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Abstract

The fractional calculus is a theory of integrals and derivatives of arbitrary (i.e.,

non-integer) order. And it is considered as a natural extension of classical cal-

culus. Thus there are many preserved basic properties between them. This thesis,

consisting of four chapters, explores the concept and definition of fractional calculus.

In this thesis, a brief history and definition of fractional calculus are given. Two

definitions of fractional derivative are considered, namely the Riemann-Liouville and

the Caputo definitions of the fractional derivative. Some illustrative examples are

included. Further we present some basic properties with proofs. Finally, present

some fractional differential equations with an emphasis on the Laplace transform of

the fractional derivative.
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Chapter 1

Introduction

Fractional calculus is a mathematical branch investigating the properties of deriva-

tives and integrals of non-integer orders. The subject of fractional calculus has

gained considerable popularity and importance during the past three decades.

The history of fractional calculus started almost at the same time when classical

calculus was established. The theory of derivative of non-integer order goes back

to Leibniz in September 1695 [16], where the idea of semiderivative was suggested.

Leibniz introduce the symbol

dn

dxn
f(x) n ∈ N

to denote the n-th derivative of a function f . He reported this in a letter to L’Hopital.

L’Hopital replied ”what does
dn

dxn
f(x) mean if n =

1

2
”.

Following L’Hopital’s and Liebniz’s first inquisition, fractional calculus was primar-

ily a study reserved for the best minds in mathematics. Fourier, Euler, Liouville,

Riemann, Laplace are among the many who have provided important contributions

with fractional calculus and the mathematical consequences up to the middle of our

century .[2, 3, 12, 14, 15, 16, ?]
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The easiest access to the idea of the non-integer differential and integral operators

studied in the field of fractional calculus is given by Cauchy’s well known represen-

tation of an n-fold integral [19]

D−ny(x) =

x∫
0

xn−1∫
0

...

x1∫
0

y(x0) dx0 ... dxn−2 dxn−1 (1.1)

Which is given by single integration

D−ny(x) =
1

(n− 1)!

x∫
0

(x− t)n−1y(t) dt, n ∈ N, x ∈ R+ (1.2)

Where D−n is the n-fold integral operator, to obtain a definition of a non-integer

order integral we replace (n− 1)! with Euler’s gamma function Γ(n)

D−αy(x) =
1

Γ(α)

x∫
0

(x− t)α−1y(t) dt, α, x ∈ R+ (1.3)

The fractional derivative of order α can be defined by combining the standard dif-

ferential operator with a fractional integral. In this thesis two different definitions of

the fractional derivative are presented. The first definition, in which the fractional

integral is applied before differentiating, is called the Riemann-Liouville fractional

derivative. The second, in which the fractional integral is applied afterwards, is

called the Caputo derivative. These two forms of the fractional derivative each be-

have a bit differently, as we will see. More details are in [1, 6, 13, 15].

The Laplace transform method has been applied for solving the fractional ordi-

nary differential equations with constant coefficients. The solutions are expressed

in terms of Mittage-Leffller functions [10, 20].
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This thesis contains four chapters in which we summaries the fractional differen-

tiation.

Chapter 1 was the introduction chapter which contained the history and the main

motivation for the idea of the fractional calculus.

In Chapter 2 review on fractional calculus are considered. Also, we talk about the

relation between fractional calculus and classical calculus. In addition we present the

fractional integral; definition, examples, properties and some rules with its proofs.

In Chapter 3 two popular definitions of fractional derivatives are presented. The

main properties and rules of compositions are given.

Chapter 4 presents solving of some fractional differential equations with Riemann-

Liouville and Caputo sense by using the method of Laplace transform.



Chapter 2

Fractional Calculus

In this chapter, we interested in some important functions, which are inherently

tied to fractional calculus. The Gamma function plays the role of the generalized

factorial, the Beta function is necessary to compute fractional derivatives of power

functions; the Mittag-Leffler functions appear in the solution of linear fractional dif-

ferential equations. More information about these functions can be found in [4, 11].

Also we present some basic facts about Laplace transform and its properties. The

basic definition and the concepts of fractional calculus are introduced in [10, 20]. In

addition we present the relation between the classical calculus and fractional calcu-

lus. We discuss Riemann-Liouville fractional integral, which is the most popularized

in the world of fractional calculus, introduce its definition, examples and properties.

More details can be found in [14, 15].

4
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2.1 Special Functions

Before looking at the definitions of fractional calculus we will first introduce and

discuss some special functions, including Gamma and Beta functions and its

properties. We also talk about incomplete gamma function, Digamma function,

Mittag-leffler function and Mellin-Ross function. This set of functions plays an

important role in the theory of fractional calculus as we will see later.

2.1.1 Gamma Function

The simple interpretation of the Gamma function is simply the generalization of the

factorial for all real numbers.

Definition 2.1. [4] The function z → Γ(z), Re z > 0, defined by

Γ(z) =

∞∫
0

tz−1e−t dt , Re z > 0. (2.1)

is called the Gamma function.

Figure 2.1: Gamma Function .
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Properties of Gamma function

Here we will give the most important properties of the Gamma function:

• Γ(1) = Γ(2) = 1.

• Γ(n) = (n− 1)!, n ∈ N.

• Γ(z + 1) = zΓ(z), z ∈ R+.

Proof: To show part 3,

Using integration by parts, we obtain:

Γ(z + 1) =

∞∫
0

tze−t dt

= [−tze−t]∞0 +

∞∫
0

ztz−1e−t dt

= lim
t→∞

(−tze−t)− (0e0) + z

∞∫
0

tz−1e−t dt

But when t→∞, (−tze−t)→ 0.

= z

∞∫
0

tz−1e−t dt

= zΓ(z)

�

Example 2.1. Let us take an example to solve for Γ
(

1
2

)
By definition of the Gamma function (2.1) we have

Γ

(
1

2

)
=

∞∫
0

t−1/2 e−t dt
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Let t = y2, then dt = 2ydy, we have

Γ

(
1

2

)
= 2

∞∫
0

e−y
2

dy (2.2)

we can write (2.2) as

Γ

(
1

2

)
= 2

∞∫
0

e−x
2

dx (2.3)

Thus, if we multiplying (2.2) by (2.3) we get[
Γ

(
1

2

)]2

= 4

∞∫
0

∞∫
0

e−(x2+y2) dxdy (2.4)

equation (2.4) is a multiple integral. We can solve it by using polar coordinates as

follows [
Γ

(
1

2

)]2

= 4

π/2∫
0

∞∫
0

e−r
2

rdrdθ = π

thus,

Γ

(
1

2

)
=
√
π.

2.1.2 Beta Function

Definition 2.2. [4] The function (x, y)→ β(x, y), Re x > 0, Re y > 0, defined by

β(x, y) =

1∫
0

tx−1(1− t)y−1 dt (2.5)

is called the Beta function.

There is a relation between Gamma and Beta functions given in the relation:

β(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
. (2.6)

It should also be mentioned that the Beta function is symmetric, i.e.,

β(x, y) = β(y, x).
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2.1.3 Incomplete Gamma Function

In mathematics, the Upper Incomplete Gamma function and Lower Incomplete

Gamma function are types of special functions, which defined respectively as follows

Definition 2.3. [4] for x,Re z > 0,

Γ(z, x) =

∞∫
x

e−t tz−1 dt. (2.7)

and

γ(z, x) =

x∫
0

e−t tz−1 dt. (2.8)

Γ(z, x), γ(z, x) are called the incomplete Gamma functions related to x.

Note that

Γ(z, x) + γ(z, x) = Γ(z). (2.9)

Definition 2.4. [12] for Re(z) > 0, the Incomplete Gamma Function denoted by

γ∗(z, x) defined as

γ∗(z, x) =
1

Γ(z) xz
γ(z, x) =

1

Γ(z) xz

x∫
0

e−t tz−1 dt. (2.10)

2.1.4 Digamma Function

The Digamma function is a special function, which is given by the logarithmic

derivative of the gamma function as follows

Ψ(x) =
d

dx
ln(Γ(x)) =

Γ′(x)

Γ(x)
. (2.11)
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we can find that in [5] the following relation

1∫
0

xµ−1(1− x)v−1 lnx dx = β(µ, v)[Ψ(µ)−Ψ(µ+ v)]. (2.12)

which we will use later in solving some examples.

2.1.5 The Mittag-Leffler Function

The Mittag-Leffler Function is a special function, which is named after a Swedish

mathematician who defined and studied it in 1903. It is a direct generalization of

the exponential function ex [11]. This function is important in the theory of the

fractional calculus. The Mittag-Leffler function is defined in terms of a power series

as

Eα(x) =
∑∞

k=0
xk

Γ(αk+1)
, α > 0 (2.13)

Eα,β(x) =
∑∞

k=0
xk

Γ(αk+β)
, α > 0, β > 0 (2.14)

Where (2.13) is called a one parameter function of Mittag-Leffler type; whereas

(2.14) is called a two parameter function of Mittag-Leffler type. Observe that (2.14)

is a generalization of (2.13). i.e., when β = 1,

Eα(x) = Eα,1(x)

Note that Eα,β(0) = 1. Also, for some specific values of α and β, the Mittag-Leffler

function reduces to some familiar functions. For example,

E1,1(x) =
∑∞

k=0
xk

Γ(k+1)
=
∑∞

k=0
xk

k!
= ex (2.15)

E1,2(x) =
∑∞

k=0
xk

Γ(k+2)
= 1

x

∑∞
k=0

xk+1

(k+1)!
= ex−1

x
(2.16)
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2.1.6 The Mellin-Ross Function

The Mellin-Ross function, arises when finding the fractional derivative of an expo-

nential. The function is closely related to both the incomplete Gamma and Mittag-

Leffler functions [11]. Its definition is given by

Et(z, a) = tz eat γ∗(z, t) (2.17)

which is can also written as

Et(z, a) = tz
∑∞

k=0

(at)k

Γ(k + z + 1)
= tz E1,z+1(at) (2.18)

2.1.7 Euler’s Constant

Euler’s constant is a mathematical constant recurring in analysis and number the-

ory, usually denoted by the γ. It is defined as the limiting difference between the

harmonic series and the natural logarithm:

γ = lim
n→∞

(
n∑
k=1

1

k
− lnn

)
(2.19)

and has the numerical value γ = 0.577...

2.2 Laplace Transform

In this section we interested in Laplace transform definition, properties, some theo-

rems and examples.

Definition 2.5. [21] Let f be a function defined for t ≥ 0. Then the integral

F (s) = L {f(t)} =

∞∫
0

e−stf(t) dt = lim
A→∞

A∫
0

e−stf(t) dt
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is said to be the Laplace transform of f , provided that the integral converges.

Definition 2.6. [21] we say a function f(t) is exponentially bounded or of expo-

nential order if there exists non negative numbers a, k and M such that

|f(t)| ≤ keat, t ≥M. (2.20)

Definition 2.7. A function f is said to be piecewise continuous on a bounded

interval if it has a finite number of discontinuities and the left and right limits exist

at each discontinuity. It is said to be piecewise continuous on [0,∞] if it is piecewise

continuous on every bounded subinterval I ⊂ [0,∞].

Theorem 2.1. [21] Suppose f is piecewise continuous on [0,∞] and exponentially

bounded. Then L {f} = F (s) exists for all s > a.

Next, we take some examples of finding Laplace transform for particular cases.

Example 2.2. Find Laplace transform of f(t) = tn, n ∈ N

Solution:

By definition, the Laplace transform of f(t) is

F (s) = L {f(t)} = lim
A→∞

A∫
0

e−sttn dt
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Integration by parts

= lim
A→∞

tn e−st
−s

∣∣∣∣A
0

+
n

s

A∫
0

e−sttn−1 dt


=

n

s
L {tn−1}

By induction method we obtain

L {tn} =
n!

sn+1
, s > 0.

Example 2.3. Find Laplace transform of the function f(t) = eat.

Solution:

The Laplace transform of the function f(t) is

F (s) = L {f(t)} = lim
A→∞

A∫
0

e−steat dt

= lim
A→∞

A∫
0

e−(s−a)t dt

= lim
A→∞

−1

s− a
e−(s−a)t

∣∣∣∣A
0

=
1

s− a

• Properties of Laplace transform

1. Linearity

L {c1f(t) + c2g(t)} = c1L {f(t)}+ c2L {g(t)} (2.21)

The proof follows by definition.
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2. First Derivative

L {f ′(t)} = sL {f(t)} − f(0) (2.22)

Proof:

L {f ′(t)} =

∞∫
0

e−stf ′(t) dt

Integrating by parts

= e−stf(t)

∣∣∣∣∞
0

+

∞∫
0

se−stf(t) dt

= sL {f(t)} − f(0)

3. Higher order Derivative

L {f (n)(t)} = snL {f(t)} − sn−1f(0)− sn−2f ′(0)− ...− sf (n−2)(0)− f (n−1)(0)

(2.23)

Table 2.2 gives a summary of some useful Laplace transform pairs. We will Notice

that the Mittag-Leffler function is very important. Next we will give a theorem and

proof it for one relation.

Theorem 2.2. [20]

L −1

[
sα−β

sα − a

]
= tβ−1Eα,β(atα), |a| < |sα|, α, β ∈ R+ (2.24)
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Proof :

Take the Laplace transform for the right side

L {tβ−1Eα,β(atα)} =

∞∫
0

e−sttβ−1Eα,β(atα) dt

using (2.14) we have

L {tβ−1Eα,β(atα)} =

∞∫
0

e−sttβ−1

∞∑
k=0

(atα)k

Γ(αk + β)
dt

=
∞∑
k=0

ak

Γ(αk + β)

∞∫
0

e−sttαk+β−1 dt

=
∞∑
k=0

ak

Γ(αk + β)
L {tαk+β−1}

We know that L {tα} = Γ(α+1)
sα+1 , using it we have

∞∑
k=0

ak

Γ(αk + β)
L {tαk+β−1} =

∞∑
k=0

ak

Γ(αk + β)

Γ(αk + β)

sαk+β

=
1

sβ

∞∑
k=0

( a
sα

)k
Here we obtain a geometric series, which is converges as n→∞ for

∣∣ a
sα

∣∣ < 1

1

sβ

∞∑
k=0

( a
sα

)k
=

sα−β

(sα − a)

Thus, we get

L −1

[
sα−β

sα − a

]
= tβ−1Eα,β(atα)

�
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Figure 2.2: Table 2.2: Laplace transform pairs [8].
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2.3 Review on Fractional Calculus

Fractional Calculus is a generalization of the classical calculus, It is a field of

mathematics study, that grows out of the traditional definitions of the calculus in-

tegral and derivative operators. It has been used successfully in various fields of

science and engineering.[2, ?, 15]

Fractional Calculus has its origin in the question of the extension of meaning. In

generalized integration and differentiation the question of the extension of meaning

is: Can the meaning of derivatives of integer order
dny

dxn
be extended to have meaning

where n is any number; real, irrational, fractional or complex? This question was

first advanced by L’Hopital in a letter dated September 30th, 1695. When he wrote

to Leibniz asked him ”what the result would be if n =
1

2
”. Leibniz replied ”it will

lead to a paradox”. But he added ”From this apparent paradox, someday it would

lead to useful consequences”[15].

Thereafter, many known mathematicians contributed to the theory of Fractional

Calculus over the years. Among them Euler, Laplace, Fourier, Lacroix, Abel, Rie-

mann and Liouville, Weyl, Leibniz, Grunwald and Letnikov [2, 3, 12, 14, 15, 16, ?].

Each used their own notation and they found many concepts of a non-integer order

integral or derivative. The field of Fractional Calculus had been studied extensively

by many researcher for name few [12, 13, 14, 15, 16].

In 1730 Euler mentioned interpolating between integral orders of a derivative. In

1812 Laplace defined a fractional derivative by means of an integral, and the first dis-

cussion of a derivative of fractional order appeared in a calculus written by Lacroix

in 1819 [3].
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• Lacroix Definition [17]

Lacroix develops a formula for fractional differentiation for the n-th derivative of

xm where m is a positive integer, by induction.

starting with

y = xm,

the first derivative is as usual
dy

dx
= mxm−1.

Repeating this n-times we get

dny

dxn
=

m!

(m− n)!
xm−n,m ≥ n.

Which, after replacing the factorials with the gamma function, leads to

dny

dxn
=

Γ(m+ 1)

Γ(m− n+ 1)
xm−n.

Thus, let m = 1, and replace n by
1

2
, one obtains the order

1

2
of the function x

d1/2y

dx1/2
=

Γ(2)

Γ(3/2)
x1/2 =

2√
π

√
x.

• Fourier’s Definition [12]

Fourier’s talked about fractional derivative of arbitrary order. His integral repre-

sentation of f(x) is

f(x) =
1

2π

∞∫
−∞

f(α) dα

∞∫
−∞

cos[p(x− α) +
nπ

2
] dp

He obtained the definition of fractional operation from this formula as follow

dn

dxn
cos[p(x− α)] = pncos[p(x− α) +

nπ

2
]
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Replacing n by u where u is arbitrary (positive or negative), getting

du

dxu
f(x) =

1

2π

∞∫
−∞

f(α) dα

∞∫
−∞

pucos[p(x− α) +
uπ

2
] dp.

• Abel’s Definition [12]

Abel in 1823 was the first who use the fractional operations, he applied the fractional

calculus in the solution of an integral equation which arises in the formulation of

tautochrone problem [13]. Explains the tautochrone problem as ”The tautochrone

problem is the problem of determining the shape of the curve such that the time

of descent of a frictionless point mass sliding down the curve under the action of

gravity is independent of the starting point”[13]. In this problem the time of slide

is a known constant K such that

K =

x∫
0

(x− t)−1/2f(t) dt

=
√
π

x∫
0

1

Γ
(

1
2

)(x− t)−1/2f(t) dt

=
√
π
d−1/2

dx−1/2
f(x)

then he differentiated both sides of the equation to order
1

2
, obtained

d1/2

dx1/2
K =

√
πf(x)

• Liouville’s First Definition [12, 17]

Liouville who made the first major study of fractional calculus, give two definitions

in this area. He was successful in applying his definitions to problems in theory. His

first definition comes from

Dn(eax) = aneax , n ∈ Z+
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which he generalized it for derivatives of any arbitrary order v

Dv(eax) = aveax

Thus, for any function f(x) can be expressed into a series
∑∞

n=0 cne
anx whereRe an >

0,∀n. The fractional derivative of f(x) is

Dvf(x) =
∞∑
n=0

cn(an)veanx.

• Liouville’s Second Definition [12, 17]

Liouville second definition based on the definite integral related to Gamma integral

I =

∞∫
0

ua−1e−xu du , x > 0 , a > 0

If we make a substitution t = xu, then dt = xdu and we get

I =

∞∫
0

(
t

x

)a−1

e−t
1

x
dt

= x−a
∞∫

0

ta−1e−t dt

= x−aΓ(a).

Thus,

x−a =
1

Γ(a)

∞∫
0

ua−1e−xu du

Hence we can find the fractional derivative of x−a for a > 0. By taking Dv for both

sides above, we have

Dvx−a =
1

Γ(a)
Dv

 ∞∫
0

ua−1e−xu du


=

1

Γ(a)

∞∫
0

ua−1(−1)vuve−xu du
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=
(−1)v

Γ(a)

∞∫
0

ua+v−1e−xu du

Substitute t = xu again, we get dt = xdu, then

=
(−1)v

Γ(a)

∞∫
0

(
t

x

)a+v−1

e−t
dt

x

Hence,

Dvx−a =
(−1)vΓ(v + a)

Γ(a)
x−a−v , a > 0 , x > 0.

We note that Liouville first definition is restricted just for the functions which

can be expressed as a trigonometric series, whereas the second definition is useful for

functions of the type x−a for a > 0. Observe that both are definitions of fractional

derivative.

• Riemann’s Definition [12, 17]

Riemann; when he was a student he developed his theory of fractional integration.

His definition is given as

D−vf(x) =
1

Γ(v)

x∫
c

(x− t)v−1f(t) dt+ Ψ(x)

Where Ψ(x) is a complementary function. For the confusion in the lower limit of

integration c, he added the function Ψ(x). ”The complementary function is essen-

tially an attempt to provide a measure of the deviation from the law of exponents.

For example, this law, as mentioned later, is cD
−µ
x cD

−v
x f(x) =c D

−µ−v
x f(x)and is

valid when the lower terminals c are equal. Riemann was concerned with a measure

of deviation for the case cD
−µ
x c′D

−v
x f(x) when c 6= c′” [13].

• Riemann-Liouville’s Definition [12]

The first calculation of the definition of the Riemann-Liouville of the fractional inte-

gral was in 1869, N. Ya. Sonin published a paper, ”On differentiation with arbitrary
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index”[18]. The definition is based on the Cauchy formula for the nth integral, is

given by

cD
−v
x f(x) =

1

Γ(v)

x∫
c

(x− t)v−1f(t) dt , Re x > 0

If we compare it with Riemann definition. We see that they are the same without

the complementary function Ψ(x). Later we will talk in details about Riemann-

Liouville’s Definition, because it is the most popular definition in fractional calculus.

2.4 Relation Between Fractional Calculus and Clas-

sical Calculus

This section shows the relation between the fractional calculus and the classical cal-

culus. In addition we present some challenges to fractional calculus.

Since the fractional calculus is a generalization of the classical calculus, so it is

-classical calculus- considered as a part of the fractional one, because when we are

dealing with the real-order operation (which are differentiation or integration), this

already include the integer-order operation.

As we know about the classical calculus, derivative and integral are uniquely de-

termined, which also applies for the fractional integral, whereas there are a several

definitions for a fractional derivative, which are inconsistent. Oftentimes, some

definitions are not equivalent to each other, which makes the situation more com-

plicated.
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2.5 Fractional Integration

In this section we present the fractional integration topic. Specifically Riemann-

Liouville fractional integral, definition, and properties. This subject had been stud-

ied extensively by [8, 12, 19].

2.5.1 Definition of Riemann-Liouville Fractional Integral

We begin this section by stating Cauchy formula for repeated integration [19].

Theorem 2.3. (Cauchy formula for repeated integration). Let f be some continuous

function on the interval [a,b]. The n-th repeated integral of f based at a,

f (−n)(x) =

x∫
a

τ1∫
a

...

τn−1∫
a

f(τn) dτn dτn−1 ...dτ2 dτ1,

is given by single integration:

f (−n)(x) =
1

(n− 1)!

x∫
a

(x− t)n−1f(t) dt

Proof:

We use mathematical induction to prove this theorem, the case n = 1. We have
x∫
a

f(τ1) dτ1 =
1

(0)!

x∫
a

(x− t)0f(t) dt

Thus, the statement holds for n = 1. Let the statement holds for some arbitrary n.

We will prove it for n+ 1

f (−(n+1))(x) =

x∫
a

τ1∫
a

...

τn∫
a

f(τn+1) dτn+1 dτn ...dτ2 dτ1

=
1

(n− 1)!

x∫
a

τ1∫
a

(τ1 − t)n−1f(t) dtdτ1
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=
1

(n− 1)!

x∫
a

x∫
t

(τ1 − t)n−1f(t) dτ1dt

=
1

(n)!

x∫
a

((x− t)n − (t− t)n)f(t) dt

=
1

(n)!

x∫
a

(x− t)nf(t) dt

�

From this formula the definition of fractional integral is constructed, so we can take

an integral of any real degree. Replacing (n − 1)! by Γ(n) and the power n in the

integrand with some α ∈ R+, we have Riemann-Liouville fractional integral.

Definition 2.8. [19] (Riemann-Liouville Operator). Let f be a continuous function

with α ∈ R+ and x ∈ R. The fractional integral of order α is defined as:

D−αf(x) =
1

Γ(α)

x∫
0

(x− t)α−1f(t) dt (2.25)

2.5.2 Examples of Riemann-Liouville Fractional Integration

Example 2.4. Power Function

Suppose we want to find the fractional integral for the power function f(x) = xm,

m ∈ N.

By definition of Riemann-Liouville fractional integral we have

D−αxm =
1

Γ(α)

x∫
0

(x− t)α−1tm dt

Letting t = ux, 0 ≤ u ≤ 1, then dt = xdu, we get

D−αxm =
1

Γ(α)

1∫
0

(x− ux)α−1(ux)m xdu
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=
1

Γ(α)

1∫
0

xα+m(1− u)α−1um du

=
xα+m

Γ(α)

1∫
0

(1− u)α−1um du

=
xα+m

Γ(α)
β(α,m+ 1)

=
xα+m

Γ(α)

Γ(α)Γ(m+ 1)

Γ(α +m+ 1)

=
Γ(m+ 1)

Γ(α +m+ 1)
xα+m

Thus, the fractional integral of a power function is

D−αxm =
Γ(m+ 1)

Γ(α +m+ 1)
xα+m. (2.26)

Example 2.5. Find the fractional integral with α = 1 ”classical integral” for the

function f(x) = x2

Solution:

Using equation (2.26) we obtain

D−1x2 =
Γ(2 + 1)

Γ(1 + 2 + 1)
x1+2

=
1

3
x3

Example 2.6. Constant Function

To find the fractional integral of any constant function K we obtain the following

D−αK =
1

Γ(α)

x∫
0

(x− t)α−1K dt

=
K

Γ(α)

x∫
0

(x− t)α−1 dt
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Let t = xu, then dt = xdu, for 0 ≤ u ≤, we obtain

D−αK =
K

Γ(α)

1∫
0

(x− xu)α−1 xdu

=
Kxα

Γ(α)

1∫
0

(1− u)α−1 du

=
Kxα

Γ(α)
β(1, α)

=
Kxα

Γ(α)

Γ(1)Γ(α)

Γ(α + 1)

=
K

Γ(α + 1)
xα

Hence, we can say that for any constant function K the Riemann-Liouville fractional

integral is given by

D−αK =
K

Γ(α + 1)
xα. (2.27)

Example 2.7. If we want to find the traditional integral for any constant function

K we have

x∫
0

Kdt = Kx

Which we can get by substitute α = 1 in (2.27)

Example 2.8. Exponential Function

Suppose we wish to find the fractional integral of the exponential function eax.

D−αeax =
1

Γ(α)

x∫
0

(x− t)α−1eat dt
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Using the change of the variable by letting t = x(1 − u), for 0 ≤ u ≤ 1 and

dt = −xdu. We obtain

D−αeax =
1

Γ(α)

0∫
1

(x− x(1− u))α−1eax(1−u) (−x)du

=
1

Γ(α)

1∫
0

xαuα−1eaxe−axu du

=
xαeax

Γ(α)

1∫
0

uα−1e−axu du

Substituting r = axu, dr = axdu, we have

D−αeax =
xαeax

Γ(α)

ax∫
0

( r

ax

)α−1

e−r
1

ax
dr

=
xαeax

Γ(α)

1

(ax)α

ax∫
0

rα−1e−r dr

= xαeaxγ∗(α, ax) using equation (2.10)

= Ex(α, a) using equation (2.17)

Thus, we have that

D−αeax = Ex(α, a). (2.28)

Example 2.9. If we take α = 2 in equation (2.28) we obtain

D−2eax =
1

Γ(2)

x∫
0

(x− t)2−1eat dt

=
eax

a2
+
x

a
− 1

a2

Which is the same when we integrate eax double integral.
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Example 2.10. Find the fractional integral of the function lnx.

Solution:

By using definition of fractional integral we obtain

D−αf(x) =
1

Γ(α)

x∫
0

(x− t)α−1f(t) dt

D−α lnx =
1

Γ(α)

x∫
0

(x− t)α−1 ln t dt

Let t = xu, we have dt = xdu, for 0 ≤ u ≤ 1, we then obtain

D−α lnx =
1

Γ(α)

1∫
0

(x− xu)α−1 ln(xu) xdu

=
xα

Γ(α)

1∫
0

(1− u)α−1 ln(xu) du

=
xα

Γ(α)

 1∫
0

(1− u)α−1 lnx du+

1∫
0

(1− u)α−1 lnu du


=

xα

Γ(α)
lnxβ(1, α) +

xα

Γ(α)

1∫
0

(1− u)α−1 lnu du

By using the property of the logarithms and using equation (2.19). By equation

(2.12) we get

D−α lnx =
xα

Γ(α)

Γ(1)Γ(α)

Γ(α + 1)
lnx+

xα

Γ(α)
β(1, α)[Ψ(1)−Ψ(α + 1)]

=
xα

Γ(α + 1)
lnx+

xα

Γ(α)

Γ(1)Γ(α)

Γ(α + 1)
[−γ −Ψ(α + 1)]

=
xα

Γ(α + 1)
lnx+

xα

Γ(α + 1)
[−γ −Ψ(α + 1)]

=
xα

Γ(α + 1)
[lnx− γ −Ψ(α + 1)]
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Example 2.11. In this example we aim to have an equation to find the fractional

integral of the functions of the form g(x) = xf(x). By definition we have

D−αg(x) =
1

Γ(α)

x∫
0

(x− t)α−1g(t) dt

=
1

Γ(α)

x∫
0

(x− t)α−1tf(t) dt

=
1

Γ(α)

x∫
0

(x− t)α−1[x− (x− t)]f(t) dt

=
1

Γ(α)

x∫
0

(x− t)α−1xf(t) dt − 1

Γ(α)

x∫
0

(x− t)αf(t) dt

=
x

Γ(α)

x∫
0

(x− t)α−1f(t) dt − α

αΓ(α)

x∫
0

(x− t)αf(t) dt

= xD−αf(x)− α

Γ(α + 1)

x∫
0

(x− t)αf(t) dt

= xD−αf(x)− αD−(α+1)f(x)

From this example we can find the fractional integral of any function in the form

xf(x). So we can say that this is a general example.

2.5.3 Properties of Riemann-Liouville Fractional Integral

Now, let us talk about the properties of the Riemann-Liouville fractional integral.

• D0f(x) = f(x), i.e., D0 = I where I is the identity operator.

• Linearity

Lemma 2.4. [19] Let α > 0,C,K ∈ R, and let f and g be functions such that

their fractional integrals exist. Then

D−α[Cf(x) +Kg(x)] = CD−αf(x) +KD−αg(x) (2.29)
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Proof:

D−α[Cf(x) +Kg(x)] =
1

Γ(α)

x∫
0

(x− t)α−1[Cf(t) +Kg(t)] dt

=
1

Γ(α)

x∫
0

(x− t)α−1[Cf(t)] dt+
1

Γ(α)

x∫
0

(x− t)α−1[Kg(t)] dt

=
C

Γ(α)

x∫
0

(x− t)α−1f(t) dt+
K

Γ(α)

x∫
0

(x− t)α−1g(t) dt

= CD−αf(x) +KD−αg(x).

�

• The Law of Exponents for Fractional Integrals

Lemma 2.5. [8] Let α, µ > 0, and let f be continuous function such that their

fractional integral exist. Then

D−µ[D−αf(x)] = D−(α+µ)f(x) = D−α[D−µf(x)] (2.30)

Before we give a proof, we will present Dirichlet formula, because we have to

use it in the proof.

Dirichlet’s formula [8] Let h be jointly continuous on the Euclidean plane,

and let µ, α be positive numbers. Then

t∫
0

x∫
0

(t−x)µ−1(x− y)α−1h(x, y) dxdy =

t∫
0

t∫
y

(t−x)µ−1(x− y)α−1h(x, y) dydx

(2.31)

We will use a special case of a Dirichlet’s formula when h(x, y) = f(y), then

(2.31) takes the form

t∫
0

x∫
0

(t− x)µ−1(x− y)α−1f(y) dxdy = β(µ, α)

t∫
0

(t− y)µ+α−1f(y) dy (2.32)
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Now, we prove the lemma.

Proof:

By definition of Riemann-Liouville fractional integral we have

D−µ[D−αf(x)] =
1

Γ(µ)

x∫
0

(x− t)µ−1[D−αf(t)] dt

=
1

Γ(µ)

x∫
0

(x− t)µ−1

 1

Γ(α)

t∫
0

(t− y)α−1f(y) dy

 dt
=

1

Γ(µ)Γ(α)

x∫
0

t∫
0

(x− t)µ−1(t− y)α−1f(y) dydt

=
1

Γ(µ)Γ(α)
β(µ, α)

x∫
0

(x− y)µ+α−1f(y) dy

=
1

Γ(µ+ α)

x∫
0

(x− y)µ+α−1f(y) dy

= D−(α+µ)f(x).

�

• The Derivatives of the Fractional Integral and the Fractional Integral

of the Derivatives

We will now consider the cases when we differentiate the fractional integral of

order α, or when we take the α + 1 fractional integral of the first derivative.

Next we have a theorem about this cases.

Theorem 2.6. [12] Let f be continuous on [0,∞), and let α > 0.

1. If Df is integrable over any subinterval in [0,∞). Then

D−α−1[Df(x)] = D−αf(x)− f(0)

Γ(α + 1)
xα (2.33)

2. If Df is continuous on [0,∞), then for x > 0

D[D−αf(x)] = D−α[Df(x)] +
f(0)

Γ(α)
xα−1 (2.34)
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Proof:

1. By definition we have

D−α−1[Df(x)] =
1

Γ(α + 1)

x∫
0

(x− t)αDf(t) dt

integrating by parts with

u = (x− t)α dv = Df(t)dt

du = −α(x− t)α−1dt v = f(t)

D−α−1[Df(x)] =
1

Γ(α + 1)

(x− t)αf(t)

∣∣∣∣x
0

+

x∫
0

α(x− t)α−1f(t) dt


=

1

Γ(α + 1)

−xαf(0) + α

x∫
0

(x− t)α−1f(t) dt


= D−αf(x)− f(0)

Γ(α + 1)
xα

�

2. By definition,

D−αf(x) =
1

Γ(α)

x∫
0

(x− t)α−1f(t) dt

Let t = x− uλ where λ =
1

α
, then dt = (−λuλ−1)du for 0 ≤ u ≤ xα, we have

then

D−αf(x) =
1

Γ(α)

0∫
xα

(uλ)α−1f(x− uλ)(−λuλ−1) du
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=
λ

Γ(α)

xα∫
0

uλ(α−1)uλ−1f(x− uλ) du

=
1

αΓ(α)

xα∫
0

f(x− uλ) du

=
1

Γ(α + 1)

xα∫
0

f(x− uλ) du

Now, taking the operator D for both sides, getting

D[D−αf(x)] =
d

dx

 1

Γ(α + 1)

xα∫
0

f(x− uλ) du



Here, we need to use the Leibniz’s Integral Rule which states that

d

dx

 b(x)∫
0

f(x, t) dt

 = f(x, b(x))b′(x) +

b(x)∫
0

∂

∂x
f(x, t) dt (2.35)

Therefore,

D[D−αf(x)] =
1

Γ(α + 1)

f(x− (xα)λ)αxα−1 +

xα∫
0

∂

∂x
f(x− uλ) du


=

1

Γ(α + 1)

f(0)αxα−1 +

xα∫
0

∂

∂x
f(x− uλ) du



refer to the assumption (x− uλ) = t, henceforth,

D[D−αf(x)] =
αf(0)

Γ(α + 1)
xα +

1

Γ(α + 1)

0∫
x

∂

∂x
f(t)

(
1

−λ
u1−λ

)
dt
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Simplify it we have

D[D−αf(x)] =
f(0)

Γ(α)
xα +

α

Γ(α + 1)

x∫
0

(x− t)α−1 ∂

∂x
f(t) dt

=
f(0)

Γ(α)
xα +

1

Γ(α)

x∫
0

(x− t)α−1 ∂

∂x
f(t) dt

=
f(0)

Γ(α)
xα +D−α[Df(x)]

�

Hence, we conclude that

D[D−αf(x)] 6= D−α[Df(x)]. (2.36)



Chapter 3

Fractional Differentiation

In chapter 2, we introduced the fractional integral of a function f(x), we presented

it before fractional differentiation because the definition of the fractional derivatives

depends on the definition of the fractional integration.

In this chapter, we introduce the definition of the fractional derivative, specifically

Riemann Liouville definition and Caputo definition since they are the most com-

mon and used in fractional calculus world. We will give some examples of fractional

derivatives for elementary functions. In addition we present the most important

properties and its proofs. Finally we will derive some relations for composition of

the fractional derivative. More details about this subject can be found in [7, 9, 15].

3.1 Riemann Liouville Fractional Derivative

In this section, we are interested in Riemann Liouville fractional derivative, firstly;

its definition, then present some examples, after this we will introduce its properties.

Then we will derive some rules for the composition of fractional derivative.

34
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3.1.1 Definition of Riemann-Liouville Fractional Derivative

The Riemann-Liouville fractional derivative can be defined using the definition of the

Riemann-Liouville fractional integral, it is an ordinary derivative of the fractional

integral i.e.,

D[D−(1−α)f(x)] = D[D−1D−(1−α−1)f(x)]

= D[D−1Dαf(x)]

= Dαf(x)

Hence,

D[D−(1−α)f(x)] = Dαf(x)

Now, using the definition of the fractional integral we get

Dαf(x) =
d

dx

 1

Γ(1− α)

x∫
0

(x− t)−αf(t) dt


=

1

Γ(1− α)

d

dx

x∫
0

(x− t)−αf(t) dt

If we differentiate the fractional integral n-times so we have

Dαf(x) =
d

dx

d

dx

d

dx
...
d

dx︸ ︷︷ ︸
n

D−(n−α)f(x)

Hence,

Dαf(x) = Dn[D−(n−α)f(x)] , n− 1 ≤ α < n (3.1)

Now, we can give the definition of the Riemann-Liouville fractional derivative
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Definition 3.1. [15] Let f : R → R be a continuous function. The Riemann-

Liouville fractional derivative of order α of a function f(x) is given by:

Dαf(x) =


1

Γ(n−α)
dn

dxn

x∫
0

f(t)
(x−t)α−n+1 dt, n− 1 ≤ α < n

dn

dxn
f(x), α = n ∈ N

(3.2)

Where Γ(α) denotes Eulers Gamma function.

3.1.2 Examples of Riemann-Liouville Fractional Derivative

Example 3.1. Constant function

If f(x) = K, where K is a constant, then Dαf(x) = K
Γ(1−α)

x−α

Solution:

By definition of Riemann-Liouville fractional derivative we have

Dαf(x) =
1

Γ(n− α)

dn

dxn

x∫
0

f(t)

(x− t)α−n+1
dt

DαK =
1

Γ(n− α)

dn

dxn

x∫
0

K

(x− t)α−n+1
dt

Let t = xu, 0 ≤ u ≤ 1 and dt = xdu, then

DαK =
K

Γ(n− α)

dn

dxn

1∫
0

(x− xu)n−α−1 xdu

=
K

Γ(n− α)

dn

dxn
xn−α

1∫
0

(1− u)n−α−1 du

=
K

Γ(n− α)

dn

dxn
xn−αβ(1, n− α)

=
K

Γ(n− α)

dn

dxn
xn−α

Γ(n− α)Γ(1)

Γ(n− α + 1)

=
K

Γ(n− α + 1)

dn

dxn
xn−α
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=
K

Γ(n− α + 1)

Γ(n− α + 1)

Γ(1− α)
x−α

=
K

Γ(1− α)
x−α

Thus, we have establish that

DαK =
K

Γ(1− α)
x−α (3.3)

From this example we can say that, the fractional derivative of a constant is not

zero by Riemann-Liouville definition. Note that it is inconsistent result, since the

result is a function of x.

Example 3.2. Power Function

Suppose we wish to find the fractional derivative of the power function f(x) = xm ,

m ≥ 0.

Solution:

By the definition of Riemann-Liouville fractional derivative we obtain

Dα(x)m =
1

Γ(n− α)

dn

dxn

x∫
0

(t)m

(x− t)α−n+1
dt

set t = ux for 0 ≤ u ≤ 1, dt = xdu, we get

Dα(x)m =
1

Γ(n− α)

dn

dxn

1∫
0

(xu)m(x(1− u))n−α−1 xdu

=
1

Γ(n− α)

dn

dxn
xm+n−α

1∫
0

um(1− u)n−α−1 du

=
1

Γ(n− α)

dn

dxn
xm+n−αβ(m+ 1, n− α)

=
1

Γ(n− α)

dn

dxn
xm+n−αΓ(m+ 1)Γ(n− α)

Γ(m+ n− α + 1)
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=
Γ(m+ 1)

Γ(m+ n− α + 1)

dn

dxn
xm+n−α

=
Γ(m+ 1)

Γ(m+ n− α + 1)

Γ(m+ n− α + 1)

Γ(m− α + 1)
xm−α

=
Γ(m+ 1)

Γ(m− α + 1)
xm−α

In the above example which is known as the power rule we obtain

Dαxm =
Γ(m+ 1)

Γ(m− α + 1)
xm−α ,m ≥ 0 (3.4)

From this formula we can find the fractional derivative of any polynomial, by taking

fractional derivatives of each term separately.

Example 3.3. Find the second derivative of the function f(x) = x2.

Solution:

Using equation (3.4) we obtain

D2x2 =
Γ(2 + 1)

Γ(2− 2 + 1)
x2−2

= 2

Which is the same result when we differentiate x2 twice in classical derivative.

Example 3.4. Let us take f(x) = x2 as an example to find some of its fractional

derivatives

1. if α =
1

3
then D1/3x2 =

Γ(3)

Γ(8/3)
x5/3

2. if α =
1

2
then D1/2x2 =

Γ(3)

Γ(5/2)
x3/2

3. if α =
3

4
then D3/4x2 =

Γ(3)

Γ(9/4)
x5/4

Figure 3.1 illustrated these results.
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Figure 3.1: Fractional Derivatives of f(x) = x2 .

Example 3.5. Exponential Function

Suppose we want to find the fractional derivative of the exponential function eax.

Solution:

We want to solve this example by using equation (3.1), because it is more fitting.

So we have

Dαeax = Dn[D−(n−α)eax]

= Dn

 1

Γ(n− α)

x∫
0

e(at)

(x− t)α−n+1
dt


= Dn

 1

Γ(n− α)

x∫
0

e(at)(x− t)n−α−1 dt



using the change of variable by letting t = x(1−u), for 0 ≤ u ≤ 1 and dt = −xdu.

Dαeax = Dn

 1

Γ(n− α)

1∫
0

(x− x(1− u))n−α−1eax(1−u) xdu


= Dn

 1

Γ(n− α)

1∫
0

xn−αun−α−1eaxe−axu du


= Dn

 eaxxn−α

Γ(n− α)

1∫
0

un−α−1e−axu du
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Using the substitution r = axu, dr = axdu. then

Dαeax = Dn

 xn−αeax

Γ(n− α)

ax∫
0

( r

ax

)n−α−1

e−r
dr

ax


= Dn

 xn−αeax

Γ(n− α)

1

(ax)n−α

ax∫
0

rn−α−1e−r dr


= Dn

[
eaxxn−αγ∗(n− α, ax)

]
using equation (2.10)

= Dn [Ex(n− α, a)] using equation (2.17)

Recall theorem (2.6) in chapter 2 we have

D−α−1[Df(x)] = D−αf(x)− f(0)

Γ(α + 1)
xα

and

D[D−αf(x)] = D−α[Df(x)] +
f(0)

Γ(α)
xα−1

Thus,

D−α−1[Deax] = D−α−1[aeax] = D−αeax − f(0)

Γ(α + 1)
xα

and

D[D−αeax] = D−α[aeax] +
f(0)

Γ(α)
xα−1

Using the fractional integral of exponential

aEx(α + 1, a) = Ex(α, a)− f(0)

Γ(α + 1)
xα

D[Ex(α, a)] = aEx(α, a) +
f(0)

Γ(α)
xα−1

If we replace α by α− 1 in the first equation we have

aEx(α, a) = Ex(α− 1, a)− f(0)

Γ(α)
xα−1

Substitute aEx(α, a) in the second equation, we get

D[Ex(α, a)] = Ex(α− 1, a)− f(0)

Γ(α)
xα−1 +

f(0)

Γ(α)
xα−1
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Thus,

D[Ex(α, a)] = Ex(α− 1, a)

similar, we can obtain

Dn[Ex(n− α, a)] = Ex(n− α− n, a) = Ex(−α, a)

3.1.3 Properties of Riemann Liouville Fractional Derivative

Now after talking about the definition and examples, we are interested in study

some basic properties of Riemann-Liouville fractional derivative and their proofs.

• Representation

For n− 1 ≤ α < n, n ∈ N, and f(x) be such that Dαf(x) exists, then

Dαf(x) = Dn[D−(n−α)f(x)] (3.5)

This shows that the Riemann-Liouville fractional derivative is equivalent to

the composition of nth differentiation after (n− α) integration.

• Linearity

Lemma 3.1. [15] Let n− 1 ≤ α < n, n ∈ Z+, α, λ ∈ C and the functions f(x)

and g(x) be such that both Dαf(x) and Dαg(x) exist. The Riemann Liouville

fractional derivative is a linear operator, i.e.,

Dα(λf(x) + g(x)) = λDαf(x) +Dαg(x) (3.6)
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Proof:

By the definition of Riemann Liouville fractional derivative we have

D(α)f(x) =
1

Γ(n− α)

dn

dxn

x∫
0

f(t)

(x− t)α−n+1
dt

Dα(λf(x) + g(x)) =
1

Γ(n− α)

dn

dxn

x∫
0

(λf(x) + g(x))

(x− t)α−n+1
dt

=
1

Γ(n− α)

dn

dxn

x∫
0

(λf(x))

(x− t)α−n+1
dt

+
1

Γ(n− α)

dn

dxn

x∫
0

g(x)

(x− t)α−n+1
dt

=
λ

Γ(n− α)

dn

dxn

x∫
0

f(x)

(x− t)α−n+1
dt

+
1

Γ(n− α)

dn

dxn

x∫
0

g(x)

(x− t)α−n+1
dt

= λDαf(x) +Dαg(x)

�

• Interpolation

Lemma 3.2. [7] Let n − 1 < α < n, n ∈ N, and f(x) be such that Dαf(x)

exists, then the following is hold for the Riemann-Liouville fractional derivative

lim
α→n

Dαf(x) = f (n)(x) (3.7)

lim
α→n−1

Dαf(x) = f (n−1)(x) (3.8)

Proof:

Dαf(x) =
1

Γ(n− α)

dn

dxn

x∫
0

f(t)

(x− t)α−n+1
dt
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using integration by parts, then

u = f(t) dv = (x− t)n−α−1dt

du = f ′(t)dt v = −(x−t)n−α
(n−α)

Thus,

Dαf(x) =
1

Γ(n− α)

dn

dxn

 −f(t)

(n− α)
(x− t)n−α

∣∣∣∣∣
x

0

+

x∫
0

f ′(t)

(n− α)(x− t)n−α
dt


=

1

Γ(n− α + 1)

dn

dxn

f(0)xn−α +

x∫
0

f ′(t)

(x− t)n−α
dt



Now, for α→ n and α→ n− 1 respectively we have

lim
α→n

Dαf(x) =
dn

dxn

(
f(0) + f(t)

∣∣∣∣x
0

)
= f (n)(x)

and

lim
α→n−1

Dαf(x) =
dn

dxn

(f(0)x+ f(t)(x− t)
∣∣∣∣x
0

)
+

x∫
0

f(t) dt


=

dn

dxn

x∫
0

f(t) dt

= f (n−1)(x).

�

• Non-commutation

Lemma 3.3. [7] Suppose that n − 1 < α < n, m,n ∈ N, and the function

f(x) is such that Dαf(x) exists. Then in general

DmDαf(x) = Dα+mf(x) 6= DαDmf(x) (3.9)
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Proof:

We want to proof it using equation (3.1)

Dαf(x) = Dn[D−(n−α)f(x)]

DmDαf(x) = DmDn[D−(n−α)f(x)]

= DnDm[D−(n−α)f(x)]

= DnDmD−m[D−(n−α−m)f(x)]

= Dn[D−(n−α−m)f(x)]

= Dα+mf(x)

�

To show that Riemann-Liouville derivative is not commutative we will give a

counter example

Example 3.6. Take f(x) = x, m = 2, α = 1/3. Then

D1/3D2x = 0

Where

D2D1/3x = D2

[
Γ(1 + 1)

Γ(1− 1/3 + 1)
x1−1/3

]
=

−1

3Γ(2/3)
x−4/3

Thus, Rimann-Liouville derivative is not commute.
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3.1.4 Composition with Riemann-Liouville Fractional Deriva-

tive

• Fractional derivative of fractional integral

Lemma 3.4. [9] Let n− 1 ≤ α < n, m− 1 ≤ β < m. n,m ∈ N, and f(x) be

such that Dαf(x) exists, then we have two cases:

1. β ≥ α ≥ 0

Dα[D−βf(x)] = Dα[D−αD−(β−α)f(x)]

= Dα−βf(x)

2. α > β ≥ 0

Dα[D−βf(x)] =
dn

dxn
[D−(n−α)(D−βf(x)]

=
dn

dxn
[Dα−β−n]

= Dα−βf(x)

Both cases give the same result, so we have

Dα[D−βf(x)] = Dα−βf(x), α, β > 0 (3.10)

• Fractional derivative of the fractional integral of the same order

Corollary 3.5. Let n − 1 ≤ α < n, n ∈ N, and f(x) be such that Dαf(x)

exists, then

Dα[D−αf(x)] = f(x) (3.11)

Proof:

Dα[D−αf(x)] = Dn[D−(n−α)(D−αf(x))]
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= Dn[D−nf(x)]

= f(x)

�

• Fractional integral of the fractional derivative

Lemma 3.6. [9] Let n − 1 ≤ α < n, m − 1 ≤ β < m. m,n ∈ N, and f(x)

be such that Dαf(x) exists, we have the same for β ≥ α ≥ 0 and α > β ≥ 0,

then

D−α[Dβf(x)] = D−α+βf(x)−
m∑
k=1

Dβ−kf(0)
xα−k

Γ(α− k + 1)
(3.12)

Proof:

D−α[Dβf(x)] = D−(α−β)D−β[Dβf(x)]

= Dβ−α[D−βDβf(x)]

= Dβ−α

 1

Γ(β)

x∫
0

(x− t)β−1Dβf(t) dt


= Dβ−α

 1

Γ(β + 1)

d

dx

x∫
0

(x− t)β d
n

dxn
D−(n−β)f(t) dt



Now integrating by parts

u = (x− t)β dv = dn

dxn
D−(n−β)f(t) dt

du = −β(x− t)β−1dt v = dn−1

dxn−1D
−(n−β)f(t)

Repeating this process n times we get

D−βDβf(x) =
d

dx
D−(β+1−n)[D−(n−β)f(x)]−

n∑
k=1

Dβ−kf(0)
xβ−k

Γ(β − k + 1)

= f(x)−
n∑
k=1

Dβ−kf(0)
xβ−k

Γ(β − k + 1)
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Thus,

D−α[Dβf(x)] = Dβ−α

[
f(x)−

m∑
k=1

Dβ−kf(0)
xα−k

Γ(α− k + 1)

]

= D−α+βf(x)−
m∑
k=1

Dβ−kf(0)Dβ−α xα−k

Γ(α− k + 1)

By using the rule of the power function we obtain

= D−α+βf(x)−
m∑
k=1

Dβ−kf(0)
Γ(α− k + 1)

Γ(α− k + 1)

xα−k

Γ(α− k + 1)

= D−α+βf(x)−
m∑
k=1

Dβ−kf(0)
xα−k

Γ(α− k + 1)

�

• Fractional integral of the fractional derivative of the same order

Corollary 3.7. [9] Let n− 1 ≤ α < n, n ∈ N, and f(x) be such that Dαf(x)

exists, then

D−αDαf(x) = f(x)−
n∑
k=1

Dα−kf(0)
xα−k

Γ(α− k + 1)
(3.13)

• Fractional derivative of fractional derivative

Lemma 3.8. [9] Let n − 1 ≤ α < n, n − 1 ≤ β < n n,m ∈ N, and f(x) be

such that Dαf(x) exists, then

Dα[Dβf(x)] = Dα+βf(x)−
m∑
k=1

Dβ−kf(0)
x−α−k

Γ(1− α− k)
(3.14)

Proof:

Dα[Dβf(x)] = Dn[D−(n−α)(Dβf(x))]
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Using (3.12)

= Dn[D−(n−α)+βf(x)−
m∑
k=1

Dβ−kf(0)
xn−α−k

Γ(n− α− k + 1)

= Dα+βf(x)−
m∑
k=1

Dβ−kf(0)
Γ(n− α− k + 1)

Γ(n− α− k + 1)

x−α−k

Γ(−α− k + 1)

= Dα+βf(x)−
m∑
k=1

Dβ−kf(0)
x−α−k

Γ(−α− k + 1)

�

• Laplace transform of Riemann-Liouville fractional derivative

Lemma 3.9. [15] Suppose that F (s) is the Laplace transform of f(x). Then

the Laplace transform of the Riemann-Liouville fractional differential operator

of order α is given by

L {Dαf(t)} = sαF (s)−
n−1∑
k=0

sk[Dα−k−1f(t)]t=0 (3.15)

Proof:

Using equation (3.1) which is

Dαf(x) = Dn[D−(n−α)f(x)]

Take Laplace transform, obtain

L {Dαf(t)} = L {Dn[D−(n−α)f(t)]}

= snL {D−(n−α)f(t)} −
n−1∑
k=0

sn−k−1Dk[D−(n−α)f(t)]t=0

= sn[s−(n−α)F (s)]−
n−1∑
k=0

sn−k−1Dk−(n−α)f(0)

= sαF (s)−
n−1∑
k=0

sn−k−1Dk−(n−α)f(0)

�
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3.2 Caputo Fractional Derivative

In this section we will define Caputo fractional derivative and give some examples.

then we study its properties. More details are in [7, 15].

3.2.1 Definition of Caputo Fractional Derivative

Caputo fractional derivative is defined using the definition of Riemann-Liouville

fractional integral, the idea is fractional integrating the derivative of a function not

a function itself, i.e.,

D−(1−α)[Df(x)] =
1

Γ(1− α)

x∫
0

(x− t)α d
dt
f(t) dt

Also,

D−(2−α)[D2f(x)] =
1

Γ(2− α)

x∫
0

(x− t)α−1 d
2

dt2
f(t) dt

Repeating this n times we obtain

Dα
∗ f(x) = D−(n−α) d

dx

d

dx

d

dx
...
d

dx︸ ︷︷ ︸
n

f(x)

Hence,

Dα
∗ f(x) = D−(n−α)[Dnf(x)] (3.16)

Thus, we can now introduce the definition of the Caputo fractional derivative.

Definition 3.2. [15] Let f : R→ R be a continuous function. The Caputo fractional

derivative of order α of a function f(x) is given by:

Dα
∗ f(x) =


1

Γ(n− α)

x∫
0

f (n)(t)

(x− t)α−n+1
dt, n− 1 ≤ α < n

dn

dxn
f(x), α = n ∈ N

(3.17)
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3.2.2 Examples of Caputo Fractional Derivative

Example 3.7. Constant Function

Suppose we want to find Caputo derivative for any constant function K. By defini-

tion we have

Dα
∗ f(x) =

1

Γ(n− α)

x∫
0

f (n)(t)

(x− t)α−n+1
dt

Dα
∗K =

1

Γ(n− α)

x∫
0

K(n)

(x− t)α−n+1
dt

= 0

Thus, we have

Dα
∗K = 0 (3.18)

we can say that the fractional derivative of any constant function using Caputo def-

inition is consistent. Since it is equal to zero.

Example 3.8. Power Function

Assume we aim to find the Caputo derivative of a power function f(x) = xm, m ≥ 0.

Solution:

By Caputo definition we have

Dα
∗ f(x) =

1

Γ(n− α)

x∫
0

f (n)(t)

(x− t)α−n+1
dt

Dα
∗ x

m =
1

Γ(n− α)

x∫
0

(tm)(n)

(x− t)α−n+1
dt

But we know that
dn

dxn
xm =

Γ(m+ 1)

Γ(m− n+ 1)
xm−n
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So our Caputo derivative is given by:

Dα
∗ x

m =
1

Γ(n− α)

x∫
0

(x− t)n−α−1 Γ(m+ 1)

Γ(m− n+ 1)
tm−n dt

=
Γ(m+ 1)

Γ(n− α)Γ(m− n+ 1)

x∫
0

(x− t)n−α−1tm−n dt

put t = xu, 0 ≤ u ≤ 1, and dt = xdu

Dα
∗ x

m =
Γ(m+ 1)

Γ(n− α)Γ(m− n+ 1)

1∫
0

(x− xu)n−α−1(xu)m−n xdu

=
Γ(m+ 1)

Γ(n− α)Γ(m− n+ 1)

1∫
0

xn−α−1(1− u)n−α−1um−nxm−n+1 du

=
Γ(m+ 1)

Γ(n− α)Γ(m− n+ 1)

1∫
0

xm−α(1− u)n−α−1um−n du

=
Γ(m+ 1)

Γ(n− α)Γ(m− n+ 1)
xm−α

1∫
0

(1− u)n−α−1um−n du

=
Γ(m+ 1)

Γ(n− α)Γ(m− n+ 1)
xm−αβ(m− n+ 1, n− α)

=
Γ(m+ 1)

Γ(n− α)Γ(m− n+ 1)
xm−α

Γ(m− n+ 1)Γ(n− α)

Γ(m− α + 1)

=
Γ(m+ 1)

Γ(m− α + 1)
xm−α

Hence,

Dα
∗ x

m =
Γ(m+ 1)

Γ(m− α + 1)
xm−α (3.19)

We can find the Caputo derivative of any polynomial by this equation taking each

term separately.
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Example 3.9. Find the Caputo Derivative of the function f(x) = x3 with α = 2.

Solution:

Dα
∗ x

m =
Γ(m+ 1)

Γ(m− α + 1)
xm−α

D2
∗x

3 =
Γ(3 + 1)

Γ(3− 2 + 1)
x3−2

= 6x.

Example 3.10. If we want to find the Caputo derivative of the exponential function

eax we have by definition

Dα
∗ f(x) =

1

Γ(n− α)

x∫
0

f (n)(t)

(x− t)α−n+1
dt

Dα
∗ e

ax =
1

Γ(n− α)

x∫
0

dn

dtn
eat

(x− t)α−n+1
dt

=
an

Γ(n− α)

x∫
0

eat

(x− t)α−n+1
dt

= anEx(n− α, a)

3.2.3 Properties of Caputo Fractional Derivative

In this section we will study the properties of Caputo fractional derivative and its

proofs.

• Representation

For n− 1 ≤ α < n, n ∈ N, and f(x) be such that Dα
∗ f(x) exists, then

Dα
∗ f(x) = D−(n−α)[Dnf(x)] (3.20)

This show that the Caputo fractional derivative is equivalent to the composi-

tion of (n− α) integration after nth differentiation.
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• Linearity

Lemma 3.10. [7] Let n−1 ≤ α < n, n ∈ Z+, α, λ ∈ C and the functions f(x)

and g(x) be such that both Dα
∗ f(x) and Dα

∗ g(x) exist. The Caputo fractional

derivative is a linear operator,i.e.,

Dα
∗ (λf(x) + g(x)) = λDα

∗ f(x) +Dα
∗ g(x) (3.21)

Proof:

By the definition of Caputo fractional derivative we have

Dα
∗ f(x) =

1

Γ(n− α)

x∫
0

f (n)(t)

(x− t)α−n+1
dt

Dα
∗ (λf(x) + g(x)) =

1

Γ(n− α)

x∫
0

(λf(x) + g(x))(n)

(x− t)α−n+1
dt

=
1

Γ(n− α)

x∫
0

(λf (n)(x))

(x− t)α−n+1
dt+

1

Γ(n− α)

x∫
0

g(n)(x)

(x− t)α−n+1
dt

=
λ

Γ(n− α)

x∫
0

f (n)(x)

(x− t)α−n+1
dt+

1

Γ(n− α)

x∫
0

g(n)(x)

(x− t)α−n+1
dt

= λDα
∗ f(x) +Dα

∗ g(x)

�

• Interpolation

Lemma 3.11. [15] Let n− 1 < α < n, n ∈ N, and f(x) be such that Dα
∗ f(x)

exist, then the following is hold for the Caputo fractional derivative

lim
α→n

Dα
∗ f(x) = f (n)(x), (3.22)

lim
α→n−1

Dα
∗ f(x) = f (n−1)(x)− f (n−1)(0). (3.23)
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Proof:

Dα
∗ f(x) =

1

Γ(n− α)

x∫
0

f (n)(t)

(x− t)α−n+1
dt

By using integration by parts then we have

u = f (n)(t) dv = (x− t)n−α−1dt

du = f (n+1)(t)dt v =
−(x− t)n−α

(n− α)

Thus,

Dα
∗ f(x) =

1

Γ(n− α)

−f (n)(t)

(n− α)
(x− t)n−α

∣∣∣∣∣
x

0

+

x∫
0

f (n+1)(t)

(n− α)(x− t)α−n
dt


=

1

Γ(n− α + 1)

f (n)(0)xn−α +

x∫
0

f (n+1)(t)

(x− t)α−n
dt


Now, for α→ n and α→ n− 1 respectively we have

lim
α→n

Dα
∗ f(x) = (f (n)(0) + f (n)(t)

∣∣∣∣x
0

) = f (n)(x)

and

lim
α→n−1

Dα
∗ f(x) =

(
f (n)(0)x+ f (n)(t)(x− t)

∣∣∣∣x
0

)
+

x∫
0

f (n)(t) dt

= f (n−1)(t)

∣∣∣∣x
0

= f (n−1)(x)− f (n−1)(0).

�

• Non-commutation

Lemma 3.12. [7] Suppose that n − 1 < α < n, m,n ∈ N, and the function

f(x) is such that Dα
∗ f(x) exists. Then in general

Dα
∗D

mf(x) = Dα+m
∗ f(x) 6= DmDα

∗ f(x) (3.24)
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Proof:

Dα
∗D

mf(x) = D−(n−α)[DnDmf(x)]

= D−(n−α)[DmDnf(x)]

= D−(n−α)DmD−m[DmDnf(x)]

= D−(n−α−m)[Dnf(x)]

= Dm+α
∗

�

Now we give counter example to show that the Caputo derivative is not com-

mute

Example 3.11. Take f(x) = x2, α = 1
2
, m = 3. Then

D1/2
∗ D3

∗x
2 = 0

But

D3
∗D

1/2
∗ x2 = D3

∗

[
Γ(2 + 1)

Γ(2− 1/2 + 1)
x2−1/2

]
=

−2

5
√
π
x−3/2

Thus, Caputo derivative is not commute.

• Fractional integral of fractional derivative of the same order

Lemma 3.13. Let n − 1 ≤ α < n, n ∈ N, and f(x) be such that Dα
∗ f(x)

exists, then we have

D−α[Dα
∗ f(x)] = f(x)−

n∑
k=1

Dα−kf(0)
xα−k

Γ(α− k + 1)
(3.25)
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Proof:

D−α[Dα
∗ f(x)] = D−α[D−(n−α)(Dnf(x))]

= D−α[Dαf(x)]

= f(x)−
n∑
k=1

Dα−kf(0)
xα−k

Γ(α− k + 1)
using equation (3.13).

�

• Fractional derivative of fractional integral of the same order

Lemma 3.14. Let n − 1 ≤ α < n, n ∈ N, and f(x) be such that Dα
∗ f(x)

exists, then we have

Dα
∗ [D−αf(x)] = f(x) (3.26)

Proof:

Dα
∗ [D−αf(x)] = D−(n−α)[Dn(D−α)f(x)]

= Dα[D−αf(x)]

= f(x) using equation (3.11).

�

• Laplace transform of Caputo fractional derivative

Lemma 3.15. [15] Suppose that F (s) is the Laplace transform of f(x). Then

the Laplace transform of the Caputo fractional differential operator of order α

is given by

L {Dα
∗ f(t)} = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0) (3.27)
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Proof:

We will use the equation

Dα
∗ f(x) = D−(n−α)[Dnf(x)]

Take Laplace transform

L {Dα
∗ f(t)} = L {D−(n−α)[Dnf(x)]}

= s−(n−α)L {Dnf(t)}

= s−(n−α)

(
snF (s)−

n−1∑
k=0

sα−k−1f (k)(0)

)

= sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0)

�

• Relation between Riemann-Liouville and Caputo fractional deriva-

tive

Theorem 3.16. [7] Let x > 0, α ∈ R, n−1 ≤ α < n ∈ N. Then the following

relation between the Riemann-Liouville and Caputo derivative hold

Dα
∗ f(x) = Dαf(x)−

n−1∑
k=0

xk−α

Γ(k + 1− α)
f (k)(0) (3.28)

Proof:

We will begin our proof with the definition of Riemann-Liouville derivative,

then we integrating by parts as follows

Dαf(x) =
1

Γ(n− α)

dn

dxn

x∫
0

f(t)

(x− t)α−n+1
dt
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Now, let

u = f(t) dv = (x− t)n−α−1dt

du = f ′(t)dt v =
−(x− t)n−α

(n− α)

Thus, we have

=
1

Γ(n− α)

dn

dxn

−(x− t)n−αf(t)

n− α

∣∣∣∣x
0

+

x∫
0

f ′(t)(x− t)n−α

n− α
dt


=

1

Γ(n− α)

dn

dxn

xn−αf(0)

n− α
+

x∫
0

f ′(t)(x− t)n−α

n− α
dt


Integrating by parts n− 1 times we get

=
dn

dxn

n−1∑
k=0

xn+k−αf (k)(0)

Γ(n+ k − α + 1)
+

1

Γ(2n− α)

x∫
0

(x− t)2n−α−1f (n)(t) dt

=
n−1∑
k=0

xk−αf (k)(0)

Γ(k − α + 1)
+

1

Γ(n− α)

x∫
0

(x− t)n−α−1f (n)(t) dt

=
n−1∑
k=0

xk−αf (k)(0)

Γ(k − α + 1)
+Dα

∗ f(x)

�



Chapter 4

Fractional Differential Equations

After introducing the definition of the Riemann-Liouville and Caputo fractional

derivative, some examples, properties and relations. Also finding the Laplace trans-

form of these definitions, we will now study fractional differential equations (FDEs),

that is the study of equations involving fractional derivatives, and solving it by ap-

plying the Laplace transform.

Before solving some fractional differential equations, we will give sufficient condi-

tions for existence and uniqueness of solutions. We will introduce only the existence

and uniqueness theorem for a continuous case of general linear fractional differential

equations (LFDEs) with a Riemann-Liouville and Caputo fractional derivatives.

For the initial value problems for fractional differential equations with fractional

derivatives in the Riemann-Liouville sense, it should be given as (bounded) ini-

tial values of the fractional integral D−(n−α) and of its integer derivatives of order

k = 1, 2, ..., n. For fractional differential equations with fractional derivatives in the

Caputo sense, only the initial values of the function and its integer derivatives of

order k = 0, 1, ..., n− 1 are required.

59
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The Laplace transform of the Caputo fractional derivative is a generalization of

the Laplace transform of the integer-order derivative, where n is replaced by α. The

same does not hold for the Riemann-Liouville case. This property is an important

advantage of the Caputo operator over the Riemann-Liouville operator. For more

details see [10, 20, 15].

4.1 The Existence and Uniqueness Theorem

In this section, we will introduce only the existence and uniqueness theorem for a

continuous case of general linear fractional differential equations

Linear Fractional Differential Equations

Consider the following initial-value problem

Dαmy(t) +
m−1∑
k=1

pk(t)D
αm−ky(t) + pm(t)y(t) = f(t), (4.1)

Dαk−ry(t)

∣∣∣∣
t=0

= bk, (4.2)

Where n − 1 ≤ αm < n, αm > αm−1 > αm−2 > ... > α2 > α1 > 0, k = 1, ...,m,

0 < t < T <∞ and r = −[−αk]. And f(t) ∈ L1(0, T ), i.e.

T∫
0

|f(t)| dt <∞.

Theorem 4.1. [15] (Existence and Uniqueness for LFDEs)

If f(t) ∈ L1(0, T ), and pj(t)(j = 1, ..., n) are continuous functions in the closed

interval [0, T ], the the initial value problem (4.1)-(4.2) has a unique solution

y(t) ∈ L1(0, T ).

The proof of this theorem can be found in details in [15] page 124.
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4.2 Linear Fractional Differential Equations (LFDE)

In this section, we will apply the Laplace transform to solve some fractional order

differential equations, which is one of the most powerful methods of solving LFDEs

with constant coefficients.

Definition 4.1. [12] A linear homogeneous fractional differential equation with

constant coefficients is an equation of the form

Dαmy(t) + b1D
αm−1y(t) + b2D

αm−2y(t) + ...+ bmD
α0y(t) = 0 (4.3)

Where αi’s are real numbers with αm > αm−1 > αm−2 > ... > α0, and the bi’s are

constants.

Definition 4.2. A linear non-homogeneous fractional differential equation with con-

stant coefficients is an equation of the form

Dαmy(t) + b1D
αm−1y(t) + b2D

αm−2y(t) + ...+ bmD
α0y(t) = h(t) (4.4)

Where αi’s are real numbers with αm > αm−1 > αm−2 > ... > α0, and the bi’s are

constants.
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4.2.1 Fractional Differential Equations with Riemann-Liouville

Derivative

Example 4.1. Suppose we want to find the solution of the initial value problem in

the following form

Dαy(t) = 0, (t > 0); (4.5)

Dα−ky(t)
∣∣
t=0

= bk, (k = 1, 2, ..., n), (4.6)

where n− 1 ≤ α < n.

Solution:

To solve this problem, taking Laplace transform for equation (4.5) getting

L {Dαy(t)} = 0

Which implies

sαY (s)−
n∑
k=1

sk−1[Dα−ky(t)]t=0 = 0

Solving it with respect to Y (s), we have

Y (s) =
n∑
k=1

sk−1

sα
[Dα−ky(t)]t=0

Substitute the initial conditions in (4.6)

Y (s) =
n∑
k=1

1

sα−k+1
bk

Take Laplace inverse, and using table 2.2 we have

y(t) =
n∑
k=1

tα−k

Γ(α− k + 1)
bk

So we can say that the solution of the equation (4.5) with initial conditions (4.6)

is of the form

y(t) =
n∑
k=1

tα−k

Γ(α− k + 1)
bk (4.7)
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Example 4.2. Solve the differential equation

D4/3y(t) = 0,

with initial conditions D1/3y(0) = b1 and D−2/3y(0) = b2

Solution:

Taking the Laplace transform of both sides of the equation we have

L {D4/3y(t)} = 0

which implies that

s4/3Y (s)−
2∑

k=1

sk−1[D4/3−ky(t)]t=0 = 0

which is equal

s4/3Y (s)−D1/3y(0)− sD−2/3y(0) = 0

Solving for Y (s). Then it becomes

Y (s) =
D1/3y(0) + sD−2/3y(0)

s4/3

substituting the initial conditions we have

Y (s) =
b1

s4/3
+
b2s

s4/3

Finally, we find the inverse Laplace of Y (s) and conclude that the solution is given

as follows

y(t) = L −1

[
b1

s4/3

]
+ L −1

[
b2s

s4/3

]
= b1

t1/3

Γ(4/3)
+ b2

t−2/3

Γ(1/3)
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Example 4.3. Let us consider the initial value problem for a homogeneous fractional

differential equation under non-zero initial conditions

Dαy(t)− λy(t) = 0, (t > 0); (4.8)

Dα−ky(t)
∣∣
t=0

= bk, (k = 1, 2, ..., n), (4.9)

where n− 1 ≤ α < n.

Solution:

To solve this initial value problem we will use the Laplace transform method as we

said before, so applying the Laplace transform to the fractional differential equation

(4.8) we have by

L {Dαy(t)} −L {λy(t)} = 0

which becomes

sαY (s)−
n−1∑
k=0

sk[Dα−k−1y(t)]t=0 − λY (s) = 0

but this is same as

sαY (s)−
n∑
k=1

sk−1[Dα−ky(t)]t=0 − λY (s) = 0

this equation can be solved with respect to Y (s) as follows

Y (s) =
n∑
k=1

sk−1

sα − λ
[Dα−ky(t)]t=0

Now substituting the initial conditions in (4.9) we have

Y (s) =
n∑
k=1

bk
sk−1

sα − λ

Taking the Laplace inverse and using the table of Laplace transform pairs 2.2 we

obtain

y(t) =
n∑
k=1

bkt
α−kEα,α−k+1(λtα)
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Hence, the fractional differential equation (4.8) with initial conditions (4.9) has

its solution of the form

y(t) =
n∑
k=1

bkt
α−kEα,α−k+1(λtα) (4.10)

Example 4.4. Solve the following fractional differential equation

D2/5y(t)− 5y(t) = 0,

D2/5−1y(0) = b1

Solution:

Taking Laplace transform for each term

L {D2/5y(t)} −L {5y(t)} = 0

Then we obtain

s2/5Y (s)−D2/5−1y(0)− 5Y (s) = 0

Solving with respect to Y (s) and substituting the initial condition

Y (s) =
b1

s2/5 − 5

After taking inverse Laplace transform and using table 2.2 we have

y(t) = b1t
−3/5E2/5,2/5(5t2/5)
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Example 4.5. Let us consider the following equation

Dα2y(t) + λ1D
α1y(t) + λ2y(t) = 0, (t > 0); (4.11)

Dα2−ky(t)
∣∣
t=0

= bk, (k = 1, 2, ..., n), (4.12)

Dα1−jy(t)
∣∣
t=0

= cj, (j = 1, 2, ...,m), (4.13)

where n− 1 ≤ α2 < n, and m− 1 ≤ α1 < m.

Solution:

Take Laplace transform for each term in equation (4.11), we have

L {Dα2y(t)}+ L {λ1D
α1y(t)}+ L {λ2y(t)} = 0

Then it becomes

sα2Y (s)−
n−1∑
k=0

sk[Dα2−k−1y(t)]t=0+λ1s
α1Y (s)−λ1

m−1∑
j=0

sj[Dα1−j−1y(t)]t=0+λ2Y (s) = 0

Which is the same of

sα2Y (s)−
n∑
k=1

sk−1[Dα2−ky(t)]t=0+λ1s
α1Y (s)−λ1

m∑
j=1

sj−1[Dα1−jy(t)]t=0+λ2Y (s) = 0

Solve it with respect to Y (s) we obtain

Y (s) =

∑n
k=1 s

k−1[Dα2−ky(t)]t=0 + λ1

∑m
j=1 s

j−1[Dα1−jy(t)]t=0

sα2 + λ1sα1 + λ2

Substitute the initial conditions in (4.12)

Y (s) =

∑n
k=1 s

k−1bk + λ1

∑m
j=1 s

j−1cj

sα2 + λ1sα1 + λ2

Put D2 =
∑n

k=1 s
k−1bk and D1 =

∑m
j=1 s

j−1cj
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Thus we have

Y (s) =
D2 + λ1D1

sα2 + λ1sα1 + λ2

=
D2 + λ1D1

sα2 + λ1sα1
.

1

1 + λ2
sα2+λ1sα1

=
D2s

−α1 + λ1D1s
−α1

sα2−α1 + λ1

.

∞∑
i=0

(
−λ2

sα2 + λ1sα1

)i
=

D2s
−α1 + λ1D1s

−α1

sα2−α1 + λ1

.

∞∑
i=0

(
−λ2

sα2 + λ1sα1

)i(
s−α1

s−α1

)i
=

D2s
−α1 + λ1D1s

−α1

sα2−α1 + λ1

.

∞∑
i=0

(−λ2s
−α1)i

(sα2−α1 + λ1)i

=
∞∑
i=0

(−λ2)i
D2s

−α1−α1i + λ1D1s
−α1−α1i

(sα2−α1 + λ1)i+1

=
∞∑
i=0

(−λ2)i
∑n

k=1 s
k−1bks

−α1−α1i + λ1

∑m
j=1 s

j−1cjs
−α1−α1i

(sα2−α1 + λ1)i+1

=
∞∑
i=0

(−λ2)i
∑n

k=1 s
k−1−α1−α1ibk + λ1

∑m
j=1 s

j−1−α1−α1icj

(sα2−α1 + λ1)i+1

=
∞∑
i=0

(−λ2)i

[
n∑
k=1

sk−1−α1−α1i

(sα2−α1 + λ1)i+1
bk + λ1

m∑
j=1

sj−1−α1−α1i

(sα2−α1 + λ1)i+1
cj

]

=
∞∑
i=0

(−λ2)i

[
n∑
k=1

sk−1−α2i−α2

(1 + λ1sα1−α2)i+1
bk + λ1

m∑
j=1

sj−1−α2i−α2

(1 + λ1sα1−α2)i+1
cj

]

=
∞∑
i=0

(−λ2)i

[
n∑
k=1

bks
k−1−α2i−α2

∞∑
r=0

(
i+ r

r

)(
−λ1s

α1−α2
)r

+ λ1

m∑
j=1

cjs
j−1−α2i−α2

∞∑
z=0

(
i+ z

z

)(
−λ1s

α1−α2
)z ]

=
∞∑
i=0

(−λ2)i

[
n∑
k=1

bk

∞∑
r=0

(
i+ r

r

)
(−λ1)rsα1r−α2r−α2i−α2−1+k

+ λ1

m∑
j=1

cj

∞∑
z=0

(
i+ z

z

)
(−λ1)zsα1z−α2z−α2i−α2−1+j

]
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Then taking Laplace inverse transform, we have a solution y(t) given in the form

y(t) =
∞∑
i=0

(−λ2)i

i!

[
n∑
k=1

bk

∞∑
r=0

Γ(i+ r + 1)(−λ1)r

Γ(α2r + α2i+ α2 − α1r − k + 1)
.
tα2r+α2i+α2−α1r−k

r!

+ λ1

m∑
j=1

cj

∞∑
z=0

Γ(i+ z + 1)(−λ1)z

Γ(α2z + α2i+ α2 − α1z − j + 1)
.
tα2z+α2i+α2−α1z−j

z!

]

Example 4.6. Consider the initial value problem for a non-homogeneous fractional

differential equation under non-zero initial conditions

Dαy(t)− λy(t) = h(t), (t > 0); (4.14)

Dα−ky(t)
∣∣
t=0

= bk, (k = 1, 2, ..., n), (4.15)

where n− 1 ≤ α < n.

Solution:

In order to solve this fractional equation, we take Laplace transform to each term

as follows

L {Dαy(t)} −L {λy(t)} = L { h(t)}

Then we have

sαY (s)−
n−1∑
k=0

sk[Dα−k−1y(t)]t=0 − λY (s) = H(s)

Solve it with respect to Y (s) and substitute the initial conditions we obtain

Y (s) =
H(s)

sα − λ
+

n∑
k=1

sk−1

sα − λ
bk

Take the inverse Laplace transform and using table 2.2 we get a solution y(t) as

follows

y(t) =

t∫
0

(t− τ)α−1Eα,α(λ(t− τ)α)h(τ) dτ +
n∑
k=1

bkt
α−kEα,α−k+1(λtα) (4.16)
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4.2.2 Fractional Differential Equations with Caputo Deriva-

tive

Example 4.7. Let us consider the initial value problem as follows

Dα
∗ y(t) = 0, (t > 0); (4.17)

y(k)(0) = bk, (k = 0, 1, 2, ..., n− 1), (4.18)

where n− 1 ≤ α < n.

Solution:

Take Laplace transform for equation (4.17)

L {Dα
∗ y(t)} = 0

which implies

sαY (s)−
n−1∑
k=0

sα−k−1y(k)(0) = 0

Solve it wiht respect to Y (s) we have

Y (s) =
n−1∑
k=0

sα−k−1

sα
y(k)(0)

Substituting the initial conditions (4.18) we get

Y (s) =
n−1∑
k=0

sα−k−1

sα
bk

Now take Laplace inverse we obtain a solution y(t) given in the form

y(t) =
n−1∑
k=0

bk
tk

Γ(k + 1)
(4.19)
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Example 4.8. Consider the initial value problem for a homogeneous fractional

differential equation under non-zero initial conditions

Dα
∗ y(t)− λy(t) = 0, (t > 0); (4.20)

y(k)(0) = bk, (k = 0, 1, ..., n− 1), (4.21)

where n− 1 ≤ α < n.

Solution:

To solve this fractional equation, take Laplace transform as follows

L {Dα
∗ y(t)} −L {λy(t)} = 0

Then it becomes

sαY (s)−
n−1∑
k=0

sα−k−1y(k)(0)− λY (s) = 0

Solve it with respect to Y (s) we get

Y (s) =
n−1∑
k=0

sα−k−1

sα − λ
y(k)(0)

Substitute the initial conditions in (4.21) we obtain

Y (s) =
n−1∑
k=0

sα−k−1

sα − λ
bk

Now taking Laplace inverse and using table 2.2, we have a solution as follow

y(t) =
n−1∑
k=0

bkt
kEα,k+1(λtα) (4.22)

Example 4.9. A nearly simple harmonic vibration equation

Dα
∗ y(t) + ω2y(t) = 0, (t > 0); (4.23)

y(k)(0) = bk, (k = 0, 1), (4.24)
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where 1 ≤ α < 2. ω is the angular frequency.

Solution:

Using the result in the previous example, has its solution given by

y(t) = b0Eα,1(−ω2tα) + b1tEα,2(−ω2tα) (4.25)

Example 4.10. Let us consider the following equation

Dα2
∗ y(t) + λ1D

α1
∗ y(t) + λ2y(t) = 0, (t > 0); (4.26)

y(k)(0) = bk, (k = 0, 1, ...,m− 1, ..., n− 1), (4.27)

where n− 1 ≤ α2 < n, and m− 1 ≤ α1 < m.

Solution:

Take Laplace transform for each term in equation (4.26)

L {Dα2
∗ y(t)}+ L {λ1D

α1
∗ y(t)}+ L {λ2y(t)} = 0

which implies

sα2Y (s)−
n−1∑
k=0

sα2−k−1y(k)(0) + λ1s
α1Y (s)− λ1

m−1∑
k=0

sα1−k−1y(k)(0) + λ2Y (s) = 0

Solving with respect to Y (s)

Y (s) =

∑n−1
k=0 s

α2−k−1y(k)(0) +
∑m−1

k=0 λ1s
α1−k−1y(k)(0)

sα2 + λ1sα1 + λ2

Substituting the initial conditions we have

Y (s) =

∑n−1
k=0 s

α2−k−1bk + λ1

∑m−1
k=0 s

α1−k−1bk
sα2 + λ1sα1 + λ2
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Solving it we have

Y (s) =

∑n−1
k=0 s

α2−k−1bk + λ1

∑m−1
k=0 s

α1−k−1bk
sα2 + λ1sα1 + λ2

=

∑n−1
k=0 s

α2−k−1bk + λ1

∑m−1
k=0 s

α1−k−1bk
sα2 + λ1sα1

.
1

1 + λ2
sα2+λ1sα1

=

[∑n−1
k=0 s

α2−k−1bk + λ1

∑m−1
k=0 s

α1−k−1bk
]
s−α1

sα2−α1 + λ1

.
∞∑
i=0

(
−λ2

sα2 + λ1sα1

)i
=

[∑n−1
k=0 s

α2−k−1bk + λ1

∑m−1
k=0 s

α1−k−1bk
]
s−α1

sα2−α1 + λ1

.
∞∑
i=0

(
−λ2

sα2 + λ1sα1

)i(
s−α1

s−α1

)i
=

[∑n−1
k=0 s

α2−k−1bk + λ1

∑m−1
k=0 s

α1−k−1bk
]
s−α1

sα2−α1 + λ1

.
∞∑
i=0

(−λ2s
−α1)i

(sα2−α1 + λ1)i

=
∞∑
i=0

(−λ2)i
[∑n−1

k=0 s
α2−k−1bk + λ1

∑m−1
k=0 s

α1−k−1bk
]
s−α1−α1i

(sα2−α1 + λ1)i+1

=
∞∑
i=0

(−λ2)i

[
n−1∑
k=0

(sα2−k−1−α1−α1i)bk
(sα2−α1 + λ1)i+1

+ λ1

m−1∑
k=0

sα1−k−1−α1−α1ibk
(sα2−α1 + λ1)i+1

]

=
∞∑
i=0

(−λ2)i

[
n−1∑
k=0

s−k−1−α2i

(1 + λ1sα1−α2)i+1
bk + λ1

m−1∑
k=0

s−k−1−α2i−α2+α1

(1 + λ1sα1−α2)i+1
bk

]

=
∞∑
i=0

(−λ2)i

[
n−1∑
k=0

bks
−k−1−α2i

∞∑
r=0

(
i+ r

r

)(
−λ1s

α1−α2
)r

+ λ1

m−1∑
k=0

bks
−k−1−α2i−α2+α1

∞∑
z=0

(
i+ z

z

)(
−λ1s

α1−α2
)z ]

=
∞∑
i=0

(−λ2)i

[
n−1∑
k=0

bk

∞∑
r=0

(
i+ r

r

)
(−λ1)rsα1r−α2r−k−1−α2i

+ λ1

m−1∑
k=0

bk

∞∑
z=0

(
i+ z

z

)
(−λ1)zsα1z−α2z−k−1−α2i−α2+α1

]

After taking Laplace inverse transform

y(t) =
∞∑
i=0

(−λ2)i

i!

[
n−1∑
k=0

bk

∞∑
r=0

Γ(i+ r + 1)(−λ1)r

Γ(α2r + α2i+ k − 1− α1r)
.
tα2r+α2i+k−α1r−2

r!

+ λ1

m−1∑
k=0

bk

∞∑
z=0

Γ(i+ z + 1)(−λ1)z

Γ(α2z + α2i+ α2 + k − 1− α1z − α1)
.
tα2z+α2i+α2+k−α1z−α1−2

z!

]
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