof is similar to the previous lemma and therefore is omitted.

Example 3.9. Consider the singular nonlinear one dimensional of hypolic equation [27]

∂2u

∂t2
− 1

x

∂

∂x

(
x
∂u

∂x

)
− 1

x

∂2

∂x∂t

(
x
∂u

∂x

)
− a(x)u

∂u

∂x
+ u2 = f(x, t), (3.20)

subject to initial condition

u(x, 0) = f1(x),
∂u(x, 0)

∂t
= f2(x), (3.21)

where
1

x

∂

∂x

(
x
∂u

∂x

)
is Bessel operators, f(x, t) and a(x) are known functions.

Solution

Solving this problem by Laplace double transfom, Multiplying (3.20) by x and applying

the Laplace double transform for (3.20), we have

LxLt
{
x
∂2u

∂t2
− ∂

∂x

(
x
∂u

∂x

)
− ∂2

∂x∂t

(
x
∂u

∂x

)
− xa(x)u

∂u

∂x
+ xu2

}
= LxLt {xf(x, t)} .

Using the differential property of double Laplace transform

LxLt
{
xr
∂2u

∂t2

}
= (−1)r

dr

dpr

[
LxLt

{
∂2u

∂t2

}]
,

and using definition of the double Laplace transform of partial derivative for (3.18) and
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single Laplace transform for initial condition, we get

d

dp
U(p, s) =

1

s

d

dp
f1(p) +

1

s2
d

dp
f2(p)

− 1

s2
LxLt

{
− ∂

∂x

(
x
∂u

∂x

)
− ∂2

∂x∂t

(
x
∂u

∂x

)
− xa(x)u

∂u

∂x
+ xu2

}
+

1

s2
d

dp
F (p, s) (3.22)

By integrating both sides of (3.22) from 0 to p, we have

U(p, s) =
1

s
f1(p) +

1

s2
f2(p)

− 1

s2

∫ p

0

LxLt
{
− ∂

∂x

(
x
∂u

∂x

)
− ∂2

∂x∂t

(
x
∂u

∂x

)
− xa(x)u

∂u

∂x
+ xu2

}
dp

+
1

s2

∫ p

0

d

dp
F (p, s)dp.

Using the double inverse Laplace transform, we obtain

u(x, t) = f1(x) + tf2(x)

−L−1p L−1s
{

1

s2

∫ p

0

LxLt
{
− ∂

∂x

(
x
∂u

∂x

)
− ∂2

∂x∂t

(
x
∂u

∂x

)
− xa(x)u

∂u

∂x
+ xu2

}
dp

}
+ L−1p L−1s

{
1

s2

∫ p

0

d

dp
F (p, s)dp

}
. (3.23)

Note that

LxLt {f1(x)} =

∫ ∞
0

∫ ∞
0

e−px−st f1(x) dtdx

=

∫ ∞
0

[
lim
b→∞

−1

s
e−px−st f1(x)

∣∣∣b
0

]
dx

=
1

s

∫ ∞
0

e−pxf1(x) dx

=
1

s
Lx {f1(x)}
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So,

L−1p L−1s
{

1

s
Lx {f1(x)}

}
= L−1p L−1s {LxLt {f1(x)}} = f1(x).

and,

LxLt {tf2(x)} =

∫ ∞
0

∫ ∞
0

e−px−st tf2(x) dtdx

=

∫ ∞
0

[
lim
b→∞

−t
s
e−px−st − 1

s2
e−px−st f2(x)

∣∣∣b
0

]
dx

=
1

s2

∫ ∞
0

e−pxf2(x) dx

=
1

s2
Lx {f2(x)}

So,

L−1p L−1s
{

1

s2
Lx {f2(x)}

}
= L−1p L−1s {LxLt {tf2(x)}} = tf2(x).

Rewrite u(x, t) as an infinite series un(x, t)

u(x, t) =
∞∑
n=0

un(x, t), n = 0, 1, 2, ... (3.24)

Also the nonlinear terms can be defined as follows

uux = N1 =
∞∑
n=0

An, u2 = N2 =
∞∑
n=0

Bn.
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Where An and Bn are denoted by

An =
1

n!

dn

dλn
N1

[
∞∑
i=0

λiui

]
λ=0

. (3.25)

Bn =
1

n!

dn

dλn
N2

[
∞∑
i=0

λiui

]
λ=0

.

Then,

A0 = u0u0x

A1 = u0u1x + u1u0x

A2 = u0u2x + u1u1x + u2u0x

A3 = u0u3x + u1u2x + u2u1x + u3u0x

...

and,

B0 = u20

B1 = 2u1u0

B2 = 2u2u0 + u21

B3 = 2u3u0 + 2u2u1

...
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By substituting (3.24) and (3.25) into (3.23), we obtain

u(x, t) = f1(x) + tf2(x)− L−1p L−1s

{
1

s2

∫ p

0

LxLt

{
∂

∂x

(
x
∂

∂x

) ∞∑
n=0

un

}
dp

}

− L−1p L−1s

{
1

s2

∫ p

0

LxLt

{
∂2

∂x∂t

(
x
∂

∂x

) ∞∑
n=0

un

}
dp

}

− L−1p L−1s

{
1

s2

∫ p

0

LxLt

{
a(x)

(
∞∑
n=0

An

)}
dp

}

− L−1p L−1s

{
1

s2

∫ p

0

LxLt

{
x

(
∞∑
n=0

Bn

)}
dp

}

− L−1p L−1s
{

1

s2

∫ p

0

d

dp
F (p, s)dp

}
.

In particular,

u0 = f1(x) + tf2(x) + L−1p L−1s
{

1

s2

∫ p

0

d

dp
F (p, s)dp

}

and

u1(x, t) = −L−1p L−1s
{

1

s2

∫ p

0

LxLt
{
∂

∂x

(
x
∂

∂x

)
u0

}
dp

}
− L−1p L−1s

{
1

s2

∫ p

0

LxLt
{

∂2

∂x∂t

(
x
∂

∂x

)
u0

}
dp

}
− L−1p L−1s

{
1

s2

∫ p

0

LxLt {a(x) (A0)} dp
}

− L−1p L−1s
{

1

s2

∫ p

0

LxLt {x (B0)} dp
}

− L−1p L−1s
{

1

s2

∫ p

0

d

dp
F (p, s)dp

}
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In general, we have

un+1(x, t) = −L−1p L−1s

{
1

s2

∫ p

0

LxLt

{
∂

∂x

(
x
∂

∂x

) ∞∑
n=0

un

}
dp

}

− L−1p L−1s

{
1

s2

∫ p

0

LxLt

{
∂2

∂x∂t

(
x
∂

∂x

) ∞∑
n=0

un

}
dp

}

− L−1p L−1s

{
1

s2

∫ p

0

LxLt

{
a(x)

(
∞∑
n=0

An

)}
dp

}

− L−1p L−1s

{
1

s2

∫ p

0

LxLt

{
x

(
∞∑
n=0

Bn

)}
dp

}

− L−1p L−1s
{

1

s2

∫ p

0

d

dp
F (p, s)dp

}

By calculating the terms u0, u1, ..., we obtain the solution as

u(x, t) = u0 + u1 + ...

Example 3.10. Consider the following nonlinear partial differential equation [24]

4

x2
ut −

1

x
(xux)x −

1

2
xuux + u2 = 0, (3.26)

subject to initial condition

u(x, 0) = x2. (3.27)

Solution: Multiplying (3.26) by
x2

4
and applying the double Laplace transform, we have

LxLt
{
ut −

x

4
(xux)x −

x3

8
uux +

x2

4
u2
}

= 0,

Using the definition of the double Laplace transform for partial derivative and single
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Laplace transform for initial condition, we get

U(p, s) =
1

s
Lx {u(x, 0)}+

1

s
LxLt

{
x

4
(xux)x +

x3

8
uux −

x2

4
u2
}
. (3.28)

Applying the inverse double Laplace transform, we obtain

u(x, t) = x2 + L−1p L−1s
{

1

s
LxLt

{
x

4
(xux)x +

x3

8
uux −

x2

4
u2
}}

. (3.29)

Using the decomposition series for u(x, t) which defined by

u(x, t) =
∞∑
n=0

un(x, t), n = 0, 1, 2, ... (3.30)

Also the nonlinear term can be defined as follows

uux = N1 =
∞∑
n=0

An, u2 = N2 =
∞∑
n=0

Bn. (3.31)

Using (3.30) and (3.31) into (3.29), we get

∞∑
n=0

un(x, t) = x2 − L−1p L−1s

{
1

s
LxLt

{
x

4

(
x

(
∞∑
n=0

un

)
x

)
x

}}

+ L−1p L−1s

{
1

s
LxLt

{
x3

8

∞∑
n=0

An

}}

− L−1p L−1s

{
1

s
LxLt

{
x2

4

∞∑
n=0

Bn

}}
,
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the other terms are given by

u0 = x2,

un+1(x, t) = L−1p L−1s

{
1

s
LxLt

{
x

4

(
x

(
∞∑
n=0

un

)
x

)
x

}}

+ L−1p L−1s

{
1

s
LxLt

{
x3

8

∞∑
n=0

An

}}

− L−1p L−1s

{
1

s
LxLt

{
x2

4

∞∑
n=0

Bn

}}
. (3.32)

where An and Bn are given by

A0 = u0u0x

A1 = u0u1x + u1u0x

A2 = u0u2x + u1u1x + u2u0x

A3 = u0u3x + u1u2x + u2u1x + u3u0x

...

and,

B0 = u2o

B1 = 2u0u1

B2 = 2u0u2 + u21

B3 = 2u3u0 + 2u2u1

...
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The other components of the solution can be found using (3.32) as follow

u1 = L−1p L−1s
{

1

s
LxLt

{
x

4
(xu0x)x +

x3

8
A0 −

x2

4
B0

}}

= L−1p L−1s
{

1

s
LxLt

{
x2
}}

= x2t

u2 = L−1p L−1s
{

1

s
LxLt

{
x

4
(xu1x)x +

x3

8
A1 −

x2

4
B1

}}

= L−1p L−1s
{

1

s
LxLt

{
x

4
(xu1x)x +

x3

8
(4x3t)− x2

4
(2x4t)

}}

= L−1p L−1s
{

1

s
LxLt

{
x2t
}}

=
x2t2

2

u3 = L−1p L−1s
{

1

s
LxLt

{
x

4
(xu2x)x +

x3

8
A2 −

x2

4
B2

}}

= L−1p L−1s
{

1

s
LxLt

{
x

4
(xu2x)x +

x3

8
(4x3t2)− x2

4
(2x4t2)

}}

= L−1p L−1s
{

1

s
LxLt

{
x2t2

2

}}

=
x2t3

6
.

and so on.
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The series solution is given by

u(x, t) = u0 + u1 + u2 + u3 + ...

= x2
(

1 + t+
t2

2
+
t3

6
+ ...

)

In fact, the exact solution is

u(x, t) = x2et

= x2(1 + t+
t2

2
+
t3

6
+ ...).
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Chapter 4

Other Transforms

In literature one can find many transforms, like Aboodh transform [2], Wavelet transform

[35]. In this chapter we present the famous transform Sumudu and Elzaki .

4.1 Sumudu Transform

Sumudu transform is an integral transform which is applied to find the solution of ordinary

and partial differential equations. It has many applications in science and engineering. The

Sumudu transform was introduced by Wamgula in 1933 [30].

Definition 4.1. The Sumudu transform of a function f(t) denoted by G(u) over the set A

A = {f(t) : ∃M, τ1 > 0, and/or τ2 > 0, such that |f(t)| < Me|t|/τj if t ∈ (−1)j×[0,∞) j = 1, 2}

is defined by

G(u) = S[f(t)] =

∫ ∞
0

f(ut) e−t dt, u ∈ (−τ, τ).

We can write the above equation in other form:

G(u) = S[f(t)] =
1

u

∫ ∞
0

f(t) e−
t
u dt, u ∈ (−τ, τ).
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4.1. SUMUDU TRANSFORM

In Table 4.1, Sumudu transform for some functions are given.

f(t) G(u)

1 1

t u

tn−1

(n− 1)!
un−1

eat
1

1− au
tn−1eat

(n− 1)!

un−1

(1− au)n

sin at
au

1 + a2u2

cos at
1

1 + a2u2

sinh at
au

1− a2u2

cosh at
1

1− a2u2

Table 4.1: Sumudu transform of some functions.
.1

Properties of Sumudu Transform
In next theorems, we presented the main properties of the Sumudu transform, see [10].

Theorem 4.1. Linearity property

If a and b are any real and f(t) and g(t) are functions in A, then

S[af(t) + bg(t)] = aS[f(t)] + bS[g(t)]
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Proof. If a and b are any constants, then

S[af(t) + bg(t)] =

∫ ∞
0

[af(ut) + bg(ut)]e−tdt

= a

∫ ∞
0

f(ut)e−tdt+ b

∫ ∞
0

g(ut)e−tdt

= aS[f(t)] + bS[g(t)].

Theorem 4.2. First Scale Preserving Property

Let the Sumudu transform of f(t) ∈ A is G(u), then

S[f(at)] = G(au)

Proof.

S[f(at)] =

∫ ∞
0

f(aut) e−tdt

= G(au).

Theorem 4.3. First Shifting Property

Let the Sumudu transform of f(t) ∈ A is G(u), then

S[eatf(t)] =
1

1− au
G

[
u

1− au

]
.

Proof. The Sumudu transform of eatf(t) is given by

S[eatf(t)] =

∫ ∞
0

f(ut) eaut e−t dt =

∫ ∞
0

f(ut) e−(1−au)t dt
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Let w = t(1− au) and t =
w

1− au
, then we obtain

S[eatf(t)] =

∫ ∞
0

f

(
uw

1− au

)
e−w

dw

1− au

=
1

1− au

∫ ∞
0

f

(
uw

1− au

)
e−wdw

=
1

1− au
G

[
u

1− au

]
.

Sumudu Transform of Derivatives
letf(t) be acontinoues function having exponential order, if G(u) is Sumudu transform of

f(t), then Sumudu Transforms of derivatives of that fuction are given as follows:

Theorem 4.4. If S[f(t)] = G(u), then

S[f ′(t)] =
G(u)

u
− f(0)

u
.

Proof.

S[f ′(t)] =

∫ ∞
0

f ′(ut)e−tdt

= lim
c→∞

[
f(ut)e−t

u

∣∣∣c
0

]
+

1

u

∫ ∞
0

f(ut)e−tdt

=
−f(0)

u
+

1

u
G(u)

=
G(u)

u
− f(0)

u
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Theorem 4.5. If S[f(t)] = G(u), then

S[f ′′(t)] =
G(u)

u2
− f(0)

u2
− f ′(0)

u
.

Proof.

S[f ′′(t)] =

∫ ∞
0

f ′′(ut)e−tdt

= lim
c→∞

[
f ′(ut)e−t

u

∣∣∣c
0

]
+

1

u

∫ ∞
0

f ′(ut)e−tdt

=
−f ′(0)

u
+

1

u

[
G(u)

u
− f(0)

u

]
=

G(u)

u2
− f(0)

u2
− f ′(0)

u

Theorem 4.6. If S[f(t)] = G(u), then

S[f (n)(t)] =
G(u)

un
−

n−1∑
k=0

1

un−k
f (k)(0).

Sumudu decomposition method (SDM)
The Sumudu Decomposition Method (SDM), is a combination of Sumudu Transform

Method and Adomain decomposition method.

The nonlinear term can easily be handled by the use of Adomain polynomials. The tech-

nique is described and illustrated in the next examples.

Example 4.1. Consider the nonlinear partial differential equation [15]

yt + yyx = yxx, (4.1)
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with the initial condition

y(x, 0) = 2x, t > 0. (4.2)

Solution:

Taking the Sumudu transform to both sides of (4.1), we have

S[y(x, t)]

u
− y(x, 0)

u
= −S[yyx] + S[yxx].

By substituting y(x, 0) = 2x we obtain

S[y(x, t)] = 2x− uS[yyx] + uS[yxx]. (4.3)

Then by taking the inverse of the Sumudu transform of the (4.3) we have

y(x, t) = 2x− S−1 [uS[yyx]] + S−1 [uS[yxx]] . (4.4)

Rewrite y(x, t) as infinite series of yn(x, t)

y(x, t) =
∞∑
n=0

yn(x, t), n = 0, 1, 2, ... (4.5)

The nonlinear term can be written by

yyx =
∞∑
n=0

An. (4.6)
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The Adomain polynomials are

A0 = y0y0x

A1 = y0y1x + y1y0x

A2 = y0y2x + y1y1x + y2y0x

A3 = y0y3x + y1y2x + y2y1x + y3y0x

...

By using (4.5) and (4.6) we can write (4.4) as

∞∑
n=0

yn = 2x− S−1
[
uS

[
∞∑
n=0

An

]]
+ S−1

[
uS

[
∞∑
n=0

yn

]
xx

]
.

So we get the iterations as follows

y0(x, t) = 2x

y1(x, t) = −S−1 [uS [A0]] + S−1 [uS [y0]xx]

= −S−1 [uS[4x]]

= −4xt

y2(x, t) = −S−1 [uS [A1]] + S−1 [uS [y1]xx]

= −S−1 [uS[−16xt]]

= 8xt2
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y3(x, t) = −S−1 [uS [A2]] + S−1 [uS [y2]xx]

= −S−1
[
uS[48xt2]

]
= −16xt3.

Thus, summing the above iterations we obtain

3∑
n=0

yn(x, t) = 2x
(
1− 2t+ (2t)2 − (2t)3

)
.

The exact solution is

y(x, t) =
2x

1 + 2t

= 2x(1− (2t) + (2t)2 − (2t)3 + ...), |t| < 1

2

The computed terms coincide with the first terms in the exact solution.

4.2 Elzaki Transform

Tarig Elzaki introduced an integral transform named the Elzaki transform in 2011 [21].

This transform is applied to the solve of ordinary and partial differential equations.

Definition 4.2. The Elzaki transform of a function f(t) over the set A of functions given

by

A = {f(t) : ∃M,k1, k2 > 0 such that |f(t)| < Me|t|/kj , if t ∈ (−1)j × [0,∞)}
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is defined by

E[f(t)] = T (v) = v

∫ ∞
0

f(t) e−
t
v dt, v ∈ (−k1, k2),

we can write the equation in other form

E[f(t)] = T (v) = v2
∫ ∞
0

f(vt) e−t dt, v ∈ (−k1, k2).

The following table Elzaki transform for some functions are given.

Special function Elzaki transform

f(t) E[f(t)] = T (v)

1 v2

t v3

tn, n = 0, 1, 2, ... n!vn+2

eat
v2

1− av
tn−1eat

(n− 1)!
, n = 1, 2, ...

vn+1

(1− av)n

sin at
av3

1 + a2v2

cos at
v2

1 + a2u3

Table 4.2: Elzaki transform of some functions.

Elzaki transform of derivatives
If the Elzaki transform of the function f(t) is given by T (v), then Elzaki Transforms of

derivatives of that fuction are given as follows:
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Theorem 4.7. If E[f(t)] = T (v), then

E[f ′(t)] =
T (v)

v
− vf(0).

Proof.

E[f ′(t)] = v

∫ ∞
0

f ′(t)e−
t
v dt

= lim
c→∞

[
vf(t)e−

t
v

∣∣∣c
0

]
+

∫ ∞
0

f(t)e−
t
v dt

=
T (v)

v
− vf(0).

Theorem 4.8. If E[f(t)] = T (v), then

E[f ′′(t)] =
T (v)

v2
− f(0)− vf ′(0).

Proof.

E[f ′′(t)] = v

∫ ∞
0

f ′′(t)e−
t
v dt

(4.7)

let

g(t) = f ′(t)

then

E[g′(t)] =
E[g(t)]

v
− vg(0)
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we find that by using previous theorem we get

E[f ′′(t)] =
T (v)

v2
− f(0)− vf ′(0).

Theorem 4.9. If E[f(t)] = T (v), then

E[f (n)(t)] =
T (v)

vn
−

n−1∑
k=0

v2−n+k fk(0),

Elzaki decomposition method (EDM)
We conclude this section by introducing Elzaki decomposition method. This method is

a combination of Elzaki transform and the Adomain decomposition method, it is used to

solve linear and nonlinear partial differential equations [22].

Example 4.2. Consider the nonlinear partial differential equation [44]

ut + uux − uxx = 0, (4.8)

with the initial condition

u(x, 0) = x. (4.9)

Solution:

Applying the Elzaki transform coupled with the ADM to (4.8), we have

T (x, v)

v
− vu(x, 0) + E[uux]− E[uxx] = 0

83



4.2. ELZAKI TRANSFORM

By substituting u(x, 0) = x we obtain

T (x, v) = v2x− vE[uux] + vE[uxx], (4.10)

Then by taking the inverse of the Elzaki transform of the equation (4.10) we get

u(x, t) = x− E−1 [vE[uux]− [uxx]]] . (4.11)

Rewrite u(x, t) as an infinite series of un(x, t)

u(x, t) =
∞∑
n=0

un(x, t), n = 0, 1, 2, ... (4.12)

Also the nonlinear term can be written by

N = uux =
∞∑
n=0

An. (4.13)

The Adomain polynomials are

A0 = u0u0x

A1 = u0u1x + u1u0x

A2 = u0u2x + u1u1x + u2u0x

A3 = u0u3x + u1u2x + u2u1x + u3u0x

...

By using (4.12) and (4.13) we can write (4.11) as

∞∑
n=0

un(x, t) = x− E−1
[
vE

[
∞∑
n=0

An(u)− (
∞∑
n=0

un)xx

]]
.
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We now express few components as follow

u0(x, t) = x

u1(x, t) = −E−1 [vEA0(u)− (u0)xx(x, t)]

= −E−1 [vE(x− 0)]

= −xt

u2(x, t) = −E−1 [vE [A1(u)− (u1)xx(x, t)]]

= −E−1 [vE(−2xt− 0)]

= xt2

u3(x, t) = E−1 [vE [A2(u)− (u2)xx(x, t)]]

= −E−1
[
vE(xt2 − 0)]

]
= −xt3

The first four terms of the decomposition series solution for Equation (4.8) is given by

u(x, t) = x− xt+ xt2 − xt3 + ...

The exact solution is

u(x, t) =
x

1 + t
, |t| < 1

= x(1− t+ t2 − t3 + ...).
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Chapter 5

Conclusion

In this thesis, a general review of the integral transforms combind with the Adomain de-
composition method were presented . Started with the Natural decomposition method fol-
lowed by the Laplace decomposition method, Sumudu decomposition method, and finally
Elzaki decomposition method.These methods were applied for several nonlinear ordinary
and partial differential equations. In addition, we employed the double Natural decom-
position method and double Laplace decomposition method to solve nonlinear Bossinesq
equation.
All the above methods are semi-analytical techniques, based on decomposing the solution
to aseries of functions. The terms of the solution are obtained by a recurrence relation.
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