
Palestine Polytechnic University

College of Information Technology and Computer Engineering

Department of Computer System Engineering

Intelligent Handwriting Robot

Team:

Amir Altakroori

Mohammad Samaheen

Wisam Alhroub

Supervisor:

Dr. Alaa Halawani

May 2022

Acknowledgment

In the name of "Allah", the most beneficent and merciful who gave us strength,

knowledge and helped us to get through this project.

This project gave us valuable experience in deep learning architecture and robotic

systems. For that, we want to thank all the people who helped us through the project.

We would like to express our gratitude to our graduation project supervisor

Dr. Alaa Halawani for his guidance, support, and encouragement throughout the project.

Furthermore, we have to show our gratitude to Eng. Wael Takrouri for answering our

questions and providing us with valuable suggestions and tips that helped us in our

project, especially in the hardware problems.

Moreover, we must thank our families for their generous encouragement, and

continuous support throughout our life. For our friends, we are truly grateful for all of

your support and help during the project and throughout the educational stage.

I

Abstract
There is a huge demand in the field of Artificial intelligence for making novel works that
can mimic human creativity. One interesting example is handwritten calligraphy. Robotic
calligraphy, as a typical application of robot movement planning, is of great significance
for the education of calligraphy culture. The existing implementations of such robots
often suffer from their limited ability for font generation and evaluation, leading to poor
writing style diversity and writing quality. These demands are increasing rapidly, hoping
to create something intelligent enough to pace with them at handwritten calligraphy
without human intervention. The core idea of our project is to provide a solution that
humans can utilize, to mimic the calligraphy of handwritten texts using a robotic system.
The robotic system can learn from previous artworks, and produce similar strokes with a
sense of learning creativity. In our work, we aim to reach a satisfying level where
handwriting is done automatically, creatively, and with astonishing results. The work is
utilizing reinforcement learning techniques with a long-short-term memory (LSTM)
model alongside a generative adversarial model (GAN to be used as a proof of concept)
to achieve an approach in which the robot will be guided. This work has shown by its
outcomes that it’s possible to write words smoothly on physical surfaces using the robot
and not only soft-writing but as well to mimic a specified human writing style from
images after pretraining the system on sequences of points of lines belonging to other
styles.

I

Table of Content
Abstract I

Table of Content II

List of Figures and Tables VI

Figures VI

Tables VII

Chapter 1: Introduction 1

1.1 Overview 2

1.2 Motivation and Importance 2

1.3 Problem Statement 3

1.4 List of Requirements 3

1.5 Methodologies to use 3

1.6 System Objectives 4

1.7 Short Description 4

1.8 Expected Results 5

1.9 Work Constraints 6

1.10 Overview for The Rest of The Report 6

Chapter 2: Background 7

2.1 Overview 8

2.2 Theoretical background 8

2.2.1 Machine Learning 8

2.2.2 Reinforcement learning 9

2.2.3 Deep Learning 10

2.2.3.1 Convolution Neural Network 10

2.2.3.2 Recurrent Neural Network 11

2.2.3.3 Long Short-Term Memory 11

2.2.3.4 Generative Adversarial Network 12

2.2.3.5 Conditional GAN (CGAN) 14

II

2.3 Literature Review 15

2.4 System Hardware Components 18

2.4.1 Controller boards 19

2.4.1.1 Arduino Uno 19

2.4.1.2 Raspberry Pi Model B 19

2.4.1.2.1 VNC Viewer 21

2.4.1.2.2 SSH 21

2.4.2 Robotic components 21

2.4.2.1 CNC V3 Shield 21

2.4.2.2 MG996R Servo Motor 21

2.4.2.3 NEMA17 Stepper Motor 22

2.4.2.4 A4988 Stepper Driver Chip 22

2.4.2.5 12V adapter 22

2.4.2.6 Cooling fan 22

2.5 System Software Components 23

2.5.1. Python 23

2.5.2. TensorFlow 24

2.5.3 Arduino IDE 24

Chapter 3: Design 25

3.1 Overview 26

3.2 Detailed Description of the Design 26

3.3 Design Options 28

3.3.1 Hardware Design Options 28

3.3.2 Software Design Options 30

3.3.2.1 The GAN Approach Overview 31

3.3.2.1.1 Character Discriminative Module 33

3.3.2.1.2 Character Generative Module 33

3.3.2.2 The LSTM Approche 35

Chapter 4: Software & Implementation 37

III – V

4.1 Model and Software Configuration 38

4.1.1 RaspberryPi Software 38

4.1.2 Software Building 39

4.1.2.1 GAN Architecture 39

4.1.2.1.1 Generative Model 40

4.1.2.1.2 Discriminative Model 42

4.1.2.2 LSTM Model 42

4.2 Hardware Configuration 43

4.2.1 Assembling the Robot 43

4.2.2 Device Identification 45

4.2.3 Gcode Instructions 45

Chapter 5: Validation & Results 46

5.1 Unit Testing 47

5.1.1 RaspberryPI 4 47

5.1.2 Robot Calligrapher 47

5.2 Integration Testing 48

5.2.1 Connecting RaspberryPI with the Robot 48

5.2.2 Installing Necessary Software on RaspberryPI 48

5.3 Results and Output Samples 48

5.3.1 Output Samples - LSTM 48

5.3.2 Output Samples - GAN 51

5.4 Measurements and Readings 54

5.4.1 LSTM measurements 54

5.4.2 GAN measurements 55

Chapter 6: Conclusion & Future Work 56

6.1 Conclusion 57

6.2 Future Work 57

References 58

III – V

List of Figures and Tables

Figures

Figure 1.1: System Components with Workflow 5

Figure 2.1: Interaction between the Agent and Environment in RL 9

Figure 2.2: RNN node 11

Figure 2.3: RNN unrolled 11

Figure 2.4: The repeating module in an LSTM 12

Figure 2.5: The process that GANs move in 13

Figure 2.6: CGAN architecture 14

Figure 2.7: Substrokes assembling 15

Figure 2.8: Arduino UNO 19

Figure 2.9: Raspberry Pi 4 Model B 20

Figure 2.10: CNC V3 Shield 23

Figure 2.11: MG996r Servo motor 23

Figure 2.12: NEMA 17 Stepper motor 23

Figure 2.13: Stepper driver chip 23

Figure 2.14: Cooling fan 23

Figure 2.15: 12V adapter 23

Figure 2.16: LY plotter robot 23

Figure 3.1: Block Diagram for the different general components in the robotic system 26

Figure 3.2: Schematic Diagram of the Robotic plotter interface 27

Figure 3.3: Robot Components when assembled 29

Figure 3.4: Detailed View of the GAN’s Submodels for the Robotic System 31

Figure 3.5: Handwritten synthesis network architecture 35

VI

Figure 4.1: RaspbianOS GUI through VNC application 39

Figure 4.2: SSH Shell from mobile 39

Figure 4.3: localized regions for the number ‘0’ 40

Figure 4.4: Space localizing implementation for numbers 0 to 9 40

Figure 4.5: Implemented GAN architecture 41

Figure 4.6: Implemented Discriminator architecture 41

Figure 4.7: Training samples from the IAM online handwriting database 42

Figure 4.8: Implemented LSTM network 43

Figure 4.9: LY robot components 44

Figure 4.10: CNC shield with drivers 44

Figure 4.11: Arduino UNO attached 44

Figure 4.12: Full robot assembled 44

Figure 4.13: Installed motor drivers 44

Figure 4.14: Robot hardware identification on RaspbianOS 45

Figure 5.1: Measuring the Robot Calligrapher accuracy 47

Figure 5.2: Process of writing ‘Polytechnic’ using LSTM 49

Figure 5.3: Different styles of ‘Polytechnic’ using LSTM 50

Figure 5.4: LSTM output improvement at selected timestamps 50

Figure 5.5: GAN output improvement 51

Figure 5.6: Different variations of number ‘2’ 51

Figure 5.7: GAN’s labels output at convergence 52

Figure 5.8: Different styles of ‘4’ using GAN 53

Figure 5.9: Process of writing ‘4’ using GAN 53

Figure 5.10: LSTM training loss 54

Figure 5.11: Generative loss for all digits togather 55

VII

Tables

Table 2.1: Comparison between selected works and our work 18

Table 3.1: Comparison between Shenzhen Liyang LY machine & GKDraw X3 30

Table 4.1: Initial training comparison between template-free and template usages 41

VIII

Chapter1:

Introduction

1

This chapter provides an introduction to the project. It starts with the motivational statement,

followed by the aims and objectives, a brief description, and the expected results for the project.

1.1 Overview

With the quick evolution of technology on the intelligent side, robotics have been widely applied

to promote human culture and education, such as acting, drawing, and robotics character writing.

There are new demands in this regard for producing text that can mimic human handwriting

capabilities. These demands are getting big in number rapidly, hoping to create something

intelligent enough to keep up with human creativity in handwritten calligraphy without outsiders’

intervention. The core idea of robotics writing is the generation of sequences of robotic actions

that follows specific criteria. Thus, the focus of recent research is the design of control

algorithms to drive robotic end-effectors to write handwritten characters or letters.

In addition, there is a need to accomplish work (i.e. letters, mails, reports, updates) in the format

of a handwritten text, as many people like the idea of something handmade. Although it takes

time and effort to make some good handwritten scripts for a long time, it can be forgivable if the

person was making it with passion. In the field of paleography, there are some cases of ancient

manuscripts that might have some of their text almost unclear or even wiped, rewriting such old

scripts again with the same font style and calligraphy can be a challenge for nonexperts.

1.2 Motivation and Importance

Robotic writing is a particularly hot topic due to the great applicability of its key technology in

other applications, including robotic drawing [34], industrial welding [35][36], and medical

rehabilitation [37] among others. It is important to have an intelligent calligraphy system that has

the ability to generate handwritten scripts when there are a lot of fields that have been invaded by

AI. For that, the robot has to get efficient enough to be as human-like as possible in its task.

The motivation increased when seeing all problems described previously, which raised the need

for a system that can make handwritten text, automate the process of writing characters or words,

learn existing text to mimic the way it was written, simulate human creativity, simulate human

culture, and create new text styles and patterns to enrich the existing set of text calligraphy as

2

well. Also, since heritage is an essential base of societies, calligraphic robots could imitate old

manuscripts' font styles, which could have a valuable effect on the restoration of archeological

manuscripts.

1.3 Problem Statement

Some people want their paper-based messages to be old school (i.e. to be written manually), but

they do not have enough time to do it. The need for a robot that can automate this task is arising,

and the optimization in this field is rapidly evolving, hoping to reach a satisfying level where

handwriting is done automatically, creatively, and with astonishing results.

1.4 List of Requirements

1. The system should be able to generate characters similar to human styles with no human

inference.

2. The robot should be able to take a script from the user as an input, then generates

handwritten strokes based on its capabilities.

3. An evaluation part should be able to distinguish between the drawn script and the one

given from the system without human inference.

4. The robot should be able to draw handwritten calligraphy on different kinds of surfaces

(paper, wood, plastic, etc…) with various annotating tools (pen, marker, crayon, etc…).

1.5 Methodologies to use

Our design of a robotic system that is going to learn from an external source will be using a

long-short-term memory (LSTM) to generate handwritten words. In addition, we are going to

design and build a generative adversarial network (or GAN in simple) to mimic a specific

handwritten style. We can ensure that the robot will be smart enough to generate handwritten text

from what it learns, and can judge it by either acceptance or rejection. The GAN model is going

to be powered by a pre-trained generator to optimize the searching space using deep learning

3

networks and some reinforcement learning principles to strengthen the smartness and accuracy

levels of the robot, as well as lowering error rates and preventing state lock incidents.

1.6 System Objectives

Our project is aiming towards achieving the following objectives:

● Design and build a robotic calligraphy learning system, which has two sub-systems

mainly. Generator sub-system, and evaluator sub-system, that can generate handwritten

text.

● Simulate existing calligraphy as well as get closer to human creativity by providing

enough space for the system to generate texts without human interference.

● Generate a sequence of points to pass it to the robot system. The sequence needs to be

convertible to G-Code which is a robot understandable sequence of instructions.

● Combine deep learning solutions with reinforcement learning policies to guide the robot

to learn the calligraphic styles by itself.

● Observe the output of the robot and return feedback to the generation subsystem to

optimize the future output.

● Install the software of the project on a microcomputer and manage the generation process

via remote control.

1.7 Short Description

Figure 1.1 shows the workflow of our system to be designed. The user of the system will give a

text to be written. This text is recognized by the intelligent software model hosted on a

microcomputer-based subsystem like a PC, or a raspberry pi, which will give instructions for the

drawing to the robot. The robot itself will draw incoming handwritten instruction data as a

sequence of points to a free input space that can be a paper or a smooth touch-responsive surface,

thus producing a sequence of written strokes later to be constructed as an image.

4

In the training period, the intelligent part will tell the robot to write something, and the

generative model in that part will generate a robot understandable sequence of instructions to

draw and convert the instruction to a handwritten character and give it to the robot to draw it on

the input space. An image of the finished work is to be submitted to the discriminative module

on the learning system module to judge if the work of the robot is mimicking the human

handwritten characters or not. Improvements to the model itself will be present based on the

judge's results. The discriminative part will be trained on the same real data but the generative

part will train on different but similar data to the real one.

Figure 1.1: System Components with Workflow

1.8 Expected Results

1. A functional robot that can mimic the calligraphic styles of humans and simulate human

creativity.

2. Decrease the gap between the digital world and the physical world by using this system

to produce non-distinguishable handwritten letters to be used in multiple fields.

3. The robot should be able to draw handwritten calligraphy on different kinds of surfaces

(paper, wood, plastic, etc…) with various annotating tools (pen, marker, crayon, etc…)

considering the compatibility between such surfaces and tools.

5

1.9 Work Constraints

As we all know, nothing comes to be perfect out of the box, and the same goes for our project.

When we planned the whole system of this project, we had to put some limitations. We list them

as follows:

1. Taking advantage of the GAN model to produce words would be so expensive for our

obtained computing resources.

2. Dealing with curvatures in GAN’s strokes will be minimal.

1.10 Overview for The Rest of The Report

The rest of the report is organized as follows: Chapter 2 presents a theoretical background of the

project, and a description of the hardware and software components is discussed in addition to

the system specification and design constraints. Chapter 3 shows the detailed design, block

diagrams, and flowcharts. Chapter 4 discusses the implementation of the used hardware and

software solutions. Chapter 5 will demonstrate the results and outcomes of our project alongside

some hardware and software testing. After that, there will be a conclusion and future work

chapter as chapter 6. Then a list of references.

6

Chapter 2:

Background

7

2.1 Overview
This chapter explores the different theoretical aspects of the project. It provides a clear and brief

description of the methods/techniques employed in this project.

2.2 Theoretical background
This section provides some information about some technologies and algorithms that will be

used in the project.

2.2.1 Machine Learning (ML)

ML makes systems have the ability to learn by themselves and build their model and actions

from experiences without being explicitly programmed. ML gives the computer the ability to

develop and change when getting new data.

ML is split into main fields based on the learning paradigm. Examples of these fields are

supervised learning, unsupervised learning, semi-supervised learning, and reinforcement

learning. Reinforcement learning will be described in more details in the next subsection since it

is one of the main parts of this project.

Supervised Learning (SL): in this field, the ML algorithm is trained on labeled data. By giving

input data and its corresponding output labels to the model, through the training process, the

model builds relationships and patterns between the input and the output, so the model can

estimate the output for new input. For SL, the data must be labeled accurately to work well.

Unsupervised Learning (USL): it is similar to SL, but in this field, the model can work with

unlabeled data. The task of this field is to find the similarity, patterns, and differences between

the input data and then group them into clusters. The goal of USL is to understand the data and

categorize it into similar groups (clusters) [1].

Semi-supervised Learning (SSL): it is a learning model concerned with the study of how

computers and natural systems such as humans learn in the presence of both labeled and

unlabeled data. The goal of semi-supervised learning is to understand how both labeled and

unlabeled data could change the learning behavior, and design algorithms that take advantage of

such a combination [8].

8

2.2.2 Reinforcement learning

RL is an area of machine learning technique that mimics the learning process of human and

animal beings. It is based on the notion of reward and punishment. It encourages good behavior

with rewards and depresses bad behavior with punishment. RL enables an agent to learn by trial

and error. This is done using feedback from the environment to find if a current state-action pair

is rewarded or punished as Figure 2.1 shows. In operation, an RL model would choose actions

that maximize reward. Consequently, a machine can learn simply by trying various actions and

observing which one rewards best. Just like animals and humans [20]. The difference between

RL and SL is that it does not need labeled input/output pairs to be presented and also no need for

sub-optimal actions to be explicitly corrected, but it focuses on finding a balance between

exploration of uncharted territory and exploitation of current knowledge. In this project, RL will

be embedded in the robot learning process.

Figure 2.1: Interaction between the Agent and Environment in RL

Policy gradient is a type of reinforcement learning technique that relies upon optimizing

parametrized policies concerning the expected return (long-term cumulative reward) by gradient

descent. A policy represents a set of instructions to always take the agent on the best possible

path concerning gaining points. It can assure that the agent will not fall into unwanted states.

Policies have two types, deterministic policies and stochastic policies. Deterministic policies are

used in deterministic environments. These are environments where the actions taken determine

the outcome. There is no uncertainty. On the other hand, a stochastic policy outputs a probability

distribution over actions. It means that instead of being sure of taking action A, there is a

probability we will take a different one. Stochastic policy is used when the environment is

uncertain.

9

2.2.3 Deep Learning

Deep learning is a branch of machine learning that extracts features without the need for human

engineering. So Deep Learning achieves great power and flexibility in learning [12].

In terms of architecture, most deep learning methods use neural network architectures. A neural

network consists of an input layer, an output layer, and hidden layers. Each layer consists of one

or more connected nodes, each node is called a neuron or a perceptron. Each neuron has a

weight and an activation function. The term “deep” usually refers to having a large number of

hidden layers in the neural network. Deep learning models are trained by using large sets of

labeled data and neural network architectures that learn features directly from the data without

the need for manual feature extraction [13][14]. Deep learning contains many different

architectures such as convolution neural networks and recurrent neural networks. Also, it has

different frameworks, one of which is generative adversarial networks.

2.2.3.1 Convolution Neural Network

CNN is a deep learning architecture. It takes its name from the mathematical linear operation

between matrices called convolution. CNN has multiple layers, including the convolutional

layer, non-linearity layer, pooling layer, and fully-connected layer. The convolutional and

fully-connected layers have parameters but pooling and non-linearity layers do not have

parameters. CNN has an excellent performance in machine learning problems. Especially the

applications that deal with image data, such as image classification, computer vision, and natural

language processing (NLP), and the results achieved were very competitive [15].

10

2.2.3.2 Recurrent Neural Network

Figure 2.2: RNN node [40]

A recurrent neural network is a type of artificial neural network commonly used in speech and

video recognition and natural language processing. Recurrent neural networks recognize data's

sequential characteristics and use patterns to predict the next likely scenario. They are networks

with loops in them, allowing information to persist. Figure 2.2 shows a single node of RNN.

This loop-like structure can be unfolded as well to form the regular shape RNN as in Figure 2.3

Figure 2.3: RNN unrolled [40]

The problem with RNN is Long-Term Dependencies where it is hard for the network to consider

far-away data in its prediction, and limiting its prediction to short-term data span. That is where

Long Short-Term Memory comes into use.

2.2.3.3 Long Short-Term Memory

Long Short-Term Memory Networks (LSTM) is a special kind of RNN, capable of learning

long-term dependencies. They are explicitly designed to avoid long-term dependency problems.

Remembering information for long periods is particularly their default behavior. LSTMs also

have this chain-like structure as you can see in Figure 2.4, but the repeating module has a

different structure. Instead of having a single neural network layer, there are four of them

11

interacting in a very special way. The four networks are bounded by yellow rectangles as shown

in Figure 2.4.

Figure 2.4: The repeating module in an LSTM [40]

We will use LSTMs as a basis for the sequence-points word generation deep neural network

model since it has a better ability to remember inputs over a long period of time.

2.2.3.4 Generative Adversarial Network

A generative adversarial network (GAN) is a class of deep learning frameworks designed by Ian

Goodfellow and his colleagues in June 2014. Two neural networks contest with each other in a

game (in the form of a zero-sum game, where one agent's gain is another agent's loss) [5].

Given a training set, this technique learns to generate new data with the same statistics as the

training set. For example, a GAN trained on photographs can generate new photographs that look

at least superficially authentic to human observers, having many realistic characteristics. Though

originally proposed as a form of a generative model for unsupervised learning, GANs have also

proved useful for semi-supervised learning, fully supervised learning, and reinforcement learning

[6].

There are two main networks that construct any GAN model; 1) the generator network that

generates new data instances, and 2) the discriminator network which decides whether each

instance of data that it reviews belongs to the actual training dataset or not [6]. The core idea of a

GAN is based on the "indirect" training through the discriminator, which itself is also being

updated dynamically. This means that the generator is not trained to minimize the distance to a

specific image, but rather to fool the discriminator. This enables the model to learn in an

unsupervised manner.

12

Figure 2.5 shows the process of GAN. The generator takes in random numbers and returns the

data. Then, the generated data is fed into the discriminator alongside a stream of data taken from

the actual, ground-truth dataset. Lastly, the discriminator takes in both real and fake data and

returns probabilities, a number between 0 and 1, with 1 representing a prediction of authenticity

and 0 representing fake.

Figure 2.5: The process that GANs move in [6]

Mathematically, we can say that the goal of the discriminative network can be expressed by the

equation 2.1 [7]

…(2.1)

where Dɸ is an appropriate real-valued function parameterized by ɸ, and P𝜽 denotes a data

distribution that is mutually exclusive with Pr (i.e., Pɸ ∩ Pr = 𝜙) [7]. On the contrary, the

function of the generative network is to convert the input z that obeys the distribution Pz into

fake data 𝓧 that obeys the distribution Pf. The goal of the generative network is to drive the

distribution Pf infinitely approaching the distribution Pr. The Jensen-Shannon divergence can be

used to measure the distance between two distributions; thus, the goal of the generative network

can be essentially transformed to minimize the Jensen-Shannon divergence between Pf and Pr. If

Pf = Pr, the Jensen-Shannon divergence is minimized, indicating the generative network perfectly

replicates the real data distribution Pr.

The goal of the generative model is expressed as:

…(2.2)

13

where Gɸ(z) denotes the fake data generated by the generation model according to the noise z.

Here, the output of G is randomly generated with no control for what the desired output should

be. To support this type of control, some tweaking can be made to the original GAN. The next

subsection will talk about the conditional GAN which adds this ability.

2.2.3.5 Conditional GAN (CGAN)

CGAN is introduced by conditioning both discriminator and generator by feeding class labels.

As seen in Figure 2.6, CGAN feeds the extra information y to both the discriminator and

generator. It should be noted that y is normally encoded inside the generator and discriminator

before being concatenated with the encoded z and encoded x.

Figure 2.6: CGAN architecture

The loss function of CGAN is seen in equation 2.3, in which x and y are conditioned by z.

Benefiting from the extra encoded y information, CGAN is not only able to handle unimodal

image datasets but also multimodel datasets such as Flickr that contains labeled image data with

their associated user-generated metadata (UGM) i.e., in particular user-tags, which brings GANs

over to the area of multimodel data generation.

…(2.3)

14

2.3 Literature Review

This section is a brief discussion of previous work similar to what this project is doing.

With the rapid development of technologies and the rise of AI-based inventions, more

researchers sought towards making machines that have the calligraphic capabilities that humans

have.

A group of Chinese researchers from Xiamen University in China [7] have achieved a novel

work in 2019 aimed to produce human-styled Chinese characters consisting of multiple parts in

its special GAN model (i.e. Info-GAN). Based on some trajectory points to make a character, the

generative part of the system uses stochastic policy gradients to sample the trajectories. These

points are forwarded to the robot system which is a mechanical arm having multiple joints to

control its freedom degrees, the robot draws the points in sequence considering other information

like tilt and curvature. The discriminative part, which is a simple feed-forward neural network,

takes a capture of the drawing and performs a binary classification on it. The system generates

sub-drawings for a character, then these strokes are assembled to be one meaningful word as a

character as in figure 2.7. Info-GAN was used for specifying the output stroke, and the system is

updating its policy each time using policy gradients.

Figure 2.7: Substrokes assembling [7]

Another similar work that inherits some of the previously mentioned work and references was

done by a group of researchers in the Computer Vision and Recognition Center [10] at Cornell

University in 2020. This work is only software-based using a Convolutional Neural Network (or

CNN) as a generator for creating understandable English word images. The discriminator is also

a CNN model for binary classification. The system also used policy gradients as the work before.

15

What makes this work so ahead of the competition is the attention to other aspects in the

handwritten data itself such as style encoding, textual content encoding on a character-wise field,

and global-string-wise. Making this work capable of generating indistinguishable handwritten

calligraphy images, and the ability of dynamic font styling for the same text.

The work in [7] was enhanced in [16] by introducing a Long Short-Term Memory network (or

LSTM) to be used in the generative part of the system, which made a noticeable improvement

over what was previously included, at the cost of being more complicated. It samples the

trajectory points and then passes them to the arm-based robot to draw them by sequence, when

each two-point line is drawn, the system captures it and passes it to the LSTM again to update its

policy and begin sampling the next trajectory point which the robot will draw. When all the

trajectories are drawn, the strokes are passed to the discriminative part which is a CNN. The

system as its predecessor is also drawing sub-strokes and assembling all of them to produce one

meaningful word as a character. It also uses policy gradients to update its policy while

performing, and the model itself is also Info-GAN to specify the output strokes.

Another work that depended on their usage of long-short-term memory networks similarly to

[16] is [40] by Alex Graves and others in 2014. They worked on handwriting synthesis, i.e. to

generate handwritten versions from the digital text given by humans as input. The work showed

how LSTM recurrent neural networks can be used to generate complex sequences with

long-range structures, all by predicting one data point at a time. As a result, the outcome of their

system is sequences of trajectory points to be converted into a digital image of the handwritten

word or phrase, meaning that no robots were used in their work. Also here, no network to judge

the output against the generating one.

Our work will be based on the regular GAN architecture and it is borrowing some parts used in

some of the above works like the policy gradients, the trajectory points sampling approach, and

the CNN discriminative model, all of being discussed in detail in chapter 3: Design. Our project

will work for numbers and will integrate with a robot in the shape of a plotter unlike the arm

robot used in the first and last mentioned works.

We are going to add a contribution to the Ruiqi Wu et al. [7] work. Since the space for possible

outputs for the generator is extremely high, we proposed a solution that will decrease and wrap

the space of possible output to a much more reasonable number. As an example, if we had a

16

window of 28*28 and we needed to generate the number ‘2’ using five strokes, we need to draw

five points each having the following probabilities respectfully:

…(2.3)

To minimize the walking through this huge number of possibilities, we tried to localize each

point in its respectful subwindow given the label of the drawing based on the frequent

occurrence of each point in a given region, the outcome of this method is a much smaller space

of possibilities to draw a number. Continuing on our example above, if we bordered each point

with a 5*5 window, the probabilities will not exceed 2*108 possible outputs.

Note that the general and efficient way to find the most frequent regions can be achieved by

analyzing a hand-written-word dataset that is represented using a sequence of points. However,

due to hardware limitations and the lack of popper resources, we will build these localizations

using hand-designed regions.

In addition to reducing the generator output space, we controlled the output of the generator by

feeding the generator with the label of the desired digit output.

Moreover, we are going to use and enhance Alex Graves's works [40] by involving the

calligrapher robot in the loop of generation as a contribution. Instead of generating digital images

as an output, we are going to draw the expected output on surfaces using our robot within a

complete and usable system.

Table 2.1 summarizes the differences between our works and previous works. Also, it briefly

shows our contributions and enhancement.

17

Table 2.1: Comparison between selected works and our work

Work Ruiqi Wu et al.
[7]

Alex Graves et
al. [40]

Fei Chao et al.
[16] Our Works

Intelligent
Model
Type

Generator as
“G”
Discriminator
as “D”

G: Stochastic
Policy Gradients

D: Simple
feed-forward
neural network

Only G:
Modified LSTM
that accepts
sequences of
points

G: LSTM

D: CNN

Part1:

G: Stochastic
Policy Gradients

D: CNN

Part2:

G: Modified
LSTM that
accepts sequences
of points

External
Hardware

Did not use
external
hardware, only
software

Output Six Chinese
character strokes

Real handwritten
word images

Six Chinese
character strokes

Numerical digits
strokes & English
handwritten words
strokes

2.4 System Hardware Components

This section presents the hardware components in this project, provides a brief description,

displays the important specifications, and explains the usage of each component. It also

demonstrates the alternative hardware kits for robotic plotters with their components and the

alternative controller boards. Other alternatives for each component might be available and

might not be, so we are going to mention them if they exist.

18

2.4.1 Controller boards
This subsection lists the controller boards that are needed in this project. The controller boards

are needed to run and execute deep learning models. Also, they are used for controlling the

robotic plotter components.

2.4.1.1 Arduino Uno

Arduino Uno (figure 2.8) is a microcontroller board based on the ATmega328P. It has 14 digital

input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz ceramic

resonator (CSTCE16M0V53-R0), and a USB connection, a power jack, an ICSP header, and a

reset button. It contains everything needed to support the microcontroller. It can be turned on by

connecting it to a PC through a USB cable for power and data transfer, or it can be powered

alone with an AC-to-DC adapter.

Figure 2.8: Arduino UNO [22]

The UNO version is the one that will come with the plotter hardware, and we think this choice is

the best fit since another board which is the CNC shield, is designed specifically to be mounted

on top of the UNO, possessing all pinholes the UNO board have.

2.4.1.2 Raspberry Pi Model B

A Raspberry Pi 4 (figure 2.9) is a general-purpose computer, that provides a set of

general-purpose input/output pins that allows you to control electronic components. The main

operating system that installs on Raspberry Pi is Linux-based systems i.e. Debian. It provides

19

ground-breaking increases in processor speed, multimedia performance, memory, and

connectivity compared to the prior-generation Raspberry Pi 3 Model B+ while retaining

backward compatibility and similar power consumption.

This product’s key features include a high-performance 64-bit quad-core processor, dual-display

support at resolutions up to 4K via a pair of micro-HDMI ports, hardware video decode at up to

4Kp60, up to 8GB of RAM, dual-band 2.4/5.0 GHz wireless LAN, Bluetooth 5.0, Gigabit

Ethernet, USB 3.0, and PoE capability (via a separate PoE HAT add-on).

The dual-band wireless LAN and Bluetooth have modular compliance certification, allowing the

board to be designed into end products with significantly reduced compliance testing, improving

both cost and time to market.

Raspberry Pi has a slightly powerful processor compared to Arduino that allows us to run

multiple programs and control many electronic components simultaneously [19].

We chose this model over the previous one (Pi 3) since it has a better computational power which

allows for better performance and quick response time. Note that this microcomputer is not

included in the robot hardware bundle and it is something to be purchased separately.

Figure 2.9: Raspberry Pi 4 Model B [19]

Both Arduino and Raspberry solutions will be used in this project. The Arduino microcontroller

will be responsible for managing the robot hardware, and the raspberry pi will host the learning

model and do its required computations.

20

To control the raspberry pi using a remote device, there are two technologies mainly used. The

Virtual Network Computing (VNC) and Secure Shell Protocol (SSH) are described briefly in the

next two sub-sections.

2.4.1.2.1 VNC Viewer

Virtual Network Computing is a graphical desktop sharing system that uses the Remote Frame

Buffer protocol to remotely control another computer. It transmits the keyboard and mouse input

from one computer to another, relaying the graphical-screen updates, over a network [41].

2.4.1.2.2 SSH

The Secure Shell Protocol is a cryptographic network protocol for operating network services

securely over an unsecured network. Its most notable applications are remote login and

command-line execution. SSH applications are based on a client-server architecture, connecting

an SSH client instance with an SSH server [42].

2.4.2 Robotic components
This robotic plotter will allow the user to reflect what the system is generating, and pass it to be

drawn to a plain paper sheet or a touch-interactive surface like tablets. This subsection contains

a CNC shield, servo motors, stepper motors, stepper drive chip, 12V adapter, and fan.

2.4.2.1 CNC V3 Shield

The CNC shield (figure 2.10) can plug on top of an Arduino requiring no external connections

and wiring. There are 4 slots on the board for plugging in a stepper motor drive module which

can drive 1 stepper motor each. Controlling each step stepper motor requires only two I/O pins

on the Arduino [25].

2.4.2.2 MG996R Servo Motor

A servo motor (figure 2.11) is a linear actuator or rotary actuator that allows for precise control

of linear or angular position, acceleration, and velocity. It consists of a motor coupled to a sensor

for position feedback. It also requires a relatively sophisticated controller, often a dedicated

module designed specifically for use with servomotors [27].

21

Our project will use one servo motor for robot movements on the Z-axis, and since these

movements require speed and accuracy, the servo motor will be a better fit over other motors

2.4.2.3 NEMA17 Stepper Motor

Stepper motors, shown in figure 2.12, are DC motors that move in discrete steps. They have

multiple coils that are organized in groups called "phases". By energizing each phase in

sequence, the motor will rotate, one step at a time [28].

We will use two stepper motors for controlling robot movements in both the X and Y axes.

2.4.2.4 A4988 Stepper Driver Chip

The A4988 driver is a commonly used bipolar stepper motor driver that could provide up to 2A

current per coil from 8V to 35V. These drivers are used to drive NEMA 17 motors on the Mill

One [30].

2.4.2.5 12V adapter

Power supply AC Adapter. Input 100-240V / - 50-60Hz/ 200mA, and output 12V-2,5A

2.4.2.6 Cooling fan

Cooling fan DC 5V, 0.13A for Arduino.

It is important to note that all components mentioned in this section are all part of the robotic

plotter hardware bundle which we decided to buy, and since they are not specific in naming or

manufacturing to a certain company as each of them has its standard codename, blueprint, and

manual sheet, we had to mention them here.

22

Figure 2.10:
CNC V3 Shield [24]

Figure 2.11:
MG996r

Servo motor [26]

Figure 2.12:
NEMA 17 Stepper

motor [29]

Figure 2.13:
Stepper

driver chip [30]

Figure 2.14:
Cooling fan [31]

Figure 2.15:
12V adapter [32] Figure 2.16: LY plotter robot [21]

2.5 System Software Components

In this section, we will display the main software components for the project and some detailed

descriptions of them.

2.5.1 Python

Python is a very popular high-level interpreter-based programming language. It was first released

in 1991 but continued to evolve to this day. Python programs are very simple and easy to read.

Few lines in python often correspond to tens of lines in other programming languages like C.

This means that writing programs in Python is time-saving practice. In Addition, programs

written in Python are shorter in length and more readable. Furthermore, Python scripts can run

on many platforms including Windows, Linux, and Unix.

23

Due to its popularity, Python has a very large community and a lot of resources. Python users can

easily add code packages to their programs simply by importing them at the top of the script.

Programmers can also download non-standard packages with PIP, which is a package manager

for python [33].

2.5.2 TensorFlow

TensorFlow is an open-source platform that was developed by Google’s Brain team, that contains

a comprehensive, flexible ecosystem of tools, libraries, and community resources. This tool is

widely used within the community, where huge contributions to make such models and

algorithms more and more accurate and efficient will help us out during our work on this side of

the project [9].

2.5.3 Arduino IDE
Arduino IDE is an environment that could be used for writing the code and uploading it into

Arduino Uno. By default, any Arduino system can take a C++ code with specific defined

functions and structure to achieve any kind of task, like continuous repetitive work inside a loop

function and pre-work definitions in a setup function.

24

Chapter3:
Design

25

3.1 Overview

This chapter discusses the overall design of the handwritten calligraphy robotic system and the

way its components are integrated, showing some diagrams for the design, in addition to some

details about the software our system is using.

3.2 Detailed Description of the Design

Figure 3.1: Block Diagram for the different general components in the robotic system

Figure 3.1 shows all general hardware components that were specified in chapter 2 of the system,

which is briefly connected here to demonstrate the relationship between every component and its

neighboring components. The model, as well as the G-Code encoder, are going to be hosted on

the raspberry pi 4 microcomputer. This microcomputer will be connected to the Arduino Uno

microcontroller, which is communicating with a motors driver interface (i.e the stepper motor

drivers and the CNC shield driver for the servo motor) connected to the different motors that

26

construct the basic calligraphy robotic system movements in the three-axis as shown in the above

figure. All electronic components are supplied with power from an external power supply

component (i.e the brick that delivers power to the robot components, as well as a 5V power

source through a normal adapter to each of the microcomputer and microcontroller parts). The

capturing module is also supplied and it is directly connected with the raspberry pi to send

captured strokes to the model to complete the robot’s objective loop.

Figure 3.2: Schematic Diagram of the Robotic plotter interface

In figure 3.2, the motors used in the robotic plotter system are connected to their motor driver

chips respectively, these chips are mounted on the CNC shield driver chip where each slot

represents the interface for which movement the shield will instruct the stepper motors with.

Currently, the first stepper motor labeled U4 is connected to its driver mounted on the X-axis slot

27

on the shield chip, the same goes for the other motor (U5). As for the Z-axis, since the required

movement on the vertical axis needs to be quick, accurate, and not wobbly, the robot needed the

servo motor because it is faster, more accurate, and stops with no jiggling. For that, the servo

motor is directly connected to the shield chip.

The CNC shield with all of its attachments is mounted on top of the Arduino board, connecting

its rear-faced pins directly to the Arduino pin holes accordingly. It is noted that the design of the

CNC V3 shield chip is configured to be mounted on top of the Arduino UNO board with correct

pin positioning.

3.3 Design Options

In this section, we will be going over each component in our system and showcase its available

options and what we ended up choosing from these options.

3.3.1 Hardware Design Options

This robotic plotter will allow the user to reflect what the system is generating, and pass it to be

drawn to a plain paper sheet or a touch-interactive surface like tablets. The movement of this

robot is so wide open upon the rectangular area it is covering, having three degrees of freedom

(or DOF). The first two DOFs are for movements in the X and Y axes respectively, the third one

is for the subtle elevation the robot can do for the pen, this is for sequence cutting and

multi-strokes drawing. There is another movement for rotating the pen along its vertical axis, but

it is fixed at setup time. All the previous DOFs are changing with the input it takes at a time. The

robot can accept a format of the drawing called GCode, which is a representation of the sequence

this robot has to follow to draw the strokes. Normally, the drawing itself is converted to a GCode

format and then passed to the robot to move the different parts and draw strokes of the drawing

while doing so.

This plotter is the robot that will be involved in the learning process, taking input as a GCode

from the GAN model, and outputting it on a tablet as a drawing using the attached compatible

pen on its arm. The robot plotter is consisting of multiple moving parts, the part of moving the

pen in a fixed width to height ratio is the two stepper motors that have four metal rods and

moving specific strips in a loop, every two rods go parallel to each other to construct a linear

28

route which allows the other two rods that are at a right angle to the first two to move in. This

setup is covering an entire square of the reachable area under it. An ordinary computer is

responsible for holding the model and feeding the robot with compatible data, as well as

retrieving information from it. Figure 3.3 shows exactly the robot’s components when

assembled.

Figure 3.3: Robot Components when assembled [39]

The majority of plotters on the internet have typically the same form factor, as well as the

component themselves. So there are no issues with picking a random one and starting work with

it, but due to manufacturing material differences, size differences, and type differences (i.e.

engraving or printing), we ended up comparing between a selective hand of choices that varies

on some other specifications, but we think any of them is going to fulfill the requirements. It was

a challenge to choose the right one. The following table showcases a comparison between the

options we sampled and what plotter hardware we chose at the end.

29

Table 3.1: Comparison between Shenzhen Liyang LY machine [21] & GKDraw X3 [39]

Shenzhen Liyang LY
machine (selected)

GKDraw X3

Manufacturer Shenzhen Liyang CO. GKTools

Working Area 490mm × 390mm 230mm × 315mm

Coordinates X, Y, and short Z axises X, Y, and short Z axises

Power DC 12V, 5A DC 12V, 5A

Cross-Platform Support Windows, Mac, & Linux Windows, Mac, & Linux

Official Firmware Available, with open source Available, with open source

Price $75 $177

3.3.2 Software Design Options

Current trends in the AI field are using the LSTM networks entirely to build handwritten

intelligence systems like [23]. To mimic a specific style using LSTM, we need the exact

sequence of points for any word written having the needed style. That sequence of print

represents the training dataset. However, there are many cases in which the only available dataset

for a particular style contains images only. Hence, our move is to use the GAN approach to

mimic the mentioned case.

This section will discuss the options available for us when we decide to design the software part

of the system.

30

3.3.2.1 The GAN Approach Overview

As shown in figure 3.4, on the software side, there are multiple components to look for which

combined are called the GAN model, these components are the generator, the discriminator, and

the distribution network. The points generator network is an MLP CNN network, which can

generate sequences of trajectory points. These points can be fed into the next component which

is a GCode encoder, it takes the points by order and encodes them to produce a set of instructions

to be given to the plotter hardware in the format of a GCode file. The robot takes the GCode file

and starts drawing trajectory points inside it. A capturing module submits images taken from the

handwritten text the plotter draws to the discriminator network, which is also an MLP CNN

network that does a zero-one comparison between what the model learned and what the plotter

has submitted. It all starts with random weights and not accurate probabilities, so a points

distribution network is making sure of updating these values whenever the discriminator is doing

a comparison.

Figure 3.4: Detailed View of the GAN’s Submodels for the Robotic System

31

The proposed approach consists of three parts: 1) character generative module, 2) character

discriminative module, and 3) training module. The entire method will be built upon the GAN.

The task of the discriminative module is to distinguish samples from the character generative

module or the real training data; meanwhile, the character generative module’s task is to

maximally confuse the discriminative module. Moving forward, we will refer to the generator as

G, the discriminator as D, the input data as X, and the random number set as Z.

Thus, the training objectives of the approach are summarized to 1) train the discriminative

module to maximize the probability of the real character data and minimize the probability of the

character image written by the robot; and 2) train the generative module to minimize the

probability that the discriminative module recognizes the robotic written images. In the character

generative module, a generative network, G, uses random numbers as input to produce

probability distributions of character trajectory points. Then, the calligraphy robot applies a

sampling method to obtain the character’s position information from the probability

distributions. From this, the robot uses the obtained position to write the character on a touch

screen, then the tablet captures the written character. The discriminative network, D, receives

character images from the tablet, either captured from the written character by the robot or

sampled from calligraphy textbooks, and produces a discriminative result for each image. The

original training approach proposed in info GAN used the gradient descent method.

However, the gradient descent method must face a non-differentiable problem during the training

phase in the proposed framework, due to the involvement of the robotic manipulator in the

proposed approach. Such a problem cannot be solved by the backpropagation algorithm, and thus

the policy gradient typically used in the reinforcement learning algorithm is applied here to train

the framework, motivated by the work of Yu et al. [11].

For each output of the G network, the discriminative result generated by the D network indirectly

reflects the performance of the G network. In this case, outputs of the D network are used as

rewards for the robotic actions, which are generated by the G network. Therefore, the training

objective of the G network is changed to obtain maximum rewards in the proposed system. The

G network must learn to increase the occurring probability of outputs such that the writing

performances can be improved. Based on this consideration, if a character writing image of the

robot has better performance determined by D, the G network must increase the probability of

32

the robotic trajectory points. The detailed implementations of these three modules are described

below.

3.3.2.1.1 Character Discriminative Module

The character discriminative module will be established by a convolutional neural network

(CNN). CNN is chosen over other machine learning approaches because it takes just the image's

raw pixel data as input and "learns" how to extract these features instead of preprocessing the

data to derive features like textures and shapes. The network will consist of an input layer,

hidden layers, and an output layer. The details of the input layer and hidden layer will be set in

the next semester, and the dimension of the output is 1 since it is a binary classifier. The

network’s input data X will consist of two types of images: 1) real character images, Xreal, and 2)

“fake” character images, Xfake, written by the calligraphy robot. The fake images will be written

and captured on a tablet. The output values predict the probability that x came from the Xreal data

distribution against that from the robot-generated images.

3.3.2.1.2 Character Generative Module

The character generative module has a Gaussian noise input, which produces random numbers to

seed the generative module. In this project, a feed-forward neural network is adopted to

implement the character generative module. The G network also has an input of G as an array of

generated random numbers, Z, the hidden layers, and the output of G contains a probability

distribution for the trajectory point position distribution. When all the probability distributions

are generated, the random sampling method is used to generate some trajectory points from the

probability distributions. After sampling, the position information of the points is used to

generate G-Code instructions which will be sent to the robotic system.

Pseudo-code for the process

real_images := real character images
Z := random number
Tn := number of needed trajectories to draw characters

while (GAN not converged)

fake_images := []

33

for G-iteration

Z := generate new random Z
INPUT Z into G
trajectorie_list := []
trajectories := OUTPUT of G

for (t := 1 to Tn)
sampled_trajectorie := SAMPLE(trajectories)
trajectorie_list.add(sampled_trajectories)

end

g_code = G_CODE_CONVERTOR(trajectorie_list)
fake_image := Draw g_code by robotic system
UPDATE policy gradient parameters in G
fake_images.add(fake_image)

end

combine fake_images with real_images
TRAIN D with combined images

end

GAN’s method as in suggested papers that have done similar work, The traditional GAN uses the

back-propagation algorithm to update model parameters, and the generator updates its

parameters by back-propagating the discriminator’s predicted error. However, in the proposed

model, the output of the generator cannot be directly used as the input of the discriminator, as the

model itself is non-differentiable. To address this issue, the policy-gradient method employed in

the work is introduced in our work to train the GAN model. Briefly, the policy-gradient method

is a basic training mechanism in the reinforcement learning algorithm that can implement the

error backpropagation of the discriminator on the generator with the participation of the robot

[7].

We preferred to choose the policy-gradient method over the traditional policy of the normal

GAN model because it allows the robot to discover other possibilities of achieving

better-handwritten work (i.e. stochastic approach), then just going through one possible route of

34

reaching the goal (i.e. succeeding in making the discriminator confused), which is known as the

deterministic approach.

3.3.2.2 The LSTM Approche

Recurrent neural networks (RNNs) are a rich class of dynamic

models that have been used to generate sequences in domains

as diverse as music, text, and motion capture data. RNNs can

be trained for sequence generation by processing real data

sequences one step at a time and predicting what comes next.

As we previously discussed LSTM as a unique type of RNN

in chapter 2, this network is explicitly designed to avoid

long-term dependency problems. So we needed it because

remembering information for long periods is particularly its

default behavior.

Assuming the predictions are probabilistic, novel sequences

can be generated from a trained network by iteratively

sampling from the network’s output distribution, then feeding

in the sample as input at the next step. In other words, by

making the network treat its inventions as if they were real,

much like a person dreaming. Although the network itself is

deterministic, the stochasticity injected by picking samples

induces a distribution over sequences. This distribution is

conditional, since the internal state of the network, and hence

its predictive distribution, depends on the previous inputs.

Figure 3.5: Handwritten

synthesis network architecture

To summarize in a couple of words, the LSTM network is thinking of possibilities, and not

simply having a direct way to do them.

Handwriting synthesis can be described as the generation of handwriting strokes for a given text.

Figure 3.5 illustrates the network architectures used for handwriting synthesis. The hidden layers

35

are stacked on top of each other, and each one is feeding up to the layer above. There are skipped

connections from the inputs to all hidden layers and from all hidden layers to the outputs.

This architecture contains a window layer, which is convolved with the text string and then fed in

as an extra input to the synthesis network. The parameters of the window are output by the

network.

The input of the model is represented by a one-hot-encoded vector as a character sequence. And

the output of the model can be described by x, y, and z. Where x and y represent the coordinates

of the points, and z indicates whether the character ended or not.

The loss function can be calculated as in equation 3.1:

…(3.1)

Where Pr is the predictive distribution as in equation 3.1:

…(3.2)

Where:

● xt+1 is the possible next input.

● Pr(xt+1 | c) is the predictive distribution of the next possible input given the character c.

● yt is the current possible output.

36

Chapter4:

Software &
Implementation

37

In this chapter, we demonstrate the various steps we came across to implement both the hardware

side and the software side of our project, we briefly mention some of the key takeaways we saw

during the process on each side.

4.1 Model and Software Configuration

4.1.1 RaspberryPi Software

We started with installing the RaspbianOS image from the official RaspberryPi imager

application, then installed that image into an SD card and mounted it to our Raspberry Pi.

However, the raspberry pi 4 we have supports the RaspbianOS 64bit, we installed and used the

32bit distribution due to some compatibility issues with the robot’s official driver.

We accessed the raspberry pi using SSH protocol after enabling it using an external monitor, then

we activated the VNC server application inside it to have a remote graphical connection to it

from a computer. We booted into the system and then installed the development tools we needed

such as IDE, JDK, and the interpreter of python 3.7.

We set up the two sub-projects as described in the next subsections, then we disconnected the

VNC connection and we connected the raspberry pi to an android phone. Using the

RaspController mobile application we controlled the raspberry pi and ran our learned models by

launching terminal scripts via SSH protocol.

38

Figure 4.1: RaspbianOS GUI through VNC application Figure 4.2: SSH Shell from mobile

4.1.2 Software Building

This section demonstrates the implementation of the GAN and LSTM models in two

sub-sections. Each sub-section contains the used technologies and the model architecture.

4.1.2.1 GAN Architecture

The GAN architecture includes two models: the generative and discriminative models. The task

of the generative module is to generate stroke trajectory points based on certain given input

information that includes a random noise Z, and the label of the desired digit. On the other hand,

the task of the discriminative module is to distinguish between the generated digits and the actual

training digits, as well as to give feedback for the generative model to improve the generated

digits.

39

4.1.2.1.1 Generative Model

This model will have the following network structure: first of all, the input layer starts with 128

neurons for noise, with additional 10 ones representing the labels for numbers in a

one-hot-encoder manner. Secondly, the intermediate hidden layer consists of (5 * 138) = 690

neurons, the reason we multiply the sum of the input layer by 5 is due to the need for separation

between each of the five trajectories we want to generate so that we make sure each trajectory’s

network does not affect others. Finally, the output layer contains five parallel layers of 28 * 28 =

748 neurons, each one is mapped to the corresponding point in the space of the possible points.

Because the output space is too large to the

extent we could not handle it using whatever

resources in our hand, we built hand-design

templates to localize the searching space for

each trajectory of each label based on our

knowledge of writing digits. For example, the

search space for the number zero ‘0’ in the

hand-design template is 864,000 possibilities.

On the other hand, the same number when not

using the dedicated template can reach up to

2 * 1017 possibilities as discussed in chapter 2. Figure 4.3: localized regions
for the number ‘0’

Figure 4.4: Space localizing implementation for numbers 0 to 9

Once we figured out the huge possibilities space number, we started feeding the

TensorFlow-implemented network hosted on a computer instance having 8 vCPUs, 8 GB of

40

RAM, and an Nvidia Quadro M4000 with the training data. The following table 4.1 presents the

results of the initial testing.

Table 4.1: Initial training comparison between template-free and template usages

Without using templates Using templates

Training Periods
(Active hours)

Around 126 hours of training (divided by
one week)

Around 20 hours
(divided by two days)

Number of epochs
before convergence

More than 35,000 epochs Around 1900 epochs

Corollaries Can not write all digits Writes all digits

Figure 4.5: Implemented GAN architecture Figure 4.6: Implemented Discriminator
architecture

41

4.1.2.1.2 Discriminative Model

Figure 4.6 demonstrates the architecture of the discriminative model we used in our proposed

system. It is considered a binary classifier to distinguish fake images from real ones. The model

receives a 28 * 28 sized image as an input and outputs either ‘0’ for a fake judge or ‘1’ for a real

one. There is one flatten layer that converts the input 2D image to a 1D flattened version. After

that, two hidden layers are used to make feature extraction from the image, then the extracted

features are used for the discrimination purpose. The last layer which is the output layer has one

neuron with RELU activation function which produces the final judge value.

4.1.2.2 LSTM Model

Since LSTM needs sequences of points in our project, we used the IAM online handwriting

database (IAM-OnDB). This database consists of handwritten lines collected from 221 different

writers using a ‘smart whiteboard’. The positions of the pens were tracked using an infra-red

device in the corner of the board. Samples from the training data are shown in Figure 4.7. The

original input data consists of the x and y pen coordinates, and the points in the sequence when

the pen is lifted off the whiteboard. Beyond that, no preprocessing was used and the network was

trained to predict the XY coordinates and the end-of-stroke markers one point at a time.

Figure 4.7: Training samples from the IAM online handwriting database

42

The database as a set of scripts contains 80

distinct characters (capital letters, lower case

letters, digits, and punctuation). However, we

used only a subset of 57 in size having all the

digits and most of the punctuation characters

replaced with a generic ‘nonletter’ label.

This model was implemented using Tensorflow

as well. At the core of a model, there are three

hidden layers each having 400 neurons. Hidden

layers are a long-short-term memory layer, a

window layer, and another LSTM layer. Next,

there is a dense layer with 3 neurons to generate

coordinates at each step. First, two coordinates

are x and y on a plane, third coordinate informs

whether the character ends or not.

Figure 4.8: Implemented LSTM network

4.2 Hardware Configuration

4.2.1 Assembling the Robot

The robot we purchased was sent to us as a package of small individual pieces and

subcomponents that needs to be put together so that they construct larger components that can be

connected for the full plotter to be finished. In figure 4.8 we reveal the whole content of the

package, then we captured some photos of the assembly process for some components in the

following figures 4.9 to 4.13.

43

Figure 4.9: LY robot components Figure 4.10: CNC shield with drivers

Figure 4.11: Arduino UNO attached Figure 4.12: Full robot assembled

When installing the drivers for the stepper motors, we

noticed that the CNC shield board has 4 slots; each can

accept a driver for a specific axis. The servo motor for Z

movements is only going up and down in two values,

meaning that it does not need a driver as the only required

cables are data (0 or 1) and power. The slot for the Z driver is

used for attaching another stepper motor that can accept

various height values (like ones seen in 3D printers). Figure 4.13: Installed motor drivers

44

4.2.2 Device Identification

Figure 4.14: Robot hardware identification on RaspbianOS

The manufacturing company attached a zip folder containing the standard CH34x compatible

machine driver as well as documentation for robot building, and since the driver is cross-platform,

we initially installed it in Windows on a PC to see whether the robot is identified. Unfortunately, the

version of that driver was behind a newer one that already existed on the internet, and there were

some glitches when recognizing the steppers. Luckily, the newest version of the driver solved them

and the robot was identified ideally. Figure 4.14 shows that the Raspberry pi read the robot port.

4.2.3 Gcode Instructions

In short, Gcode is a programming language for Computer Numerical Control robots like our robot,

and the word Gcode stands for “Geometric Code”. We used this language to tell the robot what to

draw and how to draw it accordingly. Gcode commands will instruct the machine on where to move,

how fast to move, and what path to follow [43].

The following steps summarize the work done to convert the sequence of points from their digital

representation to a creative manuscript written accurately by our robot calligrapher on physical

paper:

1. Creating a communication channel between the hardware components of the robot and the

generating model without a third-party program by controlling the robot hardware

components.

2. Sending an acknowledgment signal to the robot as an indication to begin receiving the

geometric code instructions.

3. Choosing the speed of the robot’s motors carefully to achieve the most accurate results as

close as possible to the digital images. The accuracy test is recorded in chapter 5.

4. Designing and developing a proper technique that minimizes the discontinuity of strokes by

treating the same points of continuous character as one connected component and traversing

them sequentially.

45

Chapter5:

Validation & Results

46

In this section, we evince the different tests applied to several project building blocks, as well as

some of the selected outputs and results for this project at various timestamps with detailed

charts and metrics for demonstrating the level of performance this project has achieved during

the research and development period.

5.1 Unit Testing

5.1.1 RaspberryPI 4

We connected the raspberry pi microcomputer to an external power supply using its USB-C

power delivery port and ensured that the device was working and booting from the SDCard

containing the RaspbianOS image (Passed).

5.1.2 Robot Calligrapher

The robot has two out cables; one for power delivery up to 12V to supply all the different

components, and the other is a USB data cable coming from the Arduino microcontroller to fetch

compatible instructions from the host computer. We powered the robot first (Passed), then sent

some Gcode instructions to the robot and saw the motors moving according to the input

accurately (Passed). Figure 5.1 shows the accuracy of the robot testing results on drawing

[(0, 0), (50, 0), (50, 50)] points in millimeter unit.

Figure 5.1: Measuring the Robot Calligrapher accuracy

47

5.2 Integration Testing

5.2.1 Connecting RaspberryPI with the Robot

The robot is connected using a USB interface, so the host OS treats it as an external device and

serves it as a platform-related mount point. On Windows the mount point was COM1, but on

RaspbianOS it was /dev/ttyUSB0, both of which the respectful host OS was recognizing up to

the robot hardware with the help of the driver (Passed).

5.2.2 Installing Necessary Software on RaspberryPI

Although the installation of dependencies and third-party software on the raspberry pi was

producing problems more than progress at the beginning, we managed to run our project’s

software using the method mentioned in chapter 4 successfully after installing Tensorflow and

the robot’s driver, as well as configuring the SSH protocol to control the raspberry via a remote

device. All were done when switching to the 32bit version of the host OS (Passed).

5.3 Results and Output Samples

5.3.1 Output Samples - LSTM

After the training period has ended for each of the models we prepared, we can showcase some

samples for the outputs constructed from both sides using the robot on plain paper. The following

figure 5.2 demonstrates the steps for the drawing process of the handwritten-like word

‘Polytechnic’ generated from the LSTM model. Note that this word is new to the model as a test

input to try out.

48

Figure 5.2: Process of writing ‘Polytechnic’ using LSTM

Additionally, the LSTM model is capable of drawing the same word but with different styles as

seen in figure 5.3, simply by tuning a parameter for style type for the model.

A list of videos for the calligrapher while writing other handwritten text will be available in a

drive link listed in [47].

49

Figure 5.3: Different styles of ‘Polytechnic’ using LSTM

Figure 5.4: LSTM output improvement at selected timestamps

50

For a better and distinguishable view, we took samples from the robot while training at every

three epochs. As shown in figure 5.4, the intelligence model was unaware of anything and

missed up either by drawing jittery lines or unknown characters. But from epoch 8 to epoch 9,

we started to see the model leaping forward in embracing some of the styles, then moving on the

model has learned multiple styles and details of these styles as shown in the previous pictures of

figure 5.9.

5.3.2 Output Samples - GAN

Figure 5.5: GAN output improvement Figure 5.6: Different variations of number ‘2’

The first figure 5.5 demonstrates the improvement of the GAN model output with samples taken

at different training periods. At convergence, the generator network is capable of producing

numeric drawings that are readable and clear using only five trajectory points. Right figure 5.6

shows the various possibilities of these trajectories to construct the number as each trajectory is

generated within a known region to speed up training time and reduce network overhead.

51

In the next figure 5.7, we gave the model one of each label given to the model at the convergence

state, then collected the drawings done by the robot.

Figure 5.7: GAN’s labels output at the convergence

52

As shown in figure 5.8, the GAN model has the ability to generate different styles for the same

label. There is no static style, and the style varies randomly.

Figure 5.8: Different styles of ‘4’ using GAN

Figure 5.9 shows the writing steps for sequence points of digit ‘4’. It is clear that the model has

the ability to mimic the human handwriting attitude.

Figure 5.9: Process of writing ‘4’ using GAN

53

5.4 Measurements and Readings

5.4.1 LSTM measurements

Figure 5.10: LSTM training loss

Figure 5.10 shows the LSTM generator loss graph plotted using TensorBoard. The graph is based

on 20 epochs of training, each epoch has 1000 steps. While major learning techniques can have

training loss for hyperparameters tuning and validation loss, using the whole dataset for training

loss values can go with the LSTM network more efficiently since it is important to take all its

given data as training data. The reason for this is that this model is expected to generate

indistinguishable handwritten text, meaning that we feed all possible data we have with no

splitting if we want to mimic certain styles, thus the measurement for training loss is the only

reading we could generate to tweak the hyperparameters. The graph also indicates an increase in

values rather than the opposite, and that is because the loss function illustrated by equation 3.1

represents the predictive probability distribution. We are more interested in revealing the gradient

ascent representation since it gives us an indication of the matching level between the real data

and the generated data, as well as a clear reading of the model performance which is getting

better. Tensorflow has only the implementation for gradient descent so we multiplied the result

from that function by -1.

The actual improvement is touched on in the previous figure 5.4 where the ascent value is

increasing when the model is getting used to what he learned.

54

5.4.2 GAN measurements

Figure 5.11: Generative loss for all digits together

Figure 5.11 represents the GAN generator loss graph plotted using the Matplotlib library. The

graph is based on 1900 epochs of training. Also, there is only training loss here for the same

mentioned reason in the 5.4.1 subsection. The graph indicates a decrease in values rather than the

LSTM, and that is because the loss function here is represented by the MSE which the lowest

loss value indicates that a similarity between generated data and real data is better.

55

Chapter6:

Conclusion & Future
Work

56

6.1 Conclusion

This project has featured a learning robotic system that can mimic the calligraphy of human

beings, making it a robot that wants to compete with human creativity. Our work showed that

LSTM is useful in mimicking font styles for words represented by point sequences. Also, we

proved that it is possible to solve the enormous search space problem in GAN by pretraining the

generator. Moreover, the pretraining will give the GAN the ability to generate points

sequentially. We proposed that it is more efficient to take the whole expected actions from the

software, then reflect the decisions on the hardware rather than reflecting each decision on the

hardware directly. That will achieve continuity in the manuscripts, accelerate the generation

process, as well as mimic the thinking of humans.

6.2 Future Work

This work has allowed us to achieve a handful of requirements, and additional features, as well

as explore the field of artificial intelligence and deep learning interestingly. While our project

has accomplished some of the key points like having a trained system that can mimic the

calligraphy of human handwriting and using a state of the art methods for that, there will always

be room for improvement. Here we show some of the future enhancements that could potentially

have an impact on the project positively:

1. Improve the search space for the generative adversarial network by applying and

automating data analysis on the dataset in the pretraining step for better output diversity

while maintaining consistency rather than using hand-made templates and localized

regions.

2. Support more languages other than English in generating long sentences. Arabic for

example.

3. Support a wider set of characters for the GAN model and increase the number of

generated trajectory points for smoother synthesis.

4. Upgrade the robot to allow it to work on different rough surfaces like stone, and extend

the range of tools to draw with like using a laser or engraver.

57

References
[1] Machine learning - Wikipedia, the free encyclopedia, Retrieved in November 2021, from:

[en.wikipedia.org/wiki/Machine_learning].

[2] Reinforcement learning - Wikipedia, the free encyclopedia, Retrieved in November 2021,

from: [en.wikipedia.org/wiki/Reinforcement_learning].

[3] Michael L. Littman, and Andrew W. Moore, Reinforcement Learning: A Survey, Journal of

Artificial Intelligence Research 4, pp. 237-285, 1996, Retrieved in November 2021.

[4] Train a software agent to behave rationally with reinforcement learning, IBM, Retrieved in

November 2021, from [developer.ibm.com].

[5] Generative Adversarial Networks (GANs). (n.d.). Wikipedia, the free encyclopedia.

Retrieved in November 2021, from

[https://en.wikipedia.org/wiki/Generative_adversarial_network].

[6] Nicholson, C. (n.d.). “A Beginner's Guide to Generative Adversarial Networks (GANs)”. A

Beginner’s Guide to Important Topics in AI, Machine Learning, and Deep Learning,

Retrieved in November 2021, from [wiki.pathmind.com/generative-adversarial-network].

[7] Ruiqi Wu, Changle Zhou, Fei Chao, Longzhi Yang, Chih-Min Lin, Changjing Shang,

”GANCCRobot: Generative Adversarial Nets based Chinese Calligraphy Robot”,

Information Sciences (2019), Retrieved in November 2021, from [doi.org].

[8] XiaojinZhu and Andrew B.Goldberg. “Synthesis Lectures on Artificial Intelligence and

Machine Learning”, 2009, Vol. 3, No. 1, Pages 1-130, Retrieved in December 2021.

[9] “TensorFlow”, Retrieved in November 2021, from [tensorflow.org].

[10] Lei Kang, Pau Riba, Yaxing Wang, Marçal Rusiñol, Alicia Fornés, Mauricio Villegas,

“GANwriting: Content-Conditioned Generation of Styled Handwritten Word Images”,

Computer Vision and Pattern Recognition Subject at Cornell University (2020), Retrieved

in November 2021, from [arxiv.org].

[11] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial nets with

policy gradient.” in AAAI, 2017, pp. 2852–2858. Retrieved in December 2021.

58

https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Reinforcement_learning
https://developer.ibm.com/articles/cc-reinforcement-learning-train-software-agent/
https://en.wikipedia.org/wiki/Generative_adversarial_network
https://wiki.pathmind.com/generative-adversarial-network-gan
https://doi.org/10.1016/j.ins.2019.12.079
https://tensorflow.org/
https://arxiv.org/abs/2003.02567

[12] “Deep Learning”, Investopedia, 2020, Retrieved in December 2021, from:

[investopedia.com/terms/d/deep-learning.asp].

[13] “What Is Deep Learning?”, mathworks.com/, 2020, Retrieved in December 2021, from:

[mathworks.com/discovery/deep-learning].

[14] “Why Deep Learning over Traditional Machine Learning?”, TowardsDataScience, 2018,

Retrieved in December 2021, from [towardsdatascience.com].

[15] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a convolutional neural

network," 2017 International Conference on Engineering and Technology (ICET), 2017, pp.

1-6. Retrieved in December 2021.

[16] Chao, Fei, Gan Lin, Ling Zheng, Xiang Chang, Chih-Min Lin, Longzhi Yang, and

Changjing Shang. "An LSTM Based Generative Adversarial Architecture for Robotic

Calligraphy Learning System'', Sustainability (2020), Retrieved in December 2021, from:

[doi.org].

[17] Sak, H. & Senior, Andrew & Beaufays, F.. (2014). Long short-term memory recurrent

neural network architectures for large-scale acoustic modeling. Proceedings of the Annual

Conference of the International Speech Communication Association. 338-342. Retrieved in

December 2021.

[18] GKTools, “GKDraw Software Installation and integration with GK X3 Pro”, Retrieved in

December 2021, from [mygktools.com/doku.php/gkdraw_software].

[19] Raspberry Pi 4 Model B 4Gb, Retrieved in December 2021, from [robot-advance.com].

[20] Kaelbling, Leslie P., Littman, Michael L., Moore, Andrew W., (1996). Reinforcement

Learning: A Survey. Retrieved in December 2021.

[21] LY pen drawing robot machine lettering XY-plotter robot machine, Retrieved in December

2021, from [AliExpress.com].

[22] Arduino Uno Rev3 – Arduino Official Store, Retrieved in December 2021, from

[Arduino Uno Rev3 — Arduino Official Store].

59

https://www.investopedia.com/terms/d/deep-learning.asp
https://www.mathworks.com/discovery/deep-learning.html
https://towardsdatascience.com/why-deep-learning-is-needed-over-traditional-machine-learning-1b6a99177063
https://doi.org/10.3390/su12219092
http://www.mygktools.com/doku.php/gkdraw_software
https://www.robot-advance.com/EN/art-raspberry-pi-4-model-b-4go-2640.htm
https://www.aliexpress.com/item/32967477326.html?dp=37dd0f47b7e755ef1cc1e7d53872a77e&af=1303019&cv=47843&afref=&mall_affr=pr3&utm_source=admitad&utm_medium=cpa&utm_campaign=1303019&utm_content=47843&dp=37dd0f47b7e755ef1cc1e7d53872a77e&af=1303019&cv=47843&afref=&mall_affr=pr3&utm_source=admitad&utm_medium=cpa&utm_campaign=1303019&utm_content=47843&aff_fcid=ead26652413d4950952b0005134e354d-1640264496353-09832-_ePNSNV&aff_fsk=_ePNSNV&aff_platform=portals-tool&sk=_ePNSNV&aff_trace_key=ead26652413d4950952b0005134e354d-1640264496353-09832-_ePNSNV&terminal_id=f406fd0096a84356a9c86a26a1010311&gatewayAdapt=glo2ara
https://store.arduino.cc/products/arduino-uno-rev3/

[23] Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv:1308.0850

[cs.NE]. Retrieved in April 2022, from [arxiv.org]

[24] CNC Shield V3 - Euro-Makers, Retrieved in December 2021, from [euro-makers.com].

[25] CNC Shield V3 – Engraving Machine 3D Printer Expansion Board, Retrieved in December

2021, from [ElectronicsComp.com].

[26] MG996r Servo Motor, Retrieved in December 2021, from:

[electronicoscaldas.com/datasheet/MG996R].

[27] About Servo Motors, Retrieved in December 2021, from:

[jsumo.com/mg996r-servo-motor-digital].

[28] Stepper Motors, Retrieved in December 2021, from:

[learn.adafruit.com/all-about-stepper-motors].

[29] Stepper Motors in Detail, Retrieved in December 2021, from:

[ato.com/4-wire-nema-17-bipolar-stepper-motor].

[30] A4988 Stepper Motor Driver, Retrieved in December 2021, from [twinschip.com].

[31] Cooling Fans for Raspberry Pi and Arduino chips, Retrieved in December 2021, from:

[electan.com].

[32] Power supply AC Adapter for Speedport, Retrieved in December 2021, from:

[remotes4you.eu].

[33] Downey A., Elkner J. & Meyers C, (2002). How to Think Like a Computer Scientist,

Learning with Python, “The Python Programming Language”, Wellesley: Green Tea Press.

Retrieved in December 2021.

[34] D. Berio, S. Calinon, F. F. Leymarie, Dynamic graffiti stylization with stochastic optimal

control, in: Proceedings of the 4th International Conference on Movement Computing,

ACM, 2017. Retrieved in December 2021.

[35] V. Mohan, P. Morasso, J. Zenzeri, G. Metta, V. S. Chakravarthy, G. Sandini, Teaching a

humanoid robot to draw “shapes”, Autonomous Robots 31 (1) (2011) 21–53. Retrieved in

December 2021.

60

https://arxiv.org/abs/1308.0850
https://euro-makers.com/gb/shields-drivers-cnc/1084-cnc-shield-v3-3701172900361.html
https://www.electronicscomp.com/cnc-shield-v3-3d-printer-a4988-expansion-board
https://www.electronicoscaldas.com/datasheet/MG996R_Tower-Pro.pdf
https://www.jsumo.com/mg996r-servo-motor-digital
https://learn.adafruit.com/all-about-stepper-motors
https://www.ato.com/4-wire-nema-17-bipolar-stepper-motor-6v-0-8a-1-8-degree
https://www.twinschip.com/A4988_Stepper_Motor_Driver
https://www.electan.com/cooling-fan-013a-for-raspberry-p-6482-en.html
https://www.remotes4you.eu/en/power-supply-ac-adapter-for-speedport-w724v-w-724.html

[36] D. Berio, S. Calinon, F. F. Leymarie, Learning dynamic graffiti strokes with a compliant

robot, in: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

IEEE, 2016, pp. 3981–3986. Retrieved in December 2021.

[37] R. J. Hendrick, C. R. Mitchell, S. D. Herrell, I. Robert J. Webster, Hand-held

transendoscopic robotic manipulators: A transurethral laser prostate surgery case study, The

International Journal of Robotics Research 34 (13) (2015) 1559–1572. Retrieved in

December 2021.

[39] GKTOOLS Official Store, Retrieved in December 2021, from [gktools.aliexpress.com].

[40] Graves, Alex. “Understanding LSTM Networks -- colah's blog.” Colah's blog, August 2015,

Retrieved in December 2021, from [colah.github].

[41] Virtual Network Computing - Wikipedia, Retrieved in May 2022, from [Wikipedia].

[42] Secure Shell - Wikipedia, the free encyclopedia, Retrieved in April 2022, from [Secure

Shell - Wikipedia].

[43] List of Most Important G-code Commands, Retrieved in April 2022, from:

[t.ly/0A0X]

[44] M. Liwicki and H. Bunke. IAM-OnDB - an on-line English sentence database acquired

from handwritten text on a whiteboard. In Proc. 8th Int. Conf. on Document Analysis and

Recognition, volume 2, pages 956-961, 2005.

[45] Zhengwei Wang, Qi She, and Tomás E. Ward. 2021. Generative Adversarial Networks in

Computer Vision: A Survey and Taxonomy. ACM Comput. Surv. 54, 2, Article 37 (March

2022), 38 pages. Retrieved in Febreuary 2022, from [https://doi.org/10.1145/3439723]

[46] M. Liwicki and H. Bunke. IAM-OnDB - an on-line English sentence database acquired

from handwritten text on a whiteboard. In Proc. 8th Int. Conf. on Document Analysis and

Recognition, volume 2, pages 956-961, 2005. Retrieved in May 2022.

[47] Calligrapher Robot Videos, Accessed from [t.ly/--sH].

61

https://gktools.aliexpress.com/store/222483
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://en.wikipedia.org/wiki/Virtual_Network_Computing
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Secure_Shell
http://t.ly/0A0X
https://doi.org/10.1145/3439723
http://t.ly/--sH

62

Epoch 0 Epoch 3 Epoch 6

Epoch 9 Epoch 12 Epoch 15

Epoch 19

63

64

65

Figure 5.11: Pre-training generative loss for number ‘7’

66

Epoch 0 Epoch 3 Epoch 6

Epoch 9 Epoch 12 Epoch 15

Epoch 19

67

In this project, we used a handful of instructions to translate the trajectories of the model output

for the robot to draw. All with their respective short descriptions in the following table 4.1.

Instructions Functionalities

G90 Absolute mode coordinations.

G91 Relative mode coordinations.

G21 Define G-code units in millimters.

F[Num] Define the speed of a robot per minute.

M03 Spindle ON.

M05 Spindle stop.

G4 S[Num] Pause robot [Num] of ms.

G1 X_ Y_ Z_ Direct the robot’s motor to change its state.

Table 4.1: Gcode Instructions

68

Abstract
There is a huge demand in the field of Artificial intelligence for making novel works that
can mimic human creativity. One interesting example is handwritten calligraphy. Robotic
calligraphy, as a typical application of robot movement planning, is of great significance
for the education of calligraphy culture. The existing implementations of such robots
often suffer from their limited ability for font generation and evaluation, leading to poor
writing style diversity and writing quality. Our work aims to provide a solution that
humans can utilize, to mimic the calligraphy of handwritten texts using the provided
robotic system, reaching a satisfying level where handwriting is done automatically with
astonishing results. The work is utilizing long-short-term memory (LSTM) technology
alongside a generative adversarial model (GAN to be used as a proof of concept). This
work has shown in its outcomes the possibility to write words using the robot, as well to
mimic a specified human writing style from images after pretraining the system on
sequences of points of lines belonging to other styles. We proposed that it is more
efficient to take the whole expected actions from the software, then reflect the decisions
on the hardware rather than reflecting each decision on the hardware directly

Copy of العمليةحياتهمفيالاصطناعيالذكاءتطبيقاتاستخدامفلسطينبوليتكنكجامعةطلابتقبلإمكانيةدراسة -
Google Docs

Before pre-train: took around 126 hours before convergence for some digits.

After pre-train: took around 20 hours for all digits.

Once we figured out the huge possibilities space number, we started feeding the

TensorFlow-implemented network hosted on a computer instance having 8 vCPUs, 8 GB of

RAM, and an Nvidia Quadro M4000 with the training data. The following table 4.1 presents the

results of the initial testing.

● Previous works wrote the digits in 126 hours

● Our work toke benefits from the human learring way by used pre training so it wrote the

digits in 20 hours

69

https://docs.google.com/document/d/1N0rlw_4s3qG9epWDlC2EGY44iLzKE8j0LTFIUbGnwtI/edit
https://docs.google.com/document/d/1N0rlw_4s3qG9epWDlC2EGY44iLzKE8j0LTFIUbGnwtI/edit

● We proposed a proof of concept

70

