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 PalHap, the first Palestinian haplotype exome panel: application in phasing 

compound heterozygous mutations 

 

by Reena Saeed 

ABSTRACT 

Next Generation Sequencing (NGS) technology is widely used in clinical diagnosis to identify 

disease-causing variants. We have utilized NGS data and constructed parental haplotypes 

surrounding the mutation. Haplotype phasing would facilitate the identification of compound 

heterozygous mutation in which two distinct haplotypes each harbor a unique sequence variant. 

The cis- and trans-acting configurations of a compound heterozygous genotype influences gene 

expression and its potential functional outcome. Classical Mendelian methods are usually used to 

infer haplotypes phasing which requires genotyping, of all family members. Population-based 

phasing is currently a promising computational alternative and is shown to produce high phasing 

accuracy especially when ethnicity-matching haplotype reference panel is used. In this study we 

built the first Palestinian haplotype reference panel (PalHap) from 600 Palestinians Whole-

Exomes sequenced at the Molecular Genetic Lab, Istishari Arab Hospital using SHAPEIT, a fast 

population-based phasing algorithm. We showed that PalHap with a sample number less than 

half of that in the international 1000Genomes reference panel, can outperform 1000Genomes in 

phasing compound heterozygous mutations in  polymorphic CNVs regions. This study stands as 

the base for future works that may make use of PalHap in other applications such as 

Preimplantation Genetic Diagnosis (PGD). 
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 أول لوحة أكسوم مرجعية فلسطينية للأنماط الفردانية: تطبيقات في استدلال الطفرات غير المتجانسة المركبة 

PalHap 

 

 انًهخص

 
( عهٗ َطبق ٔاطع فٙ انتشخٛص انظزٚز٘ نتحذٚذ انًتغٛزاد أٔ انطفزاد انًظججخ NGSتظتخذو تمُٛخ تظهظم اندٛم انتبنٙ )

( الأثٕٚخ انًحٛطخ ثبنطفزح. ٚظٓم انًُط انفزداَٙ haplotypesيٍ أخم ثُبء الأًَبط انفزدٚخ ) NGSنلأيزاض. َظتخذو ثٛبَبد 

ظخ انًزكجخ انتٙ تحتٕ٘ عهٗ َظختٍٛ يختهفتٍٛ كم يًُٓب عهٗ أنٛهٍٛ يختهفٍٛ عهٗ َفض انكشف عٍ انطفزاد غٛز انًتدبَ

( ٔ تؤثز عهٗ انتعجٛز اندُٛٙ َٔتبئدّ in trans( أٔ ثتزتٛت يتجبعذ )in cisاندٍٛ. تتٕاخذ ْذِ انطفزاد أيب ثتزتٛت يتمبرة )

لاطتُتبج انًُط انفزداَٙ ٔ انتٙ تتطهت انًُط اندُٛٙ ندًٛع أفزاد انٕظٛفٛخ انًحتًهخ. عبدح، تظُتخذو انطزق انًُذنٛخ انكلاطٛكٛخ 

خ الأطزح. تعذ انذراطبد انظكبَٛخ انمبئًخ عهٗ انُٓح انحبطٕثٙ ْٕ حبنًٛب ثذٚلاً حظبثًٛب ٔاعذاً. ٔتجٍٛ أَٓب تُتح الأًَبط انفزدٚخ ثذل

ْذِ انذراطخ، لًُب ثجُبء أٔل نٕحخ يزخعٛخ عبنٛخ، خبصخ عُذ اطتخذاو نٕحخ طكبَٛخ يزخعٛخ يطبثمخ نلأصم انعزلٙ. فٙ 

فٙ  فلسطيني فرد ٠٦٦( انكبيم يٍ exome( يكَٕخ يٍ عُٛبد  انتظهظم الاكظٕيٙ )PalHapفهظطُٛٛخ نلأًَبط انفزداَٛخ )

، ٔ ْٙ خٕارسيٛخ تًُٛط طزٚعخ تعًم عهٗ SHAPEITيظتشفٗ الاطتشبر٘ انعزثٙ ثبطتخذاو  -يختجز انٕراثخ اندشٚئٛخ

 1000، عهٗ انزغى يٍ ايتلان ألم يٍ َصف انعُٛبد فٙ نٕحخ انًزخعٛخ PalHapكبَٙ. نمذ أظٓزَب أٌ يظتٕٖ انظ

Genomes  انعبنًٛخ، ًٚكُٓب أٌ تظتُتح انطفزاد غٛز انًتدبَظخ انًزكجخ ثٍٛ انفهظطٍُٛٛٛ فٙ فٙ ثعط انًُبطكCVNs   ثذلخ

هعذٚذ يٍ الأعًبل انًخجزٚخ انًظتمجهٛخ انتٙ لذ تظتخذو . تعتجز ْذِ انذراطخ ثًثبثخ الأطبص نGenomes 1000تتفٕق عهٗ 

PalHap ( فٙ تطجٛمبد يثم انتشخٛص انٕراثٙ لجم انشراعخPGD). 
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CHAPTER 1 

Introduction to Population Genomics 

1.1 Genetic Variations  

Mendelian laws of inheritance describes the fundamental principles that govern transmission of 

inherited traits from parents to offspring. Genomic sequences are exposed to alterations and can 

be transmitted to offspring. The alterations include single nucleotide substitutions such as point 

mutations or Single nucleotide polymorphisms (SNPs) that are common variants in a population 

at a frequency of more than 1%. SNPs are utilized as genetic markers to mark and detect 

variations in close proximity that cause or may contribute to certain traits or diseases. In other 

words, SNPs help to determine the causative mutations in the DNA sequence whether being 

themselves or mutations co-linked to already identified SNPs. Alterations also include indels 

which are insertion or deletion of a small number of nucleotides. Structural variations however 

are alterations that involve large DNA segments (larger than 1 kilobases) such as copy number 

variations (CNVs), inversions, and translocations (Qi et al., 2014). CNV is a change in the 

normal two-copy number of a particular DNA segment in the diploid genome. Less than two 

copies is called a “loss” and more than two copies is called “gain”. In the human genome, CNV 

lengths range from kilobases to several megabases. They cover cumulatively 35% of the genome  

(Database of Genomic Variants, DGV) and approximately 12% of the genome is subject to copy 

number variation (Redon et al., 2006). CNVs play a role in several human phenotypic traits, such 

as disease susceptibility (International HapMap Consortium et al., 2010) and neuropsychiatric 

disorders (Beroukhim et al., 2010). They also overlap and interfere with genes that will change 

the functional and phenotypic traits (e.x. alter coding regions, change DNA methylation, 

expression patterns; Henrichsen et al., 2009; Brahmachary et al., 2014). CNVs occur in the 

https://www.zotero.org/google-docs/?EOC4wV
https://www.zotero.org/google-docs/?qUUEnl
https://www.zotero.org/google-docs/?j1DneM
https://www.zotero.org/google-docs/?6V5es1
https://www.zotero.org/google-docs/?u731NE
https://www.zotero.org/google-docs/?vQZjxZ
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population at different frequencies, if the frequency is fewer than 1%, then it is considered a rare 

CNV, and if the frequency is greater than 1%, it is considered a common or polymorphic CNV 

(Valsesia et al., 2013). Also, CNVs, as many SNPs, occur at different frequencies across 

populations due to so-called population stratification (difference in allele frequencies among 

populations of different genetic ancestry). Therefore, several causal CNVs are associated with 

continental ancestries (Khaja et al., 2006; Redon et al., 2006)  

1.2 Recombination and Linkage Disequilibrium  

    Recombination is the exchange of genetic material between homologous chromosomes during 

the formation of the gametes producing a recombinant chromosome. Each parent passes gametes 

containing one copy of each chromosome to their child. If no recombination occurred along the 

haploid copy of the chromosome, all alleles remain linked on a single chromosome. If  

recombination occurred, segments exchange between both homologous chromosomes to the 

gametic recombinant chromosome. The yielded recombinant chromosome may possess allelic 

variations not seen in the parental genome (Kong et al., 2002).  

 Recombination rate across genomic regions on the chromosomes varies upon the distance 

correlation between co-linked variants and referred to as linkage disequilibrium (LD). The bigger 

the LD between these variants, the greater the probability of recombination to occur between two 

variants or set of variants (Kong et al., 2002). Thus, variants at close LD are more likely to 

remain co-linked compared to variants that are far apart in distance in which they likely to 

segregate in the two homologous chromosomes. Therefore, as recombination rate increases, LD 

decays in which recombination disrupts the physical linkage between allele segments of which 

https://www.zotero.org/google-docs/?GvkCiM
https://www.zotero.org/google-docs/?0VZKfP
https://www.zotero.org/google-docs/?Ep9weg
https://www.zotero.org/google-docs/?jyCHPc
https://www.zotero.org/google-docs/?GQFsxB
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leads to the exchange of alleles between homologous chromosomes. Recombination is an 

evolutionary factor that increases the genetic diversity in the genome. 

The concept of LD between variants (such as SNPs, see Section 1.1) is applied and has an 

important role in the current methods for detecting and mapping diseases associated variants. 

The associated mapping is reliable in identifying known SNPs at LD with unknown mutant 

alleles in disease susceptibility regions. 

1.3 Mutation Detection and Whole-Exome Sequencing 

Detection of mutation is of great significance for the diagnosis of genetic diseases, 

conformational diagnosis, pre-symptomatic testing  as well as Preimplantation Genetic Diagnosis 

(PGD). The latter is a new genetic workflow that is gaining interest among low income countries 

used to determine genetic defects within embryos created manually in laboratories before 

implementation  in case the parents carry a known genetic abnormality.  

While cytogenetics methods capture mega structural variations, DNA sequencing methods 

identify alterations at the level of base pair. The classical Sanger sequencing utilizes 

oligonucleotide primers to elongate specific DNA regions of up to 900 base pairs (Morozova and 

Marra, 2008). While it shows successes in detecting point mutations and indel mutations 

(Totomoch-Serra et al., 2017), Sanger sequencing is weak in identification of low frequent 

mutations (up to 20%) due to limitations in the sensitivity (Hagemann, 2015). Moreover, it can 

be costly and labor intensive if used to sequence multiple regions. As a result, its usage is 

currently limited to sequence only specific regions. Next-generation sequencing (NGS) is a high-

throughput sequencing technology that allows for rapid and parallel sequencing of genomes (i.e. 

whole genome sequencing WGS), and exomes (i.e. whole exome sequencing WES). The 

https://www.zotero.org/google-docs/?xmzvzj
https://www.zotero.org/google-docs/?xmzvzj
https://www.zotero.org/google-docs/?TDXs3T
https://www.zotero.org/google-docs/?CW9J3Z
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massive and parallel high-throughput output of NGS reduces time and cost compared to classical 

Sanger sequencing.     

 WES is designed to capture sequences of exonic or protein-coding regions in the human 

genome. In spite of making only 1.5% of the whole genome, around 85% of disease-causing 

variants fall within the coding regions (Wang et al., 2013). Therefore, WES became a standard 

method in clinical genetic practice for identifying causative genetic variants of human diseases 

(Yang, et al., 2011). It is a powerful tool, cost-effective and labor-saving compared to WGS 

which rather attempts to sequence the entire genome including protein-coding and protein-non 

coding regions. WES is composed of several steps (Figure 1.2). It starts by shearing the purified 

samples of DNA into shorter fragments followed by library preparation which involves ligation 

of DNA fragments and specialized adaptor and followed by PCR amplification. Libraries are 

then hybridized to biotinylated probes specific to the target exon regions and fragments are 

enriched with capture beads. Fragments are finally amplified and selectively sequenced, 

producing sequence-ready targets. Sequence reads are then aligned to a reference genome 

through the bioinformatics pipeline for variant detection.  

The Bioinformatics workflow starts with a basecalling step which identifies and calls individual 

bases on the reads so that read data are ready for mapping to a reference genome, which is a 

DNA sequence dataset assembled as a representative example of a human's set of genes. Then, 

assess the quality of raw reads to remove poor quality reads and base calling errors by using 

tools such as FASTQC. Next, align exome reads using read aligner (e.x. BWA, Bowite; 

Kumaran et al., 2019) followed by refining particular sites on the reads to corresponding sites in 

the reference genome to yield optimal alignment of reads. The aligned read results in Sequence 

Alignment Map (SAM) format and converts it to the Binary Alignment Map (BAM) format for 

https://www.zotero.org/google-docs/?pM3dgX
https://www.zotero.org/google-docs/?u9Y3Nu
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the reason of a more manageable file size (Li et al., 2009). Then a post-alignment processing step 

to remove duplicated aligned reads that could result from PCR artifacts. Variant calling then 

takes place where each site on the exome reads compared to the reference sequences using 

calling tools such as GATK, SAMTools and others (Kumaran et al., 2019), to detect variants, 

short indels or de-novo mutations through statistical models which help improve the reliability of 

variant predictions. Lastly, variants annotated to provide information about gene position, variant 

coordination and mutation type.      

 

 Figure 1.2. Overview of the whole exome sequencing pipeline. Illustrates the sequencing 

pipeline and bioinformatics pipeline to generate annotated variants of WES. 

https://www.zotero.org/google-docs/?cAGsYn
https://www.zotero.org/google-docs/?sbsDN1
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1.4 NGS Quality Control  

NGS, just like Sanger sequencing, suffers from sequencing errors. The average NGS sequencing 

error rate is more than 0.1% per nucleotide (Mardis, 2013) in which they are falsely reported as 

single nucleotide substitutions (Fox and Reid-Bayliss, 2014). For example, if one exome 

produces 100,000 variants, then the 0.1% is 100 variants that are junk. Sequencing error occurs 

due to multiple limitations in sequencing technology and bioinformatic analysis. Technical errors 

occur during sample preparation, library preparation, or early synthesis cycles of PCR, may lead 

to the incorporation of incorrect bases and also by sequence amplification biases or failure of 

detecting the variant allele (i.e. allele dropout; Adey, 2017). Bioinformatic errors happen during 

sequence imaging where it fails to capture base incorporation due to base-colored signal decay or 

can misaligning sequences with respect to the reference sequence leads to penalize alternative 

alleles (i.e fewer alternative alleles would be aligned as reference alleles; Pereira et al., 2020). 

Failure to report incorporated bases or false variant calls affect the reliability and accuracy of 

aligned sequence reads and leads to an invalid analysis and diagnosis. Therefore, data filtering 

and quality check are of great importance to eliminate errors and biases in the sequence reads. 

Several tools for data quality checks are available, e.g. PLINK toolkit among them and most 

widely used. PLINK is an open source, user-friendly whole genome data analysis software. This 

toolkit is designed to perform large-scale genome-wide analyses such as per-SNP and per-

individual, summary statistics, population stratification, and identity-by-descent estimation. The 

latter is important in inferring the degree of relatedness between individuals. In general, PLINK 

manipulates and analyzes large data sets of thousands of samples to make basic statistics of 

quality control for variants in genetic data in a computationally efficient manner (Purcell et al., 

2007).    

https://www.zotero.org/google-docs/?2Di3WM
https://www.zotero.org/google-docs/?ksthO6
https://www.zotero.org/google-docs/?ksthO6
https://www.zotero.org/google-docs/?rIcqUU
https://www.zotero.org/google-docs/?m5MADe
https://www.zotero.org/google-docs/?70F8no
https://www.zotero.org/google-docs/?70F8no
https://www.zotero.org/google-docs/?DmmIAP
https://www.zotero.org/google-docs/?DmmIAP


 

18 

 

CHAPTER 2 

Haplotype Phasing  

2.1 Background 

  

In 2001, Human Genome Project (HGP) was launched to sequence the first human genome 

(Venter et al, 2001). They used Sanger sequencing to determine sequences of relatively short 

fragments from human DNA and continued to sequence along these fragments by multiple 

rounds of sequencing, and they then aligned these fragments based on overlapping ends to 

assemble larger sequences of the DNA regions and eventually obtain the entire chromosomes 

(Levy et al., 2007). Sanger sequencing is extremely expensive and despite several efforts to 

reduce the cost, it was at the expense of providing incomplete haplotypes of the chromosomes 

(Suk et al., 2011). Later, cost effective sequencing technologies such as short reads NGS 

emerged.   

NGS sequencing produces genetic sequences of the human diploid genome (two copies of the 

allele) in the form of unordered sets of alleles in which we cannot infer the chromosome of 

origin for each allele. In other words, NGS is suitable for inferring the genotypes (Figure 2.1). 

However, haplotyping or the identification of the ordered set of alleles on a single chromosome   

requires further assembling of the identified alleles based on their paternal origin (Druet et al., 

2010). Genotype data reveal variants at homozygous and heterozygous states, but it fails to 

determine whether a heterozygous variant is inherited from the paternal or the maternal origin. In 

addition, heterozygous variants manifest themselves in the genetic mutations in various states 

and it is crucial to assign heterozygous variants observed in the offspring to the right parental 

origin for accurate diagnosis (section 2.2). 
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Figure 2.1 Two sequences on the same region of two homologous copies of a chromosome.  

Variant sites are shown only and non variant sites are labeled with “ -”. Five variants are shown. In this 

example, the genotypes  are {G,G} {A,C} {A,A} {C,T} {T,T} and the two haplotypes are GAACT and 

GCATT.  

 

Haplotype phasing (i.e. identifying the haplotypes from genotyped sequences) requires the 

construction of a mendelian pedigree from family members who are affiliated with the disease.  

For this, Mendelian segregations can be used. Besides being an exhausting process in terms of 

cost, time and family members‟ availability or approval to participate, Mendelian methods 

cannot phase some compound heterozygous mutations in particular those that are heterozygous 

in both parents. Figure 2.2 shows different states for mutation heterozygosity on a gene. 

Mendelian pedigree cannot phase compound heterozygous mutations where two different 

mutations harbor two different gene loci. This type of complex compound heterozygous 

mutation can be revealed only if the haplotype of the parents were identified. 

 

Figure 2.2 Different states of compound heterozygosity on 

a gene locus. The states of two different mutations that harbor 

two distinct loci on same transmitted allele (in cis 

configuration) or two different mutations harbor two distinct 

loci on both alleles (in trans configuration) remain unsolved. 

Mendelian phasing cannot phase these states of compound 

heterozygosity. Two triangles present two gene copies each 

on a homologous chromosome, and lozenge presents mutation 

and different colors for different mutations.  
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2.2 Clinical Importance of Haplotyping 

Haplotype information provides accurate representation of the genetic variations and history of 

mutations in nuclear families as well as at the population level. Because haplotypes are blocks of 

variant alleles, they minimize the chance of allele dropout (allelic loss during PCR amplification 

step) compared to single targeted methods in clinical genetic tests. This advantage makes it  

valuable in disease diagnosis  (Browning et al., 2011). 

Phasing not only facilitates genetic diagnosis, but it also helps in identifying regions that recently 

underwent positive selection. This is because an allele which is under positive selection spreads 

quickly among individuals and reduces recombination by which alleles remain co-linked on the 

genome region. Therefore, haplotype blocks of co-linked allele that are abundant in a population 

is an indication of recent positive selection of beneficial alleles (Browning et al., 2011). The 

lactase persistence allele at the LCT gene that makes lactase enzyme is an example of recent 

positive selection. The allele acquires the ability to digest lactose in dairy products not only in 

childhood as in the ancient populations, but the allele activity persists into adulthood (Scrimshaw 

and Murray, 1988). Several studies have demonstrated that the allele lies on a long haplotype of 

more than 1 million base pairs (Bersaglieriet et al, 2004), which shows that it is under positive 

selection.  

Haplotyping of Y-chromosome, since it is single and unique, provides delightful information 

about human history. Specific variants mark historic migrations events which helped in grouping 

Y-chromosome in several haplogroups (Narasimhan et al., 2017). For example, Palestinians 

belong to two main haplogroups: E and J, and a minority to haplogroup G (Fernandes et al., 

2011). Haplogroups are groups of similar haplotypes at different chromosomal regions that 

descended from the same ancestry (Arora et al., 2015). Haplogroups of Y-chromosome are most 

https://www.zotero.org/google-docs/?ahqabF
https://www.zotero.org/google-docs/?ahqabF
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studied and utilized to define the genetic variations between populations (Semino et al., 2000). 

The Y-DNA is inherited solely from father to son, hence, changes due to recombination and 

mutations are by chance at each generation (Karafet et al., 2008) and thus it carries the largest 

non-recombining haplotype blocks and it is utilized in several applications. Such as genealogical 

reconstruction which seeks to construct the lineages of each ancestor by information of families 

history and trace their lineages, in evolutionary population genetics which studies the genetic 

differences and influences within and between populations, and also in medical genetics and 

forensics (Underhill and Kivisild, 2007).   

Beside all benefits mentioned above, haplotyping is mainly used to provide better understanding 

of gene functionality, regulation, and association between genetic variants and diseases. One 

example is compound heterozygous mutations. Multiple mutations can alter gene copies on 

homologous chromosome pairs in various ways. If two mutations are located on the same 

chromosome or in other words the same haplotype (i.e. cis configuration) only one copy of the 

gene would be affected. However, if the two mutations are located on the two homologous 

chromosomes (i.e. trans configuration), both gene copies would be affected (figure 2.2). The 

trans configurations in clinical genetics have the same effect as homozygous mutations. Several 

disorders caused by pathogenic compound heterozygous mutations are seen among Palestinians, 

such as cerebellar ataxia, mental retardation, disequilibrium syndrome, sickle cell diseases 

(Samarah et al. 2018) and others. Some of these mutations manifest themselves in the same 

pathogenic traits or phenotype but different mutant genotypes. Haplotyping helps to determine 

the configuration of compound heterozygous mutations and to provide more accurate genetic 

consultation for patients. Compound heterozygosity is also reported in cancers. The tumorigenic 

effect of a cancer-susceptibility variant on one gene copy and then a somatic mutation (two hit 

https://www.zotero.org/google-docs/?mmchgA
https://www.zotero.org/google-docs/?e85GML
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model) occurs which could affect the same copy or the other copy of the gene (Knudson, 1996), 

that implicates a precise detection for accurate diagnosis and treatment.   

Finally, complete haplotype information of individuals has improved personalized medicine. 

Several studies associated specific haplotypes to disease susceptibility and to drug response, in 

particular diseases that are caused by a group of functionally-related genes that are spreaded on 

sparse genomic regions (Fan et al., 2011). An example is human leukocyte antigen (HLA) 

haplotypes and their possible associations to clinical outcomes in transplantations and 

autoimmune diseases. HLA loci are polymorphic and extend over 4 million base pairs, called the 

major-histocompatibility complex (MHC), on chromosome 6. Fan and his colleagues defined 

first the HLA allele at each locus on phased haplotypes of a European individual and then 

compared SNP haplotype at each HLA gene to those Caucasian (CUE, European) individuals 

from the international 1000Genomes reference panel whose HLA genes were phased already. 

Combination of all alleles at each loci that are determined and phased to the reference HLA 

genes yielded two haplotypes of the individual. They found that one of the haplotypes is a 

frequently observed haplotype among Caucasians and associated with immunopathological 

diseases (Fan et al., 2011). This finding implicates the need to improve the matching algorithms 

to find potential donors through HLA haplotypes in an effort to reduce the risk of clinical 

complications in organ transplantations (Petersdorf et al., 2007; Gragert et al., 2013).  

 

 

 

 

https://www.zotero.org/google-docs/?cbN9pY
https://www.zotero.org/google-docs/?uSHEbo
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CHAPTER 3                                                                                                    

Methods for Resolving Haplotype  

 

Phasing haplotypes of a set of genotyped sequences from an individual is also called haplotype 

assembly or single individual haplotyping (Rizzi et al., 2002). The aim is to build two haplotypes 

from variant information on aligned sequence reads. Many computational methods have been 

developed to solve the haplotype assembly problem. Below we will explain these in detail.  

3.1 Computational Haplotype Phasing in Unrelated Individuals  

Computational methods were utilized to find an alternative to the expensive experimental 

haplotyping and to overcome the limitations in mendelian phasing (Figure 2.2) (Windig and 

Meuwissen, 2004). The idea is to identify haploid sequences from a set of genotypes based on 

linkage disequilibrium (see section 1.2) of unrelated individuals or large cohorts. 

One statistical approach for haplotype phasing of unrelated individuals is based on modeling of 

haplotype frequencies. It generates several candidate haplotype configurations for an individual‟s 

genotypes and estimates the probability of each candidate configuration through statistical 

modeling to pick the most likely haplotype configuration (Figure 3.1). Another approach is the 

rule-based approach which estimates the most likely haplotype configurations upon the 

assumption that those configurations are observed in other individuals (Browning et al., 2011). 

Below we will discuss the commonly used algorithms from both approaches. 

     Clark’s Algorithm was the first phasing algorithm based on haplotype frequency for three or 

more tightly linked SNPs in unrelated individuals. It uses the parsimony criteria which seeks to 

infer the ambiguous SNP upon unambiguous haplotype of at most one heterozygous SNP in all 

genotypes and repeats it until all genotypes are resolved. Clark‟s algorithm estimates haplotypes  
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Figure 3.1. Haplotype frequencies to phase haplotype of unrelated individuals. Heterozygous 

genotype at each SNP site in a chromosome region of an individual and four possible haplotype 

configurations (A-D) for the given genotype. Population haplotype frequency of a configuration is the 

percentage of being observed in other individuals in a population. Population frequencies of haplotypes is 

the frequency of the two haplotypes of a pair and multiply by the factor 2 which accounts for possible 

assignments from both parental origins to the haplotype pair. The posterior probability obtained through 

statistical modeling of haplotype frequencies configured from a cohort of unrelated individuals for the 

given genotype to pick the most likely haplotype configuration. In this example, frequency of haplotypes 

in possible configuration C upon their existence in genotypes of the cohort are 25% and 5%. The 

frequency of haplotype pair multiplies by 2 and similarly to all possible configurations. The posterior 

probability is the frequency of haplotype pair to frequencies of all possible haplotype pairs. The possible 

configuration C (posterior probability is 73.9%) is the more likely haplotype for the given genotype. 

 

using a minimum number of unique phased blocks. For variants that are not closely linked, the 

algorithm assigns several reasonable haplotypes but it remains inefficient. Later, Clark‟s 

algorithm integrated a significant advance to the phasing methods by introducing the so-called 
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Expectation-Maximization algorithm which can phase small numbers of distant variants (Clark, 

1990). haplotype frequencies of the genotypes and then adjusts the parameters through iterative 

steps to generate the best haplotype estimation (Hawley and Kidd 1995). This algorithm is a 

good procedure for a small number of genetic markers but it does not consider assumptions of 

mutations and recombination events (Qin et al., 2002).   

   Coalescent-Based Methods were a breakthrough in modeling haplotype frequencies to infer  

new haplotypes originated from old haplotypes. These methods adapt stochastic models of a 

sequence from probabilistic states and each state produces an observed event, in which only the 

observed events are seen (McVean et al., 2005). A well known example of coalescent methods is 

the Hidden Markov Model (HMM) which similarly consists of an unseen sequence of hidden 

transition states (such as haplotype configuration) and a seen sequence of observed events (such 

as genotypes).  

In Figure 3.2 illustrates HMM algorithm, it takes the first observed SNP on the genotype (SNPg) 

and tries to infer the possible underlying SNP of haplotype configuration (SNPh). It estimates the 

SNPhs on the haplotype configuration upon two probabilities. The emission probability (Pe) 

which is the probability of the observed SNPg from the possible underlying SNPh, e.g. if the 

SNPg1 is A, then what is the probability that the corresponding SNPh1 is being one of the four 

nucleotide bases (G, C, A, T). It infers the SNPh1 upon the observed SNPgs on the same position 

of other genotypes. The second probability is transition probability (Pt) of SNPh1 of being either 

nucleotides in LD relative to the phased SNP on the previous site of the ongoing estimated 

sequence of haplotype. HMM repeats iteratively this step until it generates the highest joint 

probability from transmission and emission probabilities of SNPh1 to add into the haplotype 

sequence. SNPh2 is phased upon Pe2 of the observed SNPg2 and the Pt2 of the possible SNPh2 
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relative the previous SNP, SNPh1. HMM continues to calculate the highest joint probability at 

each SNP site which will determine the corresponding haplotype configuration from given 

genotype reads. The more number of overlapped genotype reads, the better HMM estimate and 

thus accurate haplotype phasing. HMM algorithm is the basis of several population-based 

phasing methods (chapter 4).  

 

Figure 3.2 Spectral Algorithm for Hidden Markov Model (HMM) to phase haplotypes. Two chains 

of HMM; the observed genotypes (SNPg) and unknown haplotype configuration (SNPh). HMM infer 

SNPh upon the observation probability (Pe) of SNPg and the transmission probability of SNPh relative to 

the previous phased SNP site on the haplotype sequence. The highest joint probability from both HMM 

probabilities at each SNP site determine the haplotype configuration.   

 

   Utilizing the Identity By Descent (IBD) is a rule-based approach that estimates haplotype 

configurations based on the idea that these configurations are seen in other individuals 

(Browning et al., 2010). IBD segment is a DNA sequence containing one or more genetic loci 

that are shared between two individuals or more from a common ancestor. Kong and his 

colleagues (Kong et al., 2008) were first to use IBD information to infer haplotypes by long-
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range phasing algorithms. It was applied to the Icelandic population to identify long genomic 

segments containing shared alleles. IBD alleles must be ofcourse on the same haplotype. If a 

heterozygous genotype is located in an IBD region, the allele is phased relative to all other sites 

in that IBD region. However, IBD cannot be used to phase haplotype at sites where alleles are 

heterozygous in both individuals (Figure 3.3). This approach works well in isolated populations 

like the Icelandic. Additionally, a large proportion of the Icelandic population was genotyped 

which helped in accurately constructing IBD segments (Kong et al., 2008). IBD-based phasing 

method is also utilized to find haplotypes of related individuals. Combining IBD-based 

approaches and the previously described population-based models can enhance genome-wide 

haplotyping as IBD phase over long genomic regions while frequency-based approaches fine 

tune them at short scales. (Browning et al., 2011).  

 

Figure 3.3. IBD-based phasing approach to determine haplotype. The use of IBD to phase genotypes 

that are Identical By Descent (the leftmost columns). Heterozygous alleles at SNP1 in both individuals 

and cannot be phased by IBD. SNP2 is heterozygous in individual 2 but alleles can be phased relative to 

all other sites in the IBD region. Similarly to SNP3 and SNP4 in individual 1. SNP5 is homozygous, thus 

phasing is trivial.  In blue, the Haplotypes were phased by IBD; of note,  SNP 1 remains unphased but can 

be phased by population-based techniques (see Chapter 4).  
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CHAPTER 4 

Population-based Haplotype Phasing  

 

Haplotypes cannot be observed directly from genotype data but can be inferred either directly 

from sequence data of an individual whole genome or whole exome NGS reads (read-based 

phasing) or indirectly using haplotype reference panel (population-based phasing).  

In read-based phasing, sequence reads that contain several variants give partial information of 

haplotypes that can be assembled using computational methods into longer haplotypes (Bansal, 

2019). HapCUT (Haplotype Assembly Coverage Handling by Adapting Thresholds) is a read-

based phasing tool, also called as read-backed phasing, which utilizes a heuristic approach to 

assemble fragments of aligned sequence reads of identified variant sites to a pair of haplotypes 

with maximum consistency using likelihood-based function (Figure 4.1). HapCUT first converts 

the aligned sequence reads to custom haplotype-relevant fragments. It starts with two candidate 

haplotype fragments and searches for a set of variant sites to elongate the haplotype blocks. 

Then, it iteratively changes the phased variants on the given candidate fragments relative to the 

set of variants during elongation until it achieves a haplotype pair with greater likelihood (Edge 

et al., 2017). In spite of this approach applicability to construct haplotypes of the entire 

chromosome, only few variants per chromosome can be phased. Therefore, the completeness of 

the estimated haplotypes are limited (Selvaraj et al., 2013). However, it is highly accurate for the 

positions that it is capable to phase.  

https://www.zotero.org/google-docs/?lXco07
https://www.zotero.org/google-docs/?lXco07
https://www.zotero.org/google-docs/?vaqYb3
https://www.zotero.org/google-docs/?vaqYb3
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Figure 4.1 HapCUT Assembly. The custom data for HapCUT consist of aligned reads from a 

chromosome pair and variant genotypes. Alleles in orange color are heterozygous sites. Aligned reads that 

possess different alleles at a variant site are inferred to come from different chromosome copies. Reads 

that possess the same allele at a common site are inferred to come from the same chromosome copy and 

can be lined together to construct haplotypes. Two haplotypes are corresponding to two chromosome 

copies. Haplotypes determine the copy of the chromosome pair that has the variant allele (assigned by 1) 

such as at variant site 1. HapCUT phased mutation 2 on SNP 3 and 4 in cis configuration.   

            

Population-based phasing is on the other hand based on leveraging haplotype information from 

population reference panels. Haplotype reference panels are built from a set of already phased 

haplotypes from a large cohort of unrelated individuals belonging to either the same population 

or mixed populations (Bansal, 2019). Example of population-specific reference panels are The 

https://www.zotero.org/google-docs/?TMBgMQ
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Genome of the Netherlands Consortium (Francioli et al., 2014), Ashkenazi reference panel 

(Carmi et al., 2014), UK-specific reference panel (Huang et al., 2015), Japanese population 

reference panel (Nagasaki et al., 2015), Estonian-specific panel (Mitt et al., 2017), Anabaptist 

Genome Reference Panel (AGRP) (Hou et al., 2017), Northeast Asian Reference Database 

(NARD; Yoo et al., 2019) and others (Gudbjartsson et al., 2015, Sidore et al., 2015, Bai et al., 

2018). Examples of haplotype reference panels from a mix of several populations are the 

International 1000Genomes Project (The International HapMap Consortium 2003, The 

International HapMap Consortium et al., 2007), the International HapMap3 (HapMap; The 

International HapMap 3 Consortium, 2010) and the Haplotype Reference Consortium (HRC) 

(The Haplotype Reference Consortium et al., 2016).  

Several algorithms utilize the population-based phasing from reference panels. Available tools 

that run population-based phasing are PHASE, fastPHASE, BEAGLE, IMPUTE2, MACH, and 

SHAPEIT. These tools use the same approach mentioned above but differ in some factors (see 

next).  

   PHASE is suitable for a small number of genetic markers and a small number of individuals. It 

uses all haplotypes other than those of the current individual being estimated as hidden states. 

This tool was a gold standard for accuracy among the other tools but very slow compared to the 

new ones (Marchini et al., 2006).  

  BEAGLE achieves haplotype phasing for large sample size, more than 1000 individuals, with 

high accuracy and significant phasing speed. This tool considers the iterative HMM at each locus 

to locally cluster haplotype segments and adjusts them to the given sample size and LD 

information, but does not consider HMM modelling of mutations and recombination events 

(Browning et al., 2011).  

https://www.zotero.org/google-docs/?sBIou0
https://www.zotero.org/google-docs/?VmfaQH
https://www.zotero.org/google-docs/?w0oDt7
https://www.zotero.org/google-docs/?hXrUwP
https://www.zotero.org/google-docs/?HrBYaJ
https://www.zotero.org/google-docs/?HNEcpd
https://www.zotero.org/google-docs/?qX6msy
https://www.zotero.org/google-docs/?JIna2H
https://www.zotero.org/google-docs/?uzI3ra
https://www.zotero.org/google-docs/?9itFgb
https://www.zotero.org/google-docs/?9itFgb
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 SHAPEIT (Segmented HAPlotype Estimation and Imputation Tool; shapeit.v2.r904 

.glibcv2.12.linux.tar.gz) estimates short range haplotypes of genotype data from familial and 

population information. It builds HMM state at each variant site and hence it is able to modulate 

mutations at each position. Among all the available tools, only SHAPEIT can support 

multithreading which allows the central processing unit of the computer (CPU) to execute 

multiple processes in parallel and reduces the operating time (Williams et al., 2012). Thus, it is 

more efficient than all other aforementioned tools in which it can achieve high accurate 

haplotypes of large sets of genotype data in relatively short time (Delaneau et al., 2011). 

Moreover, SHAPEIT has several model parameters to increase phasing accuracy. Such as  

conditioning state by which one can specify the number of conditioning reference haplotypes for 

the tool to search for the most similar subset of reference haplotypes to the given reads and help 

to achieve accurate corresponding haplotypes. Window size is a parameter to define the mean 

size of the conditioning haplotypes in megabases. SHAPEIT also runs different iteration sets to 

model HMM iterative algorithm. Running iterations re-estimate iteratively the probability until 

the best estimate is achieved, in which it uses transition probabilities to sample haplotypes and 

trim unlikely configurations. The burn-in iteration is the number of iterations for HMM 

algorithm to pick a good first conditioning haplotype to start phasing. SHAPEIT can also 

perform pruning iterations which use the transition probabilities to trim unlikely haplotype 

configurations. In addition, main iteration is to store transition probabilities and averaged them at 

the end of running iterations to obtain the final haplotype (Delaneau et al., 2011).   

https://www.zotero.org/google-docs/?ljTzkm
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Figure 4.2. Schematic illustration of genotype phasing by SHAPEIT. Segments of an individual's 

genotype (G) include three heterozygous sites and the possible phase of the sites result in four possible 

haplotypes (Si). (a) SHAPEIT specifies a number of conditioning haplotypes from reference haplotypes 

that are similar to G segments by conditioning state parameter . (b) Burn iterations of SHAPEIT re-

estimate a good starting possible haplotypes for HMM to begin estimation  by calculating the transition 

probabilities between sites of a segment (c) to decide the final haplotype configuration by the average of 

the main iterations. Here, the possible haplotype 2 is the corresponding haplotype for the given genotype 

reads. 
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CHAPTER 5    

Phasing X Chromosome   

The human X chromosome has unique features. Females inherit an X chromosome from each 

parent, while males inherit a single maternal X chromosome and a paternal Y chromosome. Gene 

expression is silenced on one of the female X chromosomes in the embryonic development 

(embryogenesis) and it continues inactive in the somatic tissues, but it reactivates and 

recombines with the other X chromosome during meiosis. In males, recombination on the X 

chromosome is restricted to a small region which carries equivalent genes on the Y chromosome. 

The genes that are shared between X and Y chromosomes are called pseudoautosomal genes and 

genes outside this region called non-pseudoautosomal (nPAR) genes (Darrow et al., 2016). 

Phasing X chromosomes are possible only after predicting the gender. Gender prediction relies 

on the heterozygosity of SNPs on genes at nPAR regions of chromosome X and chromosome Y 

(Bilton et al., 2019). Heterozygosity of chromosome X is informative as males possess only one 

copy of the X chromosome and hence cannot be heterozygous. Heterozygosity of SNPs on 

chromosome Y is informative also as females possess no copy of the Y chromosome and hence 

average of Y intensity should be lower in females (McClure et al., 2018). SNPs of nPAR region 

on the Y chromosome are easier to utilize for sex prediction. However, not all commercial SNP-

detecting chips and NGS exome capture probes contain the Y SNPs, thus gender prediction often 

uses nPAR SNPs of X chromosome where females display higher heterozygosity rate (McClure 

et al., 2018). SHAPIT phsaes X chromosomes by inferring haplotype using nPAR SNPs after sex 

prediction of recruited samples (see Section 7.2.2).  

 

https://www.zotero.org/google-docs/?Dq9wL4
https://www.zotero.org/google-docs/?iP2YP2
http://www.frontiersin.org/people/u/23213
https://www.zotero.org/google-docs/?bDakK1
https://www.zotero.org/google-docs/?bDakK1
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CHAPTER 6 

Motivation  

The broad objective of this project is to build the first Palestinian haplotype exome panel which 

we named “PalHap”. Haplotype phasing will overcome the shortcomings of the current applied 

NGS technology and help in various clinical applications (see section 2.1). For instance, the 

identification of compound heterozygous mutations, which are observed frequently in the 

analysis, their correct configurations from whole exome or genome sequencing is challenging.  

Population-based phasing is a promising approach that can provide accurate phasing of 

haplotypes and help in the detection of causative variants. The accuracy of this phasing method 

relies mainly on the ethnicity-matching of the used haplotype panel. Therefore, we wanted first 

to build a haplotype reference panel specific for Palestinians using variants from whole exomes. 

The performance of our panel in phasing compound heterozygous mutations among Palestinians 

is evaluated by comparing with read-backed phasing and 1000Genomes reference panel.  
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CHAPTER 7 

Materials and Methods 

7.1 Study Population 

Whole exomes from 900 Palestinians were generated using Illumina Nextseq 500 at Molecular 

Genetic Lab-Istishari Arab Hospital. Participants include affected, healthy individuals, and five 

trios. Participants were asked to sign an informed consent form according to guidelines provided 

by Molecular Genetic Lab Institutional Review Board of Istishari Hospital. 

 

7.2 variants Call 

We identified the variants (SNPs and indels) from exome‟s raw data using BWA aligner (Li, et 

al., 2009) and GATK (Genome Analysis Toolkit)  HaplotypeCaller according (McKenna et al., 

2010) to GATK best practice guidelines (Van der Auwera et al., 2013). The variant calls 

including the allele change, chromosome, and position were stored in the standard format VCF 

file.   

7.2.1 Variants filtration  

The mitochondrial DNA and Y-chromosome were not included in the study because they are not 

subjective to haplotype phasing. The VCF file which stores the variant call includes a number of 

columns that describe the quality of the variant and the sample (Figure 8.1). We filtered the 

samples as follows. The combined read depth (DP) is the number of reads that cover a variant 

position at each sample. We filtered out any variant in which the average DP is less than four 
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reads or greater than 2000 reads. This is because below four there is not enough coverage to 

produce high genotype call and above 2000 the region is usually repetitive and that may indicate 

poor mapping. 

7.1. An example of VCF file format. VCF file is a text file format and each data line displays 

information about each site on the genome. It contains (from left to right) CHROM (chromosome), POS 

(position of variants), REF (reference allele), ALT (alternative allele), QUAL (quality), INFO (variant 

site-level quality), FORMAT (genotype-level qualities). Among sample quality, the parameter GQ 

(genotype quality) and DP (Read Depth) that we applied in the filtering criteria.  

 

Genotype quality (GQ) is a quality metric which describes the confidence in the assigned 

genotype of a particular sample. We filtered out any variant which has GQ  below 60 in which 

the probabilities of a genotype assigned incorrectly is 1 in million, thus we ensure that the 

assigned genotype of a base is correct. The filtering criteria of variants as follows. Base quality 

(QUAL) is the confidence of a variation detected at a site. We included variants that have  

QUAL greater or equal to 50Q which means the probability of the base to be incorrect is at least 

1 in 100,000. In addition, we excluded positions which carry variants that are deviated from the 

mean of depth coverage with 2.5 standard deviation, since these positions may have aberrant 

variants due to low genotype quality or to unusual features such as insertion or deletion. We also 

used PLINK to filter out variants with a fraction of missing calls in the set of genotypes by 
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missing genotype rate, by which we removed variants with missing call rate exceeding the value 

of 5% missingness in all samples.  

Variants that meet the thresholds of filtering criteria are then compressed and indexed using 

tabix, which helps to retrieve variant positions on overlapping regions by chromosome 

coordinates quickly (Li, 2011). Finally, we combined all VCF files (each correspond to one 

individual) into a single file using bcftools (Narasimhan et al., 2017). 

 

Table 7.1. Quality Filters of variants 

Quality filters  Corresponding range  

Combined Read Depth (DP) DP >= 4 & DP <= 2000 

Conditional Genotype Quality (GQ) GQ >= 60  

Quality (QUAL) QUAL >= 50 

Filtering samples contain heterozygous 

calls with high standard deviation from 

the mean  

het. calls ± 2.5SD 

Missing genotype rate  geno 0.05 (5% missing) 

 

7.2.2. Sex Prediction 

Gender prediction of a given set of samples is an essential step to construct haplotypes for the 

sex chromosomes, regardless of the provided gender information in consent forms. PLINK tool 

implements the function of heterozygosity-based gender prediction and uses the coefficient of 

inbreeding F on X chromosomes. F coefficient means that an individual has two alleles at each 

locus that are identical by descent from the same ancestor of the two parents. We can infer that 

allele transmition on sex chromosomes to offsprings (inbreeding) is influenced differently in the 

two genders and the values of F differ among both genders (Ebel and Phillips, 2016). 



 

38 

 

Heterozygosity-based prediction (see Chapter 6) calculates the non-missing SNPs rate on X 

chromosome and considers the haploid heterozygous fraction as a gender error. PLINK makes a 

male call if the gender error with haploid heterozygous proportion is more than 80%, means that 

80% of heterozygous sites on the X chromosome genotypes are found in one copy. Female call is 

assigned if the gender error  or in other words the haploid heterozygous proportion is less than 

20% (Qu et al., 2011). 

7.3 Construction of PalHap Panel   

We constructed the PalHap panel using a number of samples that passed the filtering criteria 

above. The merged VCF file was splitted by chromosomes using PLINK, in which each file 

contains variants of a single chromosome from all samples. The haplotypes were 

computationally phased using the population-based phasing tool SHAPEIT (see chapter 4). 

SHAPEIT takes as input the unphased per-chromosome VCF files or takes the  PLINK format 

which consist of three files: the bed file contains variant genotypes, bim file contains variants‟ 

position, and fam file which describe the family relation (if any) among individuals. In order to 

ensure good accuracy of haplotypes, we altered the model parameters as the following: the 

number of conditioning states was set to 200, burn-in iterations to 70, pruning to 80 iterations 

and main iterations to 200 (for more details see Chapter 4)  

 

7.4 Read-based Phasing (HapCUT2)  

HapCUT2 takes as input unphased genotypes of the test samples in VCF format and the mapping 

file (BAM or Binary Alignment Map) which stores aligned reads. The tool first customizes these 

files into its custom input file “fragment file” by extractHAIRS (Extract Haplotype Informative 

Reads) tool which extracts aligned reads fragments from stored BAM file and variants from VCF 
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file to create informative haplotype fragments (Edge et al., 2017). Then, HapCUT2 takes the 

custom input file and iteratively changes the phased variants on the candidate fragments to 

assemble haplotype blocks with greater likelihood (see Figure 4.1). Because information from 

aligned reads may not be enough to construct the true phase configuration of some pairs of 

mutations (high heterozygosity at some sites), not all compound heterozygous pairs were 

phasable.  

 

7.5 Phasing performance  

The phasing accuracy score of the test samples is defined per position as the percentage of 

individuals  that were correctly phased at a particular compound heterozygous pair. We will 

explain it in the following example. Let‟s say at chromosome 1 positions 1001 and 1007 we 

found two heterozygous mutations in a subset of the test samples (say 10 individuals). We found 

using HapCUT2 from the read-based phasing evidences that this compound heterozygous pair is 

“trans”, in other words each mutation is located at a different haplotype. If SHAPEIT using our 

PalHap panel successfully phases this trans pair in 8 individuals, the phasing accuracy at this pair 

should be 80%. We similarly calculated the phasing accuracy score of the phased pairs per 

position using 1000Genomes panel.     

 

7.6 Identification of Copy Number Variations (CNVs) 

Calling copy number variations (CNVs) involves several steps. First, the coverage of mapped 

reads (i.e. copy number or CN) to each chromosome window from each sample were obtained. 

Second, normalization of the coverage was performed to take the between-samples variations 

https://www.zotero.org/google-docs/?yaA3C6
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and between-regions variations into account. Third, the estimated CN values were transformed to 

segment mean value or score using Hidden Markov Model (HMM). HMM computes the scores 

based on the joint probabilities of emission probabilities which correspond to a form of coverage 

(CN intensity level) and transition probabilities which correspond to changes in CN, wherein the 

model estimates the CN as the most likely state of ploidy of the sequence. Lastly, scores are 

taken to the mean of CNVs for the positions on the segment to find the segment mean value that 

is equal to log2 (Oshlen et al., 2011; Halpern et al., 2014). Finally, a quality control is performed 

to remove variants called within telomeres and centromeres. 
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CHAPTER 8 

Results  

8.1 Data Description  

The removal of whole exome samples that did not match the filtering criteria (Section 7.2.1) 

resulted in 696 whole exomes. We further handled the genotypes of X chromosome to predict the 

gender using Plink. The retained set of 696 whole exomes containing high quality genotypes of 

biallelic SNPs which include both common and rare variants, found in at least 10 individuals 

from autosomal and X chromosomes. Among the 696 samples we used 600 in constructing the 

haplotype panel (i.e. training samples), the rest 96 were used to test the performance of the 

phasing (i.e. test samples). 

8.2 Construction of PalHap Panel 

We built the PalHap panel using SHAPEIT (v2.12) which computationally estimates haplotype 

pairs at each chromosome. Shapiet‟s output is composed of  two files: the Hap file which 

contains a set of phased haplotypes and a sample file which stores individual information. As 

recommended in Shapiet‟s documentation, we converted the haplotypes from the current format 

(Hap/Sample) to the standard format (Hap/Legend/Sample). The legend file in the standard 

format describes the positions of SNPs of  the phased haplotypes. Up to this point, PalHap was 

constructed and can be used to phase any mutation which is already included in the panel. 
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8.3 Calling Copy Number Variations (CNVs)   

Because the phasing accuracy might be affected by polymorphic structural events such as  

common losses and gains, we wanted to map the CNVs alongside the phased compound 

heterozygous pairs to compare.  

We defined CNVs in all the 696 samples using XHMM tool (Fromer et al., 2014 and Methods) 

based on the segment mean log2 value (see Section 7.6). The diploid region will have a segment 

mean of zero, deletion will have negative value “loss” and duplicated regions will have positive 

value “ gain”.  

8.4 Phasing Accuracy Performance of  PalHap Panel 

To evaluate the performance of PalHap panel relative to the commonly used 1000Genomes 

panel, we phased 96 exomes that were not included in the construction of the panel (which we 

call test samples) using three different methods: HapCUT2, PalHap panel, and 1000Genomes 

panel. HapCUT2 is the golden standard method which represents the true haplotypes as it 

constructs them using the actual NGS mapped reads. SHAPEIT was used to phase the test 

samples by PalHap and 1000Genomes.  We  plotted the phasing accuracy of each compound 

heterozygous pair per position (Figure 9.1).  Next we mapped the polymorphic CNVs (frequency 

greater than 1%)- among Palestinains that were previously identified (Section 9.3 and Section 

1.2)- on the top of the phasing accuracy per position plot for comparison. Results show that both 

PalHap and 1000Genomes can accurately phase compound heterozygous mutations. The 

majorities of the pairs were phased correctly (100%) in all the test samples that have them. 

However, with few exceptions PalHap panel achieve higher phasing accuracy of positions that 

are located within polymorphic CNVs compared to 1000Genomes.  
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Figure 8.1: phasing accuracy of each compound heterozygous mutations in the 96 “test samples” using 

1000Genomes (green triangles) and palhap (purple circles). The polymorphic copy number variations are 

mapped on each chromosome plot in red (low copy number variation) or blue (high copy number 

variation) segments. In general, the positions in which 1000Genomes show lower phasing accuracy 

overlap polymorphic CNVs regions. 
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CHAPTER 9  

Discussion  

The classical mendelian haplotype phasing method is widely used in clinical settings but it has a 

number of drawbacks. For example the recruitment of parents or family members, complex 

disease-associated mutations, and laborious and time-consuming process. Population-based 

phasing approaches overcome these shortcomings. However, it is crucial to apply the most 

reliable and accurate methods in the clinical settings. Recently, population-specific reference 

panels were established to enable a number of applications such as haplotypic association studies 

of common variants and imputation of missing common variants , as well as compare haplotype 

diversity in the evolutionary biology studies and population genetics. The goal of this project is 

to build the first Palestinian haplotype exome panel and examine its performance by determining 

whether population-specific reference panel can achieve accurate phasing of compound 

heterozygous mutations s. 

To demonstrate the feasibility of PalHap panel, we compared its performance in phasing 

compound heterozygous mutations  to 1000Genomes. CNVs contribute to rare variants that are 

involved in genetic disorders and mendelian diseases in families (Inoue et al., 2002; Lee et al., 

2006). Number of studies reported association of polymorphic CNVs with complex diseases 

such as lupus glomerulonephritis, several autoimmune diseases, cases of schizophrenia and 

autism and others (Aitman et al., 2006; Fanciulli et al., 2007; Cook et al., 2008). In addition, a 

study identified loss-of-function variants through 1000Genomes data in CNVs regions 

(MacArthur et al., 2012). Therefore, years of SNP association studies have considered CNV 

associations as an equally susceptible factor for false associations between genetic variations and 
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phenotypes (McCarroll et al., 2007). Artificial CNV associations are mainly attributed to the 

limited ability of SNP studies to detect variations within CNVs (Lahita et al., 2010) and to 

insufficient knowledge of locations and frequencies of CNVs that segregate human populations 

(McCarroll et al. 2007). This makes it difficult to phase and assemble CNVs containing regions 

(Black et al., 2014). Therefore, we examined the phasing performance of PalHap panel to phase 

compound heterozygous mutations by taking CNVs into account. As expected, PalHap panel 

showed the capability to accurately phase compound heterozygous mutations compared to 

1000Genomes especially in regions that overlap polymorphic CNVs among Palestinians. This is 

because PalHap panel has accurate representation of haplotypes and linkage disequilibrium 

blocks (LD) among Palestinians which level up the power of detecting causal variations 

(McCarroll et al., 2007;  Conrad et al., 2010) than mixed ethnicity panels such as 1000Genomes. 

This finding is compatible with other studies demonstrating that ethnicity matching reference 

panels improve phasing accuracy especially for rare and complex variants (Yasuda, J., et al. 

2018; Hou et al. 2017). For instance, Hou et al showed that the Anabaptist Genome Reference 

Panel (AGRP; phased haplotypes and WGS from Amish and Mennonite) conferred better 

representation of rare Mendelian disorders-causing founder alleles and haplotypes, hence, 

improved imputation accuracy compared to Haplotype Reference Consortium reference panel 

(Hou et al., 2017). Moreover, PalHap panel showed significant phasing accuracy despite having 

less than half of the samples in the 1000Genomes panel (2,504 samples). The size of the 

reference panel was shown to correlate with its performance (Kong et al., 2008; Williams et al., 

2012; Loh et al., 2016). For example, Choi and his colleagues show that population-based 

phasing accuracy improves significantly as the size of the reference panel increases (Choi et al., 

2018). Also, Browning and his colleague concluded that a simple and effective strategy to 
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improve phasing accuracy is by raising the sample size via using a population-specific reference 

panel (Browning et al., 2011). Our results suggest that ethnicity-matching can overcome the 

small sample size as we show that 600 ethnicity-specific panel can be either as equal as or 

outperform 1300 mixed-ethnicity panel at specific regions. 

Our study, as any other study, has some limitations. First,  PalHap represents mainly individuals 

from the West Bank. Jerusalem residents and Gazinians are not well represented. Most Gazinians 

samples were filtered out because of low quality samples due to constant power cut at the clinical 

facilities and long inappropriate transportation conditions. Second, computational phasing cannot 

phase low frequency variants or those that are not well represented in the panel. Improving the 

aforementioned challenges will help to achieve accurate phasing of all variants. 
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CHAPTER 10 

Conclusion 

In this thesis, we first constructed PalHap, the first Palestinian haplotype exome panel and 

showed that population specific-reference panels provide accurate phasing for clinical haplotype-

based applications such as phasing compound heterozygous mutations. The panel will pave the 

way for future work in adopting computational phasing in the clinical practices such as  

preimplantation diagnosis (PGD) which will require only genotypes from the embryo without the 

need to recruit the parents and other family members. It may also help in future genetic 

association studies and evolutionary population genetics.  
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