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Abstract \

In this thesis, we consider the diagonal operators 4, ; a =(«,) between
the sequence ¢” spaces, and we give the necessary and sufficient conditions for
this diagonal operator to be bounded . Then we give necessary and sufficient

conditions for general operators between ¢” —spaces to be bounded .

Finally, we give a different variation of the statement of Garling's
Theorem , which gives a complete characterization for diagonal operators d,
between ¢” —spaces to be p-absolutely summing, and we give an alternative

proof for this fundamental theorem.
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Index of Special Notation

The set of all real numbers.
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Introduction

The subject of operator theory came into focus rapidly after 1900. Reisz
studied the algebra of bounded operators on the Hilbert space ¢*. Between
1929-1932, von Neumann introduced the unbounded operators and he also

used the concept of infinite matrices that had been a popular way to

understand operators.
In the last three decades of the twentieth century , a considerable interest was

paid to the question: When does an operator 4  take ¢7 —space to an ¢7 —

space ?
Crone ( see [15] ) characterized matrices from ¢* to £2. In ( [16]) there is

a complete characterization to matrices from ¢' to ¢' and from ¢° to ¢~.
Then ([16] ) gave a sufficient condition for 4 to map ¢” into ¢7; 1< p<w. In

([16] ) another sufficient condition for 4 to map ¢7 into ¢7 was given.
Bennett in ([11]) gave necessary conditions for A to map ¢7 into ¢¢.Then

( [13] ) and ( [19] ) gave complete characterization for certain operators

(matrices) to map £7 into ¢7.

In chapter two of this thesis, I give a complete characterizations for the

diagonal operator 4, to map ¢” into ¢7.

In chapter three I talk about the absolutely summing operators between
sequence spaces. The summing of linear operators is a very basic concept in

Banach space theory . In 1933, Orlicz's studied when every unconditionally

2 .
1s convergent. In

X

n

convergent series ) x, in L? (where 1< p<2 ) the >

n

1947, Macphail showed that in ¢', such a series may have Z"xn | divergent.

Dvoretzky and Rogers then proved that the same applies in every infinite
dimensional Banach space. After this came the definition of absolutely

summing operator to one for which 2.|7x,] is convergent for every

1




unconditionally convergent series » x,. The summing is an example of "

n

operator 1deal " norms.

The theory of absolutely summing operators was one of the most profound
developments in Banach space theory between 1950 and 1970. It originates in
a fundamental paper of Grothendieck (which actually appeared in 1956). It
was not until the 1968 paper of Lindenstrauss and Pelczynski that
Grothendieck's ideas become widely known. Since 1968, the theory of
absolutely summing operators has become an important aspect of modern
Banach space theory . At the end of sixties , Pietsch promoted the notion of
p-summing operators between Banach spaces, which extends to all values of

p €[l,»).Then Lindenstrauss and Pelczynski gave the important result in p-

summing that every operator from £' to £* is I- summing ; another

formulation of this is the famous Grothendieck's inequality .



Chapter One

Bounded and Continuous linear Operators.

1.1 Linear Operators.

1.1.1 Definition. Let ¥ and Y be normed spaces, then 7:D(I)c X — Yis

said to be a linear operator if

(i) The domain D(T)' of T is a subspace of x .

(i1)for all x,y e D(T) and scalars «,

T(x+y)=T(x)+T(»).
T(ax)=aT(x).

1.1.2 Definition.
(i) The null space, denoted by N(T') is defined by

N(T)={xe D(T): Tx = 0}.
(i) The range of T, denoted by R(7) is defined by
R(T) ={y:y =Tx ,forsome x € D(T") }

1.2 Examples.
1.2.1 Identity Operator. The identity operator I:X — X is defined by

I(x)=x forall xeXx.

1.2.2 Zero Operator. The zero operator 0: X — Y is defined by O(x)=x for

all xe X.
1.2.3 Differentiation. Let X be the vector space of all polynomials on a,5].

We may define a linear operator 7 on X by setting Tx(t) = x'(z) for every
xeX. Where the prime denotes differentiation with respect to t. This

operator T maps X onto itself.

1.2.4 Integration. A linear operator 7 from C[a,b] into itself can be defined

by 7x(t) = | ‘x(0)dr , tela,b].
1.2.5 Matrices. A real matrix 4 =(a,),,, defines an operator 7': R* — R’ by

means of y = 4x where x=(¢}),, and y=(£ Vo> WIIDE y = Ax out, we have



& a, o, . . a,||6,
i Y \ 24 (24 " (")
‘.l*-n _(l’” (Yr.‘ S “‘r no_ ‘6 ",

In these examples we can casily verily that the ranges and null spaces
of the linear operators arc vector spaces , and this is the content of the
following theorem.

1.3 Theorem (Range and Null space).
Let 7:D(T)c X —» Y be a lincar operator, where X and Y are normed
spaces. Then:
a) 7(0)=0.
b) R(T) is a subspace of .
c) If dim (D(T))=n < o, then dim((R(T)) < .
d) The null space N(T) is a subspace of x .
Proof:
a) T(0)=T(x—x)=Tx—Tx=0.
b) We take any y,,y, € R(T) and show that « » + By, € R(T) for any scalars
a,B. Since y,y, eR(T); we have n=Ix, y,=Tx, for some
%,%, € D(T); and e x, + fx, e D(T) because D(T) is a vector space. The
linearity of 7 yields T(ax, +hx)=alxy+pBTx,=ay +8y, Hence
@y +f y, € R(T).
¢) Notice that the image of any spanning set of D(T') is a spanning set for

R(T). So, let YooY Vs Van € R(T), then 3 x,x,,....... X, %, € D(T)
such that 7x, =y, i=12... n+1.
Since dim(D(T)) =n, S0 x,,x,..... »%, are linearly dependent.

Hence 3 ¢,,a,,...,,, not all zero such that ax, +a,x, +

Since T is linear and T(0)=0, then



T(eyx +a,x; t....... +, X)) =y Y, e+ @, Y,,,=0.

This shows that {y,,y,,...,»,.} is a linearly dependent set because the «,'s are

not all zero. Therefore dimR(I) <n+1, 1.e. dmR(T)<n.
d) We take any x,,x, e N(T). Then Tx, =Tx, =0, since T is linear, for any
scalars o, we have T(ax, +fx,)=aTx.+pTx,=0.
This shows that o x, + 8 x, e N(T'). Hence N(T) is a vector space.
QED.
1.4 Bounded linear operator.
1.4.1 Definition. Let X and ¥ be normed spaces and 7:D(T) — Y a linear

operator, where D(T)c X. The operator T is said to be bounded if there is a
real number ¢ >0 such that for all xe D(T) ,
7] < e (M

1.4.2 Remarks:
(1) [T <c|+| shows that bounded sets in D(T) are mapped onto bounded

setsin Y.
(i) The term bounded here is different from bounded in calculus, where a
bounded function is one whose range is a bounded set.
The question here is "what is the smallest possible ¢ such that (1) still

holds for all nonzero x e D(T) ? [we can leave out x=0 since Tx=0 for x= 0].

e 1: 1
By division, ”W;;—l“ <e¢ (x20). = sup{%,x 5 O} <c¢. Hence the answer to our
X

question is that the smallest possible ¢ in (1) is that supremum.

So, we define the norm of 7 as IT) = Sup{M,x #0,x € D(T)}.

[

If D(T)={0}, we define | =0. Note that (1) with c=|1| is I < |7 1] -

1.4.3 Lemma. Let T be a bounded linear operator. Then

-1,

L xeD(T),

a) An alternative formula for the norm of T'is | = sup | |7

%—



b) ||T| satisfies the properties of the norm.

Proof: (a) we write |x|=aand set y=1x, where x=0. Then [y =M=1and

{i}e o

(b) [[7]= 0is obvious and so is 0| =0. From |7 =0, we have Tx =0 Vx e D(T)

since T is linear, |T] = Sup{” i T 0}=s {

x 0} sup{[7. | =1}

so that T’ =0. Furthermore,

= }= supﬂal ”Tx”, ”x” = ]} = lalsupﬂlTx“, “x“ = 1} where xe D(T).

supﬂ

Finally,

sup{ (7, + 7, Yo} Jx] = 1} = sup

where xe D(T).Q.E.D.

=1}

x|l = }Ssup{ )

X[ = }+sup{| 2

1.5 Examples:
1.5.1 Identity Operator. The identity operator 7: X — X on a normed space
X ={0} is bounded and has norm || =1

1.5.2 Differentiation Operator. Let X be the normed space of all

polynomials on J =[0,1] with norm given ||| =

,ted.

A differentiation operator 7 is defined on x by Tx(t) = x'(t). This operator is

linear  but not  bounded. Indeed, take x()=¢", then
=max{ ) £ }=max{t”,0£t$1}=l.
' -1 -1 " Tx" .
but x,(6) =x' (1) = ™", s0 ||Txn“=maxﬂnt” |,oszsl}=n and ——I=n. Since
xﬂ

neN is arbitrary this shows that there is no fixed number c such that
“ Ix,

Tl




1.5.3 Integral Operator.
We can define an integral operator 7:C[0,1]]— C[0,1] by y=Tx where

(E) = ]k(t,r)x(f)dr. Here # is a given function, which is called the kernel of T
0

and is assumed to be continuous on the closed square JxJ=G in the
e plane, where J =[0,1]. This operator is linear and bounded.
To prove that 7 is bounded, we first note that the continuity of & on

the closed square implies that & is bounded, say, | k{t,7)| <k, for all (;,z)eG,

red}=}.

where k, is a real number. Furthermore, |x(r) < max{x(¢)

1

J‘k(t? 7)x(z)dr

0

Hence ” y” = ”Tx” = max{

e J} < max{J]k(t,r)[ i) e J} <k |H.

Hence T is bounded. Q.E.D.
1.5.4 The matrix operator.

We can define a matrix operator 7:R" — R™ by y =Tx = Ax. where 4 is

the real matrix (o 1 )m and x = (x,...x,)and y =(y,,..,, ) This operator

is linear and bounded. We'll prove that T is bounded,

[_au 237) oy, % b\
O,y &y ay, | X2 ¥,
Eip %p D X5 | | Y

_aml amZ amn _ _“xn _ym _

- -
2 %%, "
k=1
. Y
= == <
n )
Zamkxk B
= |




Z

n
2%

k=1

= =2

J=

Now from the Cauchy — Schwarz inequality, we obtain,

o <5 [[Zlal][ZIIH IR ANE DAY

N | —

n

.
=7 < [Z e 2J2[|x|| which is of the form |Tx| < ¢ x| with ¢= (iilaﬂ([z) ,
1 j=1 k=1

j=1 k=

i.e T isbounded. Q.E.D.
1.6 Continuity and Boundedness.

Operators are mappings, so that the definition of continuity applies to
them. It is' a fundamental fact that for a linear operator, continuity and
boundedness become equivalent concepts as follows.

1.6.1 Theorem. Let 7:D(I')—Y be a linear operator, where D(T)c X and
X,Y are normed spaces. Then.
a) T 1s continuous iff 7 is bounded.
b) If T is continuous at a single point, it is continuous.
Proof:
a) For T=0the statement is trivial. So let T=0. Then |T]=0. We

assume T to be bounded and consider any x, € D(T). Let any £>0 be given.

H_TTr

we obtain |Tx - Tx, || = |7 (x—x, )| < [T |x— x| <|T|6=¢ . Since x, e D(T) was

Then, since T is linear, for every x e D(T) such that |x - x,|| < 6 where 6 =

arbitrary, this shows that 7 is continuous.

Conversely, assume that 7' is continuous at an arbitrary x, e D(7'). Then, given

any £>0, there i1s a &§>0. such that |Ix—Tx|<eVxeD(T) satisfying




[x-x|<é we now take any y=0 in D(T) and set x=xo+ﬂ5—ﬂy. Then
y

X=Xy = Iy ” —y . Hence [jx—x,| =45 so,

[ll ll]

k23 | <e= D)< %” y|. This can be written as |7y < oy

o > =T = [T ) =

Wil

1.€.,

where ¢ =§ - which shows that 7 is bounded.

b) Continuity of T at a point implies boundedness of T by the second part
of the proof of (a), which in turn implies continuity of T by (a). Q.E.D

1.7 Linear Functional.

1.7.1 Definition : A linear functional f is a linear operator with domain in a
normed space and range in the scalar field R or C .

1.7.2 Definition :
() A functional f:X o R is linear if f(ax+by)=af(x)+5/(y), where

x,yeX, anda,be R

(ii) A linear functional s is bounded if 3c e R such that |f ()| <.

(iii) The norm of s is denoted by [f| and defined as

||f”=sup{| ( =1,x€D(f)}.
1.7.3 Examples.
(1) Thenorm |.|:X — R is not a linear functional .

(2) Let f,:R* - R be defined as fa(x)za.x where a is some fixed vector

=|d -

in R* .
(3) Definite Integral.
Let xeCla,b] and define f(x)= J t)dt, .., f:Cla,p]->R. Then f is a

bounded linear functional with |f|=b-a.



1.8 Isomorphism.
1.8.1 Definition (Isomorphism).

(1)  Anisomorphism 7 of a vector space X onto a vector space Y over
the same field is a bijective mapping which preserves the two
algebraic operations of vector space; thus, for all x,ye X and
scalars a, T(x+y)=T(x)+7(y), Tax)=aTl(x), l.e, T: X >Y is a
bijective linear operator, ¥ is then called 1somorphic with X, and
X and Y are called isomorphic vector spaces.

(i)  Anisomorphism of a normed space X onto a normed space Y
is a bijective linear operator 7: X — ¥ which preserves the norm ,

Le, forall xe X, |Tx|=|4. X is then called isomorphic with ¥, and

X and Y are called isomorphic normed spaces. From an abstract point
of view, X and Y are then identical, the isomorphism merely a
mounting to renaming of the elements.

1.9 Dual Space.

1.9.1 Definition : Let x be a vector space , the algebraic dual space of X,

denoted by x~, is the set of all linear functionals on x .

1.9.2 Definition : Let X be a normed space. Then the set of all bounded

linear functionals on X constitutes a normed space with norm defined by
|71 =sup{|7(x)
denoted by x.

1.9.3 Remarks.

S =1xex } which is called the dual space of x and is

(1) x° is itself a vector space where the vector addition and scalar

multiplication are defined as -
Ui+ /)0 =40+ 1,0, (@) =af).
(2) Since X'is a vector space , so we may consider its dual x* which is

called the second dual of x .

10




(3) We can obtain a ge X" by choosing a fixed xeX and setting

g.(N=/(x),xeX is fixed, feXx' is variable. Note that g, is linear

functional . Hence g, € X*. To each x e X, these corresponds a g, € X™. This

defines the so called canonical mapping C: X — X where C(x)=g,.

1.9.4 Definition: Let p>1 be a fixed real number. Each element in the space

¢” is a sequence x=(&,) of numbers such that Y| converges ie.,
j=1

1

i|§j|p <w, and the norm of x is defined by |)x||=[i\§j\p]p :
= =

1.9.5 Example : The dual space of ¢7 is ¢7;here 1< p <o and 1; +§ =1,

Proof: Every xe 7 has a unique representation
(1) . =ngek where ¢, =(5,).
We consider any f e¢”, where £° 'is the dual space of ¢7. Since f is linear
and bounded ,
@ S=3 67, where 7, = f@).
Let ¢ be the conjugate of p and consider x, = (&) with
2

(3) = Yk
0 ifk>n or y,=0.

ifk<nand y, #0,

By substituting this into (2) we obtain  f(x,) = if,ﬁ")n = iln\ .
k=1 k=1

We also have , using (3) and (¢4-1)p=g¢.,

1

(gl ()

o |-
o -

re|<I il =1|f|l[§ o }

11




5 e et

So, /() =Zl,|n| SIIfI[[ilyqu}p_

L

" 4 \q
Dividing by the last factor, we get (kzlb’ fl J |71

Since » 1s arbitrary, letting n — o, we obtain

1
@) (;lnll <|A.
Hence (y,)e£’.
Conversely, for any b=(8,)e#? we can get a corresponding bounded

linear functional g on ¢7. In fact , we may define g on ¢”by setting

g(x)=i§kﬂk where x=(&)e#”. The linearity and boundedness of g
k=1

follows from the Holder's inequality . Hence g e £7'.
We finally prove that the norm of f is the norm on the space ¢°.
From (2) and the Holder inequality we have

(B )3

=1

1 1

|yk|q]q=ﬂx\|[§:|ykl"]q; hence by taking the

=1

0

zgk}/k

k=1

|f @)=

1

supremum over all x of norm 1 we obtain | /]| s(i]yk\")q.

k=1

From (4) we see that the equality sign must hold, i.e,
©) -(3mr )
This can be written ||f]=|c| , where c=(y,) e ¢’ and y, = f(e,).The mapping

of £¥ onto ¢* defined by /- ¢ is linear and bijective , and from (5) we see

that it is norm preserving , so that it is an isomorphism. Q.E.D.

12




1.10 Banach Spaces and Hilbert Spaces.

1.10.1 Definition : The normeq Space X is said to be complete if every
Cauchy sequence in x converges.

1.10.2 Definition : A Banach space is a complete normed space .

1.10.3 Definition : An inner product space is a vector space X with an inner

product defined on X where an inner product on X is a mapping of Xx X

into the scalar field x of x; j.e.,

with every pair of vectors x and y there is associated a scalar which is
written <x,y> and is called the inner product of x and y, such that for all
vectors X, },z and scalars o we have -

(1) <x+y,z>= <xXz>+<yz>

(2) <ax,y>=a<x,y>

@) <xy>=<yx>
(4) <x,x>=>0.
<x%,x>=0 < x=0
1.10.4 Definition : A Hilbert space is a complete inner product space .
1.10.5 Definition: An orthogonal set & in an inner product space Xis a

subset M — X whose elements are pair wise orthogonal, that is <x,y>=0 for

all distinct x,y e M .

1.10.6 Definition: An orthonormal set M < X is an orthogonal set in X

if x#y If

. 0
whose elements have norm 1, i.e, forall x,yeM, <xy> = {1 i x=y

an orthogonal or orthonormal set M is countable , we can arrange it in a

sequence (x,) and call it an orthogonal or orthonormal sequence respectively .

More generally , an indexed set, or family, (x,), @ €/, is called orthogonal if

<x,,x,>=0 for all @,fel, ap.The family is called orthonormal if it is

13
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Chapter Two
Bounded Operators Between Sequence Spaces
2.1 Diagonal Operators.
2.1.1 Definition: Let o =(z,) be a sequence of complex numbers . Define d,,
by d,()=(a,x,), where x=(x,) then d, is called a diagonal operator.

In our research we will be interested in the diagonal operators from one £7

space to another. In general, this operator need not be bounded, for example

let d, :£> = £' be defined as d, (%) =(a,x,) where « AN S

%’" 3n2'

Now x=(x,) < £*. On the other hand, |d, (x)], = |(e,x,)], = |

= o0
1 |1—-)

" d, 1s not bounded.

The following example shows that the diagonal operator could be bounded ,

let d,:¢>—>¢" be defined as d,(x)=(x,x,) where an=l, now
n

X

14,09, =|(@,x) ], = 3.

n=1

an

n

s[i%}z Ix|,, itis of the form |4, ) | < k| ,

n=1

where k=[2%) <o .. d_1isbounded.

n=l
So, the question arises: what are the conditions to be put on the sequence
(e,)to make the corresponding diagonal operator bounded?
The answer of this question follows from the following theorems.

2.2 Bounded Diagonal Operators.

Pq
2.2.1 Theorem : d, :£” —£% is bounded iff @ €£” where p>q>1.

Furthermore, |d,||=|a], where s =2%.

15




T
o

Lq—
ol pq
Proof: Let  ael” and P>qg>1, then

o, ~Ka,)], = (Sl ) [Z|a|*j‘{z . ]ﬁ

a=l n=]
(by Holder's inequality)

p-q

1
L N P p
&, | r-q Z X,
n=] '
P9
Pgq

or |d, (x)”q <k ”x“p where k= (i’an ;}%J " < (since a € £777)
n=1

> @), s(3

f_q_

. d, isbounded, and la.| < (i] |7 qJ ............ (1)

Conversely, suppose that d, is bounded, consider the sequence

x, = (") with £ = AR
_ 0 ifk>n

(n)

Sk ) (e

Now, |4, ()], <

1

- (S ) <ted(Ser )

k=1

= |4,

Dividing by the last factor we get,

" 1.1 . e p-q
(zmﬁ}" 7 <ld, | or [z|ak|p-q]”" <ld.].
k=1 k=1
Since n is  arbitrary, letting n—o, we  obtain
p-q
= Pq
(kZ]akIF]M DYV — @
=1
Hence o:e/é’;’L Furthermore from (1) and (2) we get ”d H—||a|| :_‘Iq- Q.E.D.

16




Jire

2.2.2 Corollary: d, 127 — p'is bounded iff ¢4’ where

p>1 and l+—]—=1.

pr
Proof: Follows directly from Theorem 2.2 by taking ¢ =1. Q.E.D
2.2.3 Theorem : d, :£” - /% isbounded iff ¢ e s~

d,|=]e],.

where 1<p<g<w=.

Furthermore, [
Proof: Suppose that d, is bounded. Let e, be the sequence whose n*
term is 1 and all other terms are zero. Then any sequence x < /¢ has a unique

representation x= )" x,e, where x=(x,).
k=] ”

Since d, 1s linear and bounded, then d, (x)= i x,£, where &, =d_(e,), where
k=1

the numbers ¢, =d,(e,) are uniquely determined by d, . Also | e,|, =1and

o] =] da(e)], <l dalllec], =]l 4] = suple,|<|d,| < (sinced,is bounded).

=N/ = -1 —— 1)
Conversely, suppose that « € £” andlet xe£”,s0

|4.@), =[(@,x.)

’

]

@,

LA
o
= (Z|a’nlp X, PJP

n=l

o=

@K
- (sup|an|pZ]xn|pJ
n=1

1 © =
= (supt:r,l p)P (Z|xn pjp
n=1
= |, @], <lel || which implies that (I B = ——— (2)

From (1) and (2) we get that 4, 18 bounded iff ae£”and |d.]|=]],

17



Q.E.D.

2.2.4 Theorem: Suppose that 1<g<ew, then aef® if d,:£° =17 is

bounded. Furthermore |, I =< | 4, I

Proof: Let 1<g < and suppose that d, :£* — ¢7 is bounded.

Let e, be the sequence whose »" term is 1 and all other terms are zero. Then

any sequence x e £” can be writtenas  x=3x,e, where x=(x,).
k=1

Since d, 1s linear and bounded, then d_(x) =ixk§k where &, =d,(e;), and

k=1
| dated], <l dalll el =] 2]
= |el<|d.] = sw |a|<|d,]|<o (sinced,is bounded)
k
= |lexl. <[ 4. <. Hence e e . QE.D.
2.2.5 Theorem: suppose that 1<g<w,then d,:£” —£7 is bounded

if € £7. Furthermore  ||d, | <], .

Proof : Let 1<g<w and suppose that aef? and let xef‘f’,

(a,x,)

.

|4, =|

Q=

q
e

< [Sup|xn|qi
n=1
1

- (Sl ] .

1
q]q < oo,

which is of the form | 4, (x)], k||, where & =(Z; a,

. d, isbounded, and  |d,|<]e],- QED-

18
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2.3 Examples of Bounded Diagonal Operator

2.3.1 Example: 1f we take p - 4,9=11n Theorem 2.2.1 , we obtain,

2

Y EI . . 4
d, td* —> 1s bounded iff axef’ 1y particular if an=-1— then
n

3

X s T
d, :£* > ¢' isbounded since Le¢3 ( since [ii] <o)
n n=1 n';'
But if we take «, -1 ,then d, :£% - ¢' is not bounded since Leﬁg
I * 7

o0 1 I
(.'- (ZTJ =00) 3

n=1

2.3.2 Example: 1f we take p=1, ¢=2 in theorem 2.2.3 we obtain that

i :£'—> £* is bounded iff @ e £”. In particular if an:—j:, then
) n

o

dJ,_ . ¢' = £? is bounded since @ €7,

But if we take «, = 2", then d,, :£' — £” isnot bounded since 2" & £°.




2.4 Matrix transformation of ¢” spaces.

2.4.1 Definition: A'matrix 4 =(a,) is said to map ¢”into ¢°if Axe’’

1
7 \q
y

The estimation of this matrix norm is complicated , but the general problem

whenever xe £”. The norm of 4 is given by

], = s {Jax], <], <1} sup [z

J

IS
k

“of necessary conditions here may be described as follows:

Given 1< p,q,r <o, what is the smallest value of s=s(p,q,r)for which

R

r] < e (**) whenever 4 maps ¢”into ¢ ? The answer

{3

of this question follows from the following theorem.

2.4.2 Theorem [ 11, Theoreml.1]: Let 1< p,g,r <o be given and suppose

that rz—p—l. Then the condition (++) holds whenever 4 maps ¢7into £7
p—

provided that :

(1) s=w,Incase p<gq;

(i1) lsl—l incase p>q and r>2;
s q9 P

(1ii) lsl~-1~~—l+l ,incase p>q, r<2 and g <2;
s g p r 2

: _ 9
(iv) L < min l—l,g -2 -1l in case p>qg>2>r and re—P .
s g P49\ P T p+q-2

; 2
(v) lS-l——l,mcaseoo>4;:p>q>2>,-= L

s q P p+qg-2°
The proof of this theorem is long and complicated and will not be given -
here. Part (ii) of this theorem has interesting results so that we only mention

some special cases of part(ii) in the following corollaries.

20



1
2
2.4.3 Corollary: Z(;Ial"lzj <o whenever 4 maps ¢”into ¢'.
J

Proof: Setting p=wand g=1 in Theorem 2.4.2 (ii) we obtain s>1 and r=>2

so that the smallest value of s and r are respectively 1 and 2 . Now setting
!
s=landr =2 in (++) we get Z[Zlaﬂclz)z <. QED.
J k
2.4.4 Corollary: If 4 maps ¢*into ¢', then ZZ‘M]Z <o .
j ok

Proof: Setting p=2and g=1 in Theorem 2.4.2 (ii) we obtain s>2 and r>2

so that the smallest value of s and » are 2. Now setting s=r=2 in (++) we

get ;(;Pﬂcff <o Or ;;[aﬂcr <w . Q.EUD.

(SR

2.4.5 Corollary: If 4 maps ¢7into ¢' ,then Z(Zlaﬂlz] <o ,

j k

where l+i,=1.
p P

Proof: Setting p=p'and g=1 in Theorem 2.4.2 (ii) we obtain sxp and

»>2s50 that the smallest value of s and r are respectively p and 2. Now

setting s=p and r=2in (**) we get Z[Z|ajk|2]2 <. Q.E.D.
i \k

2.4.6 Corollary: If the diagonal matrix & = (r,) maps ¢7into ¢, then

_Pa_
ae P,

Proof: From Theorem 2.4.2(ii) we get the smallest value of s and r are

‘respectively P4 .nd2.Now since @ maps ¢°into ¢, then condition

Pq

-2
(**) is satisfied , i.e., Z(Z‘a jklsz(P T <o
7 \x




i
. I
2(p-q) e : : ;
or z (\a”‘ ) < (since a isa diagonal matrix )
j

rd

e
or Z|a1|ﬂ-q <o . Henee a e 777 which is the same result we got in
j

Theorem 2.2.1 but in a different way. 0.E.D.




2.5 Matrix operators on ¢” (Sufficient Conditions ).
2.5.1 Definition: Let B(¢") be the normed linear space of all bounded linear

operators on  {”into ¢”; so that AeB") iff Vxet? Axe?” where
(Ax), =Za"kxk for n=1,2, . ;
k=1

The norm |4 of a matrix4 in B(#®) is given by
] = sup {lax], <], <1f.

So , the question arises : what are the conditions to be put on the matrix 4 to
make it in B(¢7)? The answer of this question follows from the following

theorem.

25.2 Theorem[10,Theoreml]: If 5,>0 for nk=12,...

o 1
supZ a

(Bu)” =M, <
n2l p=]

, and 1f

nk

1 1

-1
(by)® =M, <o, then AeB(?) and |4|<MiM; where

nk

and  sup ) |a
k21 5

St o,
b q

Proof: Let y, =) a,x, where x=(x,)e¢?. Now,

k=1

@«
yh = Zankxk

k=1

= kzzl((ank);(bnk);(ank);(bnk);ka

1 1
1179 12 \p

(@) (b, 3
k=1

-1

<> (aa(quwug

k=1

( by Holder's inequality)

L

4 P
(bnk) 7 kalpJ

0

S (Z Iaﬂk l(bnk)

k=1

D |-

o
J Zl“nk

\ k=1

23




= [l < {Zlankkb,,k)l J(z a

nk

-1
(b,)° |xk|p] (- L+l=1)
P q

k=

) l
<M {Z Qb )7 |xk| J , and hence

nk

Z[J’n| <M 1lek‘ Z

(bnk )

©0 p
SMPM, ) |
k=1

0 L p-1 1 p L.
(S} s et Sl |
n=l k=1

1 1

=], <Mypp ],

11
P Sl}s Sup{Mlqu" P’ pSI}

1 1

= ||A|]SM,;M;’; . Since M,,M, <o, then |4] <

= sup{

. AeB(¢"). QED.

In the following special cases, there are complete nice characterizations.

2.5.3 Theorem[ 16, C1]: The matrix 4 maps ¢ to £ iff sup) la,|<e

k20 p=0

nk <o

2.5.4 Theorem[ 16, C2]: The matrix 4 maps £° to £° iff Supz

w0 4o
In the same book ( see[16] ) , we see that if both the conditions in Theorems
2.5.3 and 2.5.4 are satisfied , then 4 maps £7 to £7.

In ([17]) another sufficient condition is given as follows.

2.5.5 Theorem[17,C4]: For l<p<wo , 4 maps £ into ¢7 if

3(Seul')" < -

n=0 k=0

aQ |u




2.6 Matrix Operators on ¢ to /7.
2.6.1 Theorem[19,Theorem1]: Let « > p>g¢>1. Then an infinite nonnegative

matrix 4 =(a;) maps £’ into ¢ if and only if there exists a positive constant

C and a sequence u=(x,)7, of nonnegative numbers with the following
properties :

(i) u, =0 ifand only if a, =0, vi,; .

(i1) “u"p <1if p>gq.

(iii) foreach j=1.2,

) ) =1
Zaﬁ[gamuk] < Cuj’.’"l } (1)

i=1

The best value of C in (1) for such a sequence u can be found is (||A|]M )s.

Proof: Assume that C and u,(k>1) are positive numbers satisfying (i) and
1

(iii) . We will show that x| <Cld|, , xee?. (2)

Let y, = Zauxj where x=(x;) e£”. Now,

]

Z%x;

J=1

=l§[(a,,)] ) ® oy )J

(gl ) (o)

< (Sevusel ) (S
=i k=1

|y,l=

D | =

-]

fu
4.1 9
(Z (a ) q_]] ( By Holder's inequality)

k=1

—_—

__‘?
q

(ag) (u;)

g-1
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L] « 9 o
q l1-g @ q-1
= Zl}’,—l SZ“; (xj| E a. E a
. = = v l"(u g
i=1 Jj=1 i-1 an k

b q
< Zu}_q|x}.| C uf'l
& (By condition (iii))

(If p>q , asecond application of Holder's Inequality yields)

sc@|”f|pfz@lx”p}

=}

g
P

B
= q = P=q
. [Z] yi q) = Cq" u"pq ”x"p
i=

1 Pq

<cT@) * |, (By condition (ii))
1
|4, <C7x|, . (For p=q see[l8])

Conversely, let 4=(a,)bea nonnegative matrix taking ¢° into £ . Assume

=1 such that

P

. n n ? (n)
positive  n-tuple u® =) with |

1

g-1
a3 2) d [12 page 223-224]).
Z%(Zakuff’] <Y, j=12mn (see [12]and [12 pag )

I=] k=1

Define , for j=1,2,.....-

.. .\ e g sequence of positive numbers such that
U, =hmmf(u§")) . Then u=(x,);. 1525€q

n—w

Q.ED.

(ii) and (iii) are satisfied.




ein and X.Gao | '
Borw 20 1n their paper (see[13]) improved Theorem 2.6.1 as
follows :

h .
2.6.2 Theorem[13,Theorem A |: | p>1 . Then a nonnegative matrix

=(a;) Maps £7 i 1 :
A=(a;) Map mto £% if and only if there exist a positive number C and a

positive sequence u = (y ;) such that

0 © p-l
;aij(;amukJ SCuf. j=12,.... (1)

1

and then |4] <C? . Further, if the nonnegative matrix /= (a;) maps £ into

i

¢, then there exist a positive sequence u for which (1) holds with ¢ =(|4]_)?.
¥

2.6.3 Theorem[13,Theorem D]: Let p> g>1 . Then a nonnegative matrix
A=(a;) maps £ into ¢¢ if and only if there exist a positive constant C and a

positive sequence u=(u,) with the following properties :

(a) | u"p <1,

) © g-1
(b) Zaij(ZamukJ <SCul™ , j=12,.. (2)
i1\

1
and then ||A]|M <7 . Further, if the nonnegative matrix 4= (a;) maps ¢° into

¢4, then there exist a nonnegative sequence u=(u,)with0<|| u"p <1 for
which (2) holds with C=(|l4], )?,and u, =0 only when a, =0, Vi, .

In order to prove these theorems we need the following theorem.
2.6.4 Theorem [13,Theorem 1]: Suppose that p,¢>1, that the nonnegative
matrix 4=(a,) maps £’ into %, and that C > (“A”p_q)". Then there exists a

pOSit.ive sequence u = (uj) such that " u”p <1 and (2) 1S true .

Proof: The proof is difficult. [see 13].
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Now we will give the proofs of the necessity parts of Theorems 2.6.2 and
2.6.3.

Proof of Theorems 2.6.2 and 2.6.3: Suppose that p>4>1 and that the
nonnegative matrix 4 =(a,) maps ¢” into ¢¢. Let C, =(i|A”M)“’+l for nenN.
’ n

Then , by Theorem 2.6.4 , there is a positive sequence u®™ = @) such that

) C) g-1
, <1 and Zaﬁ[Za,.kuf(")] <C, (uj."))p_] s J =12 000
i=1 k=1

Case I. Let p>g>1. Define u=(u;) where u,=liminf{u?). Then | Y, <1

n—m

e

@ © g-1
and Zaij(Za&ukJ < QlA“pq )puj."l. Jj=12, ...
i=1 k=1 '

Case 2. p=gq>1.The proofis difficult. [see 13].




2.7 Factorable Matrix Operators on ¢7 to ¢7.

: . ab, , 1<k<n
2.7.1 Definition: A matrix 4=(a,)?,., of the type a,, = 5 E>n

is called factorable matrix.

G. Bennett in his paper ( see [14] ) gave the following theorem that gives
different equivalent form for the factorable matrix to map ¢ to ¢ with
l<p<g<ow.

2.7.2 Theorem [14,Theorem 2]: : Let '1 <p<g<ow,letaandb be sequences
of nonnegative numbers , and let 4 be a factorable matrix. Then the following
conditions are equivalent.

(1) 4 maps ¢” into ¢¢ ;

(i) there exists X, such that , for m =1,2,.....

Y |

m n q ' m
Z(anzb:'] SKI[be'] ;
n=l k=1 k=1

(iii) there exists X, such that, for m=12,.....

1

1
sf{g ) es
n=m k=1
(iv) there exists X, such that, for m=12,.....
-] -4} p. @ ET‘
Z[kaaj] SK{Za,‘qu
k=m n=k n=m

Where p*'=—2_ and g =—2_.
p-1 qg-1

The proof'is long and complicated and will not be given

here.




Chapter Three

Absolutely P-summing Operators
3.1 The class of absolutely pP-summing operators.

This section establishes the basic facts about the class I1, of absolutely

p-summing operators between Banach spaces. After defining the notion of an
absolutely p-summing operator and giving a brief discussion regarding the
viewpoint of absolutely p-summing operators being operators that increase

the degree of summability of a sequence, we show that I »(X,¥) is a Banach

space with norm z, and we show that I, is an "operator ideal" and
establish the basic inclusion relationship between I1 's of different index.

After that we define the Hilbert —Schmidt operator and we show that the class
of Hilbert-Schmidt operator coincides with the absolutely 2-summing
operators.

We close this chapter with some theorems , and by these theorems we can
determine when the diagonal operator between ¢7 —spaces is absolutely
summing,

3.1.1 Definition[ 3,4]: let 1< p<w, and let X and ¥ be Banach spaces, then
an operator 7': X —Yis said to be absolutely p-summing if there exists a
constant p>0 such that for each natural number » and for each
Xy, Xy 5.0, %, € X, W€ have

1

(St | < s

i=1

x

X st rexy (9

L 1 _
or [Z":"Txillp)p < p sup (Z|<x,-,f>\"]” rl<t, fex
i=l i=1




'''''''

3.1.2 Remarks:

(1) We denote the fact that 7 :X —>Yis absolutely p-summing by
T eIl (X,7) -

(i) For Tell(X,¥) we define the p-summing norm  z,(I) by
ﬂp(T)=inf{p >0: (*)holds }.
(i11) Every absolutely P-summing operator is bounded. Indeed,

let T:X - ¥ be an absolutely p-summing , i.e., there exists a constant p>0

such that for each natural number » and for each x,,x, X, € X, We have

1

(Z:”Tx”pf <p sup {(‘g'f(xf)(p)p =<1, feX‘}. Take in particular n=1,

then we obtain

(1P F < psup {ofmr)% : ufngl}

= | < psup{ ()] :| 1] < 1}
= |IT|<p. Hence T is bounded.

To better understand the definition of absolutely p-summing operators

we consider two classes of vector — valued Séquence spaces: £5°% and ¢ ek,
3.1.3 Definition: If X is a Banach Space and 1< p <o , then a sequence (x,)
In X is said to be strongly p-summable if (%) )e 7 ; in case (x.) is strongly

p-summable we say (x,)e £ and give (x,) the norm

I, )

3.1.4 Definition: If ¥ is a Banach space and 1< p <« , then a sequence (x,)

xﬂ

e = [ (=],

in X is called weakly p-summable if for each feX®, (f(x,)ee?, the set of

all such sequences is denoted by 22 then

[Ger Y = sup {( 2 f ()

P)%:fe X‘,”f“sl} < o,
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When p=1, we call it strongly (weakly) summable.

Now, if 7:X — Y is a bounded linear operator, 7 induces natural
operators from £4¢(X) to £*%(y) and from £**(X)to £ (7), i.e., if (x,)
is strongly summable and 7 is bounded , then
ATl < 20 e =171 X e < o0
i.e. (Ix,) is strongly summable . Similarly, if (x,) is weakly summable and T
is bounded, then 3|/ (Tx,)| =Y |7" £ (x, ) < 2|7 |l G Y = [TN 2007 e )} <0

i.e. (Tx,) is weakly summable. So the question arises when this operator takes

% (X) into £7°"(Y). This happens precisely when T is absolutely p-

summing with the p-summing norm of 7 precisely equal to the operator norm

of the induced operator from £ to £ i.e. if

Tell,(X.,Y) and (x,)e£"™, then (Tx,)e ¢2. Indeed, since T eI, (X.7),

then 3 &> 0 such that Vx,x,,...,x, € X we have,

=

g perfin] o

o |-

Since (xn)eﬁ‘;“’ki(f(xn))efp Vf. le. [ilf(xn]pJ <o,

n=1

This implies sup {[Zn: £ G ) ]; A< 1} <o
=

n p %
50, from (*) we have [ZHTX | ] <w.ie. (Tx,)eere
i=1

A consequence of this is the fact that 7 e I1, (X, Y) precisely when for finitely

nonzero sequence (x,) in X we have for some p >0 that

“ (Txn)"gs;v"s ) = ph (xn)

and, p in (***) is precisely =,(T).

E:,tak (X) (***)




3.1.5 Theorem [ 5]: 11,(X,Y) is a normed linear space with norm 7.

Proof : Welll prove triangle inequality only, let S,7eIl, (X,¥) and let
%y Xip grisesssss ,x, € X, then by considering the finitely nonzero sequence
(x,, Xy 5s %,50:0,...) € X we have

S+ Xl e =S + XN, < QD+ G,

<7z, (S) ”(xk)

gt +7, (1) H(-’LL)

weak
¢ P

= (7,(8) +m, (D) ||(x)

-

it follows that S+7 is absolutely p-summing and that
7, (S+T)<x,(S)+x,(T) QED.

3.1.6 Theorem[ 5]: 11,(x.Y) is a Banach space with norm 7.

Proof : Let (T,) be a =,- Cauchy sequence. Since |T]|<7,(T) always holds,

() is Cauchy in the classical operator norm as well. Therefore there is a

bounded linear operator 7, : X —Y such that lim |7, —7,[=0

claim: 7, eI1,(Xx,Y) and lim 11,(7 - T,)=0.
Proof of claim: Let >0 be given. Choose N, so that whenever m,n> N we
have I1 (T, -T,) <&

Then given any finitely nonzero sequence (x,) of members of X we have
" (Tm —I;!)(xk)

this translates to mean that once mn=N,

s <€ ll(xk)l ek whenever m,n> N, If x, =0 for k >k, then

) 1
ko P

[z I7, %, —z:,xku"]” < &x,)
k=1

weak |
tp

1

k ) 7
If we let m—:-.oo,WC see that (g HToxk - T,x, “ ) s & “(xk)l

weak
194
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So, T,~T, €Il (X,¥) Vn2N and that limT1,(7, -7,)=0.

Now, T, =(Z, ~T,)+T,belongs to I1,(x.¥) as well and the completeness of
I1,(X.Y) with the norm I1,1s established. Q.E.D.

3.1.7 Theorem[ 5]: II, is an operator ideal, i.e.if S: X »> Y and T:Y — Z arc

bounded linear operators one of which is absolutely p-summing, then TS is

absolutely p-summing.

Proof: Suppose T eIl,. Then for any finitely nonzero sequence (x,) in X,

(S s = 2, @) St = 7, OOl
and so YEP(ST)S 7, (T)|S].

Suppose Sell,. Then for any finitely nonzero sequence (r,) inX,

Slrsalf f <rl(Slse 1 F <l )

and so, 7, (TS)<|T|=,(S). Q.E.D.

(x,. Mz‘;’“

It follows from this theorem that we have the following;:

If R:-w—X, S:X—Y and T:Y—>Zare bounded linear operators with
Sell,(x,Y), then TSR is absolutely p-summing with 7,(ZSR)<|T]z,(S)[R].
Now, how do the classes IT, compare for different p's? The answeris in the

following theorem.

3.1.8Theorem[5]: If 1<p<g<ew, then I, (X,¥)cT(X,¥) and the

inclusion map is contractive.

Proof: Let T eI1,(X,Y).Then for any finitely nonzero sequence (x,) of

vectors in X and any sequence (4,) of scalars,

(Shar F =(ShrGa))s 7 @l

11 1
Suppose r is chosen for the purpose: -~ +; =

Then Holder's inequality gives




| ()| s <[ ()

9
Ol 11 we let A =x]r, then
g

f ]} -(Sirry

r

[T e = (5 a7 - {Z [nrx,. :
where |(4)], =Sl } = (Sl

Since we may as well suppose (Z,) is not entirely zeros we see that
Syl =S ) oS )

= T3 Y e /] (21,
<72, (T)|(2ot, )y
<z, (T[], (x,-)
=72, ()6, Y

. Tel(x,y) QED.

E‘;“" /H (/1‘) r

3.1.9 Definition: (Hilbert — Schmidt Operator).
Let Hand K be Hilbert spaces and T:H — K be a bounded linear

operator .We say T is a Hilbert — Schmidt operator if for some complete

1
orthonormal sequence (e,),, inH, ¥.|7e|” <o . The number o{T')= (Z"Te,. ||2F

is called the Hilbert — Schmidt norm of 7. Every Hilbert — Schmidt operator

admits a representation in the form ZA,. <.,e, > f, for some 4, € ¢? and some

orthonormal sequences (e,) and (£,) in Hand K respectively. Indeed

el'
=T(Z< x,e > e )=Z<x,e,. >Te,.=Z”Te,.|]<x,e, >M=Z/L <x,e > f,

T=>1<.,6,> [




=\ \‘*{7

3.1.10 Example[ 5]: If Hand  are Hilbert spaces, then IL,(H,X) coincides

with the class of Hilbert — Schmidt operators from H to X ; moreover, the II,
norm and the Hilbert — Schmidt norm are the same.

Proof : suppose that T:H 5 x ig absolutely 2-summing. Let e,,e,,....e, be

orthonormal vectors.  Then for anyxe#, Y| x.e, >I" <|x|* by Bessel's

1
inequality. Therefore , (Z ||T e; ”2 ) Ry ’ (T ) “(e,. )|

weak
I 2

=, (T)Sup{[glf ) T’

fns1}

=7, (T)sup{(g < x,e; >’ J%, o < 1}

<,(T )sup{( ||x” 2 )%, “x" < 1} =7,(T).

It follows that 7 is a Hilbert — Schmidt operator and o(I') < 7,(T) (*)

Now suppose T is a Hilbert — Schmidt operator and represent 7' in the form

Tx=Y4, <xe, > f, , where (4,)e£, with o(T)=|(4,)], and with (e,) and

(f,) orthonormal sequences in H and K respectively. VxeH we have,
”Tx"z =< Tx,Tx >-—~<Z/1,l <x,e, > [y, Z/’Ln <xe, > f, >

=Y Vil =2l e, >

[illTx, ||2 ]% = [Z 2 J%_s o(r) sup{@lé X, >|2)% | ] < 1}

T "Tx"[;"f"’z = p”(xn mg‘;“k . Here P -':O'(T) .

2

3

2 so for x,x,,..x,€H, we see that

A

n

<xe, >

A,

(<
J Z|< X;,€, >
i=1

-'. T eIl (H;K) and 7,(1)<o(T) ()

- Erom (x) and (+*) we get o(r)=mAT)- QE.D.
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3.2 Absolutely P-Summing Diagonal Operators

Diagonal operators ft
TO — ..
m one ("space to another arc not » - summing in

1, to ' : .
general, to see this consider the diagonal opcrator d,, :£7 — 7% be defined as

’ 1
d ) =(a,x,) where ¢ =—  I[ !
(%) ( ) a, ~ IT 2@ x® ¢ then

Sl -3 Sl |

]

o 3 X
=Zla1‘| Z‘xﬁ")l
j=! i=1

j=1 J° =l
L] - 3 »
. d, 18 not J-summing .

But if we take «, _L1 then d,:£* ¢ is %-summing, indeed let eV
I

denote the sequence with 1 in the j* position, and with 0 elsewhere.

If x® x@ . x" e £, then

o -3(3kt]

=Zlajl;§|xy)li

1

7
\< x(n oy l

i=1

B j=1—f%_
Pl L [ EUVALE

i=l

i\ldax"’\fs p supf ‘nll<x§-"),f S| |1, St} where o ;J‘ <o
i=l

Hence d, is 3-summing.




So we will look for condition(s) on the sequence « =(a,) under which the
diagonal operator d_ be p-summing

In his paper, Garling(sce [2]) proved the following theorem that gives
necessary and sufficient conditions for the diagonal operator 4, to be
p-summing .

3.2.2 Theorem: (Garling's Theorem)[2, Theorem 9].

The mapping d,is r-summing (1<r <) from £7into¢* if and only if - the

following conditions are satisfied:
(i) IflSpSZ and p<g,
ael, fori<r<p
ael, for p<r<q.
M If 1<sp=g<2, aefp_ fori<r<p, aet, for p<r

(i) If p=g=2, ae¢, forall values of r.
(iv)If1<g<p<2, aet, forallvaluesof r.

(v)Ifi<g<2and 2<p<ew, aef,,, forallvaluesof r.

(vi)If 2<g<p<w, aef,fori<r<p
(vi)If 2< p<g<ow, aet,forlsr<p , aef for p<r<gq
(viii) If 2€g<p=o, act, V valuesofr.

In the proof , Garling used the notion of 0-summing and some theorems
depending on this notion . In this thesis we avoid the concept of 0-
summing and we give an alternative proof of the previous theorem
directly as the féllowing theorems.

3.2.3 Theorem: Suppose that 1<r<w, p21 and g >1.
(i) Ifr<g and a <" then d, is r-summing from ¢” into ¢9.

d (ii) If p<r and d,is r-summing from ¢£” into ¢, then a e £".
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(iii) If p<r<gq, d, is r-summing from ¢* into £° iff ae?".
Proof : (i) let ¢ denote the sequence with 1 in the j* position, and with 0

elsewhere. Suppose that r <q and that @ e ¢7. If x",x® _ x0) eg?,

n

ron (e :
S0 =3 2|afx;”r]"
i=1 i=1 \_j=1

Il
s

r n r
(i)
aj[ le,- l
i=

~.
I
—

r n r
(1) o) cw a5l G0 5 _ 5D
ajl Z‘<x e > (v <xV e > =x]")
i=1

I
[Ms

.
1
—

s

J

] sup{i!< X0 s fe@y = E”} Ce?|=n.

o

Zn:|‘dax(i)||r <p sup{i|< 9, f>
i=1 i=1

la

Il
—

r
3

f\?sl,fe(ﬁ"')’=£"} ,

where p =i|aj|r<oo (rael).
Al

So that 4, is »-summing.
(ii) Suppose that p<r and d, is r-summing from £” into¢?, then there

exists a constant p > 0 such that for each natural number » and for each

X0 5@ x) e ¢7, we have

I O R T

In particular,

1

dae(r‘)“r ): < p sup {[ik e f>
i=1

N |-

)

<p sup{(i|<e(f),f>|r]' A=t fe!_’p}

i=

P

i=1

f||51 , fe!.”’}

—
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gpsup[ |<€(’),f>|] ”f”<1 fel?) (since p<r)

1

- [zm] Wlst, rerl <o

= (S

J <p<w.Since n is arbitrary, letting »n— 0, we get

o

=

2.6°) = | <.
Ceoael.
Finally (iii) is a consequence of (i) and (ii). Q.E.D.
3.2.4 Corollary : Suppose that 1<r<wand 1< p=g<2.
() If p<r and a e £” then d, is » -summing from ¢7 into £7.
(i) If r < p and d,is r-summing from ¢7 into £, then a  £7.
Proof : (i) Suppose that 1< p=g<2 and ae¢” for p<r, we want to show
that d, is r-summing. It is sufficient to show that d, is p-summing since
pP=r.
Let % denote the sequence with 1 in the j* position, and with 0 elsewhere.

Suppose that p<r and & e £7. If x5, " e ¢7, then

£
P

Sl ) = ( o ¢ |) (since p=gq).

si\ajr’ sup{i)< 0, 7|1 s e @y =£P}
j=1 i=1

d, is p-summing and hence it is »-summing .

(i) The same as the proof of theorem 3.2.3 (11).




3.2.5 Theorem: IfZSqu:oo , then d, 18 r-summing (1<r<w) from 4

into £7iff aet.

Proof : Suppose that 2<4<p =, d, 1S r-summing Vr. We want to show

that «e¢”. Since d_ is r-summing, then it is bounded . Then by

Theorem 2.2.3 |d,|=||

=80 aef® (sInce d, isbounded).
Conversely, suppose that e ¢°,then the mapping d, :£*> — £? is bounded

for 2 <4 (byTheorem 2.2.3 ). Now ,consider the inclusion mapping i:£' — £*

, then it is 1-summing( by using the Grothendiek's result that says ' every

bounded linear operator from ¢ to a Hilbert space is 1-summing' ), so that
the mapping d,ci=d, is 1-summing from £'to £? ( by Theorem 3.1.7)
d, is r-summing from ¢7 into ¢¢ for 2<g<p=w Q.E.D.

3.2.6 Theorem : Supposethat 1<g< p<w ,then
(i) d_ : 27 - ¢7 is g-summing if o e£7.
(i) aeee? if d,:¢7 —¢7 is g—summing .

Proof : (i) Let ¢ denoté the sequence with 1 in the j” position, and with 0
elsewhere. Suppose that 1<g<p<wo , andthat ae£’.

If x(l)’x(il)’_",x(n) c Ep',

o |

:Z]ndax(")“q = Z@aﬁﬁ” J

n
i=1

n : 1
=Zzyajx§.‘)|
i=l j=1

n

=§l%lq b

i=]

q
<x,¢0 5]

S[ y |aj|q]sup{i|< x, F >|q,||f ||Sl}.

j=l i=1

2, N3 o < x® 7 _<_1}, where

= Seof sup{§|<x YRR

P =i|aj|q <w (since @ e£?). So that 4, is g-summing.
I
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(ii) The same as the proof of Thegrem 3.2.3 (ii)
3.2.7 Corollary :

1) Ifi1<r< r " i i
(1) r<2 and a e ¢ then d, 1S r-summing from ¢* into ¢2.

(i) Ifr=2 and d,is r-summing from ¢? into ¢%, then ae¢’.
(1) d, is 2-summing from 2 into £%iff

T (da) = ”““2 :

a e ¢*. Furthermore ,

Proof : Follows from Theorem 3.2.3 by taking p=¢g=2 . Q.E.D.
3.2.8 Corollary : The mapping d, is 2-summing from £* into ¢* iff d, 1s a
Hilbert-Schmidt operator , Furthermore 7,(d, ) = o(d, ).

Proof : Follows directly from Example 3.1.10 by taking # = K =¢2. Q.E.D.
3.2.9 Corollary : The mapping 4, is a Hilbert-Schmidt operator iff « e 2.

Furthermore , o(d,) = |, .

Proof : Follows directly from Corollaries 3.2.7 and 3.2.8 . Q.E.D.

3.2.10 Corollary : The mapping d, from ¢' into ¢* is bounded iff d,1s 1-
summing. |

Proof : Suppose that d, is 1-summing, then d, 1s bounded ( by Remarks
3.1.2(iii)) . Conversely, suppose that d, is bounded, then d, is 1-summing

( by using the Grothendiek's result that says ' every bounded linear operator

from ¢' to a Hilbert space is 1-summing'). Q.E.D.




3.3 Examples :

3.3.1 Example: if we take p=2 and g=4 in Theorem 3.2.3 we get the
following:d, : £* — ¢* is r-summing for 2<r<4 iff a e ¢’.

3.3.2 Example: if we take p=g=3 1n Corollary 3.2.4 , then we get ,

3. - . 3 o . 1
d,: £ — £ is r-summing for r>3 if ae¢? . In particular , if «, g T

T : . 1 3
d,:£> = £* is r-summing for »>3 since —e¢”
H

3.3.3 Example: if we take g=1 and p=3 in Theorem 3.2.6(i) we get,

d, .47 (' is 1-summing if < ¢'. In particular if we put &, =2, then

d_ :4* - ¢' is 1-summing since a, =27 £".
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