
Palestine Polytechnic University

Deanship of Graduate Studies and Scientific

Research
Master of Intelligent Systems - Robotics Track

Reinforcement Learning-Based
Human-Machine Co-Adaptation via

Policy Gradient

Submitted By

Elias M Maharmeh

Thesis submitted in partial fulfillment of
requirements of the degree of Master of

Intelligent Systems

February 19, 2023

I

The undersigned hereby certify that they have read, examined and recommended to
the Deanship of Graduate Studies and Scientific Research at Palestine Polytechnic
University the approval of a thesis entitled:

Reinforcement Learning-Based Human-Machine
Co-Adaptation via Policy Gradient Submitted By

Elias M Maharmeh

In partial fulfillment of requirements of the degree of Master of Intelligent Systems.

Graduate Advisor Committee:

Prof.Dr. Karim Tahboub
(Supervisor), Palestine Polytechnic University.

Signature: Date:

Dr. Ahmad Qudaimat
(Internal committee member), Palestine Polytechnic University.

Signature: Date:

Dr. Mamoun Nawahdah
(External committee member), Palestine Polytechnic University.

Signature: Date:

Thesis Approved by:

Name:

Dean of Graduate Studies and Scientific Research
Palestine Polytechnic University

Signature:

Date:

Acknowledgment III

Acknowledgment

I would like to express my deepest gratitude to my advisor, Prof. Dr. Karim Tahboub,
for his guidance, support, and encouragement throughout the entire process of my
master’s study. His expertise and valuable insights have been instrumental in shaping
my research and helping me achieve my goals.

I would also like to extend my sincere appreciation to the committee members for
their time and effort in reviewing my thesis and providing valuable feedback and
suggestions.

I am also forever grateful to my parents for their unwavering love and support. Their
belief in me and my abilities has been a constant source of inspiration throughout my
academic journey.

I would also like to thank my family, especially my wife and daughter, for their love,
support, and understanding. They have been my rock, my home, and my safe haven.
My child has been a source of constant joy and inspiration, and I am so grateful to
have them in my life.

I am also immensely grateful to my friends, who have been with me through thick
and thin. Their unwavering support, encouragement, and companionship have been
invaluable, and I could not have done it without them.

Finally, I would like to express my gratitude to everyone who has supported me in
any way during the course of my master’s study. Your support, encouragement, and
belief in me have been instrumental in my success.

Thank you all from the bottom of my heart.

Elias M Maharmeh
February 19, 2023

Abstract V

Abstract

Human Machine Co-adaptation (HMCo) is a critical problem in the design of intelligent
systems that interact with humans. This thesis proposes a general framework for
solving HMCo problems using a reinforcement-based approach called the policy gradient
algorithm. The thesis goal is to empower the machine with the ability to learn a policy
or a strategy in order to co-adapt to human behaviors. The proposed approach is
based on the assumption of rationality on the human side and involves learning a
policy that co-adapts to dynamic environments and aids the human while performing
a specific task. The effectiveness of the proposed approach is demonstrated through
case studies, including both direct and indirect shared control, and some of the
challenges and limitations that must be addressed in order to further advance the
field are highlighted. These challenges include the sensitivity of the algorithm to
hyperparameters, the issue of local minima, and the complexity of the optimization
process. The impact of the human factor during the training process is also considered,
as is the need to enhance sampling complexity in order to handle the limitations of
real-world interaction.

This thesis makes several key contributions to the fields of HMCo and intelligent
systems design. First, it provides a general framework for solving HMCo problems that
is based on policy gradient methods and is applicable to a wide range of environments
and tasks. Second, it demonstrates and tests the feasibility and effectiveness of the
proposed approach through case studies involving both direct and indirect shared
control. Third, it identifies key challenges and limitations that must be addressed
in order to further advance the field, such as the sensitivity of the algorithm to
hyperparameters and the complexity of the optimization process.

Contents VII

Contents

Acknowledgment . III
Abstract . V
Contents . VII
List of Figures . IX
List of Abbreviations . XI
1 Introduction . 1

1.1 Mapping: Static vs. Dynamic . 2
1.2 HMCo components . 3
1.3 Motivation . 4
1.4 Problem Statement . 4

2 Literature review . 5
3 Reinforcement Learning . 7

3.1 Discounted Markov Decision Process 7
3.1.1 Formal Definition of Discounted Markov Decision Process (MDP) 9
3.1.2 State Value Functions . 11
3.1.3 State-Action Value function 11

3.2 Reinforcement Learning (RL) Algorithms 12
3.2.1 Model-Based RL Algorithms 12
3.2.2 Model-Free RL Algorithms 12

3.3 Policy Gradient Method . 12
3.3.1 Policy Gradient Theorem 13
3.3.2 REINFORCE Algorithm . 15

4 Methodology: Coadaptation Problem Within the Reinforcement Learning
Framework . 19
4.1 Human Operator . 20
4.2 Machine model . 23
4.3 HMCo problem formulation . 24

4.3.1 MDP for HMCo . 25
4.3.2 Trajectory for HMCo . 26

4.4 Improved Policy Gradient (Policy Gradient (PG)) Algorithm 27
4.4.1 Exploration - Exploitation Dilemma 30
4.4.2 Time Complexity . 31

VIII Contents

5 Results: Case Studies . 33
5.1 Indirect Shared Control Scenario . 34

5.1.1 The Environment Mathematical Model 34
5.1.2 PG algorithm implementation and results 36
5.1.3 Results . 37

5.2 Direct Shared Control . 41
5.2.1 The Environment Mathematical Model 41
5.2.2 Algorithm Implementation 44
5.2.3 Results . 45

5.3 Machine - Machine Co-adaptation 48
5.3.1 Algorithm Implementation 49
5.3.2 Results . 49

6 General Discussion . 53
6.1 The Importance of the Proposed Case Studies 53
6.2 The Rationality Assumption . 54
6.3 Practical Aspects of the Proposed Algorithm 55

6.3.1 Selection of Hyper-parameters 55
6.3.2 Experience, Co-adaptation and Policy Iteration Loops 57
6.3.3 Scalability, Complexity and Memory 57

6.4 Limitations . 58
7 Conclusions . 61

7.1 Summary of main results and findings 61
7.2 Implications and Contributions . 61

Bibliography . 63

List of Figures IX

List of Figures

Figure 1.1: Evolution of Operator Generations, [2] 1
Figure 1.2: Evolution of HMI, [5] . 2
Figure 1.3: Static mapping Human Machine Interaction (HMI) scheme . . . 2
Figure 1.4: Dynamic Mapping HMI scheme 3
Figure 3.1: An agent interacts with an environment in an MDP 9
Figure 4.1: A segment of the human intention process to generate an action 22
Figure 4.2: The general HMCo framework 25
Figure 5.1: The problem of indirect shared control 36
Figure 5.2: The trajectory of the parameter 𝜃 through the co-adaptation process,

where the ×-line represents the true twist value 𝛽𝑡𝑤𝑖𝑠𝑡 = 50 . . . 37
Figure 5.3: The expected long-term reward for indirect-shared control 38
Figure 5.4: The policy convergence, for fixed initial position. Where the ×

indicates the true twist value 𝛽𝑡𝑤𝑖𝑠𝑡 = 10 degree 39
Figure 5.5: The policy convergence, for random initial position.Where the ×

indicates the true twist value 𝛽𝑡𝑤𝑖𝑠𝑡 = 10 degree 40
Figure 5.6: The policy gradient of the co-adaptation loop 40
Figure 5.7: The SeaSaw shared control task 41
Figure 5.8: The problem of direct shared control 44
Figure 5.9: The expected long-term reward for direct-shared control, where

the covariance Σ× = 3 > Σ⋆ = 1 45
Figure 5.10: The system damping ratio 𝜁, for high covariance Σ× 46
Figure 5.11: The system damping ratio 𝜁, for low covariance Σ⋆ 46
Figure 5.12: The machine policy gradient for 𝑘𝑑 47
Figure 5.13: The time response for 𝜃, by applying the obtained policy parameter

𝑘𝑑𝑚 . 47
Figure 5.14: The problem of direct shared control (the two machines scenario) 48
Figure 5.15: The expected long-term reward for direct-shared control 49
Figure 5.16: The system damping ratio 𝜁, for unequal covariances 50
Figure 5.17: The policy gradient for 𝑘𝑝 (×-curve), and the policy gradient for

𝑘𝑑 (⋆-curve). Where Σ𝑑 > Σ𝑝 51
Figure 5.18: The policy gradient for 𝑘𝑝𝑚1 (×-curve), and the policy gradient

for 𝑘𝑑𝑚2 (⋆-curve). Where Σ𝑝 > Σ𝑑 52

X List of Figures

Figure 5.19: The time response for 𝜃, by applying the obtained policies’ parameters
𝑘𝑝𝑚1 and 𝑘𝑑𝑚2 . 52

Figure 6.1: The policy convergence for random initial state. Where the ×
indicates the true value 𝛽𝑡𝑤𝑖𝑠𝑡 = 120 degree 60

Figure 6.2: The policy convergence for random initial state. Where the ×
indicates the true value 𝛽𝑡𝑤𝑖𝑠𝑡 = 50 degree 60

List of Abbreviations XI

List of Abbreviations

HMI Human Machine Interaction
HMCo Human Machine Co-adaptation
ML Machine Learning
LQR Linear Quadratic Regulator
RL Reinforcement Learning
GD Gradient Descent
SGD Stochastic Gradient Descent
MDP Markov Decision Process
PGT Policy Gradient Theorem
PG Policy Gradient
SDM Sequential Decision Making
AI Artificial Intelligence
SGA Stochastic Gradient Ascent
POMDP Partial Observable MDP

1 Introduction 1

1 Introduction

HMI is the process of communication and interaction. An interface medium or device
is used to facilitate the interaction [1]. According to [2], a generational evolution may
be used to describe the history of interactions between humans and various industrial
technologies and equipment. where a generation of human operators is connected to
each industrial revolution. There were four industrial revolutions underway at the time
this thesis was written. Each industrial revolution is referred to as "industry X.0";
for instance, "industry 1.0" refers to the first industrial revolution, "industry 2.0" to
the second, and so on. Additionally, each industry’s human operator is referred to as
"operator X.0" [3]. The generational evolution of an operator may be divided into
the following categories, (see figure 1.1).

1. Operator 1.0: carries out manual and dexterous tasks

2. Operator 2.0: carries out aided tasks, such as a CNC machine operator

3. Operator 3.0: Works collaboratively with robots and other machines according
to a robot cooperation scheme

4. Operator 4.0: uses a machine to assist in accomplishing a task, with the goal
of enhancing human capacity to perform a certain activity

Figure 1.1: Evolution of Operator Generations, [2]

2 1 Introduction

Figure 1.2: Evolution of HMI, [5]

Figure 1.3: Static mapping HMI scheme

1.1 Mapping: Static vs. Dynamic

Classically, a human must use an interface to communicate with a machine, understand
how it operates, and then adapt to the machine’s interface, (see figure 1.2). The
machine’s response to human behavior is time-invariant during this cycle of human
adaptation to the machine interface [4], [5]. This is known as a "static mapping"
[6], which is the mapping between human commands and machine behavior where
the burden of learning is on the human side. HMI is mostly used in static mapping
scenarios from Industry 1.0 through Industry 4.0. A human, a machine, and a task
are required for such HMI, (see figure 1.3).

Therefore, the machine’s reaction to human behavior must be dynamic, as shown
in figure 1.4, in order to shift the burden of learning and redistribute it between the
machine and the human. In [6], this is referred to as "dynamic mapping". As a result,
it is necessary for both humans and machines to interact and learn at the same time,
just like humans do. That is, the machine needed to be able to interact, learn, and
adapt just like a human.

1 Introduction 3

Figure 1.4: Dynamic Mapping HMI scheme

1.2 HMCo components

In this thesis, a generic framework for handling dynamic mapping is introduced.
Within this framework, interaction, co-learning, and co-adaptation between the human
and the machine occur simultaneously. This framework, known as HMCo, requires
the following elements:

1. A human

2. A machine

3. A common task

4. Capability for co-learning (both the human and the machine learn simultaneously
)

5. Capability for co-adaptation (both humans and machines adapt simultaneously
)

The following define some key concepts used throughout this thesis:

• The Machine or the agent: the terms agent and machine are used interchangeably
in this thesis to describe something that acts [7]. If the agent is human, it will
be identified as a human-agent

• Co-learning: is the process through which many agents acquire new skills while
working together to complete a task [8]

• Co-adaptation: is the process of adapting both the machine’s and the operator’s
behavior while co-learning throughout the interaction

4 1 Introduction

1.3 Motivation

Industry 4.0 is centered on autonomous systems and makes use of modern technologies
like cloud computing, augmented reality, virtual reality, and AI. However, the COVID-19
pandemic made the significance of the human role very clear [9], [10]. This necessitates
a new industrial revolution [11]–[13], wherein, according to [14]–[16], the objective
behind introducing Industry 5.0 is to re-involve the human within the industry and
re-create a human-centered paradigm while interacting with machines. The primary
motivation for this thesis is to raise the level of human-machine interaction to that of
human-human interaction. This will increase the use of the machine’s capabilities in
executing a specified shared task. Because machines are becoming more intelligent,
the way they interact with humans and respond to their behavior must evolve. To
respond to human behaviors or actions, the machine must be able to interpret them.
This necessitates interaction at a higher level, similar to how humans interact, rather
than being limited, for example, to a basic push-button situation (see figure 1.2).

Machines that have been programmed or trained to accomplish a given task will
exhibit the same behavior or take the same actions regardless of the state of the
human interacting with them. Because of the limitations of static mapping [4], [5],
[17], this is acknowledged as one of the primary shortcomings of traditional HMI
systems. The HMCo framework seeks to provide the machine with dynamic mapping
capabilities while executing a certain common task. As a result, machine behavior is
no longer time-invariant in a particular context. It is crucial to note that the human
being can naturally accomplish dynamic mapping while learning and adapting within
the targeted HMCo framework.

1.4 Problem Statement

First and foremost, the objective of this research is to formulate the HMCo problem
as two learning and adapting agents, the human and the machine. The human and
machine interact to achieve a predefined goal that is known to both the human
and machine. To accomplish co-adaptation, the problem formulation presents five
key parts: the human, the machine, the task, the capability to co-learn, and the
capability to co-adapt. Second, an Artificial Intelligence (AI)-Machine Learning (ML)
algorithm will be employed to resolve the HMCo problem.

2 Literature review 5

2 Literature review

Many applications and principles of traditional HMI, which were described in chapter 1,
are provided in [1], [3], [18]–[25]. There, the HMI issue is defined as a person learning
and adapting while interacting with a machine. None of the following articles use
the HMCo concept established in chapter 1. They are confined to the first three
components, where a person learns and adapts while interacting with a machine,
but lacks the machine’s learning and adapting components. Some authors used the
terminology adaptive-HMI. The paper’s ultimate goal is for humans and machines
to reach or converge on a collaborative behavior to solve a particular task. Some of
the algorithms utilized in the articles, on the other hand, have an implicit machine
learning and adaptation aspect. Throughout this chapter, all articles will be compared
and assessed using the HMCo concept given in chapter 1

The following criteria are used to conduct the review:

1. HMCo’s concept or definition

2. Applications or case studies

3. Methodology

4. Results

Ehrlish and Cheng [26] investigated the situation of a human and a robot playing
an object-guessing game. The human must estimate which object the robot chose
by observing the robot’s gaze. Li et al. [27] investigated an instance of a human
interacting with an arm manipulator to move an item. Although Ehrlish and Cheng
and Li et al. employ the concept of co-adaptation in their work, they only incorporate
the human, the machine, and the task. They both employ a Bayesian technique to
solve the presented case. The Bayesian method necessitated the development of an
explicit model for both humans and machines. According to the measure used, the
proposed Bayesian technique produced satisfactory results in both instances. However,
due to the nature of Bayesian methods, an explicit model for both humans and
machines is required, which might not be available and must be learned from data.
This constrains the performance accuracy to the accuracy level of the used models.

6 2 Literature review

Flipse [28] explored the scenario of a self-driving car that interacts with humans
via the car’s different sensors, such as the touch sensor on the steering wheel and
the gas pedal. The objective has been to drive safely along the street. Mohebbi [29]
explored the application of rehabilitation robots. Robotic prostheses and exoskeletons
were shown. The goal is to help human movements. For the two situations of
self-driving cars and rehabilitation robots, the suggested method requires the machine
to construct a model for the human and a model for the machine. The human
and the machine are co-adapting to each other’s behavior based on these acquired
models. The co-adaptation problem is solved by employing the Linear Quadratic
Regulator (LQR) controller. The framework presented by these two publications [28],
[29], includes the five components of the HMCo problem.

The interaction between a human and a manipulator to complete a task was taken
into consideration by Shuhei et al.[30], and Peternel et al.[31].They used supervised
learning, where each loop of interaction is referred to as an "episode" and is given a
good or bad label. A probability density function was created in [30] for each action
the robot takes. In [31], they use weighted regression for robot actions, in contrast.
The human role in the two scenarios of [30], [31] is to teach the machine while also
learning from and adapting to its behavior. Learning from these examples or episodes
leads to co-adaptation, which depends on the model capacity utilized in supervised
learning approaches.

Z. Danziger et al. [32]–[35], investigated the issue of mapping from a higher space of
glove joints, known as CyberGlove, to control a two-degree-of-freedom arm-manipulator
on the screen in order to hit a predetermined target. In order to solve the problem, Z.
Danziger et al. suggested two ML methods using Moore-Penrose (MP) pseudoinverse
and Least Mean Squared (LMS) gradient descent. The interaction occurs in batches
of episodes, and for each batch, the mapping from the higher space to the lower
space is updated. The five elements of HMCo are included in the problem setup.
Two sets of people assisted in conducting the study. The people in the control
group are individuals who are operating the arm-manipulator without the use of ML
algorithms. Additionally, the LMS group uses the ML algorithm to control the arm
manipulator. After extensive training and episodes, the LMS group demonstrated
improved performance and came close to attaining the level of human performance.

It is plainly obvious from this review of the literature that neither a formal definition
of the problem nor a methodology for addressing it have been put forth. By focusing
on the key five components of the HMCo problem, this thesis aims to provide a novel
problem structure and definition. It also applies a decision-making framework to the
problem’s solution, which will be covered in the following chapters.

3 Reinforcement Learning 7

3 Reinforcement Learning

Creating agents that interact with their surroundings in order to discover the optimal
course of action is one of the main objectives of AI [36]. The learning process
is determined by the type of data used to learn from [7]. ML is a set of algorithms
aiming to mimic human intelligence in learning from various types of data [37], [38].

Supervised Learning, Unsupervised Learning, and Reinforcement Learning (or RL) are
the three basic types of machine learning algorithms [39]. Finding a hypothesis or
probability density function that best explains and fits the provided data is the aim of
both supervised and unsupervised learning [39]–[41]. For supervised and unsupervised
learning, respectively, the data takes the form of {(𝑥𝑖, 𝑦𝑖)}𝑖=𝑛

𝑖=1 and {(𝑥𝑖)}𝑖=𝑛
𝑖=1 , where 𝑥𝑖

is referred to as a feature vector and 𝑦𝑖 is the response. Using optimization methods
like Gradient Descent (GD) or Stochastic Gradient Descent (SGD), the parameters
of the hypothesis are determined during the training process [41].

The RL paradigm of ML algorithms includes an agent interacting with its environment
or surroundings to fulfill a predefined task [42]. The resulting data is presented as a
vector that includes the reward as a scalar quantity, the agent’s current state, and
the action the agent performed. During an agent’s interaction with the environment,
data is generated online. In section 3.1, it will be discussed how to model the RL
problem using the MDP framework. The objective of RL is to identify an optimal
policy that directs the behavior of the agent to perform the desired task [7], [41],
[42]. In section 3.2, these algorithms are covered.

3.1 Discounted Markov Decision Process

MDP is used to represent Sequential Decision Making (SDM) problems in which the
agent has to undertake a sequence of actions in order to complete a task. An MDP
consists of a set of environment states, a set of agent actions, the dynamics of the
environment, and a reward function [43]. The state of an MDP is an abstract concept
that comprises information about the environment, such as the agent’s position and
velocity within it. The state must be sufficient or Markvoian. Given the current state,
the future state is independent of the past states, or history. This is known as the

8 3 Reinforcement Learning

Markov propriety [44]. Given the current state and action, the dynamics of an MDP
describe the probability of ending up in a specific state. The reward function provides
feedback to the agent on how well the action was accomplished. An MDP solution
is one that maximizes the expected total reward the agent receives while interacting
with the environment to accomplish a specific task. Consider the 1-D discrete state
space model shown below:

𝑥𝑘 = 𝑥𝑘−1 + 𝑢𝑘 (3.1)

where 𝑥𝑘 and 𝑢𝑘 represent the state and control at time step 𝑘. The system described
in Eq.(3.1) is a first order Markovian system in which the next state is determined
solely by the current state and not by the entire history. The dynamics of this MDP
are deterministic, which means that the probability of ending up in the state 𝑥𝑘 = 𝑥

after taking action 𝑢𝑘 = 𝑢 is one. The system dynamics equation given by Eq.(3.1)
is obtained by modeling the physical system, for example, using Eular-Lagrangian.

Due to non-linearity, approximation assumptions, ignoring elasticity, and other factors,
such modeling technique is valid for complex systems only within a small region of
the system’s state and action. As a result, the system dynamics may not accurately
reflect the system’s real behavior. Furthermore, the system’s sensors and actuators
introduce noise into the system’s state and actions. A stochastic MDP is used to deal
with such modeling challenges. A stochastic MDP is one in which the environment’s
states, agent actions, environment dynamics, and reward are all stochastic. This is
accomplished by assuming that all unmodeled effects, sensor noise, and actuator noise
are generated by a specific probability density function.

Assuming a Gaussian random noise for the system in Eq. (3.1), the system dynamics
become:

𝑥𝑘 = 𝑥𝑘−1 + 𝑢𝑘 + 𝑤𝑘 (3.2)

Where 𝑤𝑘 ∼ 𝒩 (𝜇.𝜎) is a Gaussian random variable with a mean of 𝜇 and a variance
of 𝜎. The system dynamics could alternatively be expressed as a probability density
function, as seen below:

𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘) = 𝒩 (𝜇𝑘 = 𝜇𝑘−1 + 𝑢𝑘, 𝜎𝑘 = 𝜎) (3.3)

Where 𝜇𝑘−1 denotes the mean of the random variable 𝑥𝑘−1.

3 Reinforcement Learning 9

3.1.1 Formal Definition of Discounted MDP

A discounted MDP is generally defined as a tuple (𝒮,𝒜,𝒫 ,ℛ, 𝛾) [43], [45],in which:

• 𝒮 ∈ 𝑅𝑛 is a measurable state space

• 𝒜 ∈ 𝑅𝑚 is the action space

• 𝒫 : 𝒮 ×𝒜 → ∆(𝑅𝑛) is the MDP dynamics

• ℛ : 𝒮 ×𝒜 → ∆(𝑅1) is the immediate reward distribution

• 𝛾 ∈ [0, 1) is the discount factor

Where 𝑅1,𝑅𝑛 denote the space of one- and n-dimensional real numbers, respectively,
and ∆𝒮 and ∆R denote the space of all probability distributions over 𝑅𝑛 and 𝑅1,
respectively.

In this chapter, a random variable is denoted by capital letters, but a random variable’s
instantiation is denoted by small letters. According to the MDP’s general definition,
the reward is drawn from a probability density function that is dependent on the action
and current state. The reward is denoted by the capital letter 𝑅 throughout this work
and is assumed to be a deterministic function of the current state and action.

The interaction process between an agent and an environment according to the MDP
framework is shown in figure 3.1. The agent observes the environment’s state, 𝑠 =

𝑠𝑡𝑘 ∈ 𝒮 at the 𝑘𝑡ℎ-time step, 𝑡 = 𝑡𝑘. Afterward, the agent performs an action
𝑎𝑡𝑘 ∈ 𝒜 in accordance with its policy function, 𝜋(𝑎𝑡𝑘 |𝑠𝑡𝑘) : 𝒮 → 𝒜. As a result, at
time 𝑡 = 𝑡𝑘+1, the environment’s state evolves into a new state, 𝑠𝑡𝑘+1

, and the agent
immediately receives a reward from the environment, 𝑅𝑡𝑘+1

. Until the agent reaches
a terminal state or the desired state, the process is repeated [42]. This interaction
loop generates a trajectory, which is a vector of random variables, with the formula
𝜏𝜋 = (𝑠𝑡𝑘 , 𝑎𝑡𝑘 , 𝑠𝑡𝑘+1

, 𝑅𝑡𝑘+1
, 𝑎𝑡𝑘+1

, 𝑠𝑡𝑘+2
, 𝑅𝑡𝑘+2

,).

Figure 3.1: An agent interacts with an environment in an MDP

10 3 Reinforcement Learning

A trajectory, 𝜏𝜋, is produced by each interaction loop. As a measure of how effective
a policy is, 𝜋(.), the agent uses the trajectory 𝜏𝜋 that is produced. The resulting
trajectory consists of a sequence of states, actions, and rewards, with the rewards
being feedback on how well the trajectory was executed. The trajectory is better the
more rewards the agent obtains. The entire reward the agent will receive by following
the policy, 𝜋(.) is calculated using the notion of return, 𝐺𝜋.

𝐺𝜋
𝑡𝑘
:=

∞∑︁
𝑛=𝑡𝑘

𝛾𝑛𝑅𝑛 (3.4)

Where 𝐺𝜋
𝑡𝑘

is the return of beginning from a certain state at time 𝑡𝑘, following the
policy 𝜋(.).

The discount factor 𝛾 is used to alleviate the summation divergence in Eq.(3.4).
Furthermore, the discount factor offers the power to affect the agent’s behavior. For
example, if 𝛾 = 0, the agent just attempts to maximize the immediate reward while
disregarding future rewards. In this situation, the agent’s behavior is deemed myopic.
When 𝛾 ≈ 11, the agent prioritizes not just the immediate reward, but also the future
rewards; in this situation, the agent is deemed farsighted.

The return expression, provided by Eq.(3.4), is a random variable. Because a random
variable cannot be directly optimized, the expected value of this random variable is
maximized [7], [42]. The expected value of the return, 𝐺𝜋

𝑡𝑘
is calculated using the

probability distribution of the trajectory 𝑝(𝜏𝜋) that leads to the generation of 𝐺𝜋
𝑡𝑘

.
The agent’s purpose is to maximize the expected return, which is provided by:

𝐽(𝜋) := E [𝐺𝜋|𝜋] (3.5)

= E

[︃
∞∑︁
𝑡=0

𝛾𝑡𝑅𝑡

⃒⃒⃒⃒
⃒𝜋
]︃

(3.6)

Where 𝐽(𝜋) is the expected long-term discounted reward that the agent seeks to
maximize.

The following operation is used to find the optimal policy:

𝜋⋆ ∈ argmax
𝜋∈Π

𝐽(𝜋). (3.7)

1For 𝛾 = 1, let the reward 𝑅𝑛 ≤ 𝑅𝑚𝑎𝑥 be bounded, then the return 𝐺𝜋 =
lim𝛾→1

∑︀∞
𝑛=𝑡𝑘

𝛾𝑛𝑅𝑚𝑎𝑥 ≤ 𝑅𝑚𝑎𝑥 lim𝛾→1

∑︀∞
𝑛=𝑡𝑘

𝛾𝑛 = lim𝛾→1
𝑅𝑚𝑎𝑥

1−𝛾 = ∞ diverges, and the
condition of contraction mapping fails

3 Reinforcement Learning 11

Where the policy, 𝜋(𝑎|𝑠), is defined as the mapping from each state 𝑠 ∈ 𝒮 to a
probability distribution function over the action space 𝒜.

In general, two approaches are employed to compute 𝐽(𝜋):

1. State-Value Function

2. State-Action Value Function

3.1.2 State Value Functions

The value of a state is the total expected return that an agent will receive by following
a policy 𝜋(.) starting from a certain state 𝑠. By assigning a value 𝑣𝜋(𝑠) to each state
𝑠, the agent can differentiate between being in a good state and a bad state by
comparing the values of the states. The greater the state 𝑠 value 𝑣𝜋(𝑠), the more
advantageous it is for the agent to be in this state. As a result, the agent will choose
the sequence of actions that leads to states with greater values. The state-value
function is defined as the mapping of each state 𝑠 in an MDP’s state space 𝒮 into a
real value, 𝑣𝜋(.) : 𝒮 → R,∀𝑠 ∈ 𝒮. The state-value function is expressed as follows:

𝑣𝜋(𝑠) := E [𝐺𝑡𝑘 |𝑆𝑡𝑘 = 𝑠, 𝜋] . (3.8)

3.1.3 State-Action Value function

State-action functions, as opposed to state-value functions, assign real values to
each of the state-action pairs (𝑠, 𝑎). The action that results in the higher future
state value is thus directly accessible to the agent. Each possible state-action pair,
(𝑠, 𝑎) ∈ 𝒮 × 𝒜, of an MDP is mapped by the state-action value function into a real
value, 𝑞𝜋(., .) : 𝒮 × 𝒜 → R,∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜. The following gives the expression for
the state-action value function:

𝑞𝜋(𝑠, 𝑎) := E[𝐺𝑡𝑘 |𝑆𝑡𝑘 = 𝑠, 𝐴𝑡𝑘 = 𝑎, 𝜋] (3.9)

12 3 Reinforcement Learning

3.2 RL Algorithms

Finding an optimal strategy or policy 𝜋* is necessary to solve an MDP. The set of
algorithms known as RL algorithms is used to determine an optimal policy for an
agent. There are two categories of these algorithms [7], [42] :

A) Model-based algorithms

B) Model-free algorithms

3.2.1 Model-Based RL Algorithms

Model-based algorithms are a class of algorithms that need to know the MDP dynamics
beforehand. The dynamics of the MDP could be predicted ahead, for instance, by
modeling the dynamics using a physics law. If the system is too complicated to
model, the dynamics are estimated or learned by allowing the agent to interact with
the environment and learn its dynamics. In both situations, the dynamics is used to
calculate the state-value or state-action value, as shown in Eqs.(3.8) and (3.9)

3.2.2 Model-Free RL Algorithms

Rather than estimating the dynamics of the environment and then using it to construct
the value functions, the value functions are directly estimated by interacting with the
environment. One of the most successful model-free RL algorithms is Q-learning
[46]. The algorithm’s core involves iteratively updating the stat-action value function
until it converges for all state and action pairs. The update rule for the Q-learning
algorithm is as follows:

𝑞𝑡𝑘(𝑠, 𝑎)← 𝑞𝑡𝑘−1
+ 𝛼(𝑅𝑡 − 𝑞𝑡𝑘−1

) (3.10)

Where (𝑅𝑡 − 𝑞𝑡𝑘−1
) denotes the step size and 𝛼 the learning rate..

3.3 Policy Gradient Method

The agent’s memory stores state-values, state-action values (described in sections 3.1.2
and 3.1.3), and the agent’s policy. These values are kept in tables for discrete MDPs.
The curse of dimensionality refers to the fact that for continuous MDPs, the amount
of memory needed grows exponentially with the cardinality of the state and action

3 Reinforcement Learning 13

spaces [47], [48]. Additionally, the quantization of continuous MDP yields a policy
that depends on the number of quantization bins and is asymptotically optimal [49].
The amount of memory needed to store the discretized state space, action space,
and policy increases as the number of quantization bins increases. To find a function
that represents the tables of the state-values, state-action-values, and policy, function
approximation techniques are utilized [42], [50], [51]. The ability of these functions
to generalize for unexplored regions inside the environment, however, is restricted to
the function capacity and the definition of the MDP Markovian state [42], [50].

Policy-based approaches [7], [42], [52] are presented as a result of all the aforementioned
problems with value-based methodologies. In a policy-based method, the agent’s
policy is directly optimized. As a result, the policy is explicitly optimized rather than
being derived from the state value function or state-action value function. The general
framework for a policy-based approach [7], [42]:

1. Assume that the initial policy, 𝜋𝜃0(𝑎𝑘|𝑠𝑘), has a certain probability distribution
function and is parameterized by a vector 𝜃 ∈ R𝑛

2. Generate a set of N-trajectories {𝜏𝜋𝑖 }𝑖=𝑁
𝑖=1 using the policy 𝜋𝜃0(𝑎𝑘|𝑠𝑘)

3. Evaluate the N-trajectory return.

𝐽(𝜋) :=
1

𝑁

𝑁∑︁
𝑖=1

𝐺𝜋
𝑖 (3.11)

4. Update the parameter vector 𝜃 ∈ R𝑛 to maximize Eq.(3.5), where the optimal
𝜃 is given by:

𝜃* ∈ argmax
𝜃∈R𝑛

𝐽(𝜃) (3.12)

Where 𝐽(𝜋)→ 𝐽(𝜋) for consistent estimator.

3.3.1 Policy Gradient Theorem

Using the estimator 𝐽(𝜋), one can estimate the objective function. The gradient of
the objective function, Eq. (3.5), is determined in order to update the parameter
vector 𝜃 ∈ R𝑛. However, there isn’t a closed-form mathematical expression for 𝐽(𝜋)
that can be used to calculate its gradient. By computing the Policy Gradient (PG),
Policy Gradient Theorem (PGT) provides a mathematical shortcut for determining
the gradient of 𝐽(𝜋).

14 3 Reinforcement Learning

Theorem 3.3.1 (Policy Gradient Theorem [52]–[56]). Given an MDP, as in section 3.1,
and a stochastic policy 𝜋, PGT provides a formula for determining the gradient of
the objective function 𝐽(𝜋) with respect to the parameter vector 𝜃 ∈ R𝑛.

Given :

𝐽(𝜃) = E[𝐺𝜋] =

∫︁
T
𝑝𝜃 (𝜏) 𝑔(𝜏)𝑑𝜏 (3.13)

Where 𝑝𝜃(𝜏) denotes the trajectory density function, 𝑔(𝜏) is an instantiation of the
return random variable 𝐺𝜋, and T denotes the space of all possible trajectories
generated by the agent’s policy.

Then :

∇𝜃𝐽 (𝜃) = E[∇𝜃 log 𝑝𝜃 (𝜏) 𝑔(𝜏)] = E[
𝑁∑︁
𝑘=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘) 𝑔(𝜏)] (3.14)

Where log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘), the only term that depends on the parameter 𝜃, is the policy
log-likelihood.

Proof. There are numerous sources for the proof of PGT [52]–[56], where the trajectory
sequence needs to be defined as a vector of random variables, 𝜏 ∼ 𝑝𝜃 (𝜏) = 𝑝 (𝜏 | 𝜃),
that depends on the parameter vector 𝜃 ∈ R𝑛. The definition of each trajectory’s
return is given in Eq.(3.4). In addition, the log likelihood ratio trick is employed to
manipulate the trajectory probability distribution 𝑝𝜃(𝜏), leading to:

𝐽(𝜋) := E [𝐺𝜋|𝜋]

=

∫︁
T
𝑝𝜃 (𝜏) 𝑔(𝜏)𝑑𝜏

(3.15)

Given that the initial state distribution is 𝑝(𝑠0), the trajectory density function is given
by the following expression:

𝑝𝜃 (𝜏) = 𝑝(𝑠0)
𝑁∏︁
𝑘=0

𝑝
(︀
s𝑡𝑘+1

|𝑠𝑡𝑘 , 𝑎𝑡𝑘
)︀
𝜋𝜃 (𝑎𝑡𝑘 |s𝑡𝑘) (3.16)

3 Reinforcement Learning 15

Using the log likelihood ratio trick2, take the gradient of Eq. (4.4.1) with respect to
the parameter vector 𝜃:

∇𝜃𝐽 (𝜃) =

∫︁
T
∇𝜃𝑝𝜃 (𝜏) 𝑔(𝜏)𝑑𝜏

=

∫︁
T

𝑝𝜃 (𝜏)⏟ ⏞
Probability Distribution

∇𝜃 log 𝑝𝜃 (𝜏) 𝑔(𝜏)⏟ ⏞
Samples of 𝑝𝜃(𝜏)

𝑑𝜏

= E[
𝑁∑︁
𝑘=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘) 𝑔(𝜏)]

(3.17)

The primary outcome of PGT is that it is not necessary to compute MDP dynamics
like the one in Eq. (3.3) in order to calculate the expected long-term reward 𝐽(𝜃)

gradient. This is a significant finding in the context of HMCo where it is assumed
that agents have no previous knowledge of the dynamics of the environment. This
is what is referred to as a Model-Free RL; (see section 3.2). Moreover, it is worth
emphasize on the fact that the policy to learn in case of PG algorithm is a stochastic
policy.

3.3.2 REINFORCE Algorithm

A stochastic gradient estimator, which is a consistent estimator, is introduced by
PGT. Ronald J Williams [57], is the first to introduce the REINFORCE method (see
Algorithm 1). The REINFORCE algorithm updates the parameter vector 𝜃 ∈ R𝑛

using Stochastic Gradient Ascent (SGA) [31], [42], [52], [53], [55], [56], [58] and the
following update rule:

𝜃𝑛𝑒𝑤 ← 𝜃𝑜𝑙𝑑 + 𝛼∇𝜃𝐽 (𝜃) (3.18)

Algorithm 1 REINFORCE
Initialize 𝜃 arbitrarily for each episode do

Generate an episode 𝑠0, 𝑎0, 𝑅0, 𝑠1, 𝑎1, 𝑅1, . . . , 𝑠𝐻−1, 𝑎𝐻−1, 𝑅𝐻−1 using 𝜋𝜃(𝑎|𝑠)
∇𝜃𝐽(𝜃) =

∑︀𝐻
𝑖=1∇𝜃𝑝𝜃(𝜏)𝐺𝑖 𝜃 ← 𝜃 + 𝛼∇𝐽(𝜃)

Despite the fact that the REINFORCE approach produces a consistent estimate of
the parameter vector 𝜃 [54], this estimate has a high variance. A base-line variable

2∇𝜃𝑝𝜃 (𝜏) = 𝑝𝜃 (𝜏)∇𝜃 log 𝑝𝜃 (𝜏)

16 3 Reinforcement Learning

[52]–[55], [58] is used in order to lower the estimate’s variance while keeping the
estimator consistent. The idea behind the base-line is to subtract a constant value
from the stochastic gradient samples, E [∇𝜃 log 𝑝𝜃 (𝜏) (𝑔(𝜏)− 𝑏)], which keeps the
estimator consistent and lowers the estimation variance:

E [∇𝜃 log 𝑝𝜃 (𝜏) 𝑏] = 𝑏E [∇𝜃 log 𝑝𝜃 (𝜏)] = 𝑏∇𝜃1 = 0 (3.19)

The update rule for the gradient, given by Eq. (3.17), will have the following form
once the base-line value is introduced:

∇𝜃𝐽 (𝜃) = E[
𝑁∑︁
𝑘=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘) (𝑔(𝜏)− 𝑏)] (3.20)

Because the purpose of introducing the base-line is to reduce the variance of the
gradient estimate in Eq. (3.20), the following minimization problem is solved:

𝑏𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 = min
𝑏

𝑉 𝑎𝑟(∇𝜃𝐽 (𝜃)) (3.21)

Where the gradient variance, 𝑉 𝑎𝑟(∇𝜃𝐽 (𝜃)), is provided by:

𝑉 𝑎𝑟(∇𝜃𝐽 (𝜃)) = (E
[︀
∇𝜃𝐽 (𝜃)2

]︀
− E [∇𝜃𝐽 (𝜃)]2)

=

⎛⎝E

⎡⎣(︃ 𝑁∑︁
𝑘=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘) (𝑔(𝜏)− 𝑏)

)︃2
⎤⎦− E

[︃
𝑁∑︁
𝑘=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘) (𝑔(𝜏)− 𝑏)

]︃2⎞⎠
(3.22)

Where the second term in Eq. (3.22) equals 0, see Eq. (3.19), the variance
minimization problem becomes:

𝑏𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 = min
𝑏

E

⎡⎣(︃ 𝑁∑︁
𝑘=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘) (𝑔(𝜏)− 𝑏)

)︃2
⎤⎦ (3.23)

Taking the gradient of Eq. (3.23) with respect to the base-line variable, then calculate

3 Reinforcement Learning 17

the zeros of the resulting derivative:

∇𝑏E

⎡⎣(︃ 𝑁∑︁
𝑘=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘) (𝑔(𝜏)− 𝑏)

)︃2
⎤⎦

= −2E

[︃(︃
𝑁∑︁
𝑘=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘)
2 (𝑔(𝜏)− 𝑏)

)︃]︃

= E

[︃
𝑁∑︁
𝑘=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘)
2 𝑔(𝜏)

]︃
− 𝑏E

[︃
𝑁∑︁
𝑘=0

∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘)
2

]︃
= 0

(3.24)

As a result of solving Eq. (3.24) for 𝑏, the base-line value is as follows:

𝑏𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 =

E

[︂(︁∑︀𝑁
𝑘=0∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘)

)︁2
𝑔(𝜏)

]︂
E

[︂(︁∑︀𝑁
𝑘=0∇𝜃 log 𝜋𝜃 (𝑎𝑡𝑘 |𝑠𝑡𝑘)

)︁2]︂ (3.25)

The expected return, weighted by the square of the PG, produces the base-line
𝑏𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟. As a result, the baseline introduces a method to measure how well our
agent performs in comparison to his past performance. Furthermore, this is analogous
to centering the incoming data in the form of reward 𝑔(𝜏) on the average reward value
of the agent’s performance 𝑏𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟. Due to the base-line being subtracted from
the trajectory total reward, (𝑔(𝜏) − 𝑏), this will reduce the reward oscillation during
the learning process. Algorithm 2 provides the modified REINFORCE algorithm using
the baseline value.

Algorithm 2 Policy Gradient Reinforcement Learning
Result: 𝜃

initialization: Parameter vector, Policy while 𝜃 not converged do
while 𝑔𝑅𝐹 not converged do

Generate a Trajectory 𝑆0:𝐻 , 𝐴0:𝐻 , 𝑅0:𝐻 using Policy 𝜋𝜃(𝑠, 𝑎) = 𝑃 [𝑎|𝑠, 𝜃]

𝑏𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟 =
E
[︁
(
∑︀𝐻

𝑖=0 ∇𝜃 log 𝜋𝜃(s𝑖|a𝑖))
2
𝑔(𝜏)

]︁
E
[︁
(
∑︀𝐻

𝑖=0 ∇𝜃 log 𝜋𝜃(a𝑖|s𝑖))
2
]︁

gRF = E
[︁(︁∑︀𝐻

𝑖=0∇𝜃 log 𝜋𝜃 (a𝑖 |s𝑖)
)︁
(𝑔(𝜏)− 𝑏𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟)

]︁
∇𝜃𝐽 |𝜃=𝜃𝑗

= 𝑔𝑅𝐹

end
𝜃𝑗+1 = 𝜃𝑗 + 𝛼𝑗 ∇𝜃𝐽 |𝜃=𝜃𝑗

,

end

4 Methodology: Coadaptation Problem Within the Reinforcement Learning
Framework

19

4 Methodology: Coadaptation Problem Within the

Reinforcement Learning Framework

In chapter 1, the HMCo problem is presented. Two co-adapting, co-learning agents
interacting to complete a shared task are the focus of the HMCo problem. The
interaction or sharing control over the task can be direct or indirect. In the instance of
direct interaction to accomplish the predetermined task, the human and the machine
are directly interacting through the task itself and affecting the environment that both
of them are part of. On the other side, in an indirect interaction, a human uses a
machine to execute a task. This implies that the machine itself is the agent that needs
to adapt its behavior to the human behavior and accomplish the task. Furthermore,
the human and the machine have explicit knowledge of the desired task.

In chapter 3, RL techniques were presented with the goal of determining an optimal
policy for an adaptive agent interacting with its environment (see section 3.2). In
this thesis, a predetermined task needs to be fulfilled by a machine that is adaptive
while interacting, cooperating, helping, and sharing control with a human. Machine
co-adaptation is abstracted by an optimal policy that the machine will learn in order
to do the task as designed. The PG-algorithm, which was covered in the chapter
before, is used to implement this. The PG algorithm was chosen since neither the
dynamics of the environment nor an explicit model of humans are required. The task
must be fulfilled along with the assumption that the human behaves rationally when
interacting with the machine.

One of this thesis’ main merits is that the HMCo problem is formulated on the
assumption that neither the machine nor the human has any prior knowledge of the
dynamics of the environment. In addition, neither the human nor the machine has
any internal representations for the models of the other. As a result, neither the
machine nor the human can directly anticipate the other’s behavior using a model
of the other. This chapter builds on chapter 1 and chapter 3 to establish a general
mathematical framework for the HMCo problem.

20
4 Methodology: Coadaptation Problem Within the Reinforcement Learning

Framework

4.1 Human Operator

Many neuroscientists adopt the RL framework described in chapter 3, to explain how
humans adapt to their environment [59]–[63]. One type of monoamine neurotransmitter
produced by the hypothalamus is dopamine. Dopamine is also responsible for transmitting
messages from the brain to the rest of the body [64]–[66].Dopamine is a component
of the reward system in the human brain and is what triggers the Basal Ganglia’s
"reward prediction error" signal. Which is utilized to generate human behavior,
decisions, or a sequence of decisions [67], [68]. The reward system is intended to
either reward humans for engaging in positive acts or behaviors or, on the other
hand, punish humans for engaging in negative behavior. According to [62], dopamine
neurotransmitters are released in proportion to the state value or scenario value. As
previously stated, the RL framework provides the best explanation and understanding
of the function and mechanism of the development of human behavior.

As shown in figure 3.1, the RL framework formulates the learning problem by utilizing
interaction information. If a human is the agent, she or he chooses an action based on
its values by utilizing the state-value function or the state-action value function, which
are represented by 𝑉 (𝑠), and 𝑞(𝑠, 𝑎), respectively. Therefore, for a certain context or
state 𝑠, the human chooses the action that is most likely to result in a larger expected
long-term reward or accumulated reward. The human could be unaware of how to
act at the beginning of an interaction for a specific context or task.However, as soon
as the human begins interacting to achieve the task, she/he attempts to incorporate
the information from the interaction to improve her/his behavior and encodes this
information as a state-value function 𝑉 (𝑠) or a state-action value function 𝑞(𝑠, 𝑎).
As the interaction proceeds, the human learns how to behave properly in a given
situation or state. The adopted RL paradigm and the dopamine neurotransmitter
theory suggest that humans eventually reach a point where any new situation has no
impact on their knowledge or behavior. The dopamine keeps firing and producing an
electrical signal to and from the central nervous system as the human learns more and
more about the appropriate behavior to perform in each situation. The mathematical
idea of "reward prediction error" is used to express this electrical signal. The following
equation captures the entire concept of knowledge accumulation:

𝑞𝑘+1 = 𝑞𝑘 + 𝛼(𝑟𝑘+1 − 𝑞𝑘) (4.1)

= 𝑞𝑘 + 𝛼𝛿𝑘+1 (4.2)

Where 𝛿𝑘+1 is the mathematical representation of reward prediction error.

4 Methodology: Coadaptation Problem Within the Reinforcement Learning
Framework

21

The reward prediction error 𝛿𝑘 drives the human learning process. If 𝛿𝑘 ̸= 0, the
human is in a new situation from which she or he can learn. The state value, or
the state-action value, is updated as a result of the reward prediction error coded
by dopamine. As a result, the human now has new knowledge about how to behave
in such a situation. 𝛿𝑘 might be positive, negative, or zero. Positive and negative
values reinforce or punish the related behavior, respectively. Because dopamine is
not released or produced in the case of 𝛿𝑘 = 0, the human is neither reinforced nor
punished. This signifies that the human is in a situation that she or he has been
in before and is aware of the correct form to behave. Consequently, Eq.(4.2) is not
updated, as stated by the adopted RL framework.

According to [69], the intention of a human can be inferred from their behaviors or
actions. The assumption in this thesis is that the human is rational to choose a
sequence of actions that would accomplish the task, i.e., to maximize the objective
function provided by Eq. (3.5). For the machine to recognize the human intention,
the author of [69] suggests a Dynamic Bayesian Approach. Mathematically, the
human intention is expressed as a discrete random variable .𝐼𝑛 ∈ ℐ, where ℐ is
the collection of human intentions. The work given in [70] draws some inspiration
from the way mammals improve their action probability to maximize their reward by
updating the human action probabilities using Bayesian methods and incorporating
information, such as the intention. As a result, the theory from [70] is used to describe
human rationality and how humans update the likelihood that one choice of action
is preferable to another in an effort to maximize expected reward. Assuming that
the reward prediction error is zero, or 𝛿 = 0, then the maximum expected return, 𝑞,
that an agent can accumulate is obtained. That is, the agent, in this example the
human, already knows what action/s to take in the current situation, because the
situation adds no information to the human’s knowledge. As was previously stated,
human behavior is related to the reward prediction error, which is to reinforce or
punish human specific behavior or a sequence of actions. For an example of how
to represent a human’s intention over time using the structure provided in [69] (see
figure 4.1). The current state, current action, and current intention are represented
by the random variables 𝑆𝑡, 𝐴𝑡 and 𝐼𝑛𝑡, respectively. The reward error prediction, 𝛿,
and the intention random variable, 𝐼𝑛, are both considered to be continuous in this
thesis. To clear up any misunderstandings, this thesis is not intended to infer human
intention. Additionally, it is assumed in this thesis that the intention is to achieve the
goal, where the goal is decided by the reward function. A proper sequence of actions
will be followed in accordance with the task goal, given the human intention.

The process a human undergoes to optimize their odds of choosing the optimal action
given their intention to accomplish the task successfully is illustrated by the following

22
4 Methodology: Coadaptation Problem Within the Reinforcement Learning

Framework

Figure 4.1: A segment of the human intention process to generate an action

steps:

1. In order to complete a predefined task, the human agent chooses an action
𝑎ℎ ∼ 𝑝(𝑎ℎ|𝑠) while interacting with the environment. The distribution 𝑎ℎ ∼
𝑝(𝑎ℎ|𝑠), depicts how people choose their actions depending on their training
and habits. It also includes the uncertainty that arises from several causes, such
as stress, mood, and others.

2. The human receives a specific reward as a result of the action 𝑎ℎ decision,
which mathematically corresponds to the reward prediction error 𝛿, which is
also a random variable.

3. Then, what follows naturally is that the human becomes adapted to this action,
𝑎ℎ, in a certain context for a specific task goal, which corresponds mathematically
to 𝛿 = 0. It is therefore hypothesized in this thesis that the intention to
complete the task is directly proportional to the variable delta, 𝐼𝑛 = 𝛿. To
maximize expected accumulated rewards in converged rational behavior, 𝐼𝑛 =

𝛿 = 0.

Consequently, it makes sense to express the probability of human action given a certain
situation and intention as the following:

𝑝(𝑎|𝑠, 𝐼𝑛 = 𝛿) =
𝑝(𝐼𝑛 = 𝛿|𝑠, 𝑎)𝑝(𝑎|𝑠)

𝑝(𝐼𝑛 = 𝛿)
(4.3)

The fact that 𝛿 provides information about the reinforce/punish direction while updating
the value function 𝑞(𝑠, 𝑎) makes the assumption that 𝐼𝑛 = 𝛿 plausible. In addition,
as was already indicated, the human maximizes the choice of the rational/optimal

4 Methodology: Coadaptation Problem Within the Reinforcement Learning
Framework

23

action when 𝛿 = 0, which indicates that the human is able to choose the optimal
action.

The reward prediction error, 𝛿 ̸= 0, indicates that the human should indeed try
different actions in order to optimize the reward or return. If the 𝛿 = 0, on the other
hand, the human is sufficiently confident in his or her understanding of the current
circumstance and is able to choose the action that maximizes the expected return.
Furthermore, it is understandable to believe that the state and the action have no
effect on the human intention if the human intention is to maximize the expected
reward by accomplishing the goal, which is indicated by the mathematical expression
𝑝(𝐼𝑛 = 𝛿 = 0|𝑠, 𝑎) = 𝑝(𝐼𝑛 = 𝛿 = 0).

This results in the probability distribution of the human action being as follows:

𝑝(𝑎|𝑠, 𝐼𝑛 = 0) = 𝑝(𝑎|𝑠) (4.4)

The previous expression implies that humans acquire the capacity to choose actions
that maximize reward. According to the prior expression, a human can choose to take
actions that will maximize their reward. Eq.(4.4) is only applicable at 𝐼𝑛 = 𝛿 = 0

since the situation and human actions do not influence the human intention to satisfy
other desires.

This section discussed how humans behave under the assumption that their intention
is to maximize reward or minimize reward error prediction. This seamlessly adheres to
the RL structure that is described in chapter 3. The human is therefore represented
as an RL agent that minimizes reward error prediction while choosing behaviors to
maximize reward.

4.2 Machine model

Both the ability to learn and the ability to be adaptive are presumed capabilities of
the machine. In accordance with the RL structure, these two abilities are attained.
As a result, the machine is an RL agent with an internal policy, and the agent’s
purpose is to learn an optimal policy. As a result, the machine develops the ability to
simultaneously co-adapt to human behavior during interaction. which led to efficient
task completion by the two agents.

The task goal, reward function, and human rationality are all made known to the
machine. In the scenario of indirect interaction, the following provides the machine

24
4 Methodology: Coadaptation Problem Within the Reinforcement Learning

Framework

policy:
𝑎𝑚 ∼ 𝑝(𝑎𝑚|𝑔𝑜𝑎𝑙, 𝑠𝑡𝑎𝑡𝑒) (4.5)

Whereas the probability distribution function, 𝑝(.), could be any admissible probability
distribution function, such as a Gaussian distribution1. Eq. (4.5) parameters may
change when there is direct interaction.

The probability distribution and its parametrization for the machine policy contain
the machine’s co-adaptation and co-learning capabilities. The parameters of the
probability distribution function are learned via the interaction between the human
and the machine while performing the task. Human actions lead to machine actions.
Learning the mapping from human actions to machine actions is the objective of
indirect shared control. In contrast, the objective of direct shared control is to directly
learn the actions. In both situations, the aim of the interaction is for the machine to
develop the capacity for co-adaptation to human behavior.

4.3 HMCo problem formulation

Two co-adapting agents interacting to complete a predetermined task is known as the
HMCo problem; for more information, (see chapter 1). Previous sections defined the
terms "human," "machine," "co-adapting," and "co-learning." The environment in
which the interaction occurs, as well as the mathematical formulation of the problem,
are addressed. Since the HMCo problem is modeled as involving two co-adaptive
agents, the Two-Agent Markov game [71] is a potential framework to model the
HMCo. The problem could be modified to suit the MDP concept introduced in
section 3.1.1 because the human in this study is introduced as being rational and the
machine agent has to learn an optimal policy to co-adapt to the human’s behavior.

In the HMCo-MDP, 𝐴ℎ stands for the human action space, whereas 𝐴𝑚 stands for
the machine action space. The machine actions, which are conditioned on the task,
are assumed to be the mapped actions into the human action space in order to fulfill
the task. The machine action parametrization shown below is an example of indirect
interaction.

𝐴𝑚 = 𝑅(𝜃, 𝐴ℎ) (4.6)

Where 𝑅(.) takes different meanings depending on the scenario as discussed in the
sequel.

1It is critical to emphasize that the aim is not a random variable, and hence one cannot condition
on it. The convention is abused to emphasize the fact that the machine has explicit knowledge
of the task while performing its actions

4 Methodology: Coadaptation Problem Within the Reinforcement Learning
Framework

25

Figure 4.2: The general HMCo framework

Given the task goal, the machine goal is to learn an optimal policy 𝜋(𝑎𝑚|𝑠𝑡𝑎𝑡𝑒), which
is accomplished by learning the optimal mapping 𝑅(.) that optimizes the machine
policy. In the case of indirect shared control, for example, it is assumed that the
human manipulates the task via an interface device, such as a joystick, which is
considered to be co-adaptive. The machine will then decide which joystick parameter
is optimum for accomplishing the task. The machine’s objective in direct shared
control is to execute actions that, when combined with human actions, are most
efficient at achieving the task goal. Consider the game SeaSaw, where a human
and a machine work together to establish equilibrium without oscillation. In order
to achieve the goal, the machine should then generate actions that best match the
human actions. Take into account that the definition of the mapping, 𝑅(., .) varies
based on the task and the state of the environment. Figure 4.2 demonstrates the
overall HMCo problem.

4.3.1 MDP for HMCo

HMCo-MDP is defined as a two-agent Markov game with the following components:

1. The environment state space, 𝒮 ∈ 𝑅𝑛, contains all possible configurations of
all agents acting in the environment

2. The action space, 𝒜, is subdivided into two parts, 𝒜ℎ ∈ 𝑅ℎ𝑎 and 𝒜𝑚 ∈ 𝑅𝑚𝑎 ,
which represent human and machine actions, respectively

3. A set of observations, 𝒮ℎ ∈ 𝑅ℎ𝑠 and 𝒮𝑚 ∈ 𝑅𝑚𝑠 for the human and machine,
respectively

26
4 Methodology: Coadaptation Problem Within the Reinforcement Learning

Framework

4. The probability distribution for transitions2, 𝒫 : 𝒮 ×𝒜ℎ ×𝒜𝑚 → ∆(𝑅𝑛)

5. The reward function of each agent, ℛℎ : 𝒮 × 𝒜ℎ × 𝒜𝑚 → ∆(𝑅1) and ℛ𝑚 :

𝒮 ×𝒜ℎ ×𝒜𝑚 → ∆(𝑅1)

Where 𝑅1,𝑅𝑛, 𝑅ℎ𝑎 , 𝑅𝑚𝑎 , 𝑅ℎ𝑠 and 𝑅𝑚𝑠 denote the 𝑜𝑛𝑒−, 𝑛-dimensional, ℎ𝑎-dimensional,
𝑚𝑎-dimensional, ℎ𝑠-dimensional and 𝑚𝑠-dimensional real number spaces, respectively.
The spaces of all probability distributions over 𝑅𝑛 and 𝑅1 are denoted by ∆(𝒮) and
∆(𝑅1), respectively.

As illustrated in section 1.2, the common goal is one of the HMCo components. This
component requires that the reward definitions of both agents be the same, i.e. ℛℎ

and ℛ𝑚 are the same. The dynamics of the environment are also unknown to the
two agents, and each agent alters and interacts with the environment while opting to
undertake a specific action. The human rationality and the PG algorithm enable the
machine to co-adapt to human behaviors by leveraging data from the interaction in
the form of a trajectory 𝜏 .

4.3.2 Trajectory for HMCo

Consider the trajectory, 𝜏ℎ,𝑚, formed by the interaction of the two agents in the
HMCo framework, starting with 𝑠0 ∼ 𝑝(𝑠0):

𝜏ℎ,𝑚 = (𝑠0, 𝑎
ℎ
0 , 𝑠

ℎ
1 , 𝑎

𝑚
0 , 𝑠

𝑚
1 ,) (4.7)

Where :

• The pair (𝑎ℎ𝑖 , 𝑠
ℎ
𝑖) represents the human action and the state that results from

that action as perceived by the human

• The pair (𝑎𝑚𝑖 , 𝑠
𝑚
𝑖) represents the machine action and the state that results from

that action as perceived by the machine

It should be noted that the human and machine states may be identical. The trajectory
definition in Eq.(4.7), is a typical definition for the multi-agent MDP [72]–[74].
However, due to human rationality and MDP’s abstraction power, the trajectory
is reformulated using the MDP definition in section 3.1.1 to represent the two-agent
Markovian environment, as follows:

𝜏𝑚 = (𝑠0, 𝑎
𝑚
0 , 𝑟

𝑚
1 , 𝑠1, 𝑎

𝑚
1 , 𝑟

𝑚
2 , 𝑠2,) (4.8)

2Remember that all agents acting in the environment are presumed to be unaware of the
environment’s dynamics

4 Methodology: Coadaptation Problem Within the Reinforcement Learning
Framework

27

Where :

• 𝑠𝑖 is the agent’s perception of the environment, which captures the transition
information caused by human action 𝑎ℎ𝑖 → 𝑠ℎ𝑖

• 𝑎𝑚𝑖 represents the 𝑖𝑡ℎ machine action

• 𝑟𝑚𝑖 is the reward given to the machine for executing the action 𝑎𝑚𝑖 within the
state 𝑠𝑖

For the trajectory 𝜏𝑚, human rationality is regarded as being encoded inside the
state observed by the machine. Consider this as adding more features to the state
vector, which improves generalization capacity while learning the machine policy [42],
[51]. The trajectory, Eq.(4.8), represents the interaction information, (𝑠, 𝑎, 𝑟), and
the machine agent should adapt its policy by utilizing this knowledge.

4.4 Improved Policy Gradient (PG) Algorithm

The improved PG algorithm, Algorithm 3, is a variation of the policy gradient algorithm,(Algorithm
2, section 3.3.2), that incorporates a co-adaptation loop to allow the machine to adapt
to the human behavior during interaction. The algorithm consists of three main loops:
a policy iteration loop, an interaction loop, and a policy co-adaptation loop.

The policy iteration loop is used to optimize the policy function, which maps the state
of the environment to an action. This loop is similar to the one used in the original
policy gradient algorithm, where the parameters of the policy function are updated
to maximize the expected reward. The interaction loop is used to collect data from
the interactions between the human and the machine. This data is used to update
the machine’s understanding of the human’s behavior.

The policy co-adaptation loop is used to adjust the machine’s policy function to
better align with the human’s behavior. The machine uses the data collected during
the interaction loop to update its policy function, which allows it to co-adapt to
the human’s behavior. Overall, the algorithm allows for a dynamic and adaptive
interaction between the human and the machine, where the machine is able to adapt
its behavior to better align with the human’s behavior. The algorithm is an extension
of the original policy gradient algorithm, which allows for a more robust and efficient
interaction between the human and the machine.

28
4 Methodology: Coadaptation Problem Within the Reinforcement Learning

Framework

Algorithm 3 Policy Gradient Algorithm
Initialization 𝜃0 ∈ 𝑅𝐻 , 𝑠0,𝑀𝑚𝑎𝑥, 𝑁𝑚𝑎𝑥, 𝐾

input : 𝛼, 𝛾,Σ, 𝜃 ∈ 𝑅𝐻

output : 𝜃* ∈ 𝑅𝐻

1 while (𝜃 ̸= 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑) do
2 𝑢⃗𝜃

ℎ𝑢𝑚𝑎𝑛 = HumanAction ()
3 𝑁 = 1

4 while (𝑔𝑅𝐹 ̸= 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑) do
5 for k = 1 to K do
6 𝑎𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ∼ 𝜋𝜃(𝑎|𝑠𝑘−1)

7 𝑠𝑘, 𝑟𝑘, 𝑔𝑙𝑙𝑘, 𝑑𝑜𝑛𝑒 = OneStep (𝑠𝑘−1, 𝑎)
8 𝑅 = 𝑟𝑘 + 𝛾 *𝑅
9 ∇𝑔𝑙𝑙 = ∇𝑔𝑙𝑙 + 𝑔𝑙𝑙𝑘

10 if 𝑑𝑜𝑛𝑒 then do
11 Generate a new target at random (for indirect interaction)
12 Generate a new starting state at random (for direct interaction)
13 𝑁 = 𝑁𝑚𝑎𝑥

14 break

15 end

16 end
17 𝑁 = 𝑁 + 1

18 for h = 1 to H do
19 𝑏ℎ𝑁 = (𝑁 − 1) * 𝑏ℎ𝑁 +∇𝑔𝑙𝑙(ℎ)2 *𝑅
20 𝑏ℎ𝐷 = (𝑁 − 1) * 𝑏ℎ𝐷 +∇𝑔𝑙𝑙(ℎ)2

21 𝑏ℎ = 𝑏ℎ𝑁/𝑏
ℎ
𝐷

22 𝑔ℎ𝑅𝐹 = ((𝑁 − 1) * 𝑔ℎ𝑅𝐹 +∇𝑔𝑙𝑙(ℎ)2(𝑅− 𝑏ℎ))/𝑁

23 end
24 if 𝑔𝑅𝐹 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ∨ 𝑁 > 𝑁𝑚𝑎𝑥 then do
25 break

26 end

27 end
28 if 𝑔𝑅𝐹 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 then do
29 𝜃 = 𝜃 + (𝛼𝑡𝑗 + 𝜆𝑡Λ

2)𝑔𝑅𝐹

30 𝑀 = 𝑀 + 1

31 end
32 if 𝜃 𝑖𝑠 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑 ∨ 𝑀 > 𝑀𝑚𝑎𝑥 then do
33 break

34 end

35 end

4 Methodology: Coadaptation Problem Within the Reinforcement Learning
Framework

29

The improved PG algorithm, Algorithm 3, is explained for each line in the following.

• Initialization, Input and Output : These lines contain the hyperparameter
settings for the algorithm, including the maximum number of trajectories 𝑁𝑚𝑎𝑥,
the maximum number of policy iterations 𝑀𝑚𝑎𝑥 and the maximum number of
interaction steps 𝐾. As well as the initial conditions for the parameter vector
𝜃, and the initial state 𝑠0.

• Policy iteration loop(Line-1 - Line-34): This is the primary outer loop, and
the machine executes a new policy for each step within it when the policy
parameter vector is updated

– Human Action(Line-2): This function is in capable of generating human
rational action. However, in the case of two machines interacting together,
this would be one of the machines’ actions, as the following chapters will
illustrate

– The co-adaptation loop (Line-4 - Line-22) : The co-adaptation of the
machine to human actions is accomplished via this inner loop. This is the
fundamental improvement over the basic PG algorithm, Algorithm 2. The
machine produces interaction trajectories 𝜏𝑚 within this loop in order to
co-adapt to the human-executed action.These trajectories or experiences
are generated until the policy gradient converges. The convergence of the
policy gradient denotes the machine’s optimal co-adaptation to the given
human action. To prevent an infinite loop, a fixed maximum number of
trajectories, 𝑁𝑚𝑎𝑥, is introduced

∗ Experience/Interaction loop(Line-5 - Line-15): This loop generates
the experience or interaction trajectory 𝜏𝑚

∗ Policy gradient and Baseline loop(Line-17 - Line-22): For each
trajectory 𝜏𝑚 created by the Experience loop, this loop updates the
policy gradient and the baseline

– Co-adaptation convergence(Line-23 - Line-30): If the convergence of
the policy gradient is true, the policy parameter is changed. If it is false,
a new loop of co-adaptation is initiated using the old policy, and the
parameter vector, 𝜃, is not updated

• Policy convergence(Line-31 - Line-34): In two cases, the co-adaptation loop
terminates. The first case, if the policy is converged, is 𝜃 ≈ 𝜃𝑜𝑝𝑡𝑖𝑚𝑎𝑙. The
second case occurs when a predetermined number of policy gradient updates is
surpassed, which is 𝑀𝑚𝑎𝑥

30
4 Methodology: Coadaptation Problem Within the Reinforcement Learning

Framework

In comparison to the update rule introduced in Eq. (3.18), Line-31 contains a new
update rule. This way of updating is known as the Levenberg-Marquardt method
[75]. To the best of our knowledge, this update rule has never been used in the PG
algorithm.

𝜃 = 𝜃 + (𝛼𝑡𝑗 + 𝜆𝑡Λ
2)𝑔𝑅𝐹 (4.9)

Where:

• 𝛼𝑡𝑗 is the learning rate that is varying with time , in this thesis 𝛼𝑡𝑗 = 1/𝑡

• 𝜆𝑡 in this thesis it is called the exploration rate in gradient space

Levenberg-Marquardt method takes into account the curvature of the objective function,
which helps to prevent overshooting or oscillations in the search for the optimal
solution. A common choice for Λ is identity in cases where it is hard to compute the
Hessian of the objective function or the objective function has no closed form [75].

The Levenberg-Marquardt method uses 𝜆 to balance the contribution of the gradient
term and the curvature term. When 𝜆 is large, the algorithm behaves more like the
Gauss-Newton method, which is sensitive to the curvature of the objective function.
When 𝜆 is small, the algorithm behaves more like the gradient descent method, which
is sensitive to the gradient of the objective function. This improves the convergence
rate and the stability of the update process.

4.4.1 Exploration - Exploitation Dilemma

The choice of whether to explore or exploit is fundamental in the field of RL. Exploration
is the process of an agent continuously testing, often at random, every action that
might be taken in order to consider all possible consequences. Whereas exploitation
implies that the agent continues with the action that results in the highest possible
reward for a given situation [42], [52], [53], [56]. During the exploration phase, the
agent learns more about the environment it interacts with [42]. In other words, the
agent creates data through exploration that will be used for learning. The agent
will exploit this data to further learn about the consequences of each action. Better
learning often results from more data. The agent’s ability to utilize (exploit) this newly
created data in order to generate or produce a better decision is called exploitation
.Through exploitation, the agent may select the action that, according to a given
metric, such as the Q-value function, appears to have a better chance of achieving
the task goal. Within the HMCo framework, the exploration rate encodes the agent’s

4 Methodology: Coadaptation Problem Within the Reinforcement Learning
Framework

31

ability to co-learn, while the exploitation of the data generated while co-learning
encodes the agent’s ability to co-adapt.A probability distribution function represents
the agent’s policy in the case of PG. As a result, the exploration-exploitation concept
is implicitly used in the PG algorithm [31], [53], [58].The policy of the machine is
assumed to be a Gaussian probability distribution function, and the exploration of the
machine is controlled by the Gaussian covariance matrix. The following is the general
form of a Gaussian policy:

𝑎 ∼ 𝜋(.|𝑠) = 𝒩 (𝜇𝑎|𝑠,Σ𝑎|𝑠) =
1

(2𝜋)𝑚/2|Σ𝑎|𝑠|
exp
−(𝑎− 𝜇𝑎|𝑠)

𝑇Σ−1
𝑎|𝑠(𝑎− 𝜇𝑎|𝑠)

2

(4.10)

Where:

• 𝑎 ∈ 𝑅𝑚 is an action sampled from the policy 𝜋(.|𝑠)

• 𝑠 ∈ 𝑅𝑛 is the MDP’s state

• 𝜇𝑎|𝑠 ∈ 𝑅𝑚 is the mean value for the action 𝑎 given the state 𝑠

• Σ𝑎|𝑠 ∈ 𝑅𝑚×𝑚 is the covariance matrix for the action 𝑎 given the state 𝑠

A Gaussian probability distribution function’s covariance matrix, Σ𝑎|𝑠, governs the
machine’s ability to balance exploration and exploitation. Every time the policy is
updated, the machine exploration rate decreases. This enables exploration at a lower
rate while also enabling the machine to exploit (make use of) the new policy to
accumulate more rewards. The exploration rate eventually falls to a predetermined
minimum value, which is typically greater than zero and aids in escaping local minima
during the co-learning and co-adaptation processes.

4.4.2 Time Complexity

The time complexity function, 𝑇 (.), for Algorithm 3 is derived in this section. There
are four nested loops in Algorithm 3:

• Policy iteration loop: This is the outer loop, and it is run up to 𝑀𝑚𝑎𝑥 times.
This loop contains the Co-adaptation loop

• Co-adaptation loop: This loop is executed at most 𝑁𝑚𝑎𝑥 times and contains
the two loops listed below:

– Experience/Interaction loop: The agent generates a trajectory with a
maximum length of 𝐾, therefore this loop is run a maximum of 𝐾 times.

32
4 Methodology: Coadaptation Problem Within the Reinforcement Learning

Framework

– Policy gradient and Baseline loop: The maximum number of times
that the policy gradient and baseline updates are performed out is 𝐻,
where 𝐻 is the dimension of the parameter vector 𝜃.

To determine the time complexity order of this algorithm, the total number of
operations in the algorithm have to be counted. The following is a general overview
of the time complexity calculation rules:

• Let 𝑇1(𝑛) = 𝒪(𝑓(𝑛)) and 𝑇2(𝑛) = 𝒪(𝑔(𝑛)), then :

– 𝑇1(𝑛) + 𝑇2(𝑛) = 𝒪(𝑚𝑎𝑥(𝑓(𝑛), 𝑔(𝑛)))

– 𝑇1(𝑛) * 𝑇2(𝑛) = 𝒪(𝑓(𝑛) * 𝑔(𝑛))

Using these rules and tracing the loops in Algorithm 3, it is evident that this algorithm’s
time complexity is provided by:

𝑇𝑃𝐺𝐴 = 𝒪(𝑀 ·𝑁 ·𝑚𝑎𝑥(𝐾,𝐻)) (4.11)

The interpretation of the 𝑚𝑎𝑥(𝒪(𝐾),𝒪(𝐻)) term to the right is interesting. For
each iteration to estimate the gradient, the agent must create a trajectory with time
complexity of order 𝒪(𝐾) and loop through all of the parameter variables in the
parameter vector 𝜃 ∈ ℛ𝐻 .Therefore, the number of variables in the parameter vector
𝜃 has no impact on the time complexity of this algorithm, at least in theory, if the
machine agent is able to accomplish 𝐾 > 𝐻 steps before ending its trajectory.

Additionally, vectorization might be used to implement lines 20-25, which would
accelerate the execution of this process even more than 𝒪(𝐻). Intuitively, the size
of the parameter vector 𝜃, 𝐻, has no impact on the algorithm time complexity if the
machine agent spends more time generating data, or trajectories, in order to co-adapt
to the human behavior for the same task goal. The interaction time steps dominate
the algorithm time complexity as a result. By order of 𝑇𝑃𝐺𝐴, the local minimum
of this algorithm is guaranteed to be reached [31], [42], [52], [53], [55], [56], [58].
However, increasing the dimension of the parameter vector increases the complexity
and non-linearity of the objective function, resulting in more local minimums in which
the agent may get stuck. However, due to the nature of the stochastic policy within
the PG framework, the agent might overcome some of these local minimums (see
section 3.3.1).

5 Results: Case Studies 33

5 Results: Case Studies

The proposed technique and corresponding algorithm are implemented in two main
scenarios: indirect shared control and direct shared control. In the indirect shared
control scenario, a human interacts with a joystick to track and reach a target on
the screen. The target’s position changes each time the human reaches it. The
joystick deliberately mismaps human actions. In other words, when the joystick is
moved in the direction 𝑑1, it generates 𝑑2. In the direct shared control scenario, the
human and machine interact by playing the SeeSaw game. Reaching the SeeSaw’s
equilibrium point without oscillation is the objective of this task. In both scenarios, it is
desired that the machine chooses actions to co-adapt to human behavior continuously.
In these two scenarios, a machine and a human interact together to accomplish a
common goal. Co-adaptation is accomplished in the HMCo framework by two agents
who can co-learn and co-adapt simultaneously. In chapter 4, it is demonstrated
how RL approaches, in which an adaptive agent is assumed to interact with the
environment, can take into account co-learning and co-adapting abilities (see section
4.4.1). Humans are regarded as rational in the sense that they are able to assess
every situation and decide what is best to do. The RL agent achieves this level of
performance by interacting with the environment and minimizing the reward-prediction
error 𝛿𝑘. This leads to the introduction of a third scenario, in which two learning agents
are collaborating to complete the task. This scenario is similar to the SeeSaw case, but
instead of a human, a machine is used. It is assumed in the first two scenarios and for
simulation purposes that the human has already learned and reached optimality. To
demonstrate the effect of co-learning and co-adaptability, the third scenario is chosen
in which two agents (two machines) play the SeaSaw and both of them explicitly
perform RL. The two machines therefore have to interact in order to co-adapt to one
another’s actions in order to achieve the same goal, which governs the interaction.

The HMCo framework with the PG algorithm is introduced and discussed in the
following sections for each of these three scenarios. It is worth mentioning that in RL
community the expected long-term expected reward is the only value used to assess
and measure the performance of a given algorithm [42]. The discussion of other
quantities like the policy parameter convergence and the policy gradient is just to
give a context for the algorithm’s performance.

34 5 Results: Case Studies

5.1 Indirect Shared Control Scenario

This scenario is based on [6]. The case contains all of the HMCo components. In
order to follow a target on the screen, the human interacts with a joystick. The
target moves to a new position randomly once the human reach it. The cursor on the
screen does not move as the human intends, but rather moves in a twisted direction
due to a wrong mapping between the received movement (the command) and the
implemented movement (the cursor on the screen). The machine should fix this
problem by learning and adaptation.

5.1.1 The Environment Mathematical Model

To be able to simulate this scenario, a mathematical model for the environment is
needed. This model is not used for learning (through PG algorithm) since learning is
model-free, as explained previously.

• The Human Model: As it is assumed that humans will behave in an optimal
way, the human generates the action 𝑢ℎ𝑢𝑚𝑎𝑛, which, if correctly translated by
the joystick, leads to the target. The human action is given by:

𝑢ℎ𝑢𝑚𝑎𝑛 = |𝑢ℎ𝑢𝑚𝑎𝑛|∠𝛾𝑡𝑎𝑟𝑔𝑒𝑡 = (𝑢𝑥
ℎ𝑢𝑚𝑎𝑛, 𝑢

𝑦
ℎ𝑢𝑚𝑎𝑛)

𝑇 ∈ 𝑅2 (5.1)

where |𝑢ℎ𝑢𝑚𝑎𝑛|1 denotes the magnitude of the applied speed by the human,
𝛾𝑡𝑎𝑟𝑔𝑒𝑡 is the angle from the cursor position on the screen to the target position
on the screen, 𝑢𝑥

ℎ𝑢𝑚𝑎𝑛 is the horizontal component of the applied human velocity,
and 𝑢𝑦

ℎ𝑢𝑚𝑎𝑛 is the vertical component of the applied human velocity. The
dimension of the action space in this case is 𝑚 = 2.

• The Joystick Model: The joystick is represented as a twisted mapping from
human action, 𝑢ℎ𝑢𝑚𝑎𝑛, to joystick action, 𝑢𝑗𝑜𝑢𝑠𝑡𝑖𝑐𝑘. The joystick action is then
given by:

𝑢𝑗𝑜𝑦𝑠𝑡𝑖𝑐𝑘 = 𝑅(𝛽𝑡𝑤𝑖𝑠𝑡)𝑢ℎ𝑢𝑚𝑎𝑛 ∈ 𝑅2 (5.2)

where 𝑅(.) ∈ 𝑅2×2 is a rotation matrix2 representing the joystick’s twist and
𝛽𝑡𝑤𝑖𝑠𝑡 is the twisting angle. It is assumed that |𝑢𝑗𝑜𝑦𝑠𝑡𝑖𝑐𝑘| = |𝑢ℎ𝑢𝑚𝑎𝑛| = 1.

1The symbol |.| denotes the 1-norm
2A rotation matrix is a square matrix for which 𝑅𝑅𝑇 = 𝐼

5 Results: Case Studies 35

• The Machine Policy: The machine observes the result of the mismapped
human action, 𝑢𝑗𝑜𝑦𝑠𝑡𝑖𝑐𝑘. The machine’s policy then chooses the action 𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒,
which is given by:

𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ∼ 𝜋𝜃(.|𝑢𝑗𝑜𝑦𝑠𝑡𝑖𝑐𝑘) = 𝒩 (𝑅(𝜃)𝑢𝑗𝑜𝑦𝑠𝑡𝑖𝑐𝑘,Σ) (5.3)

where the machine’s policy is given by a Gaussian probability distribution function
around 𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒, 𝑅(.) is a rotation matrix, the angle 𝜃 is the policy parameter,
and Σ is the policy covariance or exploration rate.

• The Dynamics or the Transition Model: The transition model for this
scenario’s environment is given by:

𝑝𝑡+1 = 𝑝𝑡 +∆𝑡𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ∈ 𝑅2 (5.4)

where 𝑝𝑡𝑖𝑛
2 represents the 𝑡𝑡ℎ cursor position and ∆𝑡 represents the sampling

time between two consecutive positions

• The Reward Function: In order to quantify how well the machine responds
to a specific human action, a feedback signal is required. This feedback signal
is the immediate reward signal 𝑟𝑡. The proposed reward function is given by:

𝑟𝑡 = 1 +
|𝑑𝑡−1| − |𝑑𝑡|
|𝑝𝑡 − 𝑝𝑡−1|

(5.5)

where :

– 𝑑𝑡 is the distance between the cursor 𝑡𝑡ℎ position on the screen and the
target current position3

– 𝑝𝑡 is the 𝑡𝑡ℎ cursor position

– If |𝑝𝑡 − 𝑝𝑡−1| = 0, the immediate reward 𝑟𝑡 = 0

For a perfect motion toward the target and a perfect motion away from the
target, the suggested reward function gives +2 and 0, respectively.

The goal is that the machine learns a policy for selecting actions to co-adapt to human
behavior, that is indirectly observed through 𝑢𝑗𝑜𝑦𝑠𝑡𝑖𝑐𝑘, using the PG algorithm, with
the human-machine interaction being as follows (see figure 5.1):

• Do until co-adaptation achieved:

3The target position changes randomly once it is reached

36 5 Results: Case Studies

1. The human rationally generates what she/he believes to be the best or
optimal action,𝑢ℎ𝑢𝑚𝑎𝑛, by moving the joystick in accordance with the
target on the screen

2. The joystick mismaps human actions,𝑢𝑗𝑜𝑦𝑠𝑡𝑖𝑐𝑘, so the action displayed on
the screen,𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒, is not the intended human action

3. The machine policy receives a scalar reward signal that indicates how well
it responded to the human action

4. The machine co-adapts to human actions, given the twisted joystick, using
the PG algorithm based on the reward signal

5. The machine policy corrects (compensates) gradually for the joystick twisting

Figure 5.1: The problem of indirect shared control

5.1.2 PG algorithm implementation and results

The PG learning algorithm is demonstrated in Algorithm 3.Under the following hyper-parameter
settings, the algorithm is run:

1. The screen size is 70x70 units

2. The learning rate is 𝛼 = 0.9

3. The discount factor is 𝛾 = 0.85

4. The exploration rate is Σ = 0.1

5. The sampling time is ∆𝑡 = 1/60

5 Results: Case Studies 37

Different joystick twisting angles, or 𝛽𝑡𝑤𝑖𝑠𝑡, are examined in the sections that follow.
According to [42], the performance of the RL agent is assessed using the long-term
expected reward, or cumulative reward, of independent runs. To obtain the results,
100-independent runs are performed. Each run comes to an end when the agent’s
policy converges. For example, figure 5.2 shows the trajectory for 10-independent
runs, where each run converges to a local optimal policy. The average over these
runs is computed to measure the performance of the machine for a given 𝛽𝑡𝑤𝑖𝑠𝑡. The
simulation is run on a laptop with a Core i5-3230M processor running at 2.6 GHz,
four CPUs, and 8 GB of RAM.

Figure 5.2: The trajectory of the parameter 𝜃 through the co-adaptation process,
where the ×-line represents the true twist value 𝛽𝑡𝑤𝑖𝑠𝑡 = 50

5.1.3 Results

For this scenario of indirect shared control, the results for two cases (fixed initial
position and random initial position) were obtained. The trajectory definition, Eq.(3.16),includes
the initial position distribution 𝑝0. If the initial position is assumed to be fixed, there
is no randomness associated with it, and 𝑝0 is changed to 1. If the initial position
is determined at random, it is chosen randomly for any location within the screen’s
boundary. According to [42], this scenario is known as "Exploring-Starts", in which
the agent, or the machine in this case, uses the randomness of the initial position to
explore the state space. The expected long-term reward for the two cases is shown
in figure 5.3. In this case, the 𝛽𝑡𝑤𝑖𝑠𝑡 is 10 degrees. The agent accumulates rewards

38 5 Results: Case Studies

faster for a fixed initial position (the ⋆-curve) than for a random initial position (the
×-curve).This is due to the influence of the random initial position, which results in a
random starting position for each trajectory and increases the agents’ generalization
to the entire state space along with the policy exploration rate Σ that is reduced
gradually through the interaction (see section 4.4.1). The newly visited (explored)
region within the screen state space also allows the agent to accumulate more rewards
toward the end of the interaction process as depicted in figure 5.3 during the very
last generated trajectories.

PG algorithm,(see section 4.4, Algorithm 3), is referred to to highlight the results
and provide further context. Within the experience loop, trajectories are generated
that demonstrate the machine’s experience, to learn from, through interaction with
the human. As a result, the machine would receive more rewards by enabling this
interaction to take place across the entire state space, or all potential starting positions,
as opposed to a fixed starting position. As a result, compared to a fixed initial position,
the policy gradient loop generates a direction that increases reward accumulation.
Finally, the co-adaptation loop updates the policy and create a new machine’s
policy that is more adapting to human behavior than the old policy. The obtained

Figure 5.3: The expected long-term reward for indirect-shared control

parameter 𝜃, by the co-adaptation loop, will be applied by the new policy through
the rotation matrix 𝑅(.) in order to account/compensate for the twist angle 𝛽𝑡𝑤𝑖𝑠𝑡.The
following equation represents how compensation occurred by combining Eq.(5.2) and
Eq.(5.3):

𝜇𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒
= 𝑅(𝜃 + 𝛽𝑡𝑤𝑖𝑠𝑡)𝑢ℎ𝑢𝑚𝑎𝑛 (5.6)

5 Results: Case Studies 39

Where 𝜇𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒
is the mean value for the machine action4. Therefore, in order to

account for the twisted joystick, the machine policy will now apply a rotation matrix
𝑅(−𝜃), as stated in Eq.(5.6). This produces the identity matrix, indicating that
the applied human action is correctly mapped by the machine policy in order to
track the target on the screen. The machine co-adaptation to the human behaviour

Figure 5.4: The policy convergence, for fixed initial position. Where the × indicates
the true twist value 𝛽𝑡𝑤𝑖𝑠𝑡 = 10 degree

is depicted in figures 5.4 and 5.5. The convergence of the policy is assessed by
the convergence of the parameter 𝜃 to the correct joystick twisting that is 𝛽𝑡𝑤𝑖𝑠𝑡.
The box-plot in Figures 5.4 and 5.5 show the average of 100-independant runs,
where each run results in a sequence for 𝜃 values through the adaptation process.
The box-plot shows the mean value, the horizontal line that splits the box, of the
parameter 𝜃 and the covariance, the vertical length of the box, across all runs. The
dots along the vertical length of the boxes represent outliers for the parameter 𝜃

within that update phase. The agent’s capacity for learning, that is, exploiting the
generated trajectories in order to learn the policy (policy parameter), is significantly
influenced by the randomness introduced by the machine’s policy and the initial
position distribution. The baseline 𝑏𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟, (introduced in section 3.3.2, Eq.(3.21)
and Eq.(3.25)), reduces the covariance of the estimated parameter 𝜃 to its minimum
value. Thus, the randomness aids in fast learning and better generalization, while the
covariance of the learned policy parameter is minimized.

Figure 5.6 shows the policy gradient estimate for the 100-independant runs. The
4Keep in mind that the actual 𝛽𝑡𝑤𝑖𝑠𝑡 is unknown for both the machine and the algorithm

40 5 Results: Case Studies

Figure 5.5: The policy convergence, for random initial position.Where the × indicates
the true twist value 𝛽𝑡𝑤𝑖𝑠𝑡 = 10 degree

Figure 5.6: The policy gradient of the co-adaptation loop

co-adaptation, that is the update of the parameter 𝜃, occurs once the policy gradient
converges locally for a given set of generated trajectories that is generated by the
experience loop, (see section 4.4, Algorithm 3).

5 Results: Case Studies 41

5.2 Direct Shared Control

In this scenario, there is direct human-machine interaction required to complete the
task. Without any oscillation, the SeaSaw stick should be balanced. The system must
be critically damped, which means that the damping ratio 𝜁 is equal to 1. In this
scenario, which is depicted in figure 5.7,both the human and the machine go through
a sequence of actions to balance the stick without oscillation. In order to co-adapt
to human behavior, the machine must directly learn the actions.

5.2.1 The Environment Mathematical Model

As previously stated in section 5.1.1, the models are required only for simulation
purposes and do not used by PG algorithm.

• The Human Model: In this scenario, the following assumptions are used for
the human model (for further illustration see the Transition Model)):

– The human continues to perform the same policy, while interacting with
the machine

– Human actions can be thought of as adding stiffness or damping to the
system. However, the machine performs a damping action when the
human performs a stiffness action, and vice versa

• The Machine Model or The Policy: The machine policy is represented by
a probability distribution function as illustrated in the next step for Transition
model or the Dynamics.

Figure 5.7: The SeaSaw shared control task

42 5 Results: Case Studies

• The Dynamics or the Transition Model: According to figure 5.7, the human
applies its action, 𝑢ℎ𝑢𝑚𝑎𝑛 ∈ 𝑅1, and the machine applies its actions, 𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ∈
𝑅1, thus the total applied action 𝑢𝑡𝑜𝑡𝑎𝑙 ∈ 𝑅1, or in this case the total applied
torque is:

𝑢𝑡𝑜𝑡𝑎𝑙 = 𝑢ℎ𝑢𝑚𝑎𝑛 + 𝑢𝑚𝑎𝑐𝑖𝑛𝑒 (5.7)

In order to balance the SeaSaw, the angular angle5 𝜃 and the angular velocity
𝜃 are desired to be equal to zeros. That is, when (𝜃𝑑, 𝜃𝑑) = (0, 0), 𝜃𝑑 and 𝜃 are
the desired angular angle and angular velocity, respectively. The dynamics that
governs this interaction is given by the following differential equation under the
assumption of no friction and no damping in the SeaSaw’s joint (see figure 5.7):

𝐽𝜃 = 𝑢𝑡𝑜𝑡𝑎𝑙 (5.8)

where 𝐽 is the SeaSaw inertia, and 𝑢𝑡𝑜𝑡𝑎𝑙 is given as:

𝑢𝑡𝑜𝑡𝑎𝑙 = (𝑘𝑝ℎ + 𝑘𝑝𝑚)(𝜃𝑑 − 𝜃) + (𝑘𝑑ℎ + 𝑘𝑑𝑚)(𝜃𝑑 − 𝜃)

Under the assumption that (𝜃𝑑, 𝜃𝑑) = (0, 0), the following is obtained:

𝑢𝑡𝑜𝑡𝑎𝑙 = −(𝑘𝑝ℎ + 𝑘𝑝𝑚)𝜃 − (𝑘𝑑ℎ + 𝑘𝑑𝑚)𝜃 (5.9)

where 𝑘𝑑ℎ and 𝑘𝑝ℎ are the human policy parameters for damping and stiffness
effect, respectively, and 𝑘𝑑𝑚 and 𝑘𝑝𝑚 are the machine policy parameters for
damping and stiffness effect, respectively. From this, the human and the
machine policies are represented as follows:

– The human policy is:

𝑢ℎ𝑢𝑚𝑎𝑛 = −𝑘𝑝ℎ𝜃 − 𝑘𝑑ℎ𝜃 (5.10)

– The machine policy is represented by a probability distribution function as
follows:

𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ∼ 𝜋(.|𝜃, 𝜃) = 𝒩 (−𝑘𝑝𝑚𝜃 − 𝑘𝑑𝑚𝜃,Σ) (5.11)

where Σ denotes the machine’s policy covariance.

When the human only performs stiffness action, 𝑘𝑑ℎ = 0, whereas when the
human performs damping action, 𝑘𝑝ℎ = 0.The same is true for the machine side,
in that both humans and machines are responsible for one type of action. The

5Do not get confused, 𝜃 is the angular angle and not the policy parameter

5 Results: Case Studies 43

following differential equation, with the assumption that 𝜃𝑑 = 0, is obtained by
substituting Eq.(5.9) in Eq.(5.8):

𝐽𝜃 + (𝑘𝑑ℎ + 𝑘𝑑𝑚)𝜃 + (𝑘𝑝ℎ + 𝑘𝑝𝑚)𝜃 = (𝑘𝑝ℎ + 𝑘𝑝𝑚)𝜃𝑑 (5.12)

By taking the Laplace transform of Eq.(5.12), and finding the transfer function,
the following is obtained6:

𝜃(𝑠)

𝜃𝑑(𝑠)
=

𝑘𝑝ℎ+𝑘𝑝𝑚
𝐽

𝑠2 +
𝑘𝑑ℎ+𝑘𝑑𝑚

𝐽
𝑠+

𝑘𝑝ℎ+𝑘𝑝𝑚
𝐽

𝜃(𝑠)

𝜃𝑑(𝑠)
=

𝜔2
𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠+ 𝜔2
𝑛

(5.13)

where 𝜁 denotes the system damping and 𝜔𝑛 denotes the system natural frequency.

• The Reward Function: The following reward function is proposed to fulfill
the task goal:

𝑟𝑡 = −(1− 𝜁𝑡)
2 − 𝑒2𝑡 (5.14)

where 𝜁𝑡 is the current system damping and 𝑒𝑡 = 𝜃 − 𝜃𝑑 is the current error
between the current and desired orientation.

The machine learns a policy for selecting actions, 𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒 = 𝑘𝑑𝑚𝜃, to co-adapt to
human behavior, 𝑢ℎ𝑢𝑚𝑎𝑛 = 𝑘𝑝ℎ𝜃, using the PG algorithm, with the human-machine
interaction being as follows (see figure 5.8):

• Do until co-adaptation achieved:

1. In this scenario, it is assumed that the human will take the same policy
𝑢ℎ𝑢𝑚𝑎𝑛,i.e the human’s policy parameters are fixed

2. The machine observes the environment state, 𝜃, 𝜃, and generates an action
𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒

3. The next state, 𝜃, is used to calculate 𝑒𝑡, is generated by the environment
dynamics (see Eq.(5.12) and Eq.(5.13))

4. For the applied machine and human actions, the current system damping
𝜁𝑡 is calculated

5. The machine policy receives a scalar reward signal, 𝑟𝑡, indicating how well
it responds to human action in terms of 𝑒𝑡 and 𝜁𝑡

6s here denotes the Laplacian operator

44 5 Results: Case Studies

6. Based on the reward signal, the machine co-adapts to human actions using
the PG algorithm

7. The machine’s policy improves as it receives the reward feedback signal

Figure 5.8: The problem of direct shared control

5.2.2 Algorithm Implementation

The PG learning algorithm is demonstrated in Algorithm 3.Under the following hyper-parameter
settings, the algorithm is run:

1. The learning rate is 𝛼 = 0.9

2. The discount factor is 𝛾 = 0.95

3. The exploration range is Σ𝑑,𝑝 = [1, 5]

4. The sampling time is ∆𝑡 = 1/60

5. The value for the human and the machine actions are conditioned to be in the
following interval, 𝑘𝑝ℎ = 10, 𝑘𝑑𝑚 ∈ [1, 250]

6. The SeaSaw’s inertia is 𝐽 = 1

To obtain the results, 100-independent runs are performed. Each run comes to an
end when the agent’s policy converges.

5 Results: Case Studies 45

Figure 5.9: The expected long-term reward for direct-shared control, where the
covariance Σ× = 3 > Σ⋆ = 1

5.2.3 Results

Figure 5.9 shows the total reward for 100-independent runs for achieving the 𝜁 = 1

goal.Figure 5.9 depicts the results for two different exploration rates (different policy
covariances of Σ⋆ and Σ×) and a random initial orientating. The ×-curve shows the
result of higher exploration, while the ⋆-curve shows the result of a lower exploration
rate. The cumulative reward curve in these two cases is smoother compared to the
cumulative reward in the case of indirect shared control (see figure 5.3), where the
dynamics is an algebraic equation (see Eq.(5.4)). The environment model in this
scenario is a double integrator, Eq.(5.8), which plays the role of a filter that filters
out some of the environment’s randomness due to the machine’s policy and random
initial starting position. The 𝜁 values through the co-adaptation process are shown
in figures 5.10 and 5.11, where on average the desired no oscillation behavior is
satisfied.

The mean values for the machine policy parameter 𝑘𝑑𝑚 for the high exploration case
and the low exploration case were found to be 16 and 3.8 respectively. Figure 5.12
illustrates the co-adaptation loop behaviour where the changes (peaks) in the
gradient of the lower exploration curve (⋆-curve) occurs earlier compared to the case
of a higher exploration rate (×-curve). Once the gradient converges (the right side of
the figure 5.12), the agent reward accumulation starts to settle in and there is no more
reward to obtain, thus the policy also converges. The baseline 𝑏𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟, (introduced

46 5 Results: Case Studies

Figure 5.10: The system damping ratio 𝜁, for high covariance Σ×

Figure 5.11: The system damping ratio 𝜁, for low covariance Σ⋆

in section 3.3.2, Eq.(3.21) and Eq.(3.25)), reduces the covariance of the estimated
parameter 𝑘𝑑𝑚 to its minimum value. Thus, the randomness aids in fast learning
and better generalization, while the covariance of the learned policy parameter is
minimized and bounded. The time response for the seesaw orientation position after
applying the obtained policy parameter for the two exploration scenarios is shown in
Figure 5.13. Applying the policy parameter found for the low exploration example

5 Results: Case Studies 47

Figure 5.12: The machine policy gradient for 𝑘𝑑

Figure 5.13: The time response for 𝜃, by applying the obtained policy parameter 𝑘𝑑𝑚

leads to the response displayed in Figure 5.13, which oscillates before achieving
equilibrium. In contrast, the response doesn’t oscillate and approaches equilibrium in
the case of a high exploration rate.

48 5 Results: Case Studies

Figure 5.14: The problem of direct shared control (the two machines scenario)

5.3 Machine - Machine Co-adaptation

In this scenario, the two agents are merely machines. In the previous case, the human
is assumed to have already learned his optimal policy. This case’s motivation is to
examine what happens if two agents co-learn and co-adapt simultaneously. This case
belongs to the direct shared control, where Eq.(5.9) contains two machines actions
instead of one for the human and the other for the machine as follows.

𝑢𝑡𝑜𝑡𝑎𝑙 = 𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒1 + 𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒2 ∈ 𝑅1 (5.15)

where:
𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒1 ∼ 𝜋(.|𝜃) = 𝒩 (−𝑘𝑝𝑚1

𝜃,Σ1) (5.16)

𝑢𝑚𝑎𝑐ℎ𝑖𝑛𝑒2 ∼ 𝜋(.|𝜃) = 𝒩 (−𝑘𝑑𝑚2𝜃,Σ2) (5.17)

Each machine is responsible for just performing one type of action. Σ1 and Σ2

represent the covariance (exploration rates) for the first and second machines, respectively.The
direct shared control structure is used in this situation as well.

5 Results: Case Studies 49

5.3.1 Algorithm Implementation

The PG learning algorithm is demonstrated in Algorithm 3.Under the following hyper-parameter
settings, the algorithm is run:

1. The learning rate is 𝛼 = 0.9

2. The discount factor is 𝛾 = 0.95

3. The exploration range is Σ𝑑,𝑝 = [1, 5]

4. The sampling time is ∆𝑡 = 1/60

5. The value for the human and the machine actions are conditioned to be in the
following interval, 𝑘𝑝𝑚1, 𝑘𝑑𝑚2 ∈ [1, 250]

6. The SeaSaw’s inertia is 𝐽 = 1

To obtain the results, 100-independent runs are performed. Each run comes to an
end when the the machines’ polices converge.

5.3.2 Results

Figure 5.15: The expected long-term reward for direct-shared control

The expected cumulative reward is shown in figure 5.15. Both machines aim to
maximize a shared, common, reward function (see section 4.3.1), in order to achieve

50 5 Results: Case Studies

the task goal that is 𝜁 = 1 and 𝑒𝑡 = 0. When both machines explore at the same
rate (×-curve, Σ𝑑 = Σ𝑝 = 1), convergence occurs faster than when they explore at
different rates (⋆-curve and ♦-curve). When the covariances differ, that is, when the
exploration differs, the accumulating reward behavior changes.

The convergence occurs faster when the machine that adds damping to the system
explores more (⋆-curve, Σ𝑑 = 1 < Σ𝑝 = 2) than when the machine that adds stiffness
explores more (♦-curve, Σ𝑝 = 2 > Σ𝑑 = 1). This is due to the fact that increasing
the system’s damping will increase the damping ratio and reduce oscillation. To
achieve the desired outcome of 𝜁 = 1, more interaction steps are required when the
stiffness term is present. This is due to the increase in oscillation and the speed of
the system’s response. The 𝜁 values through the co-adaptation process are shown in

Figure 5.16: The system damping ratio 𝜁, for unequal covariances

figure 5.16, where on average the desired no oscillation behavior is satisfied.

The mean values for the first machine policy parameter, 𝑘𝑝𝑚1 , were found to be 16 in
the case of Σ𝑑 > Σ𝑝, and 25 in the case of Σ𝑝 > Σ𝑑. For the second machine policy
parameter, 𝑘𝑑𝑚2 , the mean values were found to be 12 in the case of Σ𝑑 > Σ𝑝, and
58 in the case of Σ𝑝 > Σ𝑑.

For various exploration rates for each machine, the co-adaptation loop behavior
is depicted in figures 5.17 and 5.18. In comparison to the machine that stiffens the
system, the policy gradient for the machine that dampens the system has experienced
higher peaks or changes for the two exploration rates. In other words, even though

5 Results: Case Studies 51

Figure 5.17: The policy gradient for 𝑘𝑝 (×-curve), and the policy gradient for 𝑘𝑑
(⋆-curve). Where Σ𝑑 > Σ𝑝

the exploration rate for damping machines is lower than the exploration rate for
stiffening machines, the PG algorithm tends to explore more within damping actions
(dampening machine). This implies that the goal of the proposed reward function
and the PG algorithm is to select the action that results in faster and less oscillatory
behavior. As previously discussed, increasing damping stabilizes the system, helps it
reach equilibrium faster, and dampens system overshoot by simultaneously lowering
(𝜁𝑡 − 1) and 𝑒𝑡. The baseline 𝑏𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟, (introduced in section 3.3.2, Eq.(3.21) and
Eq.(3.25)), reduces the covariance of the estimated parameter 𝑘𝑑𝑚 to its minimum
value. Thus, the randomness aids in fast learning and better generalization, while the
covariance of the learned policy parameter is minimized and bounded. Figure 5.19
shows the time response for the seesaw orientation position after applying the obtained
policies’ parameters. It can be seen that higher exploration rates for the stiffness
parameter compared to the damping parameter result in a higher 𝑘𝑑𝑚2 value than
lower exploration rates for the damping parameter. This is due to the fact that,
through interaction, in order to reduce the effect of a higher stiffness factor, 𝑘𝑝𝑚1,
a higher value for 𝑘𝑑𝑚2 is required to reduce its effect and satisfy the required task
reward function, which is 𝜁𝑡 − 1 → 0 and 𝑒𝑡 → 0. Whereas in the case of a higher
exploration rate for the damping parameter, a higher stiffness parameter is needed
to reduce the effects of high damping and reach the intended task goal. It is worth
pointing out that the difference in the values for the two scenarios is due to the
fact that there is no direct access to the applied action by each machine through

52 5 Results: Case Studies

Figure 5.18: The policy gradient for 𝑘𝑝𝑚1 (×-curve), and the policy gradient for 𝑘𝑑𝑚2

(⋆-curve). Where Σ𝑝 > Σ𝑑

interaction, since each machine notices the effect of the other machine’s action.
Moreover, the exploration rates, whether for damping or stiffness, drive the generation
of differing trajectories of interaction. This results in different policy gradients that
drive the update for the policy parameter.

Figure 5.19: The time response for 𝜃, by applying the obtained policies’ parameters
𝑘𝑝𝑚1 and 𝑘𝑑𝑚2

6 General Discussion 53

6 General Discussion

The main focus of this chapter is to examine the practical implementation of the
proposed algorithm for co-adapting a machine’s policy to a human’s behavior in
the context of the HMCo problem. The proposed scenarios presented in this thesis
are highly relevant to real-life applications, particularly in robotics and teleoperation,
where coordination between human operators and machines is crucial. In this chapter,
the rationality assumption, which is a fundamental aspect of the proposed algorithm,
will be discussed, as will the implications of not considering this assumption. Additionally,
this chapter will cover the limitations and computational complexity of the algorithm
and the importance of selecting the appropriate hyperparameters for the policy gradient
algorithm to achieve optimal performance.

6.1 The Importance of the Proposed Case Studies

Firstly, the double integrator system represents the SeaSaw example, a model that is
frequently used in robotics and other control systems. It is a simple and mathematically
tractable model that can be used to represent a wide range of systems, such as robotic
arms, drones, and other mobile robots [76]. Furthermore, the double integrator system
is a well-established benchmark for control algorithms [76]–[78], making it a suitable
case study for evaluating the performance of HMCo algorithms.

Secondly, the joystick example is a practical application of HMCo in the field of
teleoperation [79]. Teleoperation is a method of controlling a remote machine or
robot using a human operator, and it is commonly used in applications such as
remote surgery, nuclear power plant maintenance, and space exploration [80]–[82].
The human operator uses a joystick to control the remote machine, but the joystick
may be uncertain or have other issues, such as time delay, that make it difficult
for the operator to control the machine. In such cases, using a policy gradient
algorithm to co-adapt the machine’s policy to the human’s behavior can improve
the performance and usability of the teleoperation system. This is important in
applications where human-machine coordination is crucial, such as in remote surgery,
where precise control is required to avoid damaging healthy tissue [83].

54 6 General Discussion

Overall, both the double integrator system and the joystick example are important
case studies in the field of human-machine co-adaptation. The double integrator
system allows researchers to study the fundamental principles of control theory in a
simplified setting, while the joystick example is a practical application of HMCo in
the field of teleoperation. Both case studies have important implications for a wide
range of real-world applications, including robotics, control theory, and teleoperation.
Furthermore, both cases can be used as a base for further research in the field.

6.2 The Rationality Assumption

In this thesis, one of the key assumptions made is that humans are rational in their
actions, meaning they always pick the right action to achieve a given task. However,
in many real-world scenarios, the human may not have the knowledge or expertise to
act the right way and may learn through interaction with the machine. In this case,
the actions may not be aligned with the task goal, leading to increased complexity for
the machine to co-adapt to their behavior. This can lead to an increase in complexity
for the machine to co-adapt to the human’s behavior.

It is important to note that in the context of HMCo, the human and the machine do
not have prior knowledge of each other’s behavior, making the interaction model-free.
This means that the machine cannot predict the human’s actions, and the human
cannot predict the machine’s. In this context, the assumption of rationality is the
basic minimum requirement to establish a framework for the machine to co-adapt to
the human’s behavior. The rationality assumption allows the machine to evaluate the
human’s actions in terms of how they contribute to achieving the task’s goal, and the
machine can evaluate its own actions based on the reward it receives. Additionally, the
rationality assumption allows the machine to learn about the human’s intentions and
co-adapt accordingly without the need for a detailed model of the human’s behavior.
It is worth noting that assuming rationality does not mean that humans are always
optimal or that their actions are always the best; it means that humans are trying to
achieve the task’s goal, and the machine can co-adapt to this behavior.

Without this assumption, the problem of HMCo becomes underconstrained, and it
is unclear what the machine should co-adapt to. Therefore, the problem becomes
more complex. This is because, as outlined in Eq. (4.4), the human’s intention is
no longer directly associated with achieving the goal, i.e. 𝛿 ̸= 0. To handle this, the
problem can be reformulated as a Partial Observable MDP (POMDP), in which the
human’s intention is included as a part of the POMDP’s state [84]–[88]. This requires
inferring and incrementally updating the human’s intention using Eq. (4.3), which

6 General Discussion 55

increases the computational complexity of the problem and affects the convergence
characteristics in terms of hyperparameters.

This solution is compatible with the policy gradient algorithm, which can also be
applied in the case of POMDP [89], [90], and the problem remains model-free as no
explicit model for the human is required except for the human intention model that
is inferred incrementally through interaction.

6.3 Practical Aspects of the Proposed Algorithm

This section discusses some of the practical implementation aspects of the proposed
algorithm. First of all, the hyper-parameter selection is discussed, followed by the
algorithm’s performance regarding the various loops defined in section 4.4, and finally,
the algorithm’s scalability, complexity, and memory are discussed.

For the two cases of indirect shared control and direct shared control, the human
action is associated with a small uniform randomness that accounts for the randomness
caused by the environment that affects the human action; that is, even if the human
generates a rational action, the action’s implementation in real life may be associated
with some randomness due to the associated used equipment during the experiment
set up.

6.3.1 Selection of Hyper-parameters

Hyperparameter selection is an important step in the policy gradient algorithm, as it
can significantly impact the performance of the algorithm. The learning rate controls
the rate at which the algorithm updates the policy parameters [41]. A higher learning
rate will result in more rapid updates but may also lead to instability and overshooting
the optimal solution [91]. A lower learning rate will result in more stable updates but
may be slower to converge. The exploration rate controls the degree of exploration
versus exploitation in the algorithm. A higher exploration rate will result in the
algorithm exploring more of the state space, while a lower exploration rate will result
in the algorithm exploiting the current policy more [42], [55], [56]. The discount factor
𝛾 controls the trade-off between short-term and long-term rewards in the algorithm. A
higher discount factor will result in the algorithm placing more emphasis on long-term
rewards, while a lower discount factor will place more emphasis on short-term rewards
[45]. Finally, the initialization of the policy can also have a significant impact on
the performance of the algorithm. A poor initialization can lead to the algorithm

56 6 General Discussion

getting stuck in a suboptimal solution, while a good initialization can result in faster
convergence to the optimal solution.

The following summarizes the selection of each parameter and its effect on other
values.

• Learning rate 𝛼: The learning rate controls the step size within the gradient-space
of the objective function that is the expected long-term reward. The learning
rate is decreased gradually with each update of the parameter (see Eq.(4.9)).
This decrease in learning rate aids in exploring more within the gradient-space at
the start of updates and decreases as the update progresses. Small values tend
to give a very slow (and divergent behavior in some cases), whereas starting from
higher values like 0.9 or 1 results in a more stable behavior for the algorithm.
Finally, the update method of the Eq.(4.9) reduces simulation run-time. This
is due to the fact that it makes use of the curvature of the objective function
via the parameter Λ. A function’s second derivative is frequently chosen to be
Λ. This improves gradient space exploration to produce a more stable update
that is robust to noise in gradient estimation, has numerical round-off, and is
non-stationary for the MDP environment probability space. This reduces the
learning time for each run by an average of 3.20 versus the update rule in
Eq.(3.18)

• The discount factor 𝛾 ∈ [0, 1): The discount factor controls policy behavior;
that is, low values result in a greedy (shortsighted policy), whereas higher values
result in a farsighted policy that considers the effect of delayed rewards. A
compromising value for 𝛾 is selected. It is worth noting that the discount factor
𝛾 actually controls the number of actions or steps to be performed through the
experience loop. That is as the number of steps/action increase the factor
𝛾𝑘 → 0, thus the weighted immediate reward 𝛾𝑘𝑟𝑘 → 0

• The machine’s policy covariance: The machine’s policy covariances for all cases
are also selected by trial and error. Where higher values for the covariances
lead to the algorithm diverging, that is because the generated trajectories via
experience loop are too noisy, and thus the same for the action log-likelihood.
This leads to the divergence of the estimate of the gradient via the co-adaptation
loop

• The machine’s policy initialization: The same arguments for the policy covariance
hold in this situation

6 General Discussion 57

6.3.2 Experience, Co-adaptation and Policy Iteration Loops

The experience loop is performed at most for 𝐾-times, where the co-adaptation
loop is performed at most 𝑁𝑚𝑎𝑥-times. Thus, each update for the policy parameter
requires a time of order 𝒪(𝐾𝑁𝑚𝑎𝑥). The policy gradient is, according to Eq.(3.3.1)
and Eq.(3.3.1), the average of the policy log-likelihood for each applied action in each
position. Thus, once the policy gradient is used to update the policy, the direction
in which the update takes place is the direction that enables the machine’s policy
to generate actions toward a higher cumulative reward. Moreover, as the machine
becomes co-adapted to human behavior (that is, the policy parameter converges)
and the policy gradient converges locally, the policy iteration loop terminates and
results in the optimal policy,(see figures 5.6, 5.12, 5.17 and 5.18, for examples) toward
the very last episodes.

6.3.3 Scalability, Complexity and Memory

In section 3.3, the advantages of PG algorithm is discussed. It is shown that optimizing
the policy directly, rather than using state-value and state-action value based methods,
solves the curse of dimensionality problem due to the continuous state space and
action space. Thus, by using a stochastic parameterized policy, the dimension of the
problem’s state and action space is not an issue. Thus, the algorithm can be scaled
up to large, high-dimensional problems. However, the parameterization space for the
policy becomes crucial. The parameterization could be a simple linear or non-linear
function or a complex neural network. However, as discussed in section 4.4.2, the
effect of the parameter space dimension is negligible as the number of interaction
steps or actions, 𝐾, exceeds the dimension of the parametrization, 𝐻. The previous
discussion means that the algorithm’s time complexity depends on the parameterization
and the number of steps or actions through interaction that are affected by the
discount factor 𝛾. Thus, the algorithm can be scaled up by carefully selecting the
parameterization, hyper-parameter, and convergence guarantee (see section 4.4.2,
last paragraph). In terms of memory complexity, the algorithm only stores the
policy parameterization update trajectory, the reward trajectory generated by the
experience loop for different independent runs, and, if necessary, the gradient
and baseline values.Thus, a linear data structure such as arrays with the appropriate
dimensions is used. In the case of indirect shared control, for a 𝑡-independent run and
a 1-D policy parameterization, a 𝑡×𝐾 and a 𝑡×𝑀 are used to store the trajectory
of accumulated rewards, where 𝑀 is the number of policy parameter updates.

58 6 General Discussion

6.4 Limitations

This section discusses the limitations of the proposed algorithm, in terms of the
policy parameter range and initial values, where the algorithm performs on average as
intended. It is worth pointing out here that, like all SGA algorithms (section 3.3.2),
the algorithm behavior depends on the initial conditions. In cases of direct shared
control, the algorithm’s behavior is highly dependent on the initial values for the
variables 𝑘𝑝 and 𝑘𝑑. That is, if the initial values of human and/or machine action are
large, the algorithm may become stuck in a local maxima, a point at which 𝜁 ̸= 1

or the algorithm diverges. Thus, even if the initial value is near the higher value of
the interval, [1, 250], the algorithm might not satisfy the intended reward function
or the task goal. For example, in the case of indirect shared control through the
joystick, the algorithm stuck in a local minima for values larger than 120-degrees
(see figures 6.1 and 6.2). According to [90] stucking in such local minima is reduced
due to the fact that PG algorithm offers a framework for learning a stochastic policy
(see section 3.3.1). That is due to the incomplete information about the interaction
between the two agents, i.e., each agent has no knowledge about the action of the
other. The learned local optimal stochastic policy helps overcome this due to the
covariance introduced through performing the learned policy [89], [90]. While this
thesis made significant progress in addressing the problem of HMCo, it is important
to acknowledge that it is not without limitations. One limitation of the proposed
approach is that it is based on the assumption of a stationary Markovian environment
in which the state transitions and rewards are independent of the past history of
the system. This assumption may not hold in practice, especially in real-world
systems where there may be hidden dependencies or non-stationarity. To address
this limitation, future work may need to consider more sophisticated models of the
environment and the HMI that can capture these dependencies and non-stationarity.

Another limitation of the proposed approach is the sensitivity of the policy gradient
algorithm to the choice of hyperparameters, such as the learning rate and the discount
factor. While the algorithm is able to achieve good results by carefully selecting these
parameters, this process can be time-consuming and might not always yield optimal
solutions. To address this limitation, future work may need to consider more robust
or adaptive methods for selecting these parameters or may need to develop more
advanced variants of the policy gradient algorithm that are less sensitive to these
choices.

Another challenge that is identified in this thesis is the human factor in training
such an algorithm. In order to train the algorithm in real life, a human must
interact with the machine, which can be time-consuming and potentially boring

6 General Discussion 59

or confusing for the human. To address this challenge, future work may need to
consider ways to enhance the sampling complexity of the algorithm, such as using
more advanced models of humans or incorporating methods for active learning or
"human-in-the-loop" optimization.

Finally, it is observed that the policy gradient algorithm has a time complexity that
increases linearly with the dimensionality of the policy parameterization vectors and
that this complexity can lead to an increase in the number of local minima. To
address this limitation, future work may need to consider techniques for reducing the
dimensionality of the policy parameterization vectors or for regularizing the optimization
process in order to reduce the number of local minima. Alternatively, researchers may
need to explore alternative optimization algorithms that are less sensitive to these
issues, such as evolutionary algorithms.

60 6 General Discussion

Figure 6.1: The policy convergence for random initial state. Where the × indicates
the true value 𝛽𝑡𝑤𝑖𝑠𝑡 = 120 degree

Figure 6.2: The policy convergence for random initial state. Where the × indicates
the true value 𝛽𝑡𝑤𝑖𝑠𝑡 = 50 degree

7 Conclusions 61

7 Conclusions

The main objective of this thesis is to propose a general framework for solving the
problem of Human-Machine Co-adaptation (HMCo) and to propose a solution to this
problem using policy gradient algorithm. To achieve this goal, a variety of scenarios
involving both direct and indirect shared control, including a joystick example and
a seesaw example, are considered. In all cases, the goal is common and known to
all agents, and the human is assumed to be rational with no direct communication
between the human and the machine or the two machines.

Through this thesis, the aim is to develop a policy gradient algorithm that is able to
converge to a solution. The solution depends on the reward function that encodes
the task goal. Moreover, this thesis addresses the challenges and limitations that are
inherent in HMCo problems.

7.1 Summary of main results and findings

The results show that the policy gradient algorithm is able to converge to a solution
in all of the scenarios that are considered, including the joystick and seesaw examples.
However, it is also observed that the algorithm is sensitive to the initial conditions,
especially in cases of direct interaction, the learning rate in both cases of interaction,
and it suffers from the issue of local minima due to the nature of the policy gradient
algorithm. These findings suggest that while policy gradient algorithms can be an
effective tool for HMCo, they may require careful tuning and selection of hyperparameters
in order to achieve optimal performance.

7.2 Implications and Contributions

This thesis has several important implications for the design and operation of human-machine
systems in dynamic environments, and makes several contributions to the field of
human-machine co-adaptation. By proposing a general framework for solving HMCo
problems using the policy gradient algorithm, and demonstrating the feasibility and
effectiveness of this approach, it is shown that it can be used to adapt to changing

62 7 Conclusions

environments and improve the performance of human-machine systems. Additionally,
by identifying and addressing some of the challenges and limitations of using policy
gradients for HMCo, this thesis has the potential to inspire new approaches to other
problems in the field of control and optimization and to contribute to the broader
goal of developing intelligent, adaptive systems that can interact effectively with
humans.

Some specific implications and contributions of this thesis include:

• Providing a general framework for solving HMCo problems using the policy
gradient algorithm: By proposing a general framework for using policy gradient
algorithm to solve HMCo problems, it is demonstrated that this approach is a
feasible and effective way to address these types of problems

• Identifying the challenges and limitations of using the policy gradient algorithm
for HMCo: By analyzing the performance of the policy gradient algorithm
in different scenarios and under different conditions, several challenges and
limitations are identified. These must be addressed in order to further advance
the use of policy gradients for HMCo. These include the sensitivity of the
algorithm to hyperparameters, the issue of local minima, and the complexity of
the optimization process

• Suggesting directions for future research: This thesis has also identified several
directions for future research that could help to address the challenges and
limitations of using the policy gradient algorithm for HMCo. These include
developing more advanced models of the environment and the human-machine
interaction, exploring more robust or adaptive methods for selecting hyperparameters,
and developing techniques for reducing the dimensionality of the policy parameterization
vectors or for regularizing the optimization process. By addressing these challenges
and limitations, the policy gradient algorithm can be used to further advance
the HMCo and improve the performance of human-machine systems in dynamic
environments

Bibliography 63

Bibliography

[1] Christian Krupitzer, Sebastian Müller, Veronika Lesch, et al. A Survey on
Human Machine Interaction in Industry 4.0. 2020. doi: 10.48550/ARXIV.
2002.01025. url: https://arxiv.org/abs/2002.01025.

[2] David Romero, Peter Bernus, Ovidiu Noran, et al. “The Operator 4.0: Human
Cyber-Physical Systems Adaptive Automation Towards Human-Automation
Symbiosis Work Systems”. In: Sept. 2016. isbn: 978-3-319-51132-0. doi: 10.
1007/978-3-319-51133-7_80.

[3] Mario di nardo, D. Forino, and Teresa Murino. “The evolution of man–machine
interaction: the role of human in Industry 4.0 paradigm”. In: Production Manufacturing
Research 8 (Jan. 2020), pp. 20–34. doi: 10.1080/21693277.2020.1737592.

[4] Andrey Koptelov. Human-machine interfaces in the Industry 4.0 Era. url: ht
tps://www.itransition.com/blog/human-machine-interfaces.

[5] Peter Papcun, Erik Kajáti, and Jiřı Koziorek. “Human machine interface in
concept of industry 4.0”. In: 2018 World Symposium on Digital Intelligence for
Systems and Machines (DISA). IEEE. 2018, pp. 289–296.

[6] Karim A Tahboub. “Human-Machine Coadaptation Based on Reinforcement
Learning with Policy Gradients”. In: 2019 8th International Conference on Systems
and Control (ICSC). IEEE. 2019, pp. 247–251.

[7] S Russell and P Norvig. “Artificial intelligence: A modern approach, global
edition 4th”. In: Foundations 19 (2021), p. 23.

[8] Yoav Shoham and Moshe Tennenholtz. Co-learning and the evolution of social
activity. Tech. rep. STANFORD UNIV CA DEPT OF COMPUTER SCIENCE,
1994.

[9] Xun Xu, Yuqian Lu, Birgit Vogel-Heuser, et al. “Industry 4.0 and Industry
5.0—Inception, conception and perception”. In: Journal of Manufacturing Systems
61 (2021), pp. 530–535. issn: 0278-6125. doi: https://doi.org/10.1016/
j.jmsy.2021.10.006. url: https://www.sciencedirect.com/science/
article/pii/S0278612521002119.

[10] Mohd Javaid, Abid Haleem, Ravi Pratap Singh, et al. “Industry 5.0: Potential
Applications in COVID-19”. In: Journal of Industrial Integration and Management
05.04 (2020), pp. 507–530. doi: 10.1142/S2424862220500220. eprint: http
s://doi.org/10.1142/S2424862220500220. url: https://doi.org/10.
1142/S2424862220500220.

[11] Julian Müller. “Enabling Technologies for Industry 5.0”. In: European Commission
(2020), pp. 8–10.

https://doi.org/10.48550/ARXIV.2002.01025
https://doi.org/10.48550/ARXIV.2002.01025
https://arxiv.org/abs/2002.01025
https://doi.org/10.1007/978-3-319-51133-7_80
https://doi.org/10.1007/978-3-319-51133-7_80
https://doi.org/10.1080/21693277.2020.1737592
https://www.itransition.com/blog/human-machine-interfaces
https://www.itransition.com/blog/human-machine-interfaces
https://doi.org/https://doi.org/10.1016/j.jmsy.2021.10.006
https://doi.org/https://doi.org/10.1016/j.jmsy.2021.10.006
https://www.sciencedirect.com/science/article/pii/S0278612521002119
https://www.sciencedirect.com/science/article/pii/S0278612521002119
https://doi.org/10.1142/S2424862220500220
https://doi.org/10.1142/S2424862220500220
https://doi.org/10.1142/S2424862220500220
https://doi.org/10.1142/S2424862220500220
https://doi.org/10.1142/S2424862220500220

64 Bibliography

[12] Gates believes that after Modern. “Post COVID-19 Industrial Revolution 5.0.
The dawn of Cobot, Chipbot and Curbot”. In: Editorial Board (2020), p. 122.

[13] S Jack Hu. “Evolving paradigms of manufacturing: From mass production to
mass customization and personalization”. In: Procedia Cirp 7 (2013), pp. 3–8.

[14] Marina Crnjac Zizic, Marko Mladineo, Nikola Gjeldum, et al. “From Industry 4.0
towards Industry 5.0: A Review and Analysis of Paradigm Shift for the People,
Organization and Technology”. In: Energies 15.14 (2022), p. 5221.

[15] Aditya Akundi, Daniel Euresti, Sergio Luna, et al. “State of Industry 5.0—Analysis
and Identification of Current Research Trends”. In: Applied System Innovation
5.1 (2022), p. 27.

[16] Sebastian Saniuk, Sandra Grabowska, and Martin Straka. “Identification of
Social and Economic Expectations: Contextual Reasons for the Transformation
Process of Industry 4.0 into the Industry 5.0 Concept”. In: Sustainability 14.3
(2022), p. 1391.

[17] Rachelle Meijer. Three challenges for adaptive human-machine interaction -
NLR. Oct. 2020. url: https://www.nlr.org/nlr-blog/three-challenge
s-for-adaptive-human-machine-interaction/.

[18] Michael Wooldridge. “Intelligent Agents: The Key Concepts”. In: Multi-Agent
Systems and Applications II. Ed. by Vladimír Mařík, Olga Štěpánková, Hana
Krautwurmová, et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002,
pp. 3–43. isbn: 978-3-540-45982-8.

[19] Abir Gallala, Atal Anil Kumar, Bassem Hichri, et al. “Digital Twin for Human–Robot
Interactions by Means of Industry 4.0 Enabling Technologies”. In: Sensors 22.13
(2022), p. 4950.

[20] Paolo Gallina, Nicola Bellotto, and Massimiliano Di Luca. “Progressive co-adaptation
in human-machine interaction”. In: 2015 12th International Conference on Informatics
in Control, Automation and Robotics (ICINCO). Vol. 2. IEEE. 2015, pp. 362–368.

[21] Jean-Michel Hoc. “From human–machine interaction to human–machine cooperation”.
In: Ergonomics 43.7 (2000), pp. 833–843.

[22] Christian Krupitzer, Sebastian Müller, Veronika Lesch, et al. “A survey on
human machine interaction in industry 4.0”. In: arXiv preprint arXiv:2002.01025
(2020).

[23] Guy A Boy. “A human-centered design approach”. In: The Handbook of Human-
Machine Interaction. CRC Press, 2017, pp. 1–20.

[24] Gunnar Johannsen. “Human-machine interaction”. In: Control Systems, Robotics
and Automation 21 (2009), pp. 132–62.

[25] Michael A Goodrich and Alan C Schultz. Human-robot interaction: a survey.
Now Publishers Inc, 2008.

https://www.nlr.org/nlr-blog/three-challenges-for-adaptive-human-machine-interaction/
https://www.nlr.org/nlr-blog/three-challenges-for-adaptive-human-machine-interaction/

Bibliography 65

[26] Stefan Ehrlich and Gordon Cheng. “A computational model of human decision
making and learning for assessment of co-adaptation in neuro-adaptive human-robot
interaction”. In: July 2019. doi: 10.1109/SMC.2019.8913872.

[27] Yanan Li, Aran Sena, Ziwei Wang, et al. “A review on interaction control for
contact robots through intent detection”. In: Progress in Biomedical Engineering
4.3 (July 2022), p. 032004. doi: 10.1088/2516-1091/ac8193. url: https:
//doi.org/10.1088/2516-1091/ac8193.

[28] Lorenzo Flipse. “Guiding Co-Adaptation in Physically Interacting Human-Robot
Teams”. In: (2021).

[29] Abolfazl Mohebbi. “Human-robot interaction in rehabilitation and assistance: a
review”. In: Current Robotics Reports 1.3 (2020), pp. 131–144.

[30] Shuhei Ikemoto, Heni Ben Amor, Takashi Minato, et al. “Physical human-robot
interaction: Mutual learning and adaptation”. In: IEEE robotics & automation
magazine 19.4 (2012), pp. 24–35.

[31] Luka Peternel, Nikos Tsagarakis, Darwin Caldwell, et al. “Robot adaptation
to human physical fatigue in human–robot co-manipulation”. In: Autonomous
Robots 42.5 (2018), pp. 1011–1021.

[32] Ferdinando A Mussa-Ivaldi, Maura Casadio, Zachary C Danziger, et al. “Sensory
motor remapping of space in human–machine interfaces”. In: Progress in brain
research 191 (2011), pp. 45–64.

[33] FA Mussa-Ivaldi and Z Danziger. “The remapping of space in motor learning
and human–machine interfaces”. In: Journal of Physiology-Paris 103.3-5 (2009),
pp. 263–275.

[34] Zachary Danziger, Alon Fishbach, and Ferdinando A Mussa-Ivaldi. “Learning
algorithms for human–machine interfaces”. In: IEEE Transactions on Biomedical
Engineering 56.5 (2009), pp. 1502–1511.

[35] Zachary Danziger, Alon Fishbach, and Ferdinando A Mussa-Ivaldi. “Adapting
human-machine interfaces to user performance”. In: 2008 30th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society. IEEE.
2008, pp. 4486–4490.

[36] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, et al. “A brief survey
of deep reinforcement learning”. In: arXiv preprint arXiv:1708.05866 (2017).

[37] Issam El Naqa and Martin J Murphy. “What is machine learning?” In: machine
learning in radiation oncology. Springer, 2015, pp. 3–11.

[38] Jaime G Carbonell, Ryszard S Michalski, and Tom M Mitchell. “An overview of
machine learning”. In: Machine learning (1983), pp. 3–23.

[39] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and machine
learning. Vol. 4. 4. Springer, 2006.

https://doi.org/10.1109/SMC.2019.8913872
https://doi.org/10.1088/2516-1091/ac8193
https://doi.org/10.1088/2516-1091/ac8193
https://doi.org/10.1088/2516-1091/ac8193

66 Bibliography

[40] Stephen Marsland. Machine learning: an algorithmic perspective. Chapman and
Hall/CRC, 2011.

[41] Tom M Mitchell and Tom M Mitchell. Machine learning. Vol. 1. 9. McGraw-hill
New York, 1997.

[42] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

[43] Martin L Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[44] Alexey B Piunovskiy. Examples in Markov decision processes. Vol. 2. World
Scientific, 2013.

[45] Alekh Agarwal, Nan Jiang, Sham M Kakade, et al. “Reinforcement learning:
Theory and algorithms”. In: CS Dept., UW Seattle, Seattle, WA, USA, Tech.
Rep (2019).

[46] Christopher JCH Watkins and Peter Dayan. “Q-learning”. In: Machine learning
8.3 (1992), pp. 279–292.

[47] Kai Zhu and Tao Zhang. “Deep reinforcement learning based mobile robot
navigation: A review”. In: Tsinghua Science and Technology 26.5 (2021), pp. 674–691.

[48] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, et al. “Continuous
control with deep reinforcement learning”. In: arXiv preprint arXiv:1509.02971
(2015).

[49] Ali Devran Kara and Serdar Yüksel. “Near Optimality of Finite Memory Feedback
Policies in Partially Observed Markov Decision Processes.” In: J. Mach. Learn.
Res. 23 (2022), pp. 11–1.

[50] Thomas Gabel and Martin Riedmiller. “Cbr for state value function approximation
in reinforcement learning”. In: International Conference on Case-Based Reasoning.
Springer. 2005, pp. 206–221.

[51] Dimitri P Bertsekas and John N Tsitsiklis. “Neuro-dynamic programming: an
overview”. In: Proceedings of 1995 34th IEEE conference on decision and
control. Vol. 1. IEEE. 1995, pp. 560–564.

[52] Jan Peters and Stefan Schaal. “Reinforcement learning of motor skills with
policy gradients”. In: Neural networks 21.4 (2008), pp. 682–697.

[53] J. Peters. “Policy gradient methods”. In: Scholarpedia 5.11 (2010). revision
#137199, p. 3698. doi: 10.4249/scholarpedia.3698.

[54] Marc Peter Deisenroth, Gerhard Neumann, Jan Peters, et al. “A survey on
policy search for robotics”. In: Foundations and trends in Robotics 2.1-2 (2013),
pp. 388–403.

[55] Jens Kober and Jan Peters. “Policy search for motor primitives in robotics”. In:
Machine learning 84.1 (2011), pp. 171–203.

https://doi.org/10.4249/scholarpedia.3698

Bibliography 67

[56] Richard S Sutton, David McAllester, Satinder Singh, et al. “Policy gradient
methods for reinforcement learning with function approximation”. In: Advances
in neural information processing systems 12 (1999).

[57] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Machine learning 8.3 (1992), pp. 229–256.

[58] Jan Peters and Stefan Schaal. “Reinforcement learning of motor skills with
policy gradients”. In: Neural Networks 21.4 (2008). Robotics and Neuroscience,
pp. 682–697. issn: 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2008.02.003. url: https://www.sciencedirect.com/science/article/
pii/S0893608008000701.

[59] Daeyeol Lee, Hyojung Seo, and Min Whan Jung. “Neural basis of reinforcement
learning and decision making”. In: Annual review of neuroscience 35 (2012),
p. 287.

[60] Yael Niv. “Reinforcement learning in the brain”. In: Journal of Mathematical
Psychology 53.3 (2009), pp. 139–154.

[61] Kenji Doya. “Reinforcement learning: Computational theory and biological mechanisms”.
In: HFSP journal 1.1 (2007), p. 30.

[62] Wolfram Schultz, Peter Dayan, and P Read Montague. “A neural substrate of
prediction and reward”. In: Science 275.5306 (1997), pp. 1593–1599.

[63] Hannah M Bayer and Paul W Glimcher. “Midbrain dopamine neurons encode a
quantitative reward prediction error signal”. In: Neuron 47.1 (2005), pp. 129–141.

[64] Hsing-Chen Tsai, Feng Zhang, Antoine Adamantidis, et al. “Phasic firing in
dopaminergic neurons is sufficient for behavioral conditioning”. In: Science 324.5930
(2009), pp. 1080–1084.

[65] Elizabeth E Steinberg, Ronald Keiflin, Josiah R Boivin, et al. “A causal link
between prediction errors, dopamine neurons and learning”. In: Nature neuroscience
16.7 (2013), pp. 966–973.

[66] James C Houk, Joel L Davis, and David G Beiser. “Reward-related signals
carried by dopamine neurons”. In: (1994).

[67] Henry H Yin and Barbara J Knowlton. “The role of the basal ganglia in habit
formation”. In: Nature Reviews Neuroscience 7.6 (2006), pp. 464–476.

[68] James C Houk, Joel L Davis, and David G Beiser. Models of information
processing in the basal ganglia. MIT press, 1995.

[69] Karim A Tahboub. “Intelligent human-machine interaction based on dynamic
bayesian networks probabilistic intention recognition”. In: Journal of Intelligent
and Robotic Systems 45.1 (2006), pp. 31–52.

[70] Rafal Bogacz. “Dopamine role in learning and action inference”. In: Elife 9
(2020).

https://doi.org/https://doi.org/10.1016/j.neunet.2008.02.003
https://doi.org/https://doi.org/10.1016/j.neunet.2008.02.003
https://www.sciencedirect.com/science/article/pii/S0893608008000701
https://www.sciencedirect.com/science/article/pii/S0893608008000701

68 Bibliography

[71] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. “Independent
reinforcement learners in cooperative markov games: a survey regarding coordination
problems”. In: The Knowledge Engineering Review 27.1 (2012), pp. 1–31.

[72] Dimitri Bertsekas. “Multiagent reinforcement learning: Rollout and policy iteration”.
In: IEEE/CAA Journal of Automatica Sinica 8.2 (2021), pp. 249–272.

[73] Dimitri Bertsekas. “Multiagent value iteration algorithms in dynamic programming
and reinforcement learning”. In: Results in Control and Optimization 1 (2020),
p. 100003.

[74] Sushmita Bhattacharya, Siva Kailas, Sahil Badyal, et al. “Multiagent rollout and
policy iteration for POMDP with application to multi-robot repair problems”.
In: arXiv preprint arXiv:2011.04222 (2020).

[75] Henri P Gavin. “The Levenberg-Marquardt algorithm for nonlinear least squares
curve-fitting problems”. In: Department of Civil and Environmental Engineering,
Duke University 19 (2019).

[76] Petar V Kokotovic. “The joy of feedback: nonlinear and adaptive”. In: IEEE
Control Systems Magazine 12.3 (1992), pp. 7–17.

[77] Petros A Ioannou and Jing Sun. Robust adaptive control. Courier Corporation,
2012.

[78] Zhiyong Sun, Brian DO Anderson, Mohammad Deghat, et al. “Rigid formation
control of double-integrator systems”. In: International Journal of Control 90.7
(2017), pp. 1403–1419.

[79] Chao-Wei Lin, Mun-Hooi Khong, and Yen-Chen Liu. “Experiments on human-in-the-loop
coordination for multirobot system with task abstraction”. In: IEEE Transactions
on Automation Science and Engineering 12.3 (2015), pp. 981–989.

[80] Jonathan Kofman, Xianghai Wu, Timothy J Luu, et al. “Teleoperation of
a robot manipulator using a vision-based human-robot interface”. In: IEEE
transactions on industrial electronics 52.5 (2005), pp. 1206–1219.

[81] David B Van de Merwe, Leendert Van Maanen, Frank B Ter Haar, et al.
“Human-robot interaction during virtual reality mediated teleoperation: How
environment information affects spatial task performance and operator situation
awareness”. In: Virtual, Augmented and Mixed Reality. Applications and Case
Studies: 11th International Conference, VAMR 2019, Held as Part of the 21st
HCI International Conference, HCII 2019, Orlando, FL, USA, July 26–31, 2019,
Proceedings, Part II 21. Springer. 2019, pp. 163–177.

[82] Thomas B Sheridan. “Human–robot interaction: status and challenges”. In:
Human factors 58.4 (2016), pp. 525–532.

[83] Riccardo Muradore and Paolo Fiorini. “A review of bilateral teleoperation algorithms”.
In: Acta Polytechnica Hungarica 13.1 (2016), pp. 191–208.

Bibliography 69

[84] Chris L Baker and Joshua B Tenenbaum. “Modeling human plan recognition
using Bayesian theory of mind”. In: Plan, activity, and intent recognition: Theory
and practice 7 (2014), pp. 177–204.

[85] Chris L Baker, Julian Jara-Ettinger, Rebecca Saxe, et al. “Rational quantitative
attribution of beliefs, desires and percepts in human mentalizing”. In: Nature
Human Behaviour 1.4 (2017), pp. 1–10.

[86] Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum. “Action understanding
as inverse planning”. In: Cognition 113.3 (2009), pp. 329–349.

[87] Nikolos Gurney, Stacy Marsella, Volkan Ustun, et al. “Operationalizing theories
of theory of mind: A survey”. In: Computational Theory of Mind for Human-
Machine Teams: First International Symposium, ToM for Teams 2021, Virtual
Event, November 4–6, 2021, Revised Selected Papers. Springer. 2023, pp. 3–20.

[88] Antti Oulasvirta, Jussi PP Jokinen, and Andrew Howes. “Computational Rationality
as a Theory of Interaction”. In: CHI Conference on Human Factors in Computing
Systems. 2022, pp. 1–14.

[89] Andrew Y Ng. Shaping and policy search in reinforcement learning. University
of California, Berkeley, 2003.

[90] Andrew Ng. “Machine learning lectures”. In: https://cs229tanfordėdu/notes2022fall/main𝑛𝑜𝑡𝑒𝑠𝑑𝑓
(2022).

[91] Jon Doyle. Artificial intelligence and rational self-government. Carnegie-Mellon
University. Department of Computer Science, 1988.

	Acknowledgment
	Abstract
	Contents
	List of Figures
	List of Abbreviations
	1 Introduction
	1.1 Mapping: Static vs. Dynamic
	1.2 HMCo components
	1.3 Motivation
	1.4 Problem Statement

	2 Literature review
	3 Reinforcement Learning
	3.1 Discounted Markov Decision Process
	3.1.1 Formal Definition of Discounted MDP
	3.1.2 State Value Functions
	3.1.3 State-Action Value function

	3.2 RL Algorithms
	3.2.1 Model-Based RL Algorithms
	3.2.2 Model-Free RL Algorithms

	3.3 Policy Gradient Method
	3.3.1 Policy Gradient Theorem
	3.3.2 REINFORCE Algorithm

	4 Methodology: Coadaptation Problem Within the Reinforcement Learning Framework
	4.1 Human Operator
	4.2 Machine model
	4.3 HMCo problem formulation
	4.3.1 MDP for HMCo
	4.3.2 Trajectory for HMCo

	4.4 Improved Policy Gradient (PG) Algorithm
	4.4.1 Exploration - Exploitation Dilemma
	4.4.2 Time Complexity

	5 Results: Case Studies
	5.1 Indirect Shared Control Scenario
	5.1.1 The Environment Mathematical Model
	5.1.2 PG algorithm implementation and results
	5.1.3 Results

	5.2 Direct Shared Control
	5.2.1 The Environment Mathematical Model
	5.2.2 Algorithm Implementation
	5.2.3 Results

	5.3 Machine - Machine Co-adaptation
	5.3.1 Algorithm Implementation
	5.3.2 Results

	6 General Discussion
	6.1 The Importance of the Proposed Case Studies
	6.2 The Rationality Assumption
	6.3 Practical Aspects of the Proposed Algorithm
	6.3.1 Selection of Hyper-parameters
	6.3.2 Experience, Co-adaptation and Policy Iteration Loops
	6.3.3 Scalability, Complexity and Memory

	6.4 Limitations

	7 Conclusions
	7.1 Summary of main results and findings
	7.2 Implications and Contributions

	Bibliography

