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Abstract

| The variational iteration method (VIM) is a powerful method for solving a wide class
of linear and nonlinear problems, first introduced by the Chinese mathematician He
in 1999. This method is based on the use of Lagrange multiplier for evaluation of
optimal value for parameters in a correction functional. The VIM has successfully

been applied for a wide variety of scientific and engineering applications.

This thesis is concerned with the VIM for both ordinary and partial differential
equations. Firstly, we present a brief introduction for the theory of calculus of

wvariation, then the VIM is applied for ordinary differential equations. We consider

both linear and nonlinear equations. In addition, a convergent analysis for a specific

class of the differential equations is examined.

Furthermore, the VIM is applied to solve linear as well as nonlinear partial differen-
tial equations. In particular, the Laplace transform is used with the VIM to solve a

class of partial differential equations.
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hapter 1

Introduction

e Variation Iteration Method (VIM) is one of the new powerful methods that
le of dealing with linear and nonlinear equations. This method is based on
i range multipliers and restricted variation, which make it simple and easier in

ulations.

he VIM is distinguished from other efficient methods, such as A domain Decompo-
Method (ADM) [31], Runge-Kutta Method [6], and also Homotopy Analysis
hod (HAM) [5], that the VIM gives successive approximation that converge with

‘high accuracy level to the exact solution if the solution exists.

The VIM does not require the presence of small parameters in the differential equa-
tions which would complicate the analytic calculations, and also it does not require
 that the nonlinearities be differentiable with respect to the dependent variable and
 its derivatives. In addition, the VIM provides efficient algorithm for analytic ap-

- proximate solutions, see [19, 23).

Due to the importance of the VIM, considerable efforts have been devoted to the

development and applications of this method. Firstly, The chinese mathematician

1




Chapter 1. Introduction

Ji-Huan He [16] used the VIM to solve several classical equations in view of Inokuti-
Sekine-Mura considerations [16]. Then He used this method to approximate solu-
tions for some linear problems [16, 18], nonlinear problems [5, 16, 18, 19, 34], and

ordinary differential systems [5, 16, 18, 19, 34].

Nowadays, we find numerous applications for this method in solving various types of
equations. In particular, in solving nonlinear ordinary differential equations, partial

differential equations, integral equations and delay equations.

In [32] Wazwaz applied the VIM to solve linear and nonlinear ordinary differential
equations. Altintan and Ugar used the variation iteration method for Sturm-Lioville

differential equations in [3].

The VIM has been used to solve many physical models that are formulated by
ordinary differential equations, from these model: the hybrid selection models [34],
the Thomas-Fermi equation [34], unsteady flow of gas through porous medium [34],
the Riccati equation [34], mathematical pendulum [16], and a ball-bearing osscillator
[16]. Moreover, Abbasbandy solved the quadratic Riccati differential equations by

He’s VIM with using Adomain’s Polynomial [1].

As ordinary differential equations, the VIM is also applied for partial differential
equations. Momani used the VIM to solve Helmholtz equation which is a second
partial differential equation [21]. In addition, in [8], Bildik used the VIM, differential
transform method and Adomain decomposition method for solving different types
of nonlinear partial differential equations. In the study of Soliman and Abdou (2],

they solved Burger’s and coupled Burger’s equations using the VIM.




In addition, the VIM has been used to solve linear and nonlinear differential equation
‘with fractional orders by He’s VIM, see the work of Odibat and Momani [24].

"This thesis is mainly concerned with the VIM for ordinary and partial differential

equations. We consider several forms of linear and nonlinear equations.

In Chapter 2, we present an introduction to the subject calculus of variation; since
the technique of the VIM is based on the identification of Lagrange multiplier which
is evaluated by using this theory. In Chapter 3, we present the principle of the
VIM for solving ordinary differential equations (ODE’s), in addition some scientific
applications are considered. Chapter 4 is devoted to a specific form of ODE’s. We
. find a correction functional for this form of ODE’s. Moreover, the convergence
- of VIM is addressed for this form. In Chapter 5, we apply the VIM for partial

erential equations (PDE’s), then we use the Laplace transform with VIM to get

an exact solution for some problems.




apter 2

Calculus of variation

The calculus of variation is concerned with maxima and minima theory, such that
the main principles of calculus of variations is to find a function that makes certain
‘integral smallest or largest possible, i.e. minimization or maximization.

t is expected that the first work on solving the problem of calculus of variation
- was due to the Queen Dido of Carthage, when she determined the largest land sur-
_:r'dﬁd by bull’s hide [22]. It seems that the first published article in this field was
due to Newton. In his work in calculus of variation, he choosed which body shape
that had the least resistance, for details see [22].

Later, calculus of variation has found numerous applications. In the seventeenth
/, the brothers Johan and Jakob Bernoulli found the form of the curve that
 takes time as less as possible [22).

No adays, the theory of calculus of variation is considered as a comprehensive sci-

ence. Many books and textbooks refer to this subject, see [7, 11, 20, 22].

This chapter is intended to be an introductory to the calculus of variation. At the
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Wwe present the main concepts of the subject, such as Junctionals, sta-

y function, variation on functions, and the Jundamental lemma in calculus of

on. Then we present in details the theorems that depends on it. This theory
‘mainly used in the VIM as we will discuss in the rest of this thesis.

‘The material of this chapter is taken from [10, 14, 26].

To present the concept of the functionals, we consider the most famous example on

mple 2.1.
‘Consider the problem of finding the shortest curve C between two points in the
plane. Let A = (z1,y1) and B = (22,92) be any two point in a plane, and A = B,

3 # o3 and g, # y». Then the length of the curve between A and B is given

L=/ds
c

3

Il

The solution of this problem is to find y = f (z) that minimize the arc length
functional among all admissible functions that satisfy the boundary conditions. It
is clear that L = L(f).

B{x2,y2)

Ax1,y1)

Figure 2-1: The shortest path from A to B is a straight line.




6 Chapter 2. Calculus of variation

Definition 2.1. A functional is a correspondence between functions in some a well-
defined class and the set of real numbers.

Now, let us consider the following examples.

Example 2.2. Let a and b be real numbers, and y(z) is a bounded function on an
interval [a, b] , and let
2(y) = min |y(=)l;

then ®(y) is a functional since the result of this formula is a real number. i.e., the
functional ¢ takes the function y as an input and produces a real number as an
output.

Example 2.3. Suppose that

b
I(y) = / F(z,y,y)dz, (2.1)

Let the function F' be a known function, and let y be a specified function. The
domain of this functional is the space of a continuous functions with continuous first
derivatives on an interval [a,b], i.e., y € C[a,b]). The functional such as (2.1) is
mainly used in our work in this thesis.

Definition 2.2. (Stationary function)
A function g is stationary at the point z, when its first derivative at that point is
0, i.e.,

Suppose that the class of functions S is a subset of C !, and let z;, 75 be real numbers
which satisfy

y(@1) =1, y(z2) = 1.
Now, consider the function y + en(z) such that y is in S and n(z) is zero at z; and
Ty and isin S. i.e.

n(z1) = n(z2) = 0.




‘Hence, the sum y + en(z) is also in S for all € > 0.

Definition 2.3. A First Variation is the derivative of the functional, and defined

i 80+ n) = 6(0)

J‘ﬁ(y: 7?) = b #

d
— E€_¢(y + en)

e=0

Let us consider the following example

Example 2.4. Suppose y be a real valued function, and let

é(y) = /a : yy'dz

Then the first variation of ¢(y) is

0p(y,m) = ;i%qb(yﬂn)

e=0

d b f I
= E/ (y+en)(y +en')dr
a

e=0

d b ! ! .
=i / (yy' + eyn’ + eny + €nn')dx

=0

b g
d I I r
= / —- Wy’ +eyn’ + ey’ + eznn’)dwl
a e=0

b
= / lyn' + 0y’ + 2enn)dx
Ja =0




8 Chapter 2. Calculus of variation

Definition 2.4. (A neighbourhood)
A function y(z) is in the neighbourhood Na(y) of the function y(z), where 0 < a €
R, if for all z € [a, b]

'y(z) = wo(z) [I< @

The extremal function is the function that makes variation zero. The fundamental
problem of the calculus of variations is to find a function Yo(z) € S that optimize
a given functional. The functional I(y) takes an extremal value, maximum or min-
imum, with respect to all y(z) € S and belongs to the neighbourhood of y(z), i.e.
we aim to find yo(z) that minimizes or maximizes the integral /(y) with respect to

the neighbourhood N,(y). For this purpose we present the next lemma.

Lemma 2.1. (Fundamental lemma of the calculus of variation)
Let g(x) be continuous in [a,b] and let n(z) be an arbitrary function on [a,b] , where
n,m',1" are continuous and n(a) = n(b) = 0, If

b
/ 9(@)(z)dz = 0

Jfor all such n(z), then g(z) = 0 on [a, b].

Proof.
Let ¢ be an arbitrary real number. To the contrary, suppose that g(z) > 0 at z = ¢.
Since g(z) is continuous, there is a neighborhood M = (aq,a2) of ¢, ie. 07 < ¢ < a,
in which g(z) > 0.
Consider

(z—a)¥(a2—z)3, ifo; <z<aw;

() =
0, elsewhere

Then g(z)n(z) has the same sign of g(z), but

b
/ g(z)n(z)dz > 0

which is a contradiction. The proof is similar if we suppose g(z) < 0. O
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t us write the Euler-Lagrange Equation using the fundamental lemma

us of variation that we mentioned before.

12.2, (Buler-Lagrange Equations)

]
I(y) = / F(z,y,y)dz,

| (@ y(b) are given, y"(z) is continuous, and F is a twice continuously
Junction, then the extremal function y = yo(z) satisfies the equation

4 (0F _oF
dz \ oy’ dy

der the functional :
Ple) = f F(z,y,y")dz, (2.2)

0 + en(z), then y' =y} + erf, and let yo, and 7 be specified. Hence ® is
f € with

n(a) =n(b) = 0.
ating (2.2) with respect to ¢, we get:

b
de e LOy O By Oe

b
= [ 1B + Fyrf (@) da

tir 1g the second term by parts, we have:

b 4 d d
/ Fyn'de = n(z)F,| — / ’?(-")‘d;Fv‘d"
5 ;‘
- 0-—[1 n(z) - Fydz
2 d
= —-/E. U(E)Ex‘Fy'dx-
ce at y = yo(z) we have an extremal value, thus

do

de =

e=0




Chapter 2. Calculus of variation

s [ [Fyn(z) + Fyrf(2)] de
0 /: [Fyn(x)-n(m)é%'_)]dx

by the fundamental lemma of the caleulus of variation 2.1, we have:

L
dz \ Oy’ Oy

- 2.5. Return to Example 2.1, in this example we interested in finding the
distance between two points A(z;,;) and B (z2,y2), which is in the form:

)= [ Vv

ect to the boundary conditions
y(zl) =,
y(22) = g2

F(ﬂ:,y,y!) = \ 1+y’23

‘the Euler lagrange equation, we have:
oF
9y
oF o

() -
dz ay’ ( 1 yl?)% :
hus, the shortest curve is described by the function that satisfies the differential
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z T = 0!
L4y
y'=0
> two times, we get:
yf S

= T+ ¢

 satisfies the boundary conditions, we gef this solution:

Lo —2q

traight line passes through the two points A(z1,9;) and B(z,, yy), as we
| and shown in figure2.1.
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riational iteration method for.
linary differential equations

this chapter we present the VIM for ordinary differential equations (ODE). At
beginin g we explain the basic methodology of the technique, then we apply the
method for different forms of ordinary differential equations.

1 Section 3.1, we present the methodology of the VIM for differential equations.
this method is used to solve linear ODE in Section 3.2 and nonlinear ODE
| Section 3.3. The Section 3.4 is devoted to some famous physical models; these
els involve the hybird selection model and the Riccati differential equation.

1 has been considered by many authers. For the material of this chap-
: refer to [3, 5, 10, 16, 18, 19, 27, 34]. In particular, we refer to the important
k of He [16].

12




’I!he VIM description i

The VIM description

ustrate the VIM technique, we consider the next general nonlinear system

Llu(®)] + Nlu(t)] = g(t), (3-1)

where L is a linear operator, N a nonlinear operator, and g(t) is a given analytic
function.

“The VIM consider the correction functional for the system (3.1), as

Una () = wn(t) + j Mt 9) [Lhun(a)] + Nun(2)] — g(a)] da, 13 0

‘where u, is the n-th approximate solution, and we consider the nonlinear term
[un(2)] as restricted variation, i.e., §N[u, (z)] = 0, and X is a general Lagrange
iplier which can be identified optimally by variational theory.

he main task of this method is to find the Lagrange multiplier A(t,z). Next
-we explain how to find A(t,z) for linear differential equations, then for nonlinear

differential equations.

2 Linear differential equations
For linear problems the Lagrange multiplier can be exactly identified, hence the

act solution can be acquired by only one iteration.

A(t, ), we often use integration by parts. In particular, consider the following

first order linear differential equation

u'(t) + at)u(t) = b(t),




3. Variational iteration method for ordinary differential equations

ondition
u(0) =c.

correction functional is identified as

Unt1(t) = un(t) + /; t At, z) [% + a(z)un(z) — b(m)] dz. (3.2)

‘the variation to the correction functional (3.2), and making it stationary,

(t) = 0, we get:
Gtnt1(t) = Oun(t) + 6 fo t Alt,z) [% + a(z)un(z) — b(:c)] dz = 0,
t db(z) = 0, then,
- Ty fu A, 2} g 1§ /0 sl fa Al

i‘;"dx—kﬁ/{; A(t,x)a(x)un(x)dx—-/o. A(t, z)6b(z)dzx

e 511,,1(t) -+ 5‘/: -’\(t: 9;_')

RO = Su(t)+ 6 .£ t/\(.t, z) %dx +6 /{; t AL, z)a(z)un (z)dz
ing the first integral by parts, and using du,(0) = 0, we have
t X\ t
= Bun(t) + [A(t 2)0un ()]} — fo o dun (z)dz + fo A, 2)()Bu(2)d
t ¢

0 = dun(t) + A(t,t)un(t) — A(t, 0)6u,(0) — / giffun(x)dz = / At z)a(z)du, (z)dx

0 0T 0

t

0 = (14 A(t,t))dun(t) + j;; [—-gg + a(z)A(t, m)} dun(z).
ore, we have the following first order differential equation

)
—52 Tal@)At,z) =0 (33)
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1+ A(t,t) =0

on of variables, we can identify the Lagrange multiplier as

At,s) = —exp [‘/o.za(s)ds - /:a(s)ds]

= —exp [ ‘[ ; a(-s)ds]

by substituting the value of A(t, z) into (3.2), we obtain:

ﬂn+1(t) = Up(t) — ./o. : eli als)ds [—‘f—;—n + a(z)un () — b(:::)] dr (3.4)

ug(t) = cexp [—-— /Dt a(s)ds] :

solution of the homogeneous equation,
' +a(t)u=0,

| condition
%(0) = c.

SﬂbSﬁMmgmto correction functional (3.4), we obtain

w) = () — /{: el ale)ds [%'- + a(@)uo(z) — b(m)J dz

i
up(t) + / b(z)ek *Mseli (o) gy
0

I

: el
= ¢ e o) 4 o~ falads f b(z)elo ) gy (3.5)
0

e exact solution. To illustrate this idea, let us consider the following
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‘Consider the differential equation

du u _ tan~l(t)
B T3 148

al condition
u(0) = 1.
1 tan~'(2)
e -

ind the solution, we substitute into (3.5), so we get

¢ 1-.a.11‘1(.x'c)ethis 37 %

1 e
) = ¢ heat . [ w‘*’f
1&1( ) e +e ‘01 ! (T dz
t —1 =1
0 1+

o % i tan~1(t)
= e—-ta.n (t) i e—tan (t) f §6(E) df
0

ng by parts, we obtain:

SR _m—l(t} —txm—l(f,) g ta.n_’-(t]' tau'l(f.} E
u(t) = e +e e = etde
0 0

= tan—1(t) oL tan—1(t) [tanﬂl (t)etan"l(tj b etan_1 (t) 5 1]

S O e ()~ 1

is the exact solution for (3.6) satisfying the initial condition (3.7).

(3.6)

(8.7)



Next, let us consider the next second order linear ordinary differential equation,

u’(t) + wu'(t) + w?u(t) = b(t), (3.8)
‘with initial condition
uw(0) = ¢
(3.9)
i = d

.. The correction functional is
Un41(t) = un(t / A, z) [un(z) + wul, (z) + wiun(z) — b(z)] dz, n> 0.
Take the variation with respect to u,(z), this leads to
Bttnga(t) = Sun(t) + 6 /0 : At ) [un(@) + wiiy (z) + wPun(z) —b(z)] dz (3.10)
Applying the variation to (3.10), yields

1= Ou, + J/ A, z)u, (m)dx-!—é/ A, z)wul, (z)dz + 5/ A, )i, (z)dz
(3.11)
Integrating the first two integral by parts, we obtain:

[A(t"“)“ﬁ-(x)dx = z\(t,t)u;.(t)—A(t,o)ui,(ﬂ)“gﬂ un(t

oA SN
. o 0 8=0U»n(0) + i g ln()de

£i3_w)«_-(t_s z)u'(z)de = wA(t, t)ua(t) — wA(t, 0)u, (0) — tw ?u(x)dz
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[t onti@is = M50 - 26 003 0) - 2

oA
oz |,

Oun (t)

s=ti

Il

dun(0) + 5/ Fp2Un (z)dz

= A, t)0ul(t) — -g—il hfun(ﬂt) + 5/': %m(z)dx(&w)

3 /: WA, 2)u (@) dz = wA(L, t)dun(t) — wA(t, 0)du,(0) — & / —wu(z)dz

= G O — b /0 ] g—i‘wu(:c)dz. (3.13)

cing the integrals in equation (3.11) by their values in equations (3.12) and
), we have

oA

) ‘52
Btnr = Bun 4 XE DI ~ 2 Gu(t)+9 / un(a)da
1]

z=t

+ W, Dun(e) — 6 / 9Ol

+ /t ¢, z)w?u(z)dz,

Oty = [1 i + wA(t, t)] Oun(t) + A(E, t)0ul, (1)

8:'!: s=t

+J/ [6 ':-——w+/\w2] u(x)dz.
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ce, we obtain the stationary conditions,

N oA

b—z—z-—w% +w2/\ = 0, f314)

1—2—2 +w(t,t) = 0, (3.15)
=t

Mt,t) = 0. (3.16)

‘Where (3.14) is a second linear differential equation, and by solving it with respect
 to the two boundary condition (3.15) and (3.16), we gt

A, z) = —Tiw-e%("_” sin (—\g—gu(t - :c)) : (3.17)

Thus, for 7 > 0 the differential equation (3.8) has an iteration formula

0

Ual(l) = () f t \;51 e#@gin (\/?-Ew(t - w)) [un(z) + wi, () + wPun(z) — b(z)] d.

Let

uo(t) = e~ %! [c cos (?wt) + 2%? sin (-?wt)} ;

which is a solution of the homogeneous equation
u’(t) + wi' (t) + w?u(t) = 0

with initial condition

2(0) = d.
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Then,

Uil = ezt (c cos (?wt) 4 %% sin (?mt))
G /0 : \/_gie%'tx—ﬂ atii (gw(t G m)) el e
= %t (c cos (—‘g—gwt) & gi%f sin (—?wt))

2ok o (3 .
+\/§we 2 /06 sm(gw(t x)) b(z)dzx (3.18)

which is the exact solution of (3.8) with initial condition (3.9).

In the next example we consider a specific second order linear differential equation.

Example 3.2. We aim to find the exact solution to the following second linear
differential equation,

u”(t) + u'(t) + u(t) = sint,
with initial condition
u(0) = 0,
u(0) =

notice that ¢ = 0, d = 1, w = 1, and b(t) = sint, hence by substituting into (3.18)
the exact solution is

u(t) = e7 [U + %sin (gt)] + %e?/u e? sin [%g(t - :.c)J sin (z)dz

— %e%’ sin (?t) +e? cos(?t) — cos (t).

?

For more examples, see [3, 5, 16, 18, 19, 27]
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3.3 Nonlinear differential equations

Unlike linear differential equations, where the Lagrange multiplier is exactly iden-
tified, the Lagrange multiplier in nonlinear differential equations are difficult to be
identified. In order to overcome this difficulty, we apply restricted variation to non-

linear term.
Firstly, let us consider the first order linear differential equation of the form

u'(t) + au(t) = 0, (3.19)

with initial condition

w0} =e.

To best illustrate the restricted variation, we consider u,, as a restricted variation.

Thus, the correction functional is
4
e (e (1) 4 / T e R (3.20)
0
Take the variation with respect to u,(z), we get
t
= / Xt, 2) [ (z) + cun(z)] dz, (3.21)
0
or equivalently,
i t
Sttns1(t) = Sun(t) +6 / A(t, z)ul, (z)dz + / A(t, z)abun(z)dz (3.22)
0 0
since uy Is a restricted variation, du, = 0. By simplifying (3.22) , we get

Otup i1 (t) = Sun(t) + th At, z)ul (z)dz (3.23)
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ng by parts, we obtain

s = Gun() 1+ A(t, )] + [ BA

t
0 i

oA
w =
boundary condition
Tt g = o
have
Alt,z) = -1

for (3.19) we have the following iteration formula

£
() =) = [ 0(0) + aun(lda, n 0.
0 :
‘initial condition is

u(0) =1

up(t) = u(0) = 1.

Uy (t) = 1—at

a?
u(t) = l—at+ o7 72
2 3
g () = 1—at+—-—-2!t ———31t

. et 4, o
up(t) = 1—at+§!-t2—§t o =g

]w@m=a

(3.24)

(3.25)

(3.26)

en by the above iteration formula (3.26) we have the next approximate solution
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ly, the solution can be obtained from
u= lim Un

n—oo

ve that the approximate solutions converge to the exact solution e~ which

e obtained by the first iteration step when we don’t applied the restricted vari-
n to u(t)

msider the following second order linear differential equation, see [16].

u’(t) + wu(t) = 0,

h initial conditions

o) = o,

#/(0) = B
correction functional can be written as
t
() = n(8) + | A2 (2) + e,
g the variation with respect to u,,, we obtain
¢
duns1(t) = Sun(t)+ 5/ A, z) [up (z) + wPuy(z)]|dz
0
¢
= Jun(t) +f A(t, z)[bu (z) + w?Su,(z)]dz.
0

. to emphasize the idea of restricted variation, we deal with u, as a restricted

e. du, = 0, hence,

Stun1(t) = dun(t) + '/: A(t, z)[6u, (z))dz.
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Inte ating by parts, we have
= Oun(t) + A(t, z)du’, (1:) o) x) + / 245 x)é' n(z)dz
oz
= Jun(t) + AL, )0ul,(t) — A(t, 0)du;,(0) — B_Ag_rﬂ Sun(t)
+———a)\é2$) z=06un(0)+ ] 62)\(# x)é un(z)dz
= () + MO0 - 28T gy 4 0 A o a1
(1 ) m) Sunt) + X, )50 1) + | XD 5, )i

Therefore, we have the next differential equation

2A\(t, z) ke

O0x? Y
with initial condition
s (L, x) 0,
83: =t
et = 0

‘Hence, the Lagrange multiplier
A, z) =z —1t.
we get the following iteration formula

Uny1(t) = un(t) + /0. (z — t)[uy () + wu, (z)]dz. (3.27)
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ave boundary conditions
Al = 1

ufl] = 0.

ug(t) = 1,

' (327), we obtain the following approximate solutions
i &
wut) = ult)+ / (2 — 8)[uf(2) + wPuo(z)]dz
0

= L Sm
= 1 z!wtz

wl®) = ul)+ [ o )+ Pl

= L—Ewﬁ+zwt

Wl = (t) + ./:(1: —)[un_,(z) + wzuu—l(z)]dﬁ:

I

1
l—yﬁﬁ+iwﬁ+~ﬁ%ﬂﬁ wtH

4 (@n)!

e m ‘the approximate solutions can be obtained from

= lim u,
n—oo

ge to its exact solution cos(wt), although it can be found by only one

ithout considering u(t) as a restricted variation.
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~consider the second nonlinear differential equation of the form

() — pu(t) + N(u) = 0, (3.28)
litial condition
u(0) = a,
w0 = &b

e N(u) is a nonlinear functional of u, thus the correction functional of (3.28)
I'.. 3 |'

Un+1(t) = Un + /0 : Aty ) [un(z) — pPun(z) + N(u)] dz, n>0. (3.29)

der to find the value of A, we start by taking the variation with respect to u,,,

SUnga (t) = Oun + 5./:/\(15, z) [ull(z) — pPun(z) + N(u)]dz, n>0.

s the same as

b () =, 4 6 fo . /ﬂ T /D "\t 2)6N (u)d.
(3.30)

the variation to Equation (3.30) and by using 6N(u) = 0 due to being a

ed variation, we have

Bunea(t) = +5 [ e [iom@az=0. @
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the first integral by parts, we obtain:

; L a2 X
0+ 0 Er?é'u,,(x)dz

- é"Act,x)uz(t) = At z)ou

Il

A(t, t)dul (t) — -g—i

)+ /D : %ﬁiaun(z)dx. (3.32)

=

uting the integral in Equation (8.31) by the value of the integral (3.32) with
plifications, we get

1(t) = = +A(, t)oul (¢t i i 5 3
W e u, (t)+ | |5gz —# | Gun(z)dz = 0. (3.33)
, we have the following stationary conditions
32\
o r oD
aA
e, T
M) = 0.

hich is a second differential equation, therefore

, for this nonlinear differential equation (3.28) we have the next iteration




Un(t) + /0. t 51; b e*‘('*""’)] [un(z) — pPun(z) + N (u)] dz

Un(t) + '2%; /; : [e#=—9 e ==)] [ul(z) — prun(z) + N (u)] dz.

(3.34)

1= lim u,.
n—oeo

nderstand this method more, let us consider the following example.

ple 3.3. Consider the second order nonlinear differential equation of the form
u”(t) — 4u(t) + 3e *u?(t) = 0
h initial condition

g} = 1,
w0 ="1

=2, and N(u) = 3e~"u?. By substitution into Equation (3.34), we have

: t
= u,+ % / [#E=0 — 29 [ul!(z) — dun(z) + 3e™*ui(z)] dz, n > 0.
0

3 2t 1 -2t
= —e* + —e7*,
i

h is a solution of homogeneous problem
u’(t) —4u(t) =0
nitial condition

a(@) = I,
w(g) = L
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The calculations are made by Maple. Hence, some of these iterations are

3 = 1t
w(t) = Zeu-kze % 4 Z/ [ete0 — g2li==)] [ug(z) — duo(z) + 3¢~ *ud(z)] dz
0
L 27 g oo, 3 = 1 5 15 5
B et 5t Tt

us(t) = w(t)+ %/Ot [ef==0_ ez(t“:‘)} [u](z) — 4uy(z) + 3¢ *u}(z)] dz

2318982t 109 —2t _ 1_3é_63t e _3‘6——-): %, __1_8—5: _ 129 et 1 Ee‘“
18200 840° 196 14 700 44800 448

SO R R

T 320° " 22400° ' 15680° T 29a0¢
e o

11200° ~ 189216 11200
1 t
us(t) = wuy(t) + Z/o [e28) — g2(t-2)] [u5(z) — duy(z) + 3¢~ *u3(x)] dz

= 2.073823681e" + 0.2797284903¢%* — 1.329173824¢% + 0.4660899641 ¢t
—0.1347686824¢€ + 0.02723737062¢% — 0.003673725629¢™
+0.0002942093830e* — 0.00001031643291¢% + 1.220019747¢¢2
—0.4521273348te™ % 4 0.9957208461e " — 0.4035948124¢2
—0.1931599616e % + 0.04649291977e~* — 0.01219616573¢5
+0.003143193519e % — 0.0009339086803¢ " + 0.0001942198151¢ &
—0.00001948210854e %" — 0.000002552428526e 1% + 0.000002529733078¢ 11t
—7.297205516 10~ "e~'% + 8.36695192610~8c 1% + 4.302024524 10214t
—7.588523839 10 %1% + 2.094369615 10 %1% — 1453914417 10~ 1017

+1.533678621 10~ e~ — 2.765269028 101220 __ 9 387504992 10~ 14,—23¢

—0.8160933459.
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.W’e 01_3"’101-1513’ see that we have a large amount of calculations, so we don’t write all
iterations of this method, and consequently, the solution can be obtained by

= lim u,.
TI—+00

hz Figm;e (3-1) we compare the fourth and fifth iteration with the exact solution
u(t) = et

104

o

0 0.5 1 15 2

l;' Gl by il —— exacstsol'mim(cﬁl

Figure 3-1: Comparing the fourth and fifth iteration obtained by the VIM by the
exact solution e

For more examples, see [16, 18, 19, 34].

3.4 Scientific applications

In this section, we discuss some applications of the VIM on nonlinear differential

equations and two models of interest which are considered and solved by the VIM.

Namely, the hybrid selection model, and the Riccati equation, see Wazwaz [34].
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The hybrid selection model

In boilogy, the hybrid is a result of an interbreeding between two animal species
or plant species. Hybrid selection is a very important factors to understand and
consider each growing season. We are studying a population of animals or plants to
determine how quickly of a specific characteristic will pass from one generation to
the next see [30]. In this model we used the differential equation to solve real-life

problems, thus we consider the following first order differential equation

u' = ku(l — u)(2 — v) (3.35)
with initial condition
1
u(0) = 3

where u(t) represents the portion of the population that has a certain characteristic,
¢ represents the time measured in generations, and k is a positive constant that

depends on the genetic characteristic that is being studied.

According to the VIM, the correction functional is
t
Un41(t) = un(?) +/ A(t; 2) [un(2) = kun(z)(1 — ua(2))(2 — un(z))]dz (3.36)
0
Taking the variation with respect to u,, we get

Gunsa(t) = Gunt) +0 [ 21,8 (o) ~ k(@)1 — ()2 (0] e

= Sun(t) + 5ft ¢, z)u] (z)dz — 5/; kuq(z)(1 — up(z))(2 - un(z))dz

II

sunt) +5 | e ()i — / 5kt (@) (1 — un(2)) (2 = wn(2))da
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kun(2)(1 = un(2))(2 — un(z))

variable, then

Oktun(2)(1 = 2 (2))(2 = un(z)) = 0.

- OUng(B) = Sun(t) + 6 /:A(t,jx)u;(:c)dw.

itegral by parts and with §u,(0) = 0, w;e obtain
. )\
= Gun(®) + Alt, £)un(t) — A, 0)5un(0) — /D 2 ()

_ t
= ult) 4 A6 0un(0) — | D)
0 T
we have

Un41(t) = (1 4+ AL, t)) dun(t) — /0 g—iéun(a:)dz —0

, we have the following first order differential equation

oA

T 3.
oz 0, (3.37)
oundary condition

1+ A(t,t) =0.

A(t,z) = —1. (3.38)
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5 (3.38) into (3.36)

) = un(t) - /{; [un(2) — kun(z)(1 — un(z))(2 — Un(z))] dz. (3.39)

i u =0,
2t

.' to the initial condition

by Maple we have

uo(t) - f [ (@) — kuo(@)(1 — u0(2))(2 — uo(a))] d.

2+.8kt

= u(t)- f iu-i(x)—kul(x)(l—ul<w)>(2—m(x))lffm-

1L 3 2 3 4
o e S En R e kt kt
2_+8_k_t 6_4(kt) ( e ( )

128 2048

o L wle) - wi))

' z"'skt""(kﬂ 256(k) 2048(kt) 25600(" i 65536(“)
1917 e aiizod g o - 1877 o, 729
183‘5008( )+2097152( e 4194304( i 67108864(kt)
45927 - 6561 12, 19683 &
i S — P i Y
- 295‘2790016( 4 2147483648( ) * 111669149696 ()
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The iterations uy, uy, -+, are approximations for the solution. In fact, the exact
solution is

V14 3e?t — ]
V1 +3e2

We plot the fourth and fifth iterations with comparing them by the exact solution

u(t) =

u(t), see Figure 3.2.

e
0.8~
0.6+
0.4+

02—

o ¥ T T
o 1 2 3

4o o
wd

I_ u, = s exact sohﬁi;l

Figure 3-2: Comparing the fourth and fifth iteration obtained by the VIM with the
exact solution, with k = 0.25.

The Riccati differential equation
The Riccati differential equation is a first order nonlinear differential equation that

used in different problem of mathematics and physics, and named after the Italian

mathematician Jacopo Francesco Riccati.

The Riccati equation can be solved by using classical numeric methods, for ex-

ample, the forward Euler method, and Runge-Kutta method. In this section, we

aim to find the solution of the Riccati differential equation by using the VIM [5, 34].
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The iterations uy, u, -+, are approximations for the solution. In fact, the exact

solution is
VI + 3e?F — 1
V1 + 3e2kt :

We plot the fourth and fifth iterations with comparing them by the exact solution

u(t) =

u(t), see Figure 3.2.

1 -
0.8+
0.8

0.4

02

e
wd

o 1 2 5

|__ w, = g exact soluzianl

Figure 3-2: Comparing the fourth and fifth iteration obtained by the VIM with the
exact solution, with k = 0.25.

The Riccati differential equation

The Riccati differential equation is a first order nonlinear differential equation that
used in different problem of mathematics and physics, and named after the Italian

mathematician Jacopo Francesco Riccati.

The Riccati equation can be solved by using classical numeric methods, for ex-

ample, the forward Euler method, and Runge-Kutta method. In this section, we

aim to find the solution of the Riccati differential equation by using the VIM [5, 34].
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Howing Riccati equation

du
= = Qu+ R(t)u? + P(1), (3.40)

Lo the initial condition
y(0) =a.

ere u, P, Q and R are real functions of the real argument t.
\pplying the VIM to (3.40), then for n > 0 we have a following correction functional

Uni1(£) = un(t) + / A(t:2) [un(z) ~ Q@)un(2) ~ Ra)l () — P(z)] do. (3.41)

Laking the variation with respect to u,, we get
t
Ouny1(t) = Oun(t) + 5/ Az, t) [un,(z) — Q(@)un(z) — R(z)ui(z) — P(z)] dz
0
t t
= Jun(t) + 5/ Ay, (z)dz — 6/ AQ(z)un(z)dz
0 0

e fn SRl /0 NP

() -5 /0 e /0 Ol s

3 /0 B ) /0 A6P(@)de

We will consider @Q(z)u,(z) to be a restricted variation for being easier in the cal-

culations and we also know that uZ is a restricted variation. And by using the fact




an
he following Riccati equation
du 2
7 = Q)u+ R(t)u®+ P(), (3.40)

e initial condition
y(0) =a.

’, @ and R are real functions of the real argument t.

5 the VIM to (3.40), then for n > 0 we have a following correction functional

= uy(t) + -./(; t Aty z) [ur,(z) — Q(z)un(z) — R(z)u2(z) — P(z)] dz. (3.41)

= dun(t) + é'f‘ Az, 1) [un(z) — Q()un(z) — R(z)u2(z) — P(z)] dz
= Gu,(t) + th A, (z)dz — 5/; AQ(z)un(z)dz

= /D AR(e)2 (2)dz — § f AP(z)dz

5 Sun(t) + 6 /0 g')Lu;,'(:xc)a'.-:z:— /(; tf\Q(:f:)da'u,,(:t:)d:r:

t t
i / SRR e fo 6P (z)dz

consider @(z)u,(x) to be a restricted variation for being easier in the cal-

and we also know that u? is a restricted variation. And by using the fact
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) =0, then

Q(z)du,(z) = o,

du; = 0,
dun(0) = 0.

Stunpa(t) = Sun(t) + th M, (z)dz

grating the integral by parts, we get

Ouns1(t) = Sun(t) + A(t, t)6un(t) — A, 0)0u,(0) — /t -g—/-\-éun(x)da:
o Oz

- simplifying, the last equation can be written as

Gunsa() = (14 A6 o)~ | D (o)in =0,

=0, (3.42)

with condition

1+ At,t) =0 (3.43)
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By Solving (3.42) with respect to the initial condition (3.43), we get

/\(xa t) =1 (3.44)

By substituting (3.44) into (3.41), we obtain

Un+1(t) = un(t) — /0 [ (%) = Q(@)un(z) — R(z)u2(z) — P(z)]dz, n>0 (3.45)

‘And consequently, we can be obtain the solution from

u(t) = lim u,(2).

M—ro0

Example 3.4. We close this section by applying the VIM to the next Riccti equation
1
w'(t) = u?(t) — 2tu(t) + 2+ 1, u(0) = 3

Note that Q(t) = —2t, R(t) = 1, and p(t) = t> + 1

According to (3.44), we have

Azt = =1,
And (3.45) becomes
Unt1(t) = un(t) — /t 1, () + 221, (2) — up(2) — 2° — 1] dx, (3.46)
consider
uo(t) = %,

which is a solution of the homogenous differential equation

u'(t) =0
subject to the initial condition ;
ug(U) = 5
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Then the iteration formula (3.46) gives a following successive approximation

ui(t) = wu(t) — /0 [uo(z) + 2zuo(z) — ug(z) — 22 — 1] dx

u(t) = w(t) — «/0 [u}(z) + 2zuy (z) — ud(z) — 22 - 1] dx

s 1 1 1 1
= b2 8, 4, 25 1.6, L9
RN E T iR tat

us(t) = wus(t) - /n [u5(z) + 2zus(z) — ud(z) — 2% — 1] dz

R 1 7. 1 29
R i st T !
g T st

23 481 143 13
8 _ 49 10 12
3 64512 145152 i 60480 18144

1 t13 1 15

e sl ,]‘_g
2268 7938 59535

In the same mannar, we can get all iterations, especially the fourth and fifth iteration
that we plot in Figure3.3, in this figure we compare these iterations with the exact

solution.

And consequently, we have the solution from

u(t) = bm un(t)

n—od

1
= — |t] < 2.
Ehs
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15 ’

" : ;
o 05-

= B BILE  exactsolution

ﬁglue3—3 : Comparing the fourth and fifth iterations obtained by the VIM with the
exact solution.




Chapter 4

On the convergence analysis

It is not possible to put all differential equations in a general form that can be used

for the VIM. Thus we don’t have a global study for convergence analysis.

In this chapter we present convergence analysis for a certain class of differential
equations. This class represents a general form for differential equations that ap-

pear frequently in applications.

In Section 4.1, we present the general form that was used in this chapter. In Section

4.2, we state some theorems for convergence of the differential equation that was

discussed in the first section.

4.1 Tteration formula

In this section, we apply the VIM to the differential equations of the form

u™ = f(u,o/,u" - ,u™) (4.1)

Differential equations of the form (4.1) have been the focus of many studies due to

40
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their frequent appearance in various applications see [5, 34].

As mentioned in the last chapter, if we employ the VIM to this system, we get

the following correction functiona] forn >0

= t o (m) ’ ]
U i f(um u'na una K -,u:‘gm))] dﬂ:. (42)

unvf-l(t) = un(t)‘l‘( l / ((m— 1)! [ >

Proof.
This functional is obtained by mathematical induction:

1. For m = 1: if we have an equation of the form
() = f(u,w), (4.3)

we aim to prove that Equation (4.3) has the following correction functional

() = 1] / [un(z) — f(tn,ul,)] dz, n> 0. (4.4)

Firstly, the equation (4.3) has the following correction functional

e /0 T P

Take the variation with respect to u,, we have

uria(t) = Gun) +5 | )~ )]
= aun(t)+5/t)\(t,z)u;(.r)dx—5/o At z) f(un, u,)dz

= dun(t) + 5/; (¢, z)u,,(z)dz — /0 At, 2)0 f (un, ul,)dz
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since f(uy,u.) are a restricted variable, then § f(Un,ul) = 0, we get

i) = () +5 [ At 2 o

t
= OUn(t) + A(t, £)5un(t) — A(t, 0)6un(0) — / g/\—g’—x)-éundx
0 I
L
— (0% X5, 1)) S t) — f e 5l I
0 3:6
So, we have the following stationary conditions
oA
B -
1+ A(t,t) = 0.
According to these conditions, we have that
AMt,z) = —1.
Hence, for (4.3) we have the following iteration formula
i
tna(®) = wnl®) = [ @) = Fum )] ds, n20.  (45)
0

Thus Equation (4.2) is true for m = 1.

. In this step, we assume that (4.2) true for m = k, i.e. if we consider the k*:

order differential equation

u{k) = f(u's u’: uﬂu S 9u(k)) (46)
we get the correction functional

Uns1(t) = un(t) + f:f\ft, z) [u®(z) — flu oo, - ,uP)] dz, n>0.
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Now, by taking the variation with respect to uy,(t), we get

t
OUnii(t) = 6un(t)+6/ At, z) [uslk]'(x)—f(u,u’,u”:--- ,u(k))Jd.r
0
¢
= u,(t) + /B )\(t,x)a[ug@(x)— f(u,u’,u”,---,u“")Jdﬂ:

E t
o / Alt, 2)6u® (z)dz — / A(t, )6 (u, !, -, u®)da.
0 0

since 0 f (u, v, u”, - - - ,u®)) = 0, then

0tnt1(t) = Sun(t) + /t A(t, z)0ul® (z)dz.
0

By our assumption, the value of the Lagrange multiplier that makes U1 ()
stationary, i.e. dun4;(t) = 0, is in the form

)il )
(k—1)!

Thus, we get the following iteration formula

AlL,T) =

un+1(t) = Un t)+( 1Jk/ (m )k : [ o f(un n! n'J u(k)) d.,’t' n > U
(4.7)

. We aim now to prove Equation (4.2) for m = k + 1, ie. for the (k + 1)

differential equation of the form

2™ = Flu o o, ulHD) (4.8)

The correction functional reeds

i k
. & =1 & - u®
un+1(i,) = un(t)—f_(__l)l,-f—l/c ___k.! [‘u._g ) — f(un un)un! )] dﬂ‘: n > [}‘
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Now Equation (4.8) has the correction functional

{
Un1(t) = ua(t) + f At z) [wl*D — fup,ul,u?, - ulf*)] dz, n>0
0 4 ' =y Y

. (4.9)
Take the variation with respect to u,, we obtain

¢

OUnta(t) = Oun(t) + §f Alt, ) {ugﬁ']} T R ,ug‘ﬂ})} dzx
0
¢

= Ju,(t) + 5/ At, ) [urflk-f-l) = N A e s ,ug‘H))] dz
0

t t
= 0u,(t) + (5/ A(t, o)ul D dy — 5/ AR ) f(tn, up, ult, -+ ufFH))dg
0

0

t t
= Sun(t)+4 f A(t, 2)ul+Vdz — / A(t, 25 (ttn, 0l -+ ,ulS*D)dz
0 0

By the fact of restricted variation, d f(u.,, T ,ug‘“)) = 0, we have

t
s (t) = 5un(t)+5/ At, z)ulf V) dz
0

Il

i
Gun(t) + Mt PO = A, 00u(0) = 8 | Zuldz
0

Il

t
o
Sun (t) + A(t, 1)ou®) (t) — 6 / —'\ui”dﬂ?
o Oz

In order to make u,; stationary, i.e. du,4+1 = 0, we aim to find A(¢,z) that
satisfies the following conditions

Mt = 0,

“ 8
o b AR 4.10
Sun(t) — 6 /0 U de (4.10)




4.1. Iteration formula

45
According to step 2, The solution of (4.10) is given by
OX _ (=1)Kz — )
85~ T (E=1) e

with initial condition
ALt =0
Hence,
—1YE+1 (0 _ p\k
At ) < EDE =)
(k)!

Thus, if we have a differential equation of the form (4.8), we have the next
correction functional

k+1 (3: L f,)k

t
—
Un41(t) = un(t) +/ —(——)W— [ — flun,ul,ul, - , ul+ )] da.
0 .
Therefore, Equation (4.2) is true for all m > 1. O

For convergence, we can select the zeroth approximation by using the initial condi-

tions, i.e. In Equation (4.1), we should use uo(t) as follows:

f2 tk-—l
ug(t) = u(0) + tu'(0) + —273”(0) bk .

see Odibat [23].

Example 4.1. Consider the following third order nonlinear differential equation

um(t) 4 etug(t) =0

subject to initial condition
u(0) = 1,

/(0) = -1,
u”(o) — 1‘
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For this problem, we have the next iteration formula

Unt1(t) = up(t) — /0 e 1jf [ul + e*ul(z)] dz.

2!
Choose
t2
U,g(ﬁ)=1'—t+5!-.
Hence,
4 2
T
w® = w®)- [0y o) g
u .

= 182+ 70t + 10t* — (1/4)e't* + 4e't® — 29642 + 110e't — 181¢t
wp(t) = wi(t) — ~/{: £x_;i)i [u’ + e’ui(z)] dr
= 4953.831576 + 11106.03125e* — 4894.862826¢" + 5227.200732¢%¢
— 149.3148148e*t* 4 763.0973937*t* — 1.734567901¢%¢3
+ 19.76954733t°e + 0.9259259259¢ — 1t7€3 — 0.2314814815¢
— 2e%t® — 2268.375e%t + .625e%t® — 11.25¢*¢° + 84.1875e% ¢4

— 205.95e%¢% — 2572.928212e%¢% + 502.3125¢*#? — 6406t — 100ett4

— 200e't® — 3140e't? — 11164.¢" + 103.0837334¢> + 1316.700246¢
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4.2  Convergence of the method

In this section, we study the convergence of the iteration method that was presented
in the previous section. The results in this section are due to Odibat [23].

Consider the general nonlinear problem

ul™ = flu, o', o, ™) (4.12)
with initial condition
u(0) = c,
w(0) = e
u'(0) = o,
W2 0) = g

Then the correction functional for Equation (4.12) is
t (m—t)m—l (m) LS (m))] dr (4 13)
u‘n‘-l-l(t) = uﬂ(tJ e (_l)m "__—T_ [un =3 f(uﬂ! Uy, Uy, s Uy £, .
and the exact solution can be obtained as

u(t) = lim un(t)‘

n—0o

To study the convergence of this method, we define a new operator

=)™z =)™ w™ — flw,w',w", -, w™] dz, (4.14)
B[w]=/0 ( )(m_l)! [w™ — f(w, ]
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hence, Equation (4.13) becomes

or,

Un+1(t) = un(t) + Bluy), (4.15)

Blun] = tuniq(t) — un(t).

Define the following components Uy =0,1,2,....

Up

U1

(]

Vk+1

= Bluo] = Bluo) = u; — up

= B[Ug -+ ’Ul] = B[ﬂl] = Us — U

= B[’UQ"'U}_+‘U2+.v.+’Uk]=B[’uk]Zuk_,_]—uk (416)

The limit of the sequence will be the solution u(t) if the series of vy is convergent,

since its a telescoping series.

The initial approximation vo

Y

k
- i ()

=0

oo
= E Uj.

7=0

= ug can be selected if it satisfies the initial conditions
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of the problem. In this thesis, we use the initial values

U{")(D)=ck,k=0,1,2,...}m_1

in our selection of vy, so that can be as follow

The results of this section are given in next theorems.

Theorem 4.1. Let B, defined in Equation (4.14), be an operator from a Hilbert
space Y to Y, then the series solution

afl) = 3" velt)
k=0
converges if there erist 0 < v < 1 such that
| vera 1<y [ vk I,
i.e.
| Bloo+vi+...+vka] [y | Bwo+vi+...+w]|l, £=0,1,2....
Proof. Firstly, define the sequence of partial sums {Sy}32 as,

So = 7o
Sy = wvgtwn
Sz = U() + U]‘_ + UQ

S, = v+ntvat...+n

. : e want to prove that it is a Cauchy
In order to prove that {Sn}52 is convergent, we want to p :

sequence in the Hilbert space Y, so we consider that

9 ; < il < n+1 U
| Spst — Sa [|=1l vara IS 7 |va ISP tn1 IS 7" (w0 |
\

3 500 s Aol
- University
I\.:':-—l-;f‘;i el

edin ey
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Hence, for n,k € N,n > k, and by using triangle inequality, we obtain

| Sn—Sk || = (S, — Sn-1) + (Sp—q — Sn—2)+ ...+ (Spyq — Se) l
S 5 =5, 4t [ B = |

n n— n— L
S 7 llvo | +977 || vy || + 2||U0H+---+'Yk'll|’b‘0”

—_— —k—l n—k—
= (7"" + "2+...+~y+1)7’“+1||u0||.

But
k=1 4 S R y+1= ll__ﬁfji-_k,ykﬂ,
thus ; {
I8 = 85 l1< T2y g

Since 0 < v < 1, we have
lkim | Sn—Sk|l=0

which implies that the sequence {S,}2, is a Cauchy sequence in the Hilbert space
Y, and therefore implies that u(t) = Y32, vk(t) converges. O

Theorem 4.2. If the series solution u(t) = Y r, vk(t) converges, then it is an ezact
solution for (4.12).

Proof. Assume that the series solution converges, say
o0
P(t) =D we(t),
k=0

then

lim v, = 0.
k—oo

By telescoping we have

T
Z (Uk41 — Uk) = Un41 — Vo
k=0

Let n goes to oc, we get

oo

== 1 Jaay — Vo = _UO‘
> (s — ) = Jim i~
k=0
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Differentiating both sides ™ times, we obtain

|
dm
dtm {Z(WH = 'Uk)] T ggm Yo

k=0

I

[s.o]

ar
Z ‘E,; [Uk+1 = Uk]

k=0

—-:iFl—‘Ug.

Since
m—1

Up = Z %:—tk,

; k=0
hence, the largest power is m — 1, ie.

dm

We therefore obtain
oa dm
> g oo = 0. (419

Indeed, let
; am
F(uvy) =f([vo+v1+...+vk],[‘vo+v1+---+vk]=---=dt—m[‘*-’0+”1+---+”k])=

where k£ > 0 from (4.14), we have for n > 1

" T Zk: (t)| — B S”'(”‘
&;[Uk+1—vk] = dﬁ—m pa Uy = J\v)

g e _l)m(x_t)m_l an : vi(x) | — F(v
dtm-/u ( (m —1)! [dzm (; i( )) F(vy)

e gt e ) T
_-—/0 (m—1)! [dzm (; jm) 3 H)J i

dr

dt‘m.

Thus,

— [Vk41 — Uk]

dtm
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is equal to

( I)m(l'— t)m 1 dm
dtm (m_ 1); dzm ZU (93) = d = Z’UJ F(Uk —i- F(‘Uk 1)] dz.

= th . = & .
Since the m® —derivative is a left inverse to the m™—fold integral,we get

dm [ I'dm k gm k-1
gim Uk — o] = a;aZ;%(”‘arme = F(ve) + F(o- 1)}
B Jj= J=0

k k-1

ar
— Z dtmvk( ) — %Uk( t)— F(v) + F(vk_l)}

dek
= dtm (Uk) S F(Uk—l)
Consequently, we obtain
T dm 7 dm m dmvk
g dtm [Vk+1 — ] = dim [v1 — wo] + ; ( T F(u) + F(Uk—l))

dm
dtmvl(t dt bo(ﬁ) = Z ( 2 F(Uk) + F('”k 1))

According to (4.14) and (4.17), we have

an

WUO = 0,
ar am
@ = gl
m t __1 m — m=1 [ dm
= 51;[ ( )(rf_ 1)!) [dxmvg—F(vo)] dz]
o,

dtm
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Now,

— am
= [Uk-'rl = B = Yo
k=0 atm ) dtm™

= F(v)

dm "
dtm
d™y

2
o dim F(vg) + F(v)

= F(v1) + F(v)

Un
= _E‘:”— == F(Un) + F(Un_l)

d™
= dt—m E VU — F(Un)
k=0

k=0 k=0

m N n n % %
= ﬁ;vk—I(ka,ng,,,., dt_mv"')

If n goes to co and by using (4.18), we obtain

oo am dm 00 oc o0 o] dm
Z—m~[vk+1—vk] = S Uk—f(ka,ZU;c,‘..,z—n—ivk)
k=0 dt dt k=0 k=0 k=0 k=0 dt

Therefore,

yyp REO0 £ d o am =
%&wa—f(ka’azvk’“"ﬁzvk)20' (4.19)
k=0 k=0

k=0
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Hence, from (4.19) we can observe that

[o.o]
D_u
k=0

18 the exact solution to the nonlinear problem
u(mJ = f(u! uf, uﬁu e u(m))

O

Theorem 4.3. Suppose that the series D heo Uk is convergent to the solution u(t).
i . .

If we use 31 vk to be an approzimation to the solution u(t), then we can estimate

the mazimum error E;(t) as

i+1

:
1) <
B() < {—llu

Proof. From Theorem (4.1), we have

n—i

e L .
|82 =Sills == | I, n>i.

If n — oo, then
lim S,, = u(?),

T—roa

hence e s
| u) = 5 1< Jim ~——7"" [l .

Since 0 < v < 1, then _
lim (1-7"") =1.

n—Ho0

Therefore, 1

I u(t) — S IS 7= = vl

O

Remark 4.1. The series solution Ei:o vp converges to the exact solution u(t) if

there exist 0 < v < 1, such that

| Blvo +v1 + - - - + Vel I< v |l Blvo +v1+ -+ vkl II;
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equivalently

Foera | < o o

” Uk+1 “
| vk ||

If we define

{ﬁk = Bl i |y 1 0;
0 v =0

Then the series solution Ei'——.ﬁ

Uk converge to the exact solution u(t) if B, < 1 for
all k > 0.

Remark 4.2. If 8. > 1, which is defined in the last remark, for 0 < k < m then
the series solution ) vy converges to the eract solution u(t), i.e.

5’: 2 l,szSkSm
Br < Lifk>m

the first finite terms don’t affect to the convergence of the series solution.

Example 4.2. To explain the convergence of this method, let us consider the fol-
lowing example of the second order linear differential equation.

W) +u) =0, 0<t<l,
subject to the initial condition
U(O) = O:

+'(0) = 1
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- .
hen we have the next iteration formula

U():Ll,

= [ @-0 ke + ww)

>3 it‘?

3!

n(t) = / (%~ &) [(Wo + 1) + v0(2) + 1 (2)] de

1
_ L
51

us(t) = /0 (z — ) [(vo + v1 + v2)" + vo(2) + v1(2) + vy(2)] d

e

7!

t
w(t) = /:r—t
0( )[(UO‘HJl+Uz+'03+---+Uk—1)”+vu+v1+vz+v3+...+vk-1]d-“3

(2k + 1)! :

Observe that the obtained solution Ei:o vy, converges to the exact solution
u(t) = Sin(f).

Moreover, by computing B, we get

o e |l
Po = Tl

1&/30 _ 1
(kA 3!
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o7

6 = vl

Ie/5t) _ s
ZE]

= [| U1 I
G

[ 2543 /(2K +3)! | (2k +3)!
| %21/ 2k + 1)V ||~ 2k + 1)1

Where
| vk I= sup |vi(2)],
te(0,1)

since B < 1 for all £ > 0, then the VIM is convergent to the exact solution sin(t)

Remark 4.3. If By are not less than 1 for all k > 0, then we can’t say that the VIM
is dwergent. So the VIM may be convergent or divergent.

Example 4.3. Now, we consider the next nonlinear differential equation,

W) +ud() =2 +3°+3t+2 , 0<t=<l (4.20)

subject to the initial condition,
u(0) = 1.
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Then, the iteration formuls, can be constructed by Maple as

v'D:l:

t
—/ﬂ [vo(z) + v{(2) — 2® — 322 — 35 — 914,

vy =
1 3
R
AR
1
I
B 6 )+ (o) 1) — 7 — 207 30— 5t
B e Y R R R
l 12 1 13
e iR 5
64" 332"
t
w =~ [ T4E) + oh(e) + 5(0) + (h(o) + 1(e) + (o) — = 302 — 35—
0

= 1.5¢° +4.125¢" + 7.2¢° + 8.925¢° + 7.478571429t7 + 2.334375¢® — 5.2875t° — 12.71375¢1°
— 16.89136364¢' — 15.7196875t'2 — 8.909375t13 + 1.940748626¢1% + 14.01398077¢5

+ 24.35538552¢'° + 30.85885817t'7 + 32.773275241® + 30.63266352¢*°
+ 25.78150781¢%° + 19.779384441" + 13.927483201>% + 9.033640259t%
1 5.405086200¢24 + 2.982433143t%° + 1.514958742t° + 7061743020t
+ 0.300677872t%8 + 0.1162297175t%° + 0.04047732381¢* + 0.01257978025t°!
1 0.003449120606¢% + 0.0008227105677¢* -+ 0.0001678015353¢**
- 0.00002863054445¢% -+ 0.000003968940449¢*° + 4.28871290210~"¢*

—0,39 —11,40
. 3.3858259751078%8 + 1.736321013107°¢™ + 4.34080253310™ "¢

Clearly, we observe that the obtained solution D im0 Uk does mot converge $o fhe
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exact solution u(t) = 1 + ¢, Moreover, by computing Br, Where

[l v |I= sup ok (t)),
te(0,1)

we get

By — | v ||

S

5 lul

e = | vs Il

5 o Ll
o |
= 439.133224

In this example, By are not less than 1 for all k¥ > 0. Hence, we prove the convergence
by the following way. We have the following iteration formula for (4.20)

t
U1 (t) = un(t) — / [u;('r) +ud(z) — 2 - 32> -3z —2]dz, n>1 (4.21)
0
with uo(t) = 1. Subtract u(t) from both sides of (4.21), we obtain
t
Uper (B) — u(t) = un(t) — ult) — f [un(z) + ud(z) — 2% — 322 — 3z — 2] dz
0
Add and subtract «/(z) in the integral, we get
: ! ’ 3 3 2
Un(t) — u(t) _./ [u;(j:) — u'(z) + u/(z) +up(z) —2° — 33" — 3z — 2] dz
0

Unta (B) —ult) =

Un(t) — u(t) — /0 t [(un(z) — u())' + o' (z) + tn(z) —2° — 32" — 3z — 2] dz
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Since u(t) is the exact solution, then

’
w(t) =t3+3t2+3t+2-u3(t)_

Let En(t) = un(t) — u(t), so we have

¢
Eorit) = En(t) — /U [E:;(I) + 2% + 372 +3z+2— u3(x) o ui(x) -3 —372 — 3z — 2] dz

= E,(t) — _/ﬂ [El(z) — u*(z) + ui(x)} dr

— B.(t) ——/U E; (z)dz — _/: (ul(z) — v¥(2)) dz

E,(t) — E.(t) + E,(0) — -/{: (ud(z) - u’(z)) dz

= BEp(0)— ]: (us(z) — v’(z)) dz
We know that
En(0) = ua(0)—u(0)
= 0
Hence, we have t
Faii(t) = —j; (ud(z) — v*(z)) dz
Operating with the L?—norm on both sides of the last equation, we obtain

t
0

(Bt e = - f (@) — v¥(2)) dz |12

< [ae-ve e (4.22)

Applying the mean value theorem to the integral (4.22), then we have

| Bosa®) 2 S fa 3L || un(e) — (@) llz2 dz

< 3L f || En(2) llz2 dz (4.23)
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Where
L= MaZzep,y) (| T(x) |)?

Then, from inequality (4‘23)1 and by letting M = 37, we get

i
I Bnia @) loa< M [ Bu(o) 1 e
0

By induction and using
I Eo(=) |l2<| Eo(t) oo |

we obtain

| E@) e < M i [ Bol) o

IN

;A
M| Boft) o | dz = M || Bot) o,
0

| B@) lz < M / | Bu(a) = do

t 2
t
M2 || Eo(t) |loo / zdz = M? || Eo(t) |leo =
0

IA

21

B Gl < M/: | Ea(z) ||z2 dz

t n tn+l

M B e | 57 =M 1B b

IA

where || Eo(t) [loo= mazeio,y | Eo(t) | And,

I Eo(t) llo = I ug(t) — u(t) o
= || 1—u(®) [l
< 1L floo + Nl u(®) lleo

= 1+ mazepo]ul®)l-

According to be u(z) the exact solution of (4.20), then u(z) € C?[0,1], hence it is
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T
.""I
<< NETIN ELen I oy
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| £oE) I p2: < M I.«I H _'*'_‘-'1\(.'1'} ||LL’. dx
Lo
i

M || Boft) | " / ol = M= || Ey(i
Jo

| A

[A

| Bnta(t) |2 M /0 | En(z) || 2 dz

o % =3
< MM || Bolt) |l / =y = M
Jo T

where || Ey(t) ||oe= mazcp,y | Fo(t) | And,
| Fo(t) lloe | wa(?) — wi#) loe
| 1= u(®) lks
1 flee + § ¥ B

= ] Madee b\

), Hhes BN

According to be w(x) the exact solufion vf (1A
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bounded and therefore Ey(t) is also bounded. Let p —

MaTiep,y |u(t) |, So we obtain

I Enta(t) || o< M™ (1 + p) e
(n+ 1)1 (4.24)
as n — 0o, the sequence in the right h :
2 d :
follows that & and side of (4-24) converge uniformly to 0, it

| Bri1(t) ||2— 0
which means that u,(t) converge uniformly to u(t) =1 + ¢
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chapter, we present a good strategy which is the VIM for solving linear
| nonlinear partial differential equations (PDE). As ODE’s, we use the Lagrange

er and the concept of restricted variables for solving a PDE’s problems.

ection 5.1, we present the methodology of the VIM for linear partial differential
ations by giving some illustrative examples. In section 5.2, we applied the VIM
a certain equation, which is the Heat and Wave equations. In Section 5.3, we
ate the VIM for nonlinear partial differential equation. Moreover, in Section

e find the approximate solution by using laplace transform together with VIM.

Linear partial differential equations

material of this section is mainly taken from [4, 13, 15]. We explain the method
e VIM in PDE’s by considering the next linear third order PDE’s in one di-
nsion

ut+au¢+buim=g(x,t), kg<$<k1, t>0, G,b>0, (51)
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tial differential equations

chapter, we present a good strategy which is the VIM for solving linear
nonlinear partial differential equations (PDE). As ODE’s, we use the Lagrange

plier and the concept of restricted variables for solving a PDE’s problems.

tion 5.1, we present the methodology of the VIM for linear partial differential
ations by giving some illustrative examples. In section 5.2, we applied the VIM
certain equation, which is the Heat and Wave equations. In Section 5.3, we
trate the VIM for nonlinear partial differential equation. Moreover, in Section

> find the approximate solution by using laplace transform together with VIM.

Linear partial differential equations

material of this section is mainly taken from [4, 13, 15]. We explain the method
e VIM in PDE'’s by considering the next linear third order PDE's in one dn

Uy + a Usp -+ b Ugzr = g(SB, t), k[j L8 =g kl; { = “\ %..f?) . i\ '\A 1’5\

(il




wz,0) = f(z),
U(O, t) == ho(f),
Uy (01 t) = h (t),

uxz(ﬂgt) = hz(t).

tructing a correction functional, we obtain
]

.__-v;+-1.(*$a-it) = un(z,¢) + /; ; At ) [(wn)s + a(un)z + b(tn)azs — g(x, )] ds,

he variation with respect to u,(z, t), we get

1(z,t) = Sun(z,t) + 6 /; ; At, ) [(wn)s + altn)z + b(tn)zzz — g(z, 5)] ds,

T,t) = Gu, (z,t) + -/: A(t,8)0 [(un)s + a(tn)z + b(tn)zze — 9(z, 5)] ds

5““(‘7’1 t) =+ £t'A(t! S) [J(un)s 3F ﬂa(u‘n)z + b&(un)zzz == 5_(}(22, 3)] ds.
(5.2)

al with (2n)z, (Un)zzs, and g(z,s) as a restrict variables, which means

5(%)3 = 0!
0(tn)zzz = 0,
og(z,s) = 0
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- - ¢
Bt (2,1) = Sz, 1) + f A(t, 5)6(un) ds.
0
ion by parts, we obtain
(@18) = Gun(z, 1) + A(t, )dun(z, £) — f %)\(t, 8 s
0
in the following stationary conditions
1-FAlt.l] = 0

OA(t, s)

e = 0.

AL, s) = —1.

e have the following iteration formula

t
t) = un(z,t) — fo [(n)s + a(tn)s + b(tn)zze — 9(z, 5)] ds. (5.3)

ug(ﬂ:, t) = u(:c, 0) = f(.’l:)
| approximation, then we have the next iteration formula
t
| = uo(z,t) — / [(uo)s + a(up)z + b(u0)ezz — 9(z, 5)] ds
0

= w0~ [ () + o)+ B =g, s

ently, the exact solution can be obtained by

u,_(a:‘, t) = nh—i%lo un'(z ) t)



u(z,0) = sin (z).

and using the follomng initial a.pproxlmatmn
uo(z,t) = sin (z).

 we have the next iterations

uo(z,t) — /O t [(w0)s + (u0)zzz + sin () sin (s) + cos (z) cos (s))] ds
sin(z) cos(t) + cos(z) (¢ — sin(t))

u (z, t) / [(u1)s + (1) 2z + sin (z) sin (s) + cos (z) cos (s))] ds
sin(z) cos(t) + sin(z) (1 — (1/2)t* — cos(t))

0(0,8)~ [ [0+ (0 + 50 2) i 5) + o8 (o) con )]
sin(z) cos(t) + cos(z) (¢ — (1/6)¢° = sin(t))

= e~ [ [+ () 5@ (5) + 008 2)cos(0)] s
sin(z) cos(t) + sin(z) (1 — (1/2)¢> + (1/24)t* — cos(t))
e / [(1g)s + (tg)ee -+ sin (2) i () + cos () cos (5))] ds

sin(z) cos(t) + cos(z) (t — (1 /6)t° + (1/120)t° — sin(?))
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U 0.3 [ Tag | 06

{1249+ 1077 [ 4314+ 10 [ 35973+ 107 [0 00000000
0 Il 24x107° [ 4144 10°° | 3.0085 107 0.0000052798
16 Il 2.1+10 [ 357+10F [ 26775 10~ 0.0000045613
0 10T [ 2695107 | 2017+ 107 | 6. 000003.050

able 5.1: The absolute error between us and the exact solution.

1—(1/2)t% + (1/24)t4
rth order approximation of cos(t) in the fourth iteration,

t— (1/6)t* + (1/120)t°

h order approximation of sin(t) in the fifth iteration, and so on.
”to that, this iterations is an approximation of the exact solution
u(z,t) = sin(z) cos(t),

e the second term in the approximations tends to zero. Table (5.1) shows the
ute error between us and the exact solution.

we apply the VIM to one dimension, we can apply it for two, three, and more. For

e details, consider the following example to determine the approximate solution.

mple 5.2. In this example, we consider a second order PDE of two dimensions,

er the region = [0,1] x [0, 1] with initial and boundary conditions

v = 0 on 01,
u(z,y,0) = sinarsinmy, O g1 < 1
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),t) + [ 0 (s~ () = (i) ]

respect to u,(z, y, ¢)

/8 + 6 f Mt, 8) [(#n)s = (tm)as — ()] ds

Un (2, y,t) + fo A(t, 8)0(up)ds — f ; A(t, 8)5(tn) zeds
0

Euﬂ)w as restrict variables, i.e.

6(Un)ze = (tn)yy = 0.
1) = Gune ) 45 [ A, 8) s
we obtain

_ b e,
= Bunla, ) + M6 (o3, + [ PN

= Jun(m 'Yy t) e ’\(t-s t)aun(:n} Y, t)
POt
— A(, 0)6un(z,y,0) + / %mds
1]

! 5 . ta)‘(t!'s) d ;
= Oun(z, y, ) + AlE, t)oun(z, 9, t) + A e dunds

= (1+A@0)dun(z,0:8) + / M nds

ext first order differential equation

OA(t:$) _
aJs

— /-t A(t, 8)0(un)yyds.
0




| equations 69

L+ At8) =0

Alt, 8) = ~1.

‘can be

= Up(z,y, t)— fu [(un)s — (un)e — (“n)yy] ds

u(z,y,t) = sin 7z cos Ty

o(@9,1) = [ [(u0)s — (u0)ex — ()] ds

: t') sin 7z cos Ty
:ﬁ~£wm~m%—mw@

. 52

22 23
— 2Pt + -2—.,-7r4't2 = Gta) sin(mz) sin(7y)

e ,0) [ [(uad = (1) = ()l

o T 22 4,2 23 6.3 24 8,4 = e
1 — 27 + -2—'7]' e -3—|1r 0+ Eﬁ t* ) sin(mz) sin(7y)
i

m(&-’ Y, t) —. i [(u:;).,_ o (34)::3 = (ﬂ&.)w] ds
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t
) — fo (a1} — (01 = (tim1)y ] ds

w2t 4 27te2 g-n-ﬁﬁ = _2_.7r8t4 & 1_45, 7105 4

2“.
+ (—1)“H?r2"t") sin(7z) sin(7y)
es to the exact solution

u(z,y,t) = e27t sin(mz) sin(7y)

fic applications (heat and wave equations)

‘we apply the VIM for the heat and wave equations.

ollowing basic equation of one dimensional heat flow
o Up = QPuis, 0SS L, 0SES 00, (5.4)

represents the temperature as a function of space and time, w; is the
in temperature with respect to the time, and uz. is the concavity of

e pI3 U(m:t) -

v conditions describing the physical nature of our problem on the



il

I
8

(5.4), we get the next correction functional

I t,8) ((n)s(2, 8) — 0P (tn)eo(z, 5)) ds, n > 0.

with respect to u,, we obtain

Sun(@,1) + fA(ts)((wcw) = 0¥ (ur)ea(z,5)) ds

(@) + [ 2098 (()(:5) = 02 () d
JO :



0
£) = A(t, 0)dun(z, 0) — f s
o Os

T






an approximation of the exact solution

) = 3sin (2rz)etr

tial equation of second order that describes
aves and light waves. In this section we apply
a small vibration on the string, see [33].

n of second order
sxal, =7 < oo, (5.5)

t of the string from equilbrium, c is the velocity

al acceleration of the string at a
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0. In this wave equation we have the next initial condition

U(Z',O) = f(m)s

u(z,0) = 9x), 0<z<lL.

ctional of the wave equation (5.5) is identified as follow

‘\'t) ._:u“(.'l.‘, t) & -/‘: A<t! 5') ((uu)sa = cz(u,,)m) ds n > 0.

lation with respect to u,(t), yields

= Jun(z,t) + 5/{: Aty 8) ((wn)ss — ¢*(up)zz) ds
= du,(z,t) + /£ A(t, 8)6 ((wn)ss — €*(ttn)zz) ds

= a0+ [ NE:5) (s — )

‘as a restrict variable, i.e.

1) ('u«n)zz =0.

Stnsa(z,) = Gun(®, 1) + £ A(t, $)b(un)ssds:



imes, we obtaip

t t82)\

\(t, 8)6(11.,,,) s(z, s) t 04
: + ) -3;55(1:,")(:5, s)ds

. - -E—gé(un)(m, s)

(t3 t)a(un)ér(m: t) — At, 0)5(%)3 (z, 0) - 'g_i (un)(z, t)

§

)
5

)0+ [ S S (2, 5)ds

5=

5 kgt
i (un)(z,t) + . '3—5'2“5(un)($, s)ds

(6,2)5(un)s(z, t) - %

5

) o)+ 20, 080045.) + [ P a0

9%\
Hs? )
(\(ts t) = 0’
A
S5 =0
. 0s s=t






s — (ul)z:c) ds

':—'l)ss = (%—1)3_.-,) ds

.;1...7 _1\n 1 (2n+1)
Ee . aaaat )

_obtained by
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Nonlinear partial differential equations

‘section, we employ the VIM for solving nonlinear partial differential equa-
, see [25, 28, 29)

ider the following nonlinear gas dynamic equations

L s |

u-g+§(u),=u(1-—-u), 0<z<1, t>0

with condition:
u(z,0) = g(z),

e u(z, t) represent the velocity, see [29].
onstructing correction functional with using Lagrange multiplier, we get
i 1 p i
Hﬁi(ﬂ:,'ﬁ) i ‘u'n(a:: t) =7 f A(tl S) (u’ﬂ)a = §(un)-'= — Un + u’n) dS,
0
ing the variation with respect to un(t), we obtain
. a1 i : 5
Btna(@t) = Bunle,) 8 [ Atis) (e + (e = vn +18)] ds
0
£ 15 5
b ) / A(t,9)8 |(un)s + 5(2)e — un +32) | ds
0
‘ e 2 2
e )+ f At s) I:é(un)s + 55(‘%)3 — du, + duz)| ds.
0
that (u2), and u? are restricted variables, i.e.
6(“3)3 o O:

Juﬁ =
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5“%1(95) t) = ‘Suﬂ(ma t) ot ft A(t? 8) [5(11.“)3 iy Ju’“] ds
0

¢
= Oun(z,t) +/; /\(t,s)é(un)sds—./t A(t, 8)du,ds

ting the first integral by parts, we get

Eﬁun-i-l(xat) = Oun(z,t) + AL, 8)0un(z,s)| — / —(s t)0u,ds — f Aoupds
s 0 0

= Oun(z,t) + At t)oun(z, t) — A(t, 0)dun(z, 0)

t oA
— (t $)0unds — f Adu,ds

- (1 A, t)) el o, 29 /0 ; [—% 5 t)] Stnds.

cording to the last equations, we have the following first order differential equation
(s, 1) s
T )\(S, t) —
‘condition
1+ A, t) =

us, we have
A(t) S) = _et—s'

w, we have the iteration formula
j rt 1
ﬂn-]-](«‘l?, t-) =.un.(.'B, f) = / ef—s [(un)s ‘I“ E(ui)z — Un -|- ui)] ds, (5.6)
0

the initial approximation can be chosen such that it satisfies the initial condi-
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act solution can be obtained by

u(z,t) = Jim un(z, t).

mstrate the effectiveness of the method, we consider the next example.
5.5. Consider the nonlinear partial differential equation

wt s =ull—u), 0<z<l, 30

e next initial condition

g ) =e =,

e it as initial approximation as

wg(z,1) = u(z,0) =™,

to (5.6), we obtain the following successive approximation

w(e,t) = o)~ [ ¢ [+ 308~ o+ )] s

= et—"-_ﬂ

I

) = uh— f‘*&mﬁnwm m+m]@

‘that these iterations converge to the exact solution

u(mt)=e .

the VIM to solve special equations such as Kawahara equation as we can




5.6. .Qon_sid'er the following meromorphic travelling wave equation which
awahara equation, see Saadatmandi and Dehghan [28]
Ou Ou *u 85

E-FHEE-"F'&?—@-:O. (5.7)

t to the initial condition

w(z,0) = f(z), z€R
is a scalar real valued function.

vahara equation models the plasma waves and the capillary gravity water
e aim to find an approximate solution for this equation using the VIM. For
have the next correction functional

-~

- sy | b Oun | Oun | Fun 3511“]
'. gw_'_l(:g, b=,z t)+'/; At, s) [ S ds

‘the variation with respect to u,, we obtain

t fu. Oun , Oun 85”"]
w n = d
= Ju,(x;t) +5/0 A, s) [ & W, VEa T e | @

. - Oy Oy, Fun  OPun
= Ju,(z,t) +./0 A(t, s) [6—‘9-5— + J(un 8z) +6 523 ] P ds

8”3 asun 851..&“
Yn9z " 03 e or®

icted variables, i.e.

8%)

J(ﬂ.ﬂ,-a_'- = U:
5 T
ST e
Pu,

68:1':5 =7

Stnsr(z, t) = Sun(z,t) + [: Aty s) [663—1"] ds.
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by parts, we get

1l

t t
Bun(2,0) + 2(L 5)oun(s)] = [ Dr(s, s
o Jo Os

= 0un(2, ) + Alt, t)0un(t) — At, 0)6un(0) — / : .%}\(t, s
0

= (14 A(t,1)0un(t) — ./ﬂ t %A(t, 5)0unds

have this first order PDE

a
g)«(t, 8) =0,

1+ \(t,t) =0.

All, 8] =<1,
n formula is

= : t [ Ou, 8w, Fu, FPu,
Un11(7,t) = un(z, t)_[; [88 Rl ot ds.

initial condition as an initial approximation, i.e.
uo(a, t) = u(z,0) = f(z)

the exact solution can be

u(z,t) = 1nl_].t}xo:lc}u,,,(:a:, t):

_ 2 105 0]
u(z,0) = ——— + ——=sech™(—=:
u(@,0) = ~1g5 * 155°" Gyz”)
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Chapter 5. Variational iteration method for partial differential equations

I or | o2 b3 [ B4 ] 0.5
0.1 1122107 [ 3890108 [1.057« 107 6.076 * 10~7 | 0.0000014478
02 ] 21%107° | 3.82% 108 [ 1.911#10°7 | 5.924 %107 0.0000014116
03 || 23+107° [3.70% 108 | 1.828 + 10-7 | 5.681 + 10-7 | 0.0000013519
04 || 21%107° | 344108 344%10° | 5.340%10-7 | 0.0000012696
05 || 1.8%107° | 3.18 % 1078 [ 1.595 107 | 4.920 * 10~ | 0.0000011674

Table 5.2: The absolute error between 13 and the exact solution.

The successive approximation will be made by Maple as

72 105 1
?J.g(t) = —i‘ég-l-l—sg Ch4(2__15m)
t [ Ou ug BPug Ou
wiet) = wlm)— [ [5oruGe S0 - Tl
1
= —0.4260355030 + 0.6213017751sech* T
(2\/13 )
0.2875367250sech®( L r)tanh(
g 213 2\/
anh
\/ e 2\/
1
+0.42824618605ech4(2\/1,1_3.:.-:)ta,nh3(2 \/ﬁx)t
1 1
— 0.2141230930sech* tanh®
o (2\/13:6) (2\/13

It is clear that we have a huge number of computations, we write only one iteration.

Consequently, the approximate solution will converge to the exact solution, i.e.

u(z,t) = lim u,(z,1).

Note that the exact solution is

—72
‘U.(.’I:,t) = —:Eg— =

105 B
169

T—Ho0

1
4 —
h (Qm(x

36

- ﬁt)) .

Table (5.6) represent the absolute error between us and the exact solution.

For more examples, see [9, 12, 25, 28, 29].
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g2 | 03 e — 05
107 [ 3.89% 103 [ 1.957 10" | 6.076 » 107 | 0.0000014273
0™° | 3.82 %10 [ 1.911 * 107 | 5.924 » 10-7 | 0.0000014116
; 3.70% 1078 [ 1.828 x 10" | 5.681 + 10~7 | 0.0000013510
° |844% 108 | 344410 [5.340% 107 | 0.0000012696
107° [ 3.18 x107® | 1.595 107 | 4.920 = 10~/ | 0.0000011674

2: The absolute error between us and the exact solution

c<imation will be made by Maple as

B

4
oech (2 =)
8110 Buy  Pug

@ f[@s BS“axs

355030 + mmmnrslmh‘(

]dq

_._.__.x)
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riational iteration method

. new method for solving PDE's which is the Laplace vari-
The main concept of this method is to find the value of
; an alternative Laplace correction functional and express
ution, see Hilal and Elzaki [17]. Let present the following

‘transform.

‘a function defined for ¢ > 0. Then the integral

ETOE [ etroa=re

e transform of f provided the integral converges.

cond order differential equation

UL | Wiu(e, ) = oz, 1),
ot
perater, and g(z,t) is a known function. Hence, by con-
ctional, we get

(z,t) + ‘/: A, 8) [a;: + Nlu(z, s)] — g(z, 3)] ds.

1 respect to un(z,t), we obtain

x,t)+ 6 /t A, s) [%tﬁs"— + Nlu(z, s)] — g(=, s)] ds
JO
unle )+ [ 498 [ 22 4 Nuto, )] - o(e,0)
0 _

Funlent) + [ A(t5) 5% + otz )] - bt 9] as
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1ave Nlu(z,s)] and g(z, s) as a restrict variables, i.c.

0N [u(z, s)]

0,

ég(z,s) = 0.

At —s,s) = At s).

4
O (c,0) 1 l At — &, 3)%@

with respect to ¢, the correction functional will be

- flbun(z, £)] + ¢ [_5 /: At — s,5) é:;‘;: ds}

-
&
i

= ffbun(z, )] + 8¢ [ /D t e—s s)%‘ds]
k' L[6un(z,t)] + € [I_(t, 5) * %‘}
ith respect to t. Then,
— (un(z )] + 8¢ [X(t,9)] £ [%}
= {[5un(z,t)] + 68 [\(t, )] [E€[unl]
= {bun(z, )] + £ [A(t, 5)] [6€[0un]] (5.8)

w+1(2, t)] should be 0. According to this condition,
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Mt,8) = —1

(,t)] — ¢ [/: [%—? + Nu(z, s)] — ¢(z, 3)] ds] :

ot tu ;

u(z,0) = 1.

lace transform, we have the next Laplace iteration cor-

- {ua(z,t)] + £ [ /; - [%—t‘ — 2su,(z, s)] ds] :

=t 0]+ €11 [ 32 - o)

uo(t) = u(z,0) =1,
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g = Lug(z,t)] + £[-1)¢ [?aitﬂ- - 2t‘uo(t)]

1] + ¢[-1)¢[—21]

My (z, 1)) + £[-1)¢ [gf-‘l = Ztul(t)]

ot
1 e
§+€3+ EE[ 2t°]
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application of He’s variational iteration method for
I equation by using Adomain’s polynomials. Journal
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Variational iteration method for Sturm-Liouville differ-

and Mathematics with Applications, 58, (2009),

riational Iteration Method to Linear Partial Dif-
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method for solving quadratic Riccati differential
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