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Abstract. This paper proposes a new adaptive extended Kalman filter (AEKF) for a class of  nonlinear 
systems perturbed by noise which is not necessarily additive. The proposed filter is adaptive against the 
uncertainty in the process and measurement noise covariances. This is accomplished by deriving two 
recursive updating rules for the noise covariances, these rules are easy to implement and reduce the number of  
noise parameters that need to be tuned in the extended Kalman filter (EKF). Furthermore, the AEKF updates 
the noise covariances to enhance filter stability. Most importantly, in the worst case, the AEKF converges to 
the conventional EKF. The AEKF performance is determined based on the mean square error (MSE) 
performance measure and the stability is proven. The results illustrate that the proposed AEKF has a 
dramatic improved performance over the conventional EKF, the estimates are more stable with less noise. 

Keywords: Extended Kalman filer, Aadaptive extended Kalman filter, Covariance matching, Quaternion. 

1. Introduction 

   The Kalman filtering assumes the availability of  the plant dynamic model, the process and the observation noises are 
white and independent [1]. The extended Kalman filter (EKF) is an extension for the linear Kalman filter and is one of  
the most famous estimation tools for nonlinear systems. The EKF uses noisy measurements to estimate the states of  a 
dynamic system perturbed by noise [2-11]. However, the estimation process faces a problem related to the noise models. 
The structure of  the EKF is composed of  the plant dynamic nonlinear model and the noise stochastic models [12, 13]. 
The EKF uses the noise statistics to influence the EKF gain that is applied on the filter innovation error and then updates 
the process information to get the best estimate. Accordingly, the EKF performance, reliability and stability depend on 
the knowledge of  the stochastic models parameters. Further, the EKF performance degrades or may even diverge with 
uncertain model parameters [14,15]. Therefore, improving the EKF such that it can adapt itself  to the uncertainty in the 
noise statistical parameters and reduce their effects is of  significant importance. This explains the interest of  the 
researchers to develop several methods to overcome the noise uncertainty challenge. One method uses the Innovation-
based Adaptive Estimation (IAE) method [16]. It assumes that the innovation sequence is white noise. Then, it estimates 
the process noise covariance matrix and/or the measurement covariance matrix using one of  the following techniques: 
covariance matching, correlation and maximum likelihood techniques [17-25]. However, each of  these techniques has its 
drawbacks, the first two techniques require large window of  data which makes them impractical. The correlation 
technique has biased estimated covariances [26]. Maximum likelihood technique requires heavy computations and they 
can be implemented off-line. Another method is model based method called Multiple Model Adaptive Estimation 
(MMAE). It assumes the availability of  the correct model among bank of  different models. Then the probability of  each 
model is computed using the measurements. At the end, the output of  the highest probability model is considered [27].  
However, it is hard to have the correct model for the uncertain dynamic systems [28]. An optimization-based Adaptive 
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Estimation (OAE) [29] is developed to handle the model uncertainty based on past data. Scaling the error state 
covariance matrix by a factor is reported too [18,30]. The factor calculation is either empirical or based on the filter 
innovations. 
   The main contribution of  this paper is to obtain an AEKF in order to overcome the above mentioned drawbacks by 
adopting the recursive estimation approach. The author applied the idea of  adaptive Kalman filter for linear systems [31] 
to nonlinear systems with a non-additive noise. By definition of  recursive estimation and update, the AEKF will be able 
to adapt itself  to the biased initial covariances, to increase the estimation accuracy, and to enhance the filter stability. In 
this paper, two recursive updating rules for the noise covariances are obtained. These rules are easy to implement and 
initialize. Each rule has a correction covariance error term calculated at each sample time by utilizing the advantage of  
the availability of  the most recent measurements and innovations along with the available information about the state 
covariance error. The filter stability is proven. 
   The rest of  the paper is organized as follows: section 2 introduces the conventional EKF and defines the problem. 
The adaptive EKF is derived in section 3. Section 4 explores the stability proof. The numerical example is presented in 
section 5 and the paper is concluded in section 6.  

2. Conventional EKF and Problem Definition 

   Consider the discrete-time nonlinear state space model 

 
       

 
1 1 1 1,k k k k

k k k

kx f x

y

x

Hx

u

v

υΓ
, (1) 

where nx is the state vector, dy is the measurement vector, u  is the system input, k  is the time index. 

 1
m

kυ and d
kv are the Gaussian process and measurement noises respectively. H is the output matrix.  n mΓ  

maps the noise to the states space. The state estimation is carried out under the following assumptions: 

Assumption 1: The process and measurement noises are assumed to be independent and mutually uncorrelated with the 
given expectations         0T

k kE E v E vυ υ and covariances   TQ E υ υ and   TR E v v , where  E stands for 

the expectation of    . 

Assumption 2: The inputs are considered to be piecewise constant over the sampling time interval ,T i.e. 
        1 1 1,k k k ku t u t t t t T , and the process and measurements have the same sampling time. 

Assumption 3: The noise covariances are considered to be constant. Then for the given system in Eq. (1), the 
conventional EKF algorithm is composed of  the prediction step 

  
  1 1ˆ ˆ ,k k kx f x u , (2) 

 1 1 1 1 1 1
T

k k k k

T
k k kP A P QA Γ Γ

       , (3) 

and the measurement update step 

  T
k k k k kS H P H R , (4) 

   1T
k k k kK P H S , (5) 

   ˆk k ke z Hx , (6) 

  ˆ ˆ
k k k kx x K e , (7) 

    k k k kP I K H P , (8) 

where 
 

  


1 1

1
ˆ ,k k

k
x u

A
f
x

.  

In Eqs. (2)-(8) the following notation is employed.  . and  .  stand for the prior and posterior estimates, respectively. 

K  is the Kalman gain, I  is the identity matrix and P is the estimation error covariance matrix, is the estimated state 
and z is the measurement vector with the same dimension as y . 

Remark:  
Kalman gain in (5) can be rewritten as  1T

k k kK P H R . 
The noise covariances have significant importance on the estimation performance. Very small values or large values of  Q 
with respect to the true value will result in a biased estimated x̂ or an oscillated estimated x̂ respectively [29]. Further, 
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remembering that the EKF performance degrades or may even diverge with uncertain model parameters [14,15]. 
Therefore, it is required to develop AEKF to overcome the uncertainty in the noise covariances. 

3. Adaptive EKF 

   The values of  Q and R have an important effect on the EKF performance. Too small or large values of  these 
covariances with respect to the true value results in estimation degradation. Here two recursive updating rules R1 and R2 
are developed to update both Q and R to form the AEKF. The AEKF are able to adapt itself  to the noise covariance 
uncertainty in order to achieve better performance.  
For the given system in Eq. (1), consider that the assumptions 1 to 3 hold. Then for a given initial value matrices 0R , 

0Q and selected positive constants RN and QN , there are noise covariance errors QΔ and RΔ to update the observation and 

the process covariance matrices recursively as in (13) and (18) respectively. The AEKF is the same conventional filter 
with the following rules.  

   0 0 0 0 0 0ˆInitial values , , , 0, 0, 0P Qe x Rω   (9) 

 
2

1R

R

N
N

α   (10) 

  2 1

1
k k k

R

e e e
N

α   (11) 

       


1 1
1

T T
k k k k k k k k

R R

R e e e e H P H
N N

Δ   (12) 

   2 1k k kR diag R Rα Δ   (13) 

 


1

1Q

Q

N

N
α   (14) 

  ˆ ˆ ˆ ,k k kx xω   (15) 

  1 1

1 ˆ
k k k

QN
ω α ω ω   (16) 

        † † † † † †
1 1 1 1 1 1 1

1 1ˆ ˆ
1

T T T T T
k k k k k k k k k k k k k NN

Q Q

Q P AP A
N N

ω ω ω ωΔ Γ Γ Γ Γ Γ Γ
      

          
 (17) 

   1 1k k kQ diag Q Qα Δ   (18) 

Remarks: 
- The AEKF converges to the conventional EKF if  the selected values of RN and QN  . 

- The update rules keep the noise covariance matrices Q and R  positive definite for all k .  
 
3.1. The process noise covariance matrix proof 

   For this proof, we need to know the true value of  the states which is not the case. Therefore, the approach of  the best 
known states is acquired. The predicted state error covariance matrix P is 

 1 1 1 1
T T

k k k k kQP AP A Γ Γ
     , (19) 

where Q is the assumed value of  the process covariance and considered to be constant. Assume that there is uncertainty 
in Q and it is called QΔ , then Eq. (19) can be written as 

 † † † †
1 1 1 1 1

T T T
k k k k k kP AP A Q QΓ Γ Γ Γ Δ
        (20) 

where  †
 is the pseudo inverse. QΔ  requires the true values of  the states which are not known, however, we can use 

an estimate as 

  ˆ ˆ ˆx xω  (21) 
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For a recorded number QN of  measurements of  the estimated states, the mean and sample covariance respectively are: 

 


 
1

1 ˆ
QN

i
iQN

ω ω  (22) 

   


  
 

1

1 ˆ ˆ
1

QN
T

i i
iQ

Q
N

ω ω ω ωΔ  (23) 

Taking the mean of  Eq. (20) with Eq. (23) and after mathematical manipulation, we can obtain 

        † † † † † †
1 1 1 1 1 1, 1,

1 1

1 1 ˆ ˆ
1

Q QN N
TT T T T

k k k k k k k i i i k iii
i iQ Q

Q P AP A
N N

ω ω ω ωΓ Γ Γ Γ Γ Γ
      

 

         
   (24) 

Since they are renewed each time, then the covariance has a strong relation with the previous covariance. To find it, the 
samples are divided into a group of  all samples from   Qi k N up to  1i k and a second group contains only the 

most recent sample arrived at the time instant k . Then after some mathematical manipulation, with large QN to 

approximate the sample covariance of  the first group with     
1

2 ˆ ˆ/ 1
Q

k
T

Q Q i i
i k N

N N ω ω ω ω


 
    , Eq. (24) can be 

expanded as 

 


 1

1Q
k k k

Q

N
Q Q Q

N
Δ ,  (25) 

where 

        
1 1

† † † † † †
1 1, 1, 1 1 1 1 1

1 1ˆ ˆ
2 1

Q Q

k k
T T T T T

k k i i i k i k k k k k k ii
i k N i k NQ Q

Q P AP A
N N

ω ω ω ωΓ Γ Γ Γ Γ Γ
 


       

   

          
  ,. (26) 

and 

        † † † † † †
1 1 1 1 1 1 1

1 1ˆ ˆ
1

T T T T T
k k k k k k k k k k k k k NN

Q Q

Q P AP A
N N

ω ω ω ωΔ Γ Γ Γ Γ Γ Γ
          


.. (27) 

The same method is used to compute kω as  

 


   
   

11 1 1ˆ ˆ ˆ
Q Q

k k

k i i k
i k N i k NQ Q QN N N

ω ω ω ω , (28) 

this yields  

 


 1

1 1 ˆQ
k k k

Q Q

N

N N
ω ω ω .   (29) 

3.2. The observation covariance matrix proof 

   Using the same approximation and starting from the innovation error Eq. (6) and the covariance Eq. (4), it will end 
up with Eq. (12). 
 

4. Stability Enhancement Proof 

   The exponential behavior of  the observer  

  
  1 1ˆ ˆ ,k k kx f x u   (30) 

     ˆ ˆ ˆ
k k k k kx x K H x x   (31) 

is determined based on the exponential convergence of  the dynamic error   ˆk k kx xε between the true state x and the 

estimated state x̂ . Therefore, to analyze the exponential behavior, we first write the Taylor expansion for the observer 
and the given continuous system as with high order terms 1 and 2 as, 
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    
       1 1 1 1 1 1 1ˆ ˆ ˆ ˆ, ,k k k k k k kx f x u A x x u   (32) 

           1 1 1 1 2 1 1, ,k k k k k k kx f x u A x x u   (33) 

Then after mathematical manipulation, this errorε can be expressed as 

       1 1 1k k k k k kA K HAε ε φ , (34) 

where 

            2 1 1 1 1 1ˆ, ,k k k k k kI K H x u x u φ .  (35) 

The exponential stability is proven here based on Lyapunov function theory and follows the approach as in [32, 33]. The 
following definitions and lemmas are employed for the sake of  completeness and proof. 

Definition 1: The origin of  the difference Eq. (34) is exponentially stable equilibrium point if  there is a continuous 

differentiable positive definite function  kV ε such that [34]:  

 
 

 
 



2 2

1 2

2

3

,k k k

k k

c V c

V c

ε ε ε

ε εΔ
  (36) 

for positive constants 1 2,c c and 3c with VΔ as the rate of  change of V and defined by 

      1k kV V Vε εΔ  . (37) 

For sake of  completeness, the exponential stability for discrete time systems is defined by the inequality 
 0

k
kε β ε for all  0k with 0β and  0 1 . 

Satisfying the exponential stability for the origin of  Eq. (34) implies that the observer in Eq. (31) is an exponential 
observer 

Definition 2: if A and TQΓ Γ are invertible matrices, and for the positive definite matrices 
kP and kP , then  

       1 1 1 1 1

1 1 1 1

11 11
1 1 1k k k k

T T T T
k k k k k kA P P P A Q PP I K H A A I K HΓ Γ    

   

  
  

         
  (38) 

Proof: rewriting Eq. (8) as in [12]: 

       T T
k k k k k k kP I K H P I K H K R K  , (39) 

then we have 

       T

k k k kP I K H P I K H . (40) 

Inverting Eq. (40) results in 

          
1 11 T

k k k kP I K H P I K H  , (41) 

The expression of   1

kP is obtained by rearranging Eq. (3) as  

  1

1
1 1 1

T T

k k

T
k k kP A P A Q A AΓ Γ 




    , (42) 

and inverting Eq. (42) yields to 

     1 1 1 1 1

1 1 1 1

11 1

1 1 1k k k k k

T T T
k k kP A P P P A Q PA AΓ Γ     

   

 
  

       
. (43) 

As a result from Eq. (43), Eq. (41) is expressed by 

       1 1 1 1 1

1 1 1 1

11 11
1 1 1k k k k

T T T T
k k k k k kA P P P A Q PP I K H A A I K HΓ Γ    

   

  
  

        
, (44) 

which completes the proof   . 
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Lemma 1: Consider the real and bounded system states kx , then the terms 1 , 2 and the positive real numbers 

, , , 0a κ σ σ exist such that A a holds and  

      
2

2 1 ˆ ˆ, ,x u x u x x  κ , (45) 

holds for    1
ˆ

2
x x σ σ . 

The stability Theorem: the given system in Eq. (30) with the proposed AEKF is exponentially stable if  the following 
assumptions hold 
A1) there are positive real numbers , , , , , 0a p p  κ σ σ such that  1kp I P p I and A a for every time instant k . 

Further the inequality Eq. (45) holds for    1
ˆ

2
x x σ σ .  

A2) the matrices Q and R are positive definite due to the updating rules for all k . The minimum eigenvalues of  
TQΓ Γ is  0q . 

A3) the matrix 1kA is nonsingular. 
Proof: the proof  follows the approach as in [32]. Consider the positive definite Lyapunov function 

   
   1

11 1 1k

T
k k kPV ε ε ε , (46) 

with  0 0V , Eq. (46) and A1 imply that 

     
2 2

1 1 1

1 1
k k kV

p p
ε ε ε . (47) 

Then for  kV ε we obtain 

    1

k

T
k k kPV ε ε ε . (48) 

Substituting Eq. (34) into Eq. (48) we get 

         
          1

1 1 1 1 1 1k

T

k k k k k k k k k k kPV A K HA A K HAε ε φ ε φ   (49) 

The assumption A1 implies that 
kP is nonsingular along with A2 and A3 fulfill the requirement of  Definition 2, then by 

using Eq. (38) together with Eq. (49) yield 

  
         

     

1 1 1 1 1

1 1 1 1

1 1

11

1 1 1 1 1 1 1 1

1 1 1

k k k k k

k k

T TT T
k k k k k k k k k k k

T T

k k k k k k k

P P P A Q P P

P P

V A A K HA

A K HA

ε ε ε ε φ

φ ε φ φ

Γ Γ    
   

 


       

  

                 

  
 (50) 

Now applying Lemma 1 along with A1 on Eq. (50) we get  

     

                                                                    

2 2 22
1 1 1 1 122 2 2

2 2 2

1 1 1 1 1 1
2

1 1 1
k k k k kV

a p p aa a a
p p p

p q p q p q


 

κ
ε ε ε κ ε σ εΔ  , (51) 

with  ˆx x σ . Let 

               

1
2

2 1 a
p

p q
, note that 0 1/ p , and defineη by 

 

                                                     

2
22 2

2 2

1 1 1 1 1
2

1 1a p p aa a
p p

p q p q


 

κ
η κ σ   (52) 
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where  0η , then Eq. (51) can be reduced to 

  

       
2

1 1k kV η ε ε
η

Δ  , (53) 

which holds for Jˆ / 2x x σ σ   . Let /σ η , it follows that  

 


2

12 kV εΔ , (54) 

holds for  1k ε σ .   

which satisfies Eq. (36), and thus the origin of  Eq. (34) is exponentially stable. In terms of  states and performance, using
Eq. (51) and Eq. (47) we can write 

                01
2

k

kV p Vε ε , (55) 

and then, 

 
          

01 , 0
2

k

k

p
p k

p
ε ε   (56) 

Recalling definition 1, we have 

  0
p
p

β , (57) 

and  

 
       

 1 ,0 1
2

p .   (58) 

5. Numerical Example 

   The performances of  the proposed AEKF is shown using the nonlinear function which uses the quaternion 
representation.  

5.1. Model derivation 

   The quaternion vector has an important role in representing rotations of  a rigid body with respect to a reference 
frame [35]. The quaternion time derivative forms a nonlinear dynamical model. However, this model has bias and 
contaminated noise. Therefore, the quaternion estimation is generally based on the EKF theory [36 to 40]. The 

quaternion vector q consists of  four elements as   4
0 1 2 3

T
q q q q q  . These elements are divided into two parts, 

scalar part 0q R and vector part   3
1 2 3n q q q R 

. The normalized vector q is generally used with the readings of  

the gyroscope due to the direct relation between the quaternion time derivative q and the gyro-meter angular velocity 
3Ω as 

Ωq = q  
(59) 

where is the quaternion multiplication.  
Equation (59) is nonlinear and the gyro-meter angular velocity has bias 3b  and contaminated white zero mean 
noise 3v  [41] as stated in, 

Ω ω= + b + v  (60) 

where 3ω is the true angular velocity without bias or noise. The bias is modeled as an integrated white noise 
 3

bv as 

1 , 1k k b k  b b v  (61) 

Due to the bias and noise, the quaternion is estimated by employing the EKF. Defining the state vector as 
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TT T
k k kx    q b , and taking the discrete form of  Eq. (59) along with Eq. (60) and Eq. (61), then the model Eq. (1) is 

obtained with 

   
 



            

Ω4 1 1 1
1 1

1

1
( , ) 2 k k k

k k

k

I TU
f x u

b q

b
 (62) 






     
1

1
, 1

k
k

b k

v

v
υ  (63) 

where 

 
         

0 - - -

0 -
( )

- 0

- 0

x y z

x z y

y z x

z y x

U

χ χ χ

χ χ χ
χ

χ χ χ

χ χ χ

 (64) 

1 4 3
1

3 3 3

1
( )

2 k
k

TU

I
Γ  





       

q 0

0
 (65) 

            

1 2 3

0 3 2

3 0 1

2 1 0

 ( )U

χ χ χ

χ χ χ
χ

χ χ χ

χ χ χ

 (66) 

and nI is n n identity matrix. 
This model is used to study the performance of  both the EKF and the proposed AEKF. The output of  the EKF and the 
AEKF is q . The quaternion normalization constraint is not preserved by the EKF [42]. To overcome this problem, 

normalization is applied on the post-estimated quaternion to maintain its unity norm out of  the structure of  the EKF 
[38]. More structural methods were used by enforcing constraints in Kalman filtering [43-46]. Here the quaternion 
normalization is done as in [47]. 

5.2. Simulation environment and parameters 

   The simulation platform is MATLAB, both the EKF and the AEKF are tested and compared. The bias and process 
noises with the covariance trueQ are added to the angular velocity measured from the gyro-meter, this formsΩ which is the 

input u for Eq. (1) and Eq. (2). The measurement noise with covariance trueR is added to the measured quaternion to 
form the measurement vector z in Eq. (6). The Gaussian noise is generated by the MATLAB simulink Gaussian noise 
generator. Both filters have the same initial values 0x and 0P . The model equations (62)-(66) are used. The true bias 

values are chosen to be time t dependent as in Eq. (67). 

 
 
 

    

0.5 0.1 0 3

1 2 1 8 20

0 0 2

T

T

T

t

t

else

b  (67) 

The simulation parameters, initializations and the corresponding numbers of QN and RN are listed in Table 1. Note that 

the values of QN and RN are different from each other since they don’t have to be the same in practice. This enhance 

more flexibility to the rules, the values of QN and RN are user defined based on the system noise characteristics. Without 

loss of  generality, for a noisy system, select big QN and RN . In the same context, small values of QN and RN are for less 

noisy systems. In this simulation, since the true observation noise is much smaller than the process noise, the value of  

RN is selected to be much smaller than QN as tabulated in Table 1. The following notations are employed: smallQ and 

bigQ indicate that the considered process covariance noise in EKF is either smaller or larger than the true process 

covariance noise TrueQ respectively. The same definition goes for smallR and bigR . The notations initialQ and initialR refer to the 
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initial values of  the covariances used in the AEKF. nI
 
is an n n identity matrix. 

Table 1. Initialization and simulation parameters 

Parameter Value 
T  0.01 sec 

trueR  6
410 I  

trueQ
 

1
610 I  

0P  710 I  

0q   0.5 0.5 0.5 0.5
T

 

0b   0 0 0
T

 

RN  104 

QN
  53 10  

0ω
 7 10  

0e
 4 10  

smallR
 

10
410 I  

bigR
 

2
410 I  

smallQ
 

2
610 I  

bigQ
 6I  

5.3. Results and discussions 

   Noise covariances have several scenarios, among them is that the used noise covariances are smaller or larger than 
the true covariances. For example, the values smallQ , smallR , bigQ and bigR in Table 1 are used with the EKF, the estimation 

performance is shown in Fig. 1. The performance show that the AEKF estimation has less noise than the EKF as clear in 
Fig. 1 (a,b) for the first bias element 1b , even the noise is decreasing with time as in Fig. 1(b). Fig. 1 (c,d) shows the MSE 

for the bias b2 and b3, respectively. The MSE for EKF with the values smallQ , smallR is much larger than it for AEKF under 

the same conditions, i.e. the initial values of  the AEKF covriances are the values smallQ , smallR . For bigQ and bigR , at the 

beginning both filters are almost the same. However, the AEKF MSE decreases with time more than the EKF MSE. 
Moreover, whether the initial covariances are small or big they converge to the same result unlike the EKF. So we can 
claim that the AEKF adapts itself  to biased initializations and has better performances than the EKF. Further, this 
AEKF is recursive and requires only the previous step data and thus overcomes the large window of  data for other 
methods. And since the proposed AEKF adopts the recursively idea of  the traditional EKF, it doesn’t make any 
iterations inside the filter algorithm. Therefore it doesn’t require heavy computations and can be implemented online the 
same as the online EKF. 

 

Fig. 1. (a) The estimated bias b1 with filters and covariance's as in the legend, (b) the estimated bias b1 with filters and covariance’s as 
in the legend (c) the MSE for b2 estimation with filters and covariance’s as in the legend, (d) the MSE for b3 estimation with filters and 

covariance’s as in the legend. 
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Another scenario is when one of  the covariances is small while the other one is big. For this case, the estimation error is 
shown in Fig. 2 with smallQ and bigR . As clear the AEKF is still much better than the EKF. Furthermore, some values for 

the covariances may slow down the filter response or even cause divergence, for the selected values of  1210Q and 
 210R , the estimated bias using the EKF diverges as depicted in Fig. 3. However this problem is solved in the AEKF 

which keeps the stability of  the filter and forces it to converge. This is because the AEKF gain is changing based on the 
estimation performance. This is clear since it depends on both the innovation error e and the state error ω̂  respectively. 
In terms of  the states, when  0q then  1which decreases the convergence speed as in Eq. (58). This case is avoided 

in the AEKF, when the error increases, the value of q increases too. As a result the value of  decreases and hence the 

convergence speed increases as in Eq. (58). Thus we can claim that the proposed AEKF has better stability and 
convergence performances than the EKF. 

 

Fig. 2. (a) The estimated bias b1 with filters and covariance’s as in the legend, (b) the estimated bias b1 with filters and covariance’s as 
in the legend (c) the MSE for b2 estimation with filters and covariance’s as in the legend, (d) the MSE for b3 estimation with filters and 

covariance’s as in the legend 

 

Fig. 3. The stability enhancement of  the AEKF 

6. Conclusion 

   A new AEKF for a class of  nonlinear systems with uncertain noise covariances is proposed. This AEKF can adjust 
itself  recursively to achieve better performance for biased covariances. It relates the filter gain to the innovation and state 
errors through the noise covariance updating rules, these relations change the filter gain for better tracking and 
performance. Furthermore, its tuning parameters are less than the EKF, instead of  tuning all of  the diagonal elements of  
the noise covariance matrix, they can be initialized and then tuned using QN and RN only. The results show the dramatic 

improvements in the AEKF response compared with the conventional EKF under the same conditions. 
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