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GENERATING STATISTICAL DISTRIBUTIONS USING

FRACTIONAL DIFFERENTIAL EQUATIONS

I. ALHRIBAT(1) AND M. H. SAMUH (2)

Abstract. In a recent paper of Dixit and Ujlayan (UD), a new fractional derivative

is introduced as a convex combination of the function and its first derivative; that

is

Dαf(x) = (1− α)f(x) + αf ′(x).

In this article, a new technique of generating fractional continuous probability distri-

butions by solving UD fractional differential equations that associated to well-known

continous probability distributions is presented. In particular, the UD fractional

probability distributions for the Exponential, Pareto, Lomax, and Levy distribu-

tions are generated. Finally, a real data application is considered for investigating

the usefulness of the new fractional distributions. The results reveal that the pro-

posed new fractional distribution performs better than the baseline distribution.

1. Introduction

In the science of modelling data, finding the best-suited distribution to fit the

data being studied is of major concern. For example, studies showed that Rayleigh

distribution can be used to model the individual ocean wave heights [1, 2]; Pareto

distribution can be used to model extreme data such as the size of freak waves, the

highest one-day rainfall in one year, etc. [3].

Several studies in the literature investigated new techniques that aim to produce

new distributions to get more flexible data fitting. One of these techniques is to add

a new parameter(s) to an existing distribution. The author in [4] developed skew
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normal distribution by adding the skewness parameter to the normal distribution.

The authors in [5] introduced exponentiated Weibull distribution by raising the cu-

mulative distribution function of the Weibull random variable to a new parameter.

For more studies see [6], [7], [8], and the references therein.

Another technique to produce a new probability distribution is to consider the

solution of a specific differential equation. The author in [9] was first to introduce a

system of probability distributions by solving of differential equation. The Pearson

probability distribution f(x) is defined to be any solution to the following differential

equation

(1.1)
f ′(x)

f(x)
+

x− d

ax2 + bx+ c
= 0,

in which a, b, c, and d are distributional parameters. The solution of this differential

equation is given by

(1.2) f(x) = A exp

{
∫

d− x

ax2 + bx+ c
dx

}

,

where A is the constant of integration. Letting a = b = 0, the differential equation

produces the Normal probability distribution with mean equals −d and variance

equals c. For more details and some other distributions that can be produced by this

differential equation see [9, 10, 11], and [12].

Another system of probability distributions was developed by [13]. The Burr prob-

ability distribution f(x) = F ′(x) is defined to be any solution to the following differ-

ential equation

(1.3)
F ′(x)

F (x) (1− F (x))
− g(x) = 0,

where g(x) is any chosen non-negative function that makes F (x) increases over its

support and 0 ≤ F (x) ≤ 1.

The solution of this differential equation is given by

(1.4) F (x) =
1

1 + e−
∫

g(x)dx
.

The solution depends on the choice g(x). For a list of different Burr types distributions

and some more details see [12], [13], and [14].
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As a generalization of ordinary differential equation, fractional differential equation

is discussed in literature under different types of differential operator. Indeed, many

researchers have been defined many types of fractional derivatives. The most well-

known ones are Riemann-Liouville and the Caputo definitions.

(1) Riemann-Liouville definition. For α ∈ [n− 1, n), the α-derivative of f is

(1.5) Dα
t0
(f)(t) =

1

Γ(n− α)

dn

dtn

∫ t

t0

f(x)

(t− x)α−n+1
dx.

(2) Caputo definition. For α ∈ [n− 1, n), the α-derivative of f is

(1.6) Dα
t0
(f)(t) =

1

Γ(n− α)

∫ t

t0

f (n)(x)

(t− x)α−n+1
dx.

However, the following are some of the setbacks of these definitions:

(1) The Riemann-Liouville derivative does not satisfy Dα
a (1) = 0, while the Ca-

puto definition does.

(2) The two definitions do not satisfy the product rule of differentiation: Dα
a (fg) =

f (Dα
a g) + g (Dα

a f).

(3) The two definitions do not satisfy the quotient rule of differentiation: Dα
a

(

f
g

)

=

g(Dα
a f)−f(Dα

a g)
g2

.

(4) The two definitions do not satisfy the chain rule:

Dα
a (f ◦ g) = f (α)(g(t))g(α)(t).

(5) The two definitions do not satisfy the index rule: DαDβ(f) = Dα+β(f), in

general.

The authors in [15] have introduced a new fractional derivative called the con-

formable fractional derivative. For 0 < α < 1, the conformable fractional derivative

of f , denoted by Tα, is defined by

(1.7) Tαf(t) = lim
h→0

f (t+ ht1−α)− f(t)

h
,

which is a natural extension of the derivative of order 1. It can be represented as

(1.8) Tαf(t) = t1−αf ′(t).

It worth to note that the conformable fractional derivative satisfies almost all the

classical properties of the usual first derivative.
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Recently, conformable fractional differential equations are used to generate new

probability distributions. For instance, [16] have generated some conformable frac-

tional probability distributions, including fractional exponential distribution, frac-

tional Lomax distribution, fractional Levy distribution, fractional Rayleigh distribu-

tion, and fractional gamma distribution. The properties of the conformable fractional

Rayleigh probability distribution and the conformable gamma distribution have been

investigated by [17] and [18], respectively. More recently, [19] investigated the con-

formable Lomax probability distribution and its properties.

Dixit and Ujlayan in [20] and [21] have defined a UD fractional derivative as a

convex combination of the function and its first derivative, where (Dαf) (t) = (1 −
α)f(t)+αf ′(t) for α ∈ (0, 1]. In addition, they have studied the main properties and

results of this fractional differential operator.

Actually, the problem is, in spite of having a number of definitions to deal with a

derivative of arbitrary order, to compute such derivative is very tough. One has to get

a numerical solution while working with mathematical modeling involving fractional

derivative. This point motivated us to use the UD fractional derivative which is

easy at a glance of computation, analytic, and possess almost all the properties of

the classical derivative. Therefore, the UD fractional differential operator reduces

the complexity in the calculation to solve the fractional ordered differential equation

and provides an analytic result. The advantage of the proposed definition is that it

simply converts a fractional derivative into a convex combination of the function itself

and its ordinary derivative without involving any variable, and finally the equation

reduces to the classical differential equation which can be solved with existing known

methods.

In this paper, UD fractional differential equation will be used to generate new

fractional distributions based on some existing probability distributions.

The rest of the paper is organized as follows. In Section 2, the UD fractional

derivative is described and some of its properties are presented. The UD fractional

probability distribution functions for the exponential, Pareto, Levy, and Lomax dis-

tributions are developed in Sections 3, 4, 5, 6, respectively. Real data application is

considered in Section 7. Section 8 concludes the paper.
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2. The UD Derivatie

In this section, the definition of UD fractional derivative and some of its properties

are presented. This section is mainly based on [21].

Definition 2.1. For a given function f : [0,∞) → R and α ∈ [0, 1], the UD derivative

of order α is defined as

(2.1) Dαf(x) = lim
ǫ→0

eǫ(1−α)f
(

xe
ǫα
x

)

− f(x)

ǫ

If this limit exists, then Dαf(x) is called the UD derivative of f for α ∈ [0, 1], with

the understanding that Dαf(x) = dαf(x)
dxα . Also, if f is UD differentiable in the interval

(0, x) for x > 0 and α ∈ [0, 1] such that limx→0+ fα(x) exist then,

(2.2) fα(0) = lim
x→0+

fα(x)

Theorem 2.1. Let f : [0,∞) → R be a differentiable function and α ∈ [0, 1]. Then,

f is UD differentiable, and

(2.3) Dαf(x) = (1− α)f(x) + αf ′(x).

Proof. By Definition 2.1, we have

Dαf(x) = lim
ε→0

eε(1−α)f
(

xe
εα
x

)

− f(x)

ε

= lim
ε→0

{1 + ε(1− α) + o (ε2)} [f {x+ εα+ o (ε2)}]− f(x)

ε

= lim
ε→0

{1 + ε(1− α)} [f(x) + f ′(x){εα}]− f(x)

ε

= lim
ε→0

f(x) + ε(1− α)f(x) + εαf ′(x)− f(x)

ε

= (1− α)f(x) + αf ′(x),

where α ∈ [0, 1]. �

Remark 1. The UD derivatives of order α, α ∈ [0, 1], of some elementary real-valued

differentiable functions in [0,∞), can be given as follow:

(1) Dα(λ) = (1− α)λ for all constants λ ∈ R.

(2) Dα ((ax+ b)n) = (1− α)(ax+ b)n + anα(ax+ b)n−1 for all a, b ∈ R.

(3) Dα
(

eax+b
)

= ((1− α) + aα)eax+b for all a, b ∈ R.
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(4) Dα(sin(ax+ b)) = (1− α) sin(ax+ b) + aα cos(ax+ b) for all a, b ∈ R.

(5) Dα(cos(ax+ b)) = (1− α) cos(ax+ b)− aα sin(ax+ b) for all a, b ∈ R.

(6) Dα(log(ax+ b)) = (1− α) log(ax+ b) + aα(ax+ b)−1 for all a, b ∈ R.

Theorem 2.2. Let f and g be two differentiable functions in [0,∞) and 0 ≤ α, γ ≤ 1,

then the following properties hold:

(1) Linearity: Dα(af + bg) = aDαf + bDαg for all a, b ∈ R.

(2) Product rule: Dα(fg) = (Dαf) g + α(Dg)f .

(3) Quotient rule: Dα
(

f
g

)

= (Dαf)g−α(Dg)f
g2

, provided g(x) 6= 0 for all x ∈ [0,∞).

(4) Chain rule: Dα(f ◦ g)(t) = (1−α)(f ◦ g)(t) +αf ′(g(t))g′(t). So, the classical

chain rule (Dα
a (f ◦ g) = f (α)(g(t))g(α)(t)) does not satisfied here.

(5) Commutativity: Dα (Dγ) f = Dγ (Dα) f .

Proof. The proof of the first 4 parts is straightforward. Here is the proof of Part 5.

Using Equation 2.3, we get

Dα (Dγ) f = (1− α)(1− γ)f + α(1− γ)f ′ + γ(1− α)f ′ + αγf ′′

= Dγ (Dα) f.

This completes the proof. �

Remark 2. The UD derivative of order α, α ∈ [0, 1], as given in Definition 2.1.

violets the Leibnitz’s rule for fractional derivatives, Dα(fg) 6= gDαf + fDαg. It also

violets the law of indices, Dα (Dγ) f 6= Dα+γf .

Definition 2.2. A fractional derivative Dα has a conformable property if Dα(t) →
f ′(t) when α → 1.

Remark 3. Equation 2.3 asserts that the UD derivative of order α, α ∈ [0, 1], of a

differentiable function f : [0,∞) → R, is a convex combination of the function and

the first derivative itself. Also, Dαf(x) = f(x), for α = 0 and Dαf(x) = f ′(x), for

α = 1, i.e., the UD derivative posses conformable property.

Theorem 2.3. Let the function f be bounded in [0,∞). If f is UD differentiable for

some α ∈ [0, 1] at x = a, then f is continuous at x = a.
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Proof. We need to show that limǫ 7→0 f(x+ ǫα) = f(x).

lim
ǫ 7→0

f(x+ ǫα)− f(x) = lim
ǫ 7→0

(

(1 + ǫ(1− α))f(x+ ǫα)− ǫ(1− α)f(x+ ǫα)− f(x)

ǫ

)

ǫ

= lim
ǫ 7→0

(

(1 + ǫ(1− α))f(x+ ǫα)− f(x)

ǫ

)

ǫ− lim
ǫ 7→0

ǫ(1 − α)f(x+ ǫα)

= lim
ǫ 7→0

(Dαf) ǫ− lim
ǫ 7→0

ǫ(1 − α)f(x+ ǫα)

= 0 (as f is not unbounded for all 0 ≤ x < ∞)

�

As a consequence, one can use fractional UD Calculus in probability theory. Indeed,

it can be used as a tool in the determination of the structural form of probability

distributions and in parameter estimation of the probability distributions, amongst

other uses. Continuous probability density function can be expressed as ordinary

differential equation whose solution is the probability density function, and conversely

a UD fractional version of this ordinary differential equation can be solved to obtain a

(new) fractional continuous probability distribution that is identical with the original

one when α = 1.

3. UD Fractional Exponential Distribution

A random variable X is said to have an exponential distribution if its probability

density function is given by

(3.1) f(x;λ) = λe−λx, x > 0, λ > 0.

Let y = λe−λx, then the first derivative of y is given by

(3.2) y′ = −λ(λe−λx) = −λy.

This gives the following first order ordinary differential equation (DE)

(3.3) y′ + λy = 0.
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Now, consider the α-order DE with respect to the UD derivative as follows.

y(α) + λy = 0

(1− α)y + αy′ + λy = 0

αy′ + (1− α + λ)y = 0

y′ +

(

1− α + λ

α

)

y = 0.(3.4)

Equation 3.4 is linear first order DE with integrating factor

(3.5) ν(x) = e
∫

( 1−α+λ
α )dx = e(

1−α+λ
α )x.

The general solution is

(3.6) y =
A

ν(x)
= Ae

α−(λ+1)
α

x.

Thus, the new probability distribution will be

(3.7) fα(x) = Ae
α−(λ+1)

α
x,

where the normalizing constant A can be found by solving the following equation

(3.8)

∫

∞

0

fα(x)dx = 1.

Thus,

(3.9) A =
(λ+ 1)− α

α
, α ≤ λ+ 1.

It is worth to observe that the restriction (α ≤ λ+1) is needed for the integration to

be convergent, but for the fractional derivative α must be between 0 and 1, and this

is a subset of (α ≤ λ+ 1). Thus, the integration is also convergent over (0 < α < 1).

Finally, the new probability distribution can be written as

(3.10) fα(x) =
(λ+ 1)− α

α
e

α−(λ+1)
α

x, x > 0, λ > 0, 0 < α < 1.

It is clear that, fα(x) is again an exponential distribution with λ∗ = (λ+1)−α
α

. Note

that

(3.11) lim
α→1−

fα(x) = λe−λx = f(x).
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4. UD Fractional Pareto Distribution

The Pareto distribution with shape parameter k and scale parameter λ is given by

(4.1) f(x; k, λ) =
kλk

xk+1
, x > λ, λ > 0, k > 0.

Let y = kλkx−(k+1), then the first derivative of y is given by

(4.2) y′ = −(k + 1)kλkx−(k+1)−1 = −k + 1

x
y.

This gives the following first order ordinary differential equation

(4.3) y′ +

(

k + 1

x

)

y = 0.

Now, consider the α-order DE with respect to the UD derivative as follows.

y(α) +

(

k + 1

x

)

y = 0

(1− α)y + αy′ +

(

k + 1

x

)

y = 0

αy′ +

(

(1− α) +

(

k + 1

x

))

y = 0

y′ +

(

(1− α)

α
+

(

k + 1

αx

))

y = 0.(4.4)

Equation 4.4 is linear first order DE with integrating factor

(4.5) ν(x) = e
∫

( (1−α)
α

+( k+1
αx ))dx = e(

1−α
α )x+(k+1

α ) lnx = x
k+1
α e(

1−α
α )x.

The general solution is

(4.6) y =
A

ν(x)
= Ax−

k+1
α e(

α−1
α )x.

Thus, the new probability distribution will be

(4.7) fα(x) = Ax−
k+1
α e(

α−1
α )x,

where the normalizing constant A can be found by solving the following equation

(4.8)

∫

∞

λ

fα(x)dx = 1.

Thus,

(4.9)

∫

∞

λ

Ax−
k+1
α e(

α−1
α )xdx = 1.
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By substitution, u = x
λ
, the integral becomes

(4.10)

∫

∞

1

Ae(
α−1
α

λ)u

λ
k+1
α

−1u
k+1
α

du = 1,

which can be rewitten as

(4.11) Aλ1− k+1
α

∫

∞

1

e−(
1−α
α

λ)u

u
k+1
α

du = 1.

Employing Eq. 06.34.02.0001.01 of [22], the following result is obtained.

(4.12) Aλ1− k+1
α E k+1

α

((

1

α
− 1

)

λ

)

= 1,

where E is the generalized exponential integral function and is given by

(4.13) Eν(z) =

∫

∞

1

e−zt

tν
dt.

Thus,

(4.14) A =
1

λ1− k+1
α E k+1

α

((

1
α
− 1
)

λ
)
.

Therefore, the new probability distribution can be written as

(4.15) fα(x) =
x−

k+1
α e(

α−1
α )x

λ1− k+1
α E k+1

α

((

1
α
− 1
)

λ
)
, x > λ > 0, k > 0, 0 < α < 1.

5. UD Fractional Levy Distribution

The Levy distribution with location parameter µ and scale parameter c is given by

(5.1) f(x;µ, c) =

√

c

2π

e
−

c
2(x−µ)

(x− µ)3/2
, x > µ, µ > 0, c > 0.

Let y =
√

c
2π

e
−

c
2(x−µ)

(x−µ)3/2
, then the first derivative of y is given by

y′ =

√

c

2π

(

ce
−

c
2(x−µ)

2(x− µ)7/2
− 3e−

c
2(x−µ)

2(x− µ)5/2

)

=

√

c

2π

e
−

c
2(x−µ)

(x− µ)3/2

(

c

2(x− µ)2
− 3

2(x− µ)

)

= y

(

c− 3(x− µ)

2(x− µ)2

)

.(5.2)

This gives the following first order ordinary differential equation

(5.3) 2(x− µ)2y′ − (c− 3(x− µ)) y = 0.
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Now, consider the α-order DE with respect to the UD derivative as follows.

2(x− µ)2y(α) − (c− 3(x− µ)) y = 0

2(x− µ)2 ((1− α)y + αy′)− (c− 3(x− µ)) y = 0

2(1− α)(x− µ)2y + 2α(x− µ)2y′ − (c− 3(x− µ)) y = 0

y′ +

(

1− α

α
− c− 3(x− µ)

2α(x− µ)2

)

y = 0.(5.4)

Equation 5.4 is linear first order DE with integrating factor

ν(x) = e
∫

(

1−α
α

−
c−3(x−µ)

2α(x−µ)2

)

dx

= e
(1−α)

α
x+ c

2α(x−µ)
+ 3

2α
ln(x−µ)

= (x− µ)
3
2α e

(1−α)
α

x+ c
2α(x−µ) .(5.5)

The general solution is

(5.6) y = A(x− µ)−
3
2α e

(α−1)
α

x− c
2α(x−µ) .

Thus, the new probability distribution will be

(5.7) fα(x) = A(x− µ)−
3
2α e

(α−1)
α

x− c
2α(x−µ) ,

where the normalizing constant A can be found by solving the following equation

(5.8)

∫

∞

µ

fα(x)dx = 1.

Thus,

(5.9)

∫

∞

µ

A(x− µ)−
3
2α e

(α−1)
α

x− c
2α(x−µ)dx = 1.

By substitution, u = x− µ, the integral becomes

(5.10)

∫

∞

0

Au−
3
2α e

(α−1)
α

(u+µ)− c
2αu du = 1.

Which can be rewitten as

(5.11) Ae
(α−1)

α
µ

∫

∞

0

u−( 3
2α

−1)−1e
(α−1)

α (u+ c/2(1−α)
u )du = 1.

Employing [23, Eq. 8.432.7], the following result is obtained.

(5.12) 2Ae
(α−1)

α
µ

(

c

2(1− α)

)
1
2
−

3
4α

K 3
2α

−1

(

√

2c(1− α)

α

)

= 1,
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where Kν(·) denotes the modified Bessel function of the second kind of order ν and

is given by

(5.13) Kν(z) =
zν

2

∫

∞

0

t−ν−1e
−

1
2

(

t+ z2

t

)

dt.

Thus,

(5.14) A =
e

(1−α)
α

µ
(

c
2(1−α)

)
3
4α

−
1
2

2K 3
2α

−1

(√
2c(1−α)

α

) .

Finally, the new probability distribution is written as

(5.15) fα(x) =

(

c
2(1−α)

)
3
4α−

1
2

2K 3
2α−1

(√
2c(1−α)

α

) (x− µ)−
3
2α e

(α−1)(x−µ)
α

−
c

2α(x−µ) , x > µ > 0, c > 0, 0 < α < 1.

6. UD Fractional Lomax Distribution

The probability density function for the Lomax distribution with shape parameter

β and scale parameter λ is given by

(6.1) f(x; β, λ) =
β

λ

(

1 +
x

λ

)

−(β+1)

, x > 0, β > 0, λ > 0.

Let y = β
λ

(

1 + x
λ

)

−(β+1)
, then the first derivative of y is given by

y′ = −β(β + 1)

λ2

(

1 +
x

λ

)

−(β+2)

= −β(β + 1)

λ2

(

1 +
x

λ

)

−(β+1) (

1 +
x

λ

)

−1

= −(β + 1)

λ

(

1 +
x

λ

)

−1

y.(6.2)

This gives the following first order ordinary differential equation

(6.3) y′ +
(β + 1)

λ

(

1 +
x

λ

)

−1

y = 0.

Now, consider the α-order DE with respect to the UD derivative as follows.

y(α) +
(β + 1)

λ

(

1 +
x

λ

)

−1

y = 0

αy′ +

(

(1− α) +
(β + 1)

λ

(

1 +
x

λ

)

−1
)

y = 0

y′ +

(

(1− α)

α
+

(β + 1)

αλ

(

1 +
x

λ

)

−1
)

y = 0.(6.4)
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Equation 6.4 is linear first order DE with integrating factor

ν(x) = e
∫

(

(1−α)
α

+
(β+1)
αλ (1+ x

λ)
−1

)

dx

= e
(1−α)

α
x+

(β+1)
α

ln(1+ x
λ)

= e
(1−α)

α
x
(

1 +
x

λ

)

(β+1)
α

.(6.5)

The general solution of Equation 6.4 is

(6.6) y =
A

ν(x)
= Ae

(α−1)
α

x
(

1 +
x

λ

)

−
(β+1)

α
.

Thus, the new probability distribution will be

(6.7) fα(x) = Ae
(α−1)

α
x
(

1 +
x

λ

)

−
(β+1)

α
,

where the normalizing constant A can be found by solving the following equation

(6.8)

∫

∞

0

fα(x)dx = 1.

Thus,

(6.9)

∫

∞

0

Ae
(α−1)

α
x
(

1 +
x

λ

)

−
(β+1)

α
dx = 1.

By substitution, u = 1 + x
λ
, the integral becomes

(6.10)

∫

∞

1

Ae
(α−1)

α
λ(u−1)u−

(β+1)
α λdu = 1.

Equivalently,

(6.11) Aλe
(1−α)

α
λ

∫

∞

1

e−
(1−α)

α
λuu−

(β+1)
α du = 1.

Again, by substitution, t = (1−α)
α

λu, the integral becomes

Aλe
(1−α)

α
λ

(

α

(1− α)λ

)1−(β+1
α ) ∫ ∞

( 1−α
α )λ

e−tt−(
β+1
α )dt = 1.

Employing [23, Eq. 8.350.2], the integral becomes

(6.12) Aλe
(1−α)

α
λ

(

α

(1− α)λ

)1−( β+1
α )

Γ

(

1− β + 1

α
,
1− α

α
λ

)

= 1,

where Γ(·, ·) is the upper incomplete gamma function and is given by

(6.13) Γ(ζ, x) =

∫

∞

x

e−ttζ−1dt.
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Thus,

(6.14) A =
1

λe
(1−α)

α
λ
(

α
(1−α)λ

)1−(β+1
α )

Γ
(

1− β+1
α

, 1−α
α

λ
)

.

Finally, the new probability distribution can be written as

(6.15) fα(x) =
e

α−1
α

(x+λ)
(

1 + x
λ

)

−
β+1
α

λ
(

α
(1−α)λ

)1−(β+1
α )

Γ
(

1− β+1
α

, 1−α
α

λ
)

, x > 0, β > 0, λ > 0, 0 < α < 1.

7. Data Application

In this section, a real-life data set is analyzed for the purpose of illustration to

show the usefulness and flexibility of the new UD fractional Levy distribution. The

data set represents the fatigue life of 6061-T6 aluminum coupons cut parallel with

the direction of rolling and oscillated at 18 cycles per second (See Table 1). This data

set is fitted to the Levy and UD fractional Levy distributions. The MLEs, the Akaike

information criterion (AIC), and Bayesian information criterion (BIC) are used as an

assessment metrics for the two distributions. Moreover, Kolmogorov-Smirnov (K-S)

test is used to check the goodness of fit. The values of the assessment metrics and

the p-value of the K-S test for Fatigue data are evaluated and the results are reported

in Table 2. It can be concluded that the UD fractional Levy distribution provides a

superior fit for the Fatigue data to the Levy distribution. Moreover, Figure 2 depicts

the histogram of Fatigue data plotted against the probability density function of a

fitted Levy distribution (continuous red line), and a UD fractional Levy distribution

(dashed blue line). Visually it is easy to see that the modified Levy distribution is

the best fit for this data set.

Table 1. Fatigue data [24]

70 107 114 124 130 133 138 142 151 162 212 90 108 114 124

130 134 138 142 152 163 96 108 116 124 131 134 139 144 155

163 97 108 119 124 131 134 139 144 156 164 99 109 120 124

131 134 141 145 157 166 100 109 120 128 131 134 141 146 157

166 103 112 120 128 131 136 142 148 157 168 104 112 121 129

132 136 142 148 157 170 104 113 121 129 132 137 142 149 158

174 105 114 123 130 132 138 142 151 159 196
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Table 2. The MLEs, -2LL, AIC, BIC, and the p-values of K-S statistic

for Fatigue data set under Levy and UD fractional Levy distributions

Distribution Parameter estimates -2LL AIC BIC K-S

Levy (µ, c) 66.45 52.42 – 1140.32 1144.32 1149.55 < 2.2e− 16

UD Fractional Levy (µ, c, α) 0.94 43.56 999.98 924.59 930.59 938.43 0.1344

Figure 1. Histogram of the Fatigue data plotted against the density

function of Levy (continuous red line) and UD fractional Levy (dashed

blue line)

8. Conclusion

It is shown in this paper that UD fractional differential equations can be considered

as a new technique to generate continuous fractional probability distributions. The

fractional differentail equation is obtained from an existing probability distribution

with number of parameters k, and the solution of this differential equations yeilds

a (new) probability distribution with k + 1 parameters. The resulting distribution

could belongs to the same family of the baseline distribution as in the exponential

distribution, or could belongs to a different family. Moreover, it is investigated that

the new proposed fractional Levy distribution equips better fits than Levy itself by

using a real data application.
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As a future work, one may consider the new obtained fractional distributions and

investigate their properties, including the effect of the new additional parameter (α)

on the shape of the new obtained probability density and cumulative distribution

functions, and other measures such as moments, skewness, kurtosis, entropy, etc. In

addition, parameter estimation can be investigated.
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