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Abstract—The family of Kademlia-type systems represents
the most efficient and most widely deployed class of Internet-
scale distributed systems. However, prior research on these
systems has mainly been restricted to analyzing deployed systems
and suggesting improvements tailored to specific environments
rather than exploiting the huge parameter space governing the
routing performance. Concise analytic results are rare, due to the
complexity of Kademlia’s parallel and non-deterministic lookups.

This paper introduces the first comprehensive formal model of
the routing for the entire family of Kademlia-type systems. We
validate our model against simulations of both the BitTorrent
Mainline DHT and eMule’s KAD implementation. The model
allows a highly scalable comparison with respect to the hop
distribution of different variations to the original protocol. In
particular, we show that several of the recent improvements to
the protocol in fact have been counterproductive with regard to
routing efficiency.

Index Terms—Kademlia, DHTs, Routing, Markov Chain

I. INTRODUCTION

Kademlia and its variations represent the class of the
most deployed and most actively used large scale distributed
discovery services, today. They allow to map objects in the
form of key-value pairs to nodes. To resolve this mapping,
they facilitate a decentralized message routing to the respective
node in a very robust fashion. This resolution is highly efficient
in that the state every node needs to store as well as the number
of nodes that are contacted to resolve a discovery request grow
only logarithmically in the number of participants.

The novel idea of Kademlia is to implement an iterative,
greedy routing over parallel paths using the XOR of compared
identifiers as the distance metric and to adopt a replication
factor for the storage of objects and routing state. It has been
implemented in several subsequent variations that adapt the
routing and the replication parameters. The current BitTorrent
clients span a Kademlia-type overlay for node discovery, with
up to 27 million concurrent users [1]. Another popular example
is the Kademlia derivative KAD that has been integrated into
the eDonkey file-sharing network to discover sources of file
chunks and has grown to deployments of more than a million
concurrent nodes [2].

Despite the considerable attention Kademlia received from
both research and industry, the impact of the design param-
eters on the routing performance is poorly understood. Mea-
surements only offer insights on deployed systems, whereas
simulations do not scale beyond a few tens of thousands nodes.

Existing analytical results fail to include important parameters,
network dynamics, and are mostly only asymptotic bounds.
To assess the effect of chosen parameters covering the entire
design space, we provide an analytical model that is formal-
ized as a Markov chain. Our approach differs from classical
theoretical analysis as that concrete bounds are provided for
certain parameters rather than a general complexity analysis.

We thus obtain an analytic framework that is similarly
flexible and precise as simulations, but much more scalable.
In contrast to previous hop count estimations, our model
incorporates all essential parameters governing Kademlia-type
systems. In particular, we manage to integrate parallelism,
which the most widely known model by Stutzbach and Rejaie
fails to consider [3]. It is highly efficient in storage and
computation, allowing to easily analyze systems of up to a
billion nodes.

We validate the model against results from simulations,
showing close agreement within a 95% confidence interval.
Analyzing the parameter space allows us to give guidelines
for future design adaptations. With respect to the different
suggested modifications, we show that they frequently do not
outperform the original proposal for networks of several mil-
lions of nodes. For example, the changed degree of parallelism
in BitTorrent provides a higher average hop count than the
original parameters for networks of more than one million
nodes.

We present our model of the hop count in Section IV, after
stating our notion of a Kademlia-type system in Section III.
The storage and computation complexity of the model is
analyzed in Section V. In Section VI, we validate the model,
show its scalability, and present an exemplary parameter study
indicating its advantage over simulation studies.

II. KADEMLIA-TYPE SYSTEMS

In this section, we give a short overview of the concepts
Kademlia is based on, before presenting various studies on
modeling and analyzing P2P routing, with a focus on Kadem-
lia.

A. Introducing Kademlia

Kademlia [4] is a structured peer-to-peer (P2P) system.
Nodes and objects are assigned IDs from the same b-bit ID
space and the distance between two IDs is defined as the XOR

https://www.researchgate.net/publication/261434676_Measuring_large-scale_distributed_systems_Case_of_BitTorrent_Mainline_DHT?el=1_x_8&enrichId=rgreq-1611c7884b586f40ffa558f1174d920a-XXX&enrichSource=Y292ZXJQYWdlOzI3NDkxMDM4MztBUzoyNTgzNjE3NzgyNDE1NDVAMTQzODYwOTY1Njk2Mw==
https://www.researchgate.net/publication/221241795_Improving_Lookup_Performance_Over_a_Widely-Deployed_DHT?el=1_x_8&enrichId=rgreq-1611c7884b586f40ffa558f1174d920a-XXX&enrichSource=Y292ZXJQYWdlOzI3NDkxMDM4MztBUzoyNTgzNjE3NzgyNDE1NDVAMTQzODYwOTY1Njk2Mw==
https://www.researchgate.net/publication/2492563_Kademlia_A_Peer-to-peer_Information_System_Based_on_the_XOR_Metric?el=1_x_8&enrichId=rgreq-1611c7884b586f40ffa558f1174d920a-XXX&enrichSource=Y292ZXJQYWdlOzI3NDkxMDM4MztBUzoyNTgzNjE3NzgyNDE1NDVAMTQzODYwOTY1Njk2Mw==


2

of their values. Kademlia implements key-based routing and
storage of key-value (ID-object) pairs. The nodes at the closest
distance to an object’s ID are responsible for storing it.

Each node v maintains a routing table to store the IDs and
addresses of other nodes, without keeping persistent network
connections to them. In Kademlia, the neighbors, also called
contacts, are stored in a tree-like routing table structure.
The level in the tree a contact w of v is stored at reflects
the common prefix length of v and w. At most k contacts
are stored at each level, making up a so called k-bucket.
Information stored in the routing table may be outdated, or
stale, when the respective nodes have left the system.

Kademlia implements greedy routing: To route a message
from node v to a target ID t (for the storage or retrieval of
objects), v sends parallel lookup requests to the α known
contacts that are closest to t. Every queried contact that is
online replies with the set of β nodes that are locally known as
being closest to t, thus extending v’s set of candidate contacts.
This process is iterated until the lookup does not produce any
contacts closer to t than previously have been discovered, or a
timeout is caught. The original Kademlia publication suggests
to use k = 20 and α = 3.

Kademlia proved highly efficient and reliable, and thus
has frequently been modified, generating a broad family of
Kademlia-type systems. Each adaptation mainly adjusts the
given parameters, or the routing table structure. The current
mainline implementation of BitTorrent (MDHT), for example,
integrates a Kademlia-type DHT for node discovery. uTorrent,
the most popular client implementing MDHT, is implemented
using 8-buckets, α = 4, and β = 1 [5]. To reflect the fractions
of the ID space that are covered at different levels, and hence
to increase the distance reduction at each hop, variable bucket
sizes ki are introduced in iMDHT [5]. They are chosen to
be 128, 64, 32, and 16 for the buckets at levels i ∈ (0..3)
respectively, and 8 for all lower levels. The variation used in
the highly popular eDonkey file-sharing network, KAD, adds
multiple buckets per level, grouping contacts according to the
first l bits after the first diverging bit. This way, the bit gain,
i.e. the difference between the common prefix length of the
current hop and the next hop to t, is at least l. Choosing k to be
10, the implementation contains buckets for all 4-bit prefixes at
level 0 (containing contacts that share no common prefix with
v), and one bucket for each of the sub-prefixes 111, 110, 101,
1001, and 1000 at all remaining levels. Thus, the guaranteed
distance reduction is 3 bits for 75% of the targets IDs, and
4 bits for the remaining 25%. By default, KAD implements
α = 3 and β = 2.

B. Analyzing P2P Routing

Motivated by the success and popularity of Kademlia-type
systems, a large number of studies over the past few years [2],
[5]–[9] focused on these systems. These studies, however,
are mainly based on large-scale measurements, and do not
yield insight into the impact of isolated design adaptations.
Analytic results of the routing are rare. Existing studies are
largely restricted to the asymptotic worst-case complexity of
O(log n) routing steps for a network of order n. A notable

exception is [3], in which a formula for the average hop
count is derived. This derivation, however, considers only the
KAD implementation and fails to give further insight into
the hop count distribution. It hence does not allow for the
choice of sensible timeout duration and termination criteria
for more sophisticated, possibly time-critical, applications.
Parallel lookups and variations in the routing table structure
also are disregarded.

In this paper, we model Kademlia-like systems as a stochas-
tic process in agreement with influential works on distributed
routing such as [10]–[12]. However, they provide asymptotic
bounds rather than concrete results, so that they do not allow
the comparison of variants with the same asymptotic complex-
ity. Some of the few works deriving numerical bounds are [13],
[14], which are very close to our own approach. Both model
overlay routing as a Markov chain. The state of the Markov
chain represents the distance of the currently contacted node’s
ID to the target ID. The expected hop count is then derived as
the expected number of steps until the Markov chain reaches
the absorbing state, which corresponds to discovering the
target. However, these results do not consider parallelism and
the hop distribution, and use simplified assumptions such as a
bijective mapping from nodes to IDs. In addition to modeling
a considerably more complex system of practical importance,
our work also addresses the question of minimizing the storage
and computation complexity of the model. These aspects are
disregarded in the related work, due to the low number of
states needed to characterize non-parallel lookups.

III. NOTATION

In this section, we first introduce the concept of Markov
chains. Afterwards, we formalize our definition of a Kademlia-
type system.

A. Markov Chains

A Markov chain is a random process X0, X1, . . ., such
that the probability distribution of Xi+1 only depends on Xi.
Formally, a random process with state space S is a Markov
chain if

∀x0, . . . , xi+1 ∈ S :P (Xi+1 = xi+1|Xi = xi, . . . , X0 = x0)
(1)

= P (Xi+1 = xi+1|Xi = xi).

It follows from Eq. 1 that Markov chains are memoryless, i.e.

P (Xi+1 = xi+1|Xi = xi) = P (X1 = xi+1|X0 = xi). (2)

By Eq. 2, the probability distribution Xi can be obtained by
straightforward matrix multiplication if the state space S is
finite and the distribution X0 is known. Then Xi can be
obtained by matrix multiplication as follows: The finite set
S can be enumerated as S = {s0, s1, . . . , s|S|−1}. The initial
distribution of the Markov chain is given by a |S|-dimensional
vector I , such that the j-th entry I(j) is I(j) = P (X0 = sj).
Similarly, the probabilities P (X1 = x1|X0 = x0) are mapped
to entries of a |S|×|S| transition matrix T . The entry T (i, j) is
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T (i, j) = P (X1 = si|X0 = sj). The probability distribution
of Xi+1 is hence obtained as

Xi+1 = T i+1I. (3)

In this paper, we will use the distances of the closest α
contacts to the target ID as states.

B. Model Overview

The common prefix lengths of the closest nodes to the target
ID t is used to characterize the routing process. Because the
decisive factor in Kademlia routing is the common bit length,
we define the distance of two nodes w and v to be the bit
length of the XOR of their IDs

dist(w, v) = b− commonprefixlength(id(w), id(v))
= blog2XOR(id(w), id(v))c+ 1, (4)

where b is the identifier space size and id(v) denotes the b-bit
ID of node v. We here use distance to refer to dist rather than
the XOR distance, unless stated otherwise.

We formally characterize a Kademlia-type system by the ID
space size b, the routing parameters α and β, and the routing
table parameters k and L. L determines the number of buckets
per level as well as how the ID space is split among these
buckets.

Definition III.1. A K(b, α, β, k, L)-system is a Kademlia-type
system with the following properties:

• A b-bit ID space is used for addressing.
• α parallel iterative queries are sent for each lookup.
• Each queried node answers with at most β contacts closer

to the target than itself.
• The d-entry kd of the vector k ∈ Nb+1

0 gives the bucket
size for nodes with distance d to the routing table owner
(i.e. the bucket size at level b− d).

• The i-th row of the matrix L gives the distribution of
the guaranteed bit gain at distance i to the routing table
owner, i.e. the entry Lij = x

2i is defined by the number x
of IDs with distance i that are sorted in buckets covering
a region of 2i−j IDs each.

Furthermore, the network order n influences the hop count
distribution. Note that in most Kademlia-type systems, such as
MDHT as well as KAD, k is constant. Similarly, the matrix L
is commonly sparse. For instance, in MDHT only one bucket is
used for each common prefix length, so Li1 = 1 for i = 0 . . . b
and Lij = 0 in all other cases. KAD is more complicated:
LKADb4 = 1, LKADi3 = 0.75, and LKADi4 = 0.25 for i < b
determine the routing table structure in the KAD system. This
is due to resolving at least 4 more bits on the top level, and
splitting into buckets with prefixes 111, 110, 101 (75% of IDs
within that bucket), as well as 1001 and 1000 (25% of IDs)
for all lower levels.

In addition to the above notation, we use B(n, p) to denote
a binomial distribution with n trials and success probability
p.

b Bit-length of IDs
α Degree of parallelism
β Number of returned contacts
ki Bucket size on level i
Lij Fraction of buckets with 2i−j IDs on level i
Sα State space of distance sets
I Initial distribution
T Transition matrix

Tup/T low Transition matrix upper/lower bound
Xl l-th state of Markov chain
D Distance distribution
γ Denotes either α or β
Cγ Distribution of closest γ neighors

B(n, p) Binomial distribution with parameters n, p
Fd,l Distribution of random ID with distance d− l

TABLE I: Important Notation

IV. DERIVING THE HOP DISTRIBUTION

The goal is to obtain a close approximation of the hop
distribution in a K(b, α, β, k, L)-system, i.e. the probability
distribution of hops needed to route a query from a requesting
node v to a target node t. We approximate the routing process
as a Markov chain. Let ∅ denote the fact that the target node
is found and the routing is terminated. If the target node has
not been found, we describe the state of the routing by the
distances of the α currently contacted nodes. Formally, the
routing state at hop Xi is an element of the state space

Sα = {∅} ∪ {(z1, . . . , zα) : zj ∈ Zb+1, zj ≤ zj+1}.

In order to describe the routing by a Markov chain, we assume
that the main determining factor for Xi+1 is Xi, i.e.

P (Xi+1 = si+1|Xi = si, . . . , X0 = s0)

≈ P (Xi+1 = si+1|Xi = si) .
(5)

The assumption is based on the observation that the new
contacts are chosen from the routing tables of the α currently
contacted nodes, which are chosen independently. All earlier
states seem to have a negligible influence. They provide in-
formation on how many nodes have been contacted and hence
slightly reduce the number of nodes that can be contacted,
but due to the shortness of routes, we assume this change to
have a negligible impact. Furthermore, knowing that a certain
progress was made or not made in earlier steps hints on the
distribution of nodes over the identifier space, e.g. if nodes
with a certain prefix are contacted more often than expected,
the number of nodes with such a prefix is likely to be higher
than expected. Again, we deem this factor to be negligible
because nodes contacted during routing represent a very small
sample of nodes.

We hence analyze the Markov chain corresponding to the
right side of Eq. 5. First, we determine the initial distribution
I of the distances of the closest nodes to t in the requesting
node’s routing table. Secondly, we obtain transition matrices
Tup and T low. So, concrete upper and lower bounds on the
probability that the above Markov chain reaches the absorbing
state ∅ in i steps are given by (Tup)i−1I and (T low)i−1I . The
main difficulty lies in deriving the probability distribution Cγ
of the closest γ ∈ {α, β} contacts to t in a node u’s routing
table, conditioned on the distance D of u to t. The initial
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distribution then follows immediately. For the derivation of
the transition matrices, an additional step is needed: When
deciding on a new set of nodes to query, the requesting node
chooses the α closest distinct nodes from the αβ replies
received in the last hop. Upper and lower bounds are needed to
cover the unlikely case of less than α distinct contacts. In the
following, we start by stating our assumptions before deriving
the initial distribution and the transition matrices in terms of
the closest contacts Cγ . Cγ is then derived in the last part of
the section.

A. Assumptions

We determine the hop distribution based on the following
assumptions:

1) There are no stale contacts in the routing tables.
2) Nodes do not fail nor do they drop messages.
3) Buckets are maximally full, i.e. if a bucket contains k1 <

kd values, there are exactly those k1 nodes in the region
the bucket is responsible for.

4) Node IDs are chosen uniformly and independently.
5) Routing table entries are chosen independently.
6) If the distance between two nodes is 0, they are contained

in each other’s routing tables.
7) The lookup is blocking, i.e. a node awaits all answers to

its α queries before sending additional ones.
Assumptions 1, 2, and 3 can be summarized as the assumption
of a steady-state system, without churn or failures. However,
we present an extended version of the model which incorpo-
rates churn and failure in our technical report [15].

B. Initial Distribution I

Theorem IV.1. The probability I(s) = P (X0 = s) of the
initial distribution attaining state s ∈ Sα is

I(s) =

b∑
d=0

P (Cα = s|D = d)
2max{d−1,0}

2b
. (6)

Proof: We sum over all possible distances d of the
requesting node, so that

I(s) =

b∑
d=0

P (Cα = s|D = d)P (D = d) .

The probability P (D = d) corresponds to the fraction of IDs
at distance d.

C. Transition Matrix T

Let X0 denote the current state of the routing, and Xup
1

and X low
1 the next state. We use ∗ to denote either up or

low. Furthermore, let Ciβ for i = 1 . . . α denote the Cβ-
distributed bit distances of the β closest contacts to t in the
routing table of the i-th contacted node in the current step.
We state the transition probability in Theorem IV.2 in terms
of P

(
X∗1 = s1|C1

β = z1, . . . Cαβ = zα, X0 = s0

)
.

Theorem IV.2. The probability that X∗1 attains state s1 ∈ Sα
given X0 = ∅ is

P (X∗1 = s1|X0 = ∅) =

{
1, s1 = ∅
0, s1 6= ∅

. (7)

If X0 = s0 = (d1, . . . , dα) 6= ∅, the probability of X∗1 = s1 =
∅ is

P (X∗1 = ∅|X0 = (d1, . . . , dα)) =

1−
α∏
i=1

(1− P (Cβ = ∅|D = di))
(8)

and the probability of X∗1 = s1 = (δ1, . . . , δα) is

P (X∗1 = s1|X0 = (d1, . . . , dα)) (9)

=
∑

z1,...,zα∈Sβ\{∅}

(
α∏
i=1

P (Cβ = zi|D = di)

·P
(
X∗1 = s1|C1

β = z1, . . . , Cαβ = zα, X0 = s0
))

Proof: Eq. 7 holds because ∅ is an absorbing state. Eq. 8
follows from Assumption 5 and gives the probability that at
least one of the α considered routing tables contains t. Eq. 9
is obtained by conditioning on all possible states of the closest
entries in the α considered routing tables.

It remains to evaluate the term
P
(
X∗1 = s1|C1

β = z11 , . . . C
α
β = zα, X0 = s0

)
in Eq. 9.

Since we did not find a closed form, we here describe its
iterative computation. In the following, we abbreviate the
event E = {C1

β = z11 , . . . C
α
β = zα, X0 = s0}. Due to space

constraints, we here present the straightforward computation
and refer to our technical report [15] for a more efficient
solution used to produce our results in Section VI.

Let zij denote the j-th element of zi and ρ∗(z1, . . . , zα)
denote the distances of the αβ closest distinct nodes that
have not be contacted. If not all returned contacts are distinct,
replacement contacts known from earlier steps or the routing
table of the requesting node are included. Due to the Markov
property, we can only determine upper and lower bounds
on the distance of replacement contacts. All known but not
contacted nodes have distance at least dα, so that for an upper
bound on the success probability, we minimize the distance
of a replacement contact by Kup = dα. In contrast, for a
lower bound on the success probability, Klow = b is chosen,
corresponding to a replacement node at maximal distance to
t.

Denote the set of all possible distances of distinct contacts
given z = (z11 , . . . , z

α
β ) by U∗(z) = {u = (u11, . . . , u

α
β) :

uij ∈ {zij ,K∗}}. The function minα : Zαβb+1 → Sα determines
the state corresponding to the α smallest values in a αβ-
dimensional vector. Then the desired probability is given by
P (X∗1 = s1|E) =

∑
u∈U∗(z):minα(u)=s1 P (ρ∗(z) = u|E).

We obtain P (ρ∗(z) = u|E) for u = (u11, . . . , u
α
β) iteratively,
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with ρ∗i,j denoting the i, j-th element in ρ∗(z), i.e.

P
(
ρ∗(z) = (u11, . . . , u

α
β)|E

)
(10)

=

α∏
i=1

β∏
j=1

P
(
ρ∗i,j(z) = uij |E, ρ∗1,1 = u11, . . . , ρ

∗
i,j−1 = uij−1

)
.

For brevity, we set Ai,j = {ρ∗1,1 = u11, . . . ρ
∗
1,β =

u1β , . . . ρ
∗
i,j−1 = uij−1}. The probability that a node at distance

zij is identical to one that has earlier been contacted is equal
to the ratio of contacted nodes and all nodes at distance zij .

We now compute count∗
(
zij , |E,Ai,j

)
, the number of

nodes at distance zij that have been contacted and are po-
tentially identical to the currently considered node. Note that
contacts returned by the same node are distinct, so in particular
they cannot be equal to the same earlier returned contact.
Thus the number of contacts from the current set of returned
contacts potentially identical to the j-th returned contact of
queried node i is #zij = |{(η, µ) : zij = zηµ = uηµ, η <
i}| − |{µ : zij = ziµ = uiµ, µ < j}|, if that number is non-
negative and 0 otherwise. Only at this point, we distinguish
upper and lower bounds. For the upper bound, only nodes from
the current set of returned contacts are considered, so that

countup
(
zij , |E,Ai,j

)
= max{0,#zij}. (11)

For the lower bound, the above identity holds if zij < d1
because no node closer than d1 has been considered before. If,
on the other hand, zij ≥ d1, contacts at distance zij might have
been considered in earlier steps. Routing takes at most b steps
because an improvement of one bit per step is guaranteed. In
each step α nodes are contacted, so that at most bα nodes are
contacted, giving a bound of

countlow
(
zij , |E,Ai,j

)
=

{
max{0,#zij}, zij < d1

bα, zij ≥ d1
. (12)

If count∗
(
zij , |E,Ai,j

)
= 0, then

P
(
ρ∗i,j(z

1, . . . , zα
)
= uij |E,Ai,j) = 1. (13)

Otherwise, the number of nodes Y ji at distance zij that have
not been contacted is B(n−αβ, 2z

i
j−1−b) distributed, so that

P
(
ρ∗i,j(z

1, . . . , zα) = uij |E,Ai,j
)

=

n−αβ∑
m=0

P
(
Y ji = m

) m

m+ count∗
(
zij , |E,Ai,j

) (14)

=

n−αβ∑
m=0

(
n− αβ
m

)(
2z
i
j−1−b

)m (
1− 2z

i
j−1−b

)n−αβ−m
m

m+ count∗
(
zij , |E,Ai,j

) .
Inserting Eq. 13 and Eq. 14 in Eq. 10 completes the computa-
tion of the P

(
X∗1 = s1|C1

β = z1, . . . Cαβ = zα, X0 = s0

)
in

Eq. 9.

D. Closest Contacts Cγ
We first consider the probability to discover t in Lemma

IV.3 before treating non-absorbing states in Lemma IV.4.

Lemma IV.3. Let Bl be a binomial distributed random
variable with parameters n − 2 and 2d−l−b. The probability
that Cγ attains state ∅ is

P (Cγ = ∅|D = d) = (15){
1, d = 0∑b
l=1 Ldl

∑n−2
m=0 P (Bl = m)min

{
1, k[d]m+1

}
, d > 0

.

Proof: The first case holds by Assumption 6. For the
second case, we condition on the number of further resolved
bits, whose distribution is determined by the matrix L. If
the node ID belongs to a bucket for which l further bits
are resolved, there are 2d−l IDs with the same prefix. By
Assumption 4, the number of nodes with that bucket prefix is
B(n−2, 2d−l−b) distributed (n−2 because t and the requesting
node are not considered). By Assumption 3, t is contained in
the bucket if there are less than kd potential entries, otherwise
the probability that t is contained in the bucket is given by
ratio of the bucket size and the number of nodes with the
same prefix.

We introduce some notation for Lemma IV.4: First, let
Fd,l(x) = min{1, 2bxc

2d−l
} for x ≥ 0 be the cumulative

distribution function of the distance of a random ID within
distance 2d−l of t. We arrange the closest contacts into
groups according to their distances. More precisely, for a state
s = (d1, . . . , dγ) ∈ Sγ \ {∅}, let γ′(s) = |{d1, . . . , dγ}|
be the number of distinct values in s. We transform s into
s′ = (M1, . . . ,Mγ′) for Mi = (yi, ci) with yi being the i-
th smallest distinct value in {d1, . . . , dγ} and ci being the
number of times yi appears in s. Define Ci = kd −

∑i
j=1 cj

as the sum of values in s bigger or equal to yi+1. Let Mi(0)
and Mi(1) denote the first and second element of the vector
Mi, respectively. We set y0 = −1 and C0 = kd for all of the
following equations to be well defined.

Lemma IV.4. The probability that Cγ attains state s ∈ Sγ \
{∅} is

P
(
Cγ = (d1, ..., dγ)|D = d

)
=
(
1− P (Cγ = ∅|D = d)

)
·
b∑
l=1

γ′−1∑
i=1

(
Ci−1
ci

)
(Fd,l(yi)− Fd,l(yi − 1))

ci

 (16)

·

(1− Fd,l(yγ′))Cγ′−1 −
cγ′−1∑
j=0

(
Cγ′−1
j

)
· (Fd,l(yγ′)− Fd,l(yγ′ − 1))

j
(1− Fd,l(yγ′))Cγ′−1−j

)
Ldl,

where P (Cγ = ∅|D = d) is determined in Lemma IV.3.

Proof: In the first step, we write

P (Cγ = (d1, ..., dγ)|D = d)

=P (Cγ 6= ∅|D = d)P (Cγ = (d1, ..., dγ)|D = d,Cγ 6= ∅) .

In the following, we condition on Cγ 6= ∅, the distance d
and the further resolved bits l. By Assumptions 4 and 5, the
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IDs of contacts in a bucket are selected uniformly at random
and independently from all IDs in that region. So, the next
state of the Markov chain is then given by the closest γ of
kd randomly selected IDs within the bucket with the longest
common prefix to t.

We abbreviate M̃i = M0 = (y0, c0), . . . ,Mi−1 =
(yi−1, ci−1). The cumulative distribution function of the dis-
tance of one randomly selected ID is given by Fd,l. Then
the probability distribution of the γ smallest values of kd
independent identically distributed random IDs is obtained as

P (X1 = (δ1, ..., δγ)|X0 = d, Ld = l)

=P (M1 = (y1, c1), . . . ,Mγ′ = (yγ′ , cγ′))|X0 = d, Ld = l)

=
(
1− P (X1 = ∅|X0 = d, Ld = l)

)
(17)

·
γ′∏
i=1

P
(
Mi = (yi, ci)|X0 = d, Ld = l,X1 6= ∅, M̃i

)
It remains to determine each factor in Eq. 17. We first
treat the case i < γ′, for which we have to determine the
probability that (i) all Ci−1 = kd −

∑i−1
j=1 cj bucket entries

with distance exceeding yi−1 + 1 are at distance at least
yi to the target, and (ii) there are exactly ci such entries.
Hence event (ii) conditioned on event (i) corresponds to the
event that a binomially distributed random variable with Ci−1
trials and success probability pi =

Fd,l(yi)−Fd,l(yi−1)
1−Fd,l(yi−1) has

exactly ci successes. Note that the number of trials Ci and
the denominator 1− Fd,l(yi − 1) result from conditioning on
M1, . . . ,Mi−1 and event (i), respectively. Then

P
(
Mi = (yi, ci)|X0 = d, Ld = l,X1 6= ∅, M̃i

)
=P

(
Mi(1) ≥ yi|X0 = d, Ld = l,X1 6= ∅, M̃i

)
(18)

·P
(
Mi = (yi, ci)|X0 = d, Ld = l,X1 6= ∅, M̃i,Mi(1) ≥ yi

)
=

(
1− Fd,l(yi − 1)

1− Fd,l(yi−1)

)Ci−1
(
Ci−1
ci

)
pcii (1− pi)Ci .

The last step uses Ci = Ci−1 − ci.
For the γ′-th distinct value, the probability that there are at

least cγ′ equal values rather than exactly cγ′ values is derived.
There might be other contacts with the same distance in the
bucket, which are not part of the chosen α contacts. Similarly,
to Eq. 18, the last factor in Eq. 17 is

P
(
Mγ′ = (yγ′ , cγ′)|X0 = d, Ld = l,X1 6= ∅, M̃γ′

)
(19)

=

(
1− Fd,l(yγ′)

1− Fd,l(yγ′−1)

)Cγ′−1

1−
cγ′−1∑
j=0

(
Cγ′−1
j

)
pjγ′ (1− pγ′)

Cγ′−1−j

 .

Note that 1− pi = 1−Fd,l(yi)
1−Fd,l(yi−1) and hence

pcii (1− pi)Ci

=(Fd,l(yi)− Fd,l(yi − 1))
ci (1− Fd,l(yi))Ci

(1− Fd,l(yi − 1))
Ci−1

,

so that the claim follows by inserting Eqs. 18 and 19 in Eq.
17 and canceling.

This completes our derivation of the hop distribution. How-
ever, our main goal is to provide an efficient computation. In
the next section, we show that indeed the computation costs
can be reduced to polylog complexity in the network size at
a slight loss in accuracy.

V. COMPLEXITY ANALYSIS

In the first part of this section, we determine the space
and computation complexity of deriving the hop distribution.
Finding that the complexity is at least O

(
b2α
)
, we evaluate

how a reduction of the common ID space size of b = 128 and
b = 160 affects the accuracy.

A. Space complexity

We assume that the complete matrix T needs to be stored.
In practice, the actual storage space can be slightly reduced
by avoiding to store entries corresponding to impossible state
transitions. However, from a state s = (d1, ..., dα) at least
all states (δ1, . . . , δα) with δi < δ1 for i = 1 . . . α can be
reached, so that the asymptotic complexity remains the same
as for complete storage.

Lemma V.1. The storage complexity for computing the hop
distribution of a K(b, α, β, k, L)-system is O

(
1

(α!)2 b
2α
)

.

Proof: The storage complexity is dominated by the matrix
T ∈ R|S|2 . Consequently, |S| needs to be determined.

|S| = |{∅} ∪ {s ∈ Zαb+1 : sj ≤ sj+1, j = 1 . . . α− 1}|

= 1 +

b∑
iα=0

iα∑
iα−1=0

· · ·
i2∑
i1=0

1

= O

(∫ b

0

∫ xα

0

· · ·
∫ x2

0

1dx1dx2 . . . dxα

)
= O

(
1

α!
bα
)
.

The size of the matrix T is S2 and by this the space complexity
is O

(
1

(α!)2 b
2α
)

as claimed.

B. Computation complexity

We bound the computation complexity of the transition
matrix. The bound holds for both T low and Tup.

Lemma V.2. The computation complexity is linear with regard
to the network order n, and polynomial with regard to the ID
space size b. More precisely, the number of basic operations
is of order O

(
nbα(β+1)

)
.

The proof is similar to the one of Lemma V.1. We subse-
quently derive upper bounds on the computation costs consid-
ered in Theorem IV.1 and IV.2, Lemma IV.3 and IV.4, and the
costs of the final matrix multiplication (Eq. 3). The individual
steps are straightforward but rather lengthy, so that we defer
them to our technical report [15].
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Fig. 1: Exemplary model results: a) hop distributions for 10K nodes in comparison to simulation, and b) hop count for up to
one billion nodes for MDHT and KAD with routing parameter (α, β) ∈ {(3, 2), (4, 1)} and stale entry rates f ∈ {0.0, 0.2}

C. Reducing the ID space size

From Lemma V.1 and Lemma V.2, we can see that both
the storage and the computation complexity are polynomial in
the bit-size b for a polynomial of high degree. In contrast,
the dependence on the network order n is only linear for
the computation complexity, whereas the storage complexity
is independent of n. Though the dependence on α and β is
exponential, both are usually small, less or equal than 4 in
all existing or proposed systems. For instance, if α = 3, the
number of entries in the matrix T can be precisely computed
as

|{F} ∪ {(s1, s2, s3) ∈ Z3
b+1 : s1 ≤ s2 ≤ s3}|2

=

(
1 +

b∑
i3=0

i3∑
i2=0

i2∑
i1=0

1

)2

=

(
1 +

b+1∑
i3=1

i3(i3 + 1)

2

)2

=

(
1 + 0.5 ·

b+1∑
i3=1

(i23 + i3)

)2

=

(
1 + 0.5 ·

(
(b+ 1)(b+ 2)(2b+ 3)

6
+

(b+ 1)(b+ 2)

2

))2

=

(
1 +

(b+ 1)(b+ 2)(2b+ 6)

12

)2

.

In practice, b = 128 and b = 160 are typically used,
corresponding to the length of MD-5 and SHA-1 hashes.
Assuming 32 bit float numbers, the matrix T ∗ then needs
roughly 500 GB and 1870 GB of storage.

Consequently, the computations are too expensive to present
an alternative to extensive simulations. However, the accuracy
can be expected to only depend exiguously on b, at least if the
number of IDs is decisively higher than the number of nodes.
Lemma V.3 provides an upper bound on the influence of b.

Lemma V.3. Consider two Kademlia-type systems K =
K(b, α, β, k, L) and K̃ = K(b̃, α, β, k̃, L̃), such that

• b̃ < b
• k[0..b̃] = k̃, i.e. the vector k̃ contains exactly the b̃ + 1

first entries of k
• L[0..b̃][0..b̃] = L̃, i.e. L̃ is the upper left b̃ + 1 × b̃ + 1

submatrix of L.
The fractions of terminated queries P ∗(i) and P̃ ∗(i) after i
hops in K and K̃, respectively, differ by at most

|P ∗(i)− P̃ ∗(i)| ≤ 1−
κ∑
j=0

(
n

j

)
pj (1− p)n−j (20)

with p = 2−b̃ − 2−b, κ = min{kd : d = 0 . . . b}, and ∗ ∈
{up, low}.

Proof: Note that the routing processes (Xi)i∈N0
and(

X̃i

)
i∈N0

are only different if there are at least κ nodes that

share a common prefix of length at least b̃ with the target
t, but not with a common prefix length of b. Recall that the
query is considered successful in the next step after reaching
a node with common prefix length b̃ by Assumption 6 in K̃,
but not necessarily in K (see Section IV-A). The probability
that two nodes share a common prefix of length b̃ to b− 1 is
p = 2−b̃ − 2−b. The number of nodes with this property is
hence B(n, p) distributed. The claim follows.

Based on Eq. 20, we now consider the trade-off between
accuracy and computation cost in terms of the network order
n.

Theorem V.4. Consider two Kademlia-type systems K and K̃
as in Lemma V.3. For any ε > 0, the error is |P ∗(i)−P̃ ∗(i)| ≤
ε if b̃ ≥ dlog2

(
n 2

ln 1/ε

)
e.

Consequently, the storage complexity is O
(
log2αn

)
and

the computation complexity is O (npolylog(n)) for a constant
arbitrary small error ε.

Proof: For κ = 0 in Eq. 20, we can determine an upper
bound on the minimal value for b̃ to achieve an error of less
than ε. Set C = 2

ln 1/ε in the following. From ε ≤ 1 − (1 −

p)n < 1 −
(
1− 2−b̃

)n
, it follows that b̃ ≥ log2

1
1−ε1/n . It
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remains to show that for n large enough, 1
1−ε1/n < Cn, which

is equivalent to ε < (1− 1
Cn )

n. Because (1− 1
Cn )

n converges
to e−1/C , there exists n, such that(

1− 1

Cn

)n
> e−2/C = e−ln1/ε = ε.

Therefore, for n large enough, b̃ ≥ log2

(
n 2

ln 1/ε

)
ensures that

|P ∗(i)− P̃ ∗(i)| ≤ ε.
The storage complexity is O

(
log2αn

)
by Lemma V.1

with b̃ = O (log n), the computation complexity of
O (npolylog(n)) follows from Lemma V.2.

Note that by using Eq. 20 rather than the approximation in
Theorem V.4, the bound on b̃ can be further reduced. However,
Theorem V.4 proves that the number of bits needed for a
certain accuracy grows logarithmically in the network size.

VI. RESULTS

In this section, we show that our derivation closely approx-
imates results from simulations. Furthermore, we evaluate the
scalability of our approach, showing that networks of up to
one billion nodes can be analyzed. In addition, we combine
the scalability analysis with an exemplary study of the routing
parameters α and β. Throughout the section, the number of
bits b in the model was chosen such that a maximal error of
ε = 0.001 is guaranteed.

A. Simulations

We compare the results produced by our model with simu-
lations. For this purpose, we implemented the three routing ta-
bles structures of MDHT, iMDHT, and KAD in OverSim [16],
an event-based simulator for P2P overlays. 128-bit IDs were
assigned uniformly at random. The maintenance protocols
were implemented as specified by the KAD implementation in
eMule. The statistics were gathered after an initial stabilization
phase of 2,000 simulation seconds, the actual measurement
time was chosen to be 12,500 simulation seconds. Every
online node queried for a random destination node every
300 simulation seconds. The source code for the simulation
study is available upon request. The routing algorithm was
parametrized by α = 3 and β = 2. A network size of 10K
was chosen. The simulation results were averaged over 10
runs.

Figure 1a presents the upper and lower bounds on the hop
distribution in comparison to the simulation results. The upper
and the lower bound are separated by less than ε = 0.001, and
simulations and model agree within a 95% confidence interval
for all data points.

B. Scalability and Exemplary Parameter Study

In order to show that our model scales well up to the
millions or even billions of nodes, we computed the hop
distribution for both MDHT and KAD for networks of size
2i ·1000 for i = 1 . . . 20 (so up to more than 1 billion). Besides
verifying the scalability, we also compared the standard rout-
ing algorithm parameters (α, β) = (3, 2) to (α, β) = (4, 1),

which are used in KAD and the BitTorrent client uTorrent
in MDHT, respectively. Figure 1b displays the expected hop.
Changing the routing parameters to (4, 1) only improves
the performance up to a network size of about 400K for
MDHT, but achieved a slightly lower expected hop count for
KAD for all considered network sizes. Remark that KAD
uses (α, β) = (3, 2), while the use of (α, β) = (4, 1) in
MDHT increases both the hop count and the overhead per step
(contacting 4 rather than 3 nodes) for typical network sizes of
several millions of nodes. The advantage of returning β > 1 is
more pronounced under churn, because it mitigates the impact
of non-responding nodes. These results show the advantage of
our approach over simulations: Since network simulators only
scale to a few ten thousands of nodes, a simulation study might
suggest the change in parameters, but the observed benefit
achieved by a higher parallelism does not transfer to larger
networks.

VII. CONCLUSION

We have introduced a scalable accurate characterization of
the hop count distribution in Kademlia-type systems. Our solu-
tion is the first which enables to compute the hop distribution
for a wide range of parameters. In particular, we manage to
integrate parallelism into our model, in contrast to previous
solutions. Furthermore, we demonstrated the utility of our
model by analyzing common design decisions in Kademlia-
type systems, showing that returning more than one contact
per query is essential for achieving shorter routes both in
static and in dynamic environments. Questions regarding the
routing table structure, in particular the effect of maintaining
multiple buckets per level, as well as optimizing Kademlia
routing to given environments and system constraints, remain
future work.
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