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Abstract

The high incidence of breast cancer in women has increased significantly in the recent years. The most familiar breast tumors types are

mass and microcalcification. Mammograms—breast X-ray—are considered the most reliable method in early detection of breast cancer.

Computer-aided diagnosis system can be very helpful for radiologist in detection and diagnosing abnormalities earlier and faster than

traditional screening programs. Several techniques can be used to accomplish this task. In this paper, two techniques are proposed based on

wavelet analysis and fuzzy-neural approaches. These techniques are mammography classifier based on globally processed image and

mammography classifier based on locally processed image (region of interest). The system is classified normal from abnormal, mass for

microcalcification and abnormal severity (benign or malignant). The evaluation of the system is carried out on Mammography Image

Analysis Society (MIAS) dataset. The accuracy achieved is satisfied.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The interpretation and analysis of medical images

represent an important and exciting part of computer vision

and pattern recognition. Developing a computer-aided

diagnosis system for cancer diseases, such as breast cancer,

to assist physicians in hospitals is becoming of high

importance and priority for many researchers and clinical

centers. It is a complex process to develop a computer vision

system to perform such tasks.

The high incidence of breast cancer in women has

increased significantly in the recent years. It is the cause of

the most common cancer death in women. It is a leading

cause of fatality in women, with approximately 1 in 12

women affected by the disease during their lifetime (Spence,

Parra, & Sajda, 2001). In Australia, approximately 1 of 13

women develops the disease (Verma & Zakos, 2000). A

report from the National Cancer Institute (NCI) estimates

that about one in eight women in the United States

(approximately 12.5%) will develop breast cancer during

their lifetime (Arun, 2001). Early detection plays a very
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important factor in cancer treatment and allows better

recovery for most patients. The required medical image for

the diagnosing process of breast cancer, mammogram

(breast X-ray), is considered the most reliable method in

early detection (Arun, 2001; Verma & Zakos, 2000).

Due to the high volume of images to be analyzed by

radiologists, and since senior radiologists are rare, reliable

radiological diagnosis is not always available and the

accuracy rate tends to decrease. A statistics shows that

only 20–30% of breast biopsies are proved cancerous

(Zaiane, Maria-Luiza, & Alexandru, 2002), and 10% of all

cases of breast cancer go undetected by mammography

(Bird, Wallace, & Yankaskas, 1992). Moreover, digital

mammograms are among the most difficult medical images

to be read according to the differences in the types of tissues

and their low contrasts. Important visual clues of breast

cancer include preliminary signs of masses and microcalci-

fication clusters (Roberts, Kahn, & Haddawy, 1995).

Unfortunately, at the early stages of breast cancer, these

signs are very subtle and varied in appearance, making

diagnosis even difficult to specialists. Therefore, automatic

reading of digital medical images becomes highly desirable.

It has proven that double reading of the mammogram, by two

radiologists, increases the accuracy, but at high costs
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(Zaiane, Maria-Luiza, & Alexandru, 2001). Therefore,

the motivation of the computer-aided diagnosis systems

(Mendez, Tahoces, Lado, & Souto, 1998; Taylor, 1995;

Woods, 1994; Yin, Giger, Vyborny, Doi, & Schmidt, 1993)

is to assist medical staffs to achieve high efficiency and

accuracy.

Radiologists basically look for two types of patterns in

mammography: micromicrocalcifications and masses

(Arun, 2001). The diagnosis result of tissue is classified

into three categories: normal which represents mammogram

without any cancerous cell, benign which represents

mammogram showing a tumor, but not formed by cancerous

cells and malign which represents mammogram showing a

tumor with cancerous cells (Verma & Zakos, 2000). It is

difficult to distinguish a benign from one that is malignant.

Consequently, many unnecessary biopsies are often

undertaken due to the high positive false rate (Arun, 2001;

Wang & Karayiannis, 1998).

Interpreting medical images that used for diagnosing

process involves preprocessing and detection of regions of

interest (Arun, 2001). Preprocessing stage deals with image

enhancement and noise removal. The enhanced image is

then scanned for selected region of interest. Histogram

equalization is one of many techniques that used to enhance

mammograms. The next stage is to extract features from the

region of interest. These features then passed to classifier to

decide whether this mammogram normal or abnormal.

Many approaches are used to build such classifiers for

digital mammograms such as neural network and data

mining. The neuro-fuzzy approach is a typical approach for

the developing of such types of systems (Mitra & Hayashi,

2000; Nieto & Torres, 2003; Russo & Jain, 2001; Verma &

Zakos, 2000). Neural network provides algorithms for

learning and classification, whereas fuzzy logic deals with

issues reasoning on a higher semantic level.

In this paper, two techniques for building a computer-

aided diagnosis system for classification of abnormality in

digital mammograms are designed and evaluated. The first

one is a neuro-fuzzy classifier based on features extracted

from the wavelet analysis of the image. It consists of

preprocessing, features extraction and classification stages.

Histogram equalization and gray level thresholding tech-

niques are applied for enhancing the images. Features are

extracted from the whole image, which represents the unit of

classification. We called this technique mammography

classifier based on globally processed image. In the

classification stage, we apply the Adaptive Neuro-Fuzzy

Inference System (ANFIS) (Jang, 1993). The purpose of the

system is to classify normal mammogram from abnormal

one and to determine abnormal severity in the abnormal

one. It could be mass (benign or malign) or microcalcifica-

tion (benign or malign). In this paper the abnormal cases:

mass (circumscribed and speculated and microcalcification)

and micocalcification are considered.

Many studies have been made on the problem of breast

cancer diagnosing based on digital mammograms (Qian,
Sunden, Sjostrom, Fenger-Krog, & Brodin, 2002; Sameti &

Ward, 1996; Verma & Zakos, 2000; Woods, 1994). Verma

and Zakos (2000) developed a system based on fuzzy-neural

and feature extraction techniques for detecting and diagnos-

ing microcalcifications’ patterns in digital mammograms.

They investigated and analyzed a number of feature

extraction techniques. The following 14 features were

used for the proposed method: average histogram, average

gray level, energy, modified energy, entropy, modified

entropy, number of pixels, standard deviation, modified

standard deviation, skew, modified skew, average boundary

gray level, difference and contrast. The formula for entropy,

energy, skew, and standard deviation were modified so that

the iterations started with the first pixel of the pattern and

ended at the final pixel and found that a combination of three

features, entropy, standard deviation and number of pixels,

is the best combination to distinguish a benign micro-

calcification pattern from a malignant one. The fuzzy

technique only detects the center pixel of a microcalcifica-

tion area. Therefore, it detects other areas that look like a

microcalcification. It is up to the user to decide whether the

resulting detection is a microcalcififcation or some other

area. The back-propagation technique was used for

classification of features into benign or malignant.

Zaiane et al. (2001) used neural network and data mining

techniques for detection and classification of digital mam-

mograms. Histogram equalization are used to enhance the

images. The proposed methods classified the digital mam-

mograms in two categories: normal and abnormal. The data

collection they used in their experiments was taken from

MIAS (Suckling et al., 1994). The extracted features that

used are two existing features (type of the tissue and position

of the breast), and four statistical parameters. In their

experiments they used 90% of the dataset—322 images—

for training the systems and 10% for testing them. The

success rate obtained using the neural network (back-

propagation algorithm) is 81% on average. On the other

hand, it is 69% on average for association rule classifier. In

the following research for Zaiane et al. (2002) the data mining

classifier is enhanced by applying two pruning methods of

rules. They are eliminating the specific rules and keep only

those that are general and with high confidence, and prune

some rules that could introduce errors at the classification

stage. All the extracted features presented in (Zaiane et al.,

2002) have been computed over smaller windows of the

original image. The classification rate increased to 80%.

Research into the detection of microcalcifications using

the wavelet transform has been carried out by McLeod and

Parkin (1996). Extraction of possible microcalcifications is

firstly achieved by wavelet decomposition of the mammo-

gram using Deubechies wavelets to three levels. This

research showed that microcalcifications are mostly promi-

nent in the high-pass subbands of levels 2 and 3, with level 1

containing mostly noise and fine structural detail.

Wang and Karayiannis (1998) proposed an approach for

detecting microcalcifications in digital mammograms
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employing wavelet-based subband image decomposition.

Given that the microcalcifications correspond to high-

frequency components of the image spectrum, detection

of microcalcifications is achieved by decomposing

the mammograms into different frequency subbands,

suppressing the low-frequency subband, and, finally,

reconstructing the mammogram from the subbands contain-

ing only high frequencies. The final images are obtained

using subband reconstruction. They used two wavelets from

Daubechies’ family namely the Daubechies’ 4 (db 4) filter

and Daubechies’s 20 (db 20) filter.

Baguia (2003) proposed a new generalization of the rank

nearest neighbor (RNN) rule for multivariate data for

diagnosis of breast cancer. The performance of this rule

using two well known databases and compare the results

with the conventional k-NN rule is studied. The two well-

known databases are (i) Wisconsin diagnostics breast cancer

(WDBC) database; (ii) Wisconsin breast cancer (WBC)

database. They observed that this rule performed remark-

ably well, and the computational complexity of the

proposed k-RNN is much less than the conventional k-NN

rules. This approach suffers from a major drawback which is

the unavailability of dataset comparable to Wisconsin breast

cancer (WBC).
2. Breast cancer

The most familiar tumor types are mass and micro-

calcification. This section illustrates the features of each

type.

2.1. Mass features

Benign and malignant masses are differentiated through

mass attributes of margin, density and location (Roberts

et al., 1995). Round, low-density masses with smooth,

sharply defined margins are considered benign. High-

density, stellate, spiculated masses with poorly defined
Fig. 1. Mammograms contain masses (a) circumscribed masses, and

(b) spiculated masses.
margins are considered malignant. In Fig. 1 we show two

examples: (a) mammogram has circumscribed masses, and

(b) mammogram has spiculated masses.

2.2. Microcalcification features

The attributes of size, shape, density, distribution pattern,

and number of microcalcification are examined when

differentiating between benign and malignant microcalcifi-

cations (Roberts et al., 1995).

Benign and malignant microcalcifications can occur with

or without a mass. Benign microcalcifications are typically

large (1–4 mm in diameter), coarse, round or oval, and

uniform in size and shape. Their distribution pattern is

typically scattered or diffuse. If the microcalcifications are

clustered, their number is less than 5 per cluster. Malignant

microcalcifications are typically microscopic (!0.5 mm in

diameter) and fine, linear branching, stellate-shaped, and

varying in size and shape. Their distribution pattern is

grouped or clustered, and they are innumerable. The rule of

malignancy that when the number of microcalcifications in

a cluster is greater (usually more than 5); the likelihood of

malignancy become greater (Sickles, 1986). Typically,

malignant microcalcifications present with a wide range in

size, shape, and density. Mammogram contains micromi-

crocalcification is shown in Fig. 2.

2.3. Data sources

It is difficult to access real medical images for

experimentation due to privacy issue. The data collection

that was used in our experiments was taken from the

Mammographic Image Analysis Society (MIAS) (Suckling

et al., 1994). This same collection has been used in other

studies of automatic mammography classification. It con-

sists of 322 images, which belong to three categories:

normal, benign and malign, which are considered abnormal.
Fig. 2. Mammogram contains microcalcifications.



R. Mousa et al. / Expert Systems with Applications 28 (2005) 713–723716
In addition, the abnormal cases are further divided into six

categories: circumscribed masses, spiculated masses,

microcalcifications, ill-defined masses, architectural distor-

tion and asymmetry. All images are digitized at a resolution

of 1024!1024 pixels and eight-bit accuracy (gray level).

They also include the locations of any abnormalities that

may be present. The existing data in the collection consists

of the location of the abnormality (like the center of a circle

surrounding the tumor), its radius, breast position (left or

right), type of breast tissues (fatty, fatty-glandular and

dense) and tumor type if exists (benign or malign).
3. Methodology

The proposed system is built based on wavelet analysis

(Portilla & Simoncelli, 2000) of the image and by applying

the Adaptive Neuro-Fuzzy Inference System (Jang, 1993;

Jang, Sun, & Mizutani, 1997) for building the classifiers. In

this section the theoretical background for both approaches

are introduced.

3.1. Wavelet analysis

The wavelet transform or wavelet analysis is probably

the most recent solution to overcome the shortcomings of

the Fourier transform. A wavelet is a waveform

of effectively limited duration that has an average value of

zero (Kaiser, 1994). Wavelet analysis is the breaking up of a

signal into shifted and scaled versions of the original (or

mother) wavelet. The use of a fully scalable modulated

window solves the signal-cutting problem. The spectrum is

calculated for the window in each time it shifted. Then this

process is repeated many times with a slightly shorter (or

longer) window for every new cycle (Mallat, 1989).

Wavelet analysis is based on three properties: orthogonal,

quadratic filter and filter bank.

3.1.1. Orthogonal wavelets

Two functions f and g are said to be orthogonal to each

other if their inner product is zero as show in Eq. (1).

The symbol * mean a convolution operation

hf ðtÞ; gðtÞi Z

ðb

a
f ðtÞg�ðtÞdt Z 0 (1)
3.1.2. Quadrature mirror filter (QMF)

If a signal f(x) entered to the QMF, the output will be two

parts: the first is the output of the low-pass filter while the

second is the output of the high-pass filter. Both outputs

meet the orthogonal property which means that the output of

the high-pass filter cannot be seen in the output of the low-

pass filter.

3.1.3. A band-pass filter

The translations of the wavelets are of course limited by

the duration of the signal under investigation so that we
have an upper boundary for the wavelets. Two issues appear

related to dilation: how many scales to analyze our signal

are needed, and how to get a lower bound. The answer

of this question is by looking at the wavelet transform

as band-pass like spectrum. This means that a time

compression of the wavelet by a factor of 2 will stretch

the frequency spectrum of the wavelet by a factor of 2 and

also shift all frequency components up by a factor of 2.
3.1.4. The scaling function

The wavelet function j is determined by the high-pass

filter, which also produces the details of the wavelet

decomposition. There is an additional function associated

with the wavelet called scaling function, 4. The scaling

function is determined by the low-pass spectrum, and thus is

associated with the approximations of the wavelet

decomposition. In the same way that iteratively upsampling

and convolving the high-pass filter produces a shape

approximating, the wavelet function, iteratively upsampling

and convolving the low-pass filter produces a shape

approximating the scaling function (Kaiser, 1994). Consider

the set of expansion functions composed of integer

translations and binary scaling of the function, 4(x); that

is the set {4j,k(x)} where:

4j;kðxÞ Z 22=j4ð2jx KkÞ (2)

Here, k determines the position of 4j,k(x) along the x-axis

and 22/j controls its amplitude. Because the shape of 4j,k(x)

changes with j, 4(x) is called a scaling function.
3.1.5. Wavelet transforms in two dimensions

In 2D, a two dimension scaling functions, 4(x,y), and

three 2D wavelets, jH(x,y), jV(x,y) and jD(x,y) are

required, as show in the following Eqs. (3)–(6):

4ðx; yÞ Z 4ðxÞ4ðyÞ (3)

jHðx; yÞ Z jðxÞ4ðyÞ (4)

jVðx; yÞ Z jðyÞ4ðxÞ (5)

jDðx; yÞ Z jðxÞjðyÞ (6)

These wavelets measure functional variations—intensity

or gray level variations for images—along different

directions: jH measures variations along columns (for

example, horizontal edges), jV responds to variations along

rows (like vertical edges), and jDV corresponds to

variations along diagonals.

Given the separable 2D scaling and wavelet functions,

extension of the 1D DWT to two dimensions is straightfor-

ward. We first define the scaled and translated basis

functions

4j;m;nðx; yÞ Z 2j=24ð2jx Km; 2jy KnÞ (7)
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ji
j;m;nðx; yÞ Z 2j=2jið2jx Km; 2jy KnÞ (8)

where index i identifies the directional wavelets in

Eqs. (4)–(6). Rather than an exponent, i is a superscript

that assumes the values H, V, and D. The discrete wavelet

transform of function f(x,y) of size M!N is then

w4ðj0;m; nÞ Z
1ffiffiffiffiffiffiffiffi
MN

p
XMK1

xZ0

XNK1

xZ0

f ðx; yÞ40;m;nðx; yÞ (9)

wi
jðj0;m; nÞ Z

1ffiffiffiffiffiffiffiffi
MN

p
XMK1

xZ0

XNK1

xZ0

f ðx; yÞji
jðx; yÞ (10)

As in the 1D case, j0 is an arbitrary staring scale and the

w4(j0,m,n) coefficients define an approximation of f(x,y) at

scale and the j0. The wi
jðj;m; nÞ coefficients add horizontal,

vertical and diagonal details for scales jRj0. We normally

let j0Z0 and select NZMZ2j so that jZ0,1,2.,JK1 and

m,nZ0,1,2,.2jK1.

The decomposition of approximation coefficients vectors

are obtained by convolving signal with the low-pass filter

Lo_D for approximation, and with the high-pass filter Hi_D

for detail, followed by dyadic decimation.

3.2. Adaptive neuro-fuzzy inference system—ANFIS

This system implements a first-order Sugeno-like fuzzy

inference system in a five-layer network structure (Jang,

Sun, & Mizutani, 1997). Back-propagation is used to learn

the antecedent membership functions, while least mean

squares algorithm determines the coefficients of the linear

combinations in the consequent of the rule. Here the min

and max functions in the fuzzy system are replaced by

differentiable functions. The rule base must be known in

advance, as ANFIS adjusts only the membership functions

of the antecedent and consequent parameters. ANFIS can be

easily implemented by flexible neural network simulators,

and hence is attractive for application purposes. The

structure of ANFIS ensures that each linguistic term is

represented by only one fuzzy set.
Fig. 3. Equivalent ANFIS architecture for a two-input
3.2.1. ANFIS structure

Consider a Sugeno type of fuzzy system having the

rule base
1.
firs
If x is A1 and y is B1, then f1Zp1xCq1yCr1
2.
 If x is A2 and y is B2, then f2Zp2xCq2yCr2

Here, p, q and r is the parameter set of the rule. Let the

degree membership functions of fuzzy sets Ai, Bi, iZ1,2, be

mAi, mBi.

In evaluating the rules, choose product for T-norm

(logical and).
1.
 Evaluating the rule premises results in this formula

where wi is the firing streanght of the rule.

i Z 1; 2; Wi Z mAimBiðyÞ (11)
2.
 Evaluating the implication and the rule consequences

gives

f ðx; yÞ Z
w1ðx; yÞf1ðx; yÞCw2ðx; yÞf2ðx; yÞ

w1ðx; yÞCw2ðx; yÞ
(12)

The function without arguments

f Z
w1f1 Cw2f2

w1 Cw2

(13)

The ratio of the ith rule’s firing strength to the sum of all

rules’ firing strengths is computed by the formula:

�wi Z
wi

w1 Cw2

(14)

Then can be written as:

f Z �w1f1 C �w2f2 (15)

Equivalent ANFIS architecture for a two-input first-order

Sugeno fuzzy model with two rules is shown in Fig. 3.

The output of the ith node in layer 1 is denoted as O1,i.

Layer 1. Every node i in this layer is an adaptive node

with a node function where x (or y) is the input to node I and
t-order Sugeno fuzzy model with two rules.



Fig. 5. Effect of the gray level thresholding of the mammogram (a) original

image (b) enhanced image.

Fig. 4. Preprocessing phase on an example image: (a) original image

(b) crop operation.
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Ai (or Bi) is a linguistic label associated with this node

O1;i Z mAiðxÞ; for i Z 1; 2 or

O1;i Z mBiK2ðxÞ; for i Z 3; 4
(16)

Layer 2. Every node in this layer is a fixed node labeled

II, whose output is the product of all the incoming signals:

O2;i Z wi Z mAiðxÞmBiðxÞ; i Z 1; 2 (17)

Each node output represents the firing strength of a rule.

Layer 3. Every node in this layer is a fixed node labeled

N. The ith node calculates the ratio of the ith rule’s firing

strength to the sum of all rules’ firing strengths:

O3;i Z �wi Z wi=ðw1 Cw2Þ; i Z 1; 2 (18)

Layer 4. Every node i in this layer is an adaptive node

with a node function

O4;i Z �wifi Z �wiðpix Cqiy CriÞ (19)

where �wi is a normalized firing strength from layer 3 and

{pi, qi, ri} is the parameter set of this node.

Layer 5. The signal node in this layer is a fixed node

labeled S which computes the over all output as the

summation of all incoming signals

Overall output; O5;1 Z
X

i

�wifi Z

P
i wifiP
i wi

(20)

4. The proposed system

The proposed system consists from three stages:

preprocessing, feature extraction and classification process.

Three techniques are used to enhance the mammograms:

image pruning, histogram equalization and global gray level

thresholding. Also, feature extraction consists of five steps:

image decomposition, coefficient extraction, normalization,

energy computation and coefficients reduction. In this

section, the proposed system prototype and block diagram

are introduced.

4.1. Preprocessing stage

Mammograms are images difficult to interpret, and a

preprocessing phase of images is necessary to improve the

quality of the images and make the feature extraction phase

more reliable. This section introduces the preprocessing

techniques before the feature extraction stage. The pre-

processing stage consists of two main phases, which are

used together. The first phase involves the removal of

background information and unwanted parts from the

image, while the second phase deals with enhancing the

contrast of suspicious areas in the image.

4.1.1. Image pruning

In the MIAS dataset, we had images that were very large

(has size 1024!1024) and almost 50% of the whole image
comprised of the background with a lot of noise. In this

phase, we applied a cropping operation to the image to

prune the images with the help of the crop operation in

Image Processing. Cropping cuts off the unwanted portions

of the image. Thus, almost all the background information

and most of the noise are eliminated. An example of

cropping that eliminates the label on the image and the black

background is given in Fig. 4(a,b). The new size of the

cropped images is (800!800).
4.1.2. Global gray level thresholding

With global thresholding, the pixels between a pre-

selected upper-threshold and lower-threshold of the gray

level histogram are retained and all others are set zero

(Gonzalez & Woods, 2002). To apply this technique, upper

and lower thresholds are determined according to be sure

that the region of interest pixels values are between these

thresholds. It returns the color values of specified image

pixels. In our case, we select the value (240) as upper-

threshold and (120) as lower-threshold. The effect of

applying this technique is shown in Fig. 5.
4.1.3. Histogram equalization

Histogram equalization method is a well-known gray

scale manipulation technique. In histogram equalization, the

goal is to map the input image to the output image so that



Fig. 6. Effect of histogram equalization: (a) original image and its

histogram (b) enhanced image and its histogram.
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gray values in the output image are uniformly distributed.

For most practical images, gray values need to be

redistributed. In histogram equalization we try to spread

gray values uniformly over the full gray-scale range. It

increases the contrast range in an image by increasing the

dynamic range of gray levels (Gonzalez, 2002). Fig. 6

shows the effect of the histogram equalization.
4.2. Features extraction

Features are extracted from the enhanced images based

on the wavelet decomposition process. These features are

passed to the classification stage. There are five processing

steps in the features extraction stage. Features, in our

system, are extracted from the coefficients that were

produced by the wavelet analysis decomposition. In this

section we discuss these steps.
4.2.1. Wavelet decomposition

In the first step, coefficients vector are extracted from the

wavelet decomposition of the image. The decomposition

operation returns the wavelet decomposition of the image at

predefined scale, using the wavelet name, as Daubechies.

Outputs are the decomposition vector C and the correspond-

ing bookkeeping matrix S. The decompsostion vector

consists from three detail coefficients vector, horizontal

detail coefficients, vertical detail coefficients and diagonal

detail coefficients, and one approximation are row vectors.

In this paper, the wavelet ‘db 4’ is used. The function

wmaxlev, in Matlab Wavelet toolbox, is applied to

determine the maximum useful wavelet decomposition

scale (N) that the image decomposed at this scale. It helps to

avoid unreasonable maximum scale values.

It returns the maximum scale decomposition of image of

size X using the wavelet named in the string wname.

The maximum scale decomposition of image is determined

according to number of scales that contain irredundant

information. In this thesis, we had images that were of size

(800!800).
4.2.2. Coefficients extraction

In this step, we extracted horizontal, diagonal, and

vertical details coefficients from the wavelet decomposition

structure [C,S]. It returns the horizontal H, vertical V, and

diagonal D detail coefficients vectors at scale N. These

vectors are extracted at each scale without scale one. We

ignore scale 1 coefficients because it contains high

frequency details and noise. These details are insignificant

information that will not affect the classification accuracy

and image quality. We compute the image quality after

zeroing coefficients in scale one and it was 99% of the

original image.

4.2.3. Normalization

In the third step, the coefficients vectors (H, V and D) for

scales two to five are normalized after extracted. The

normalization process is achieved by dividing each vector

by its maximum value. The results of this operation is that

all vectors values become less than or equal one. The

normalization process is used to simplify the coefficients

value.

4.2.4. Energy computation

We compute the energy for each vector by squaring

every element in the vector. The produced values are

considered as features for the classification process.

4.2.5. Features reduction

Since the image has a large size, it produces high number

of coefficients. Therefore, at the last phase, we reduce the

number of features by summing a predefined number of

energy values together. In the proposed techniques, we use

three approaches:
†
 low number of features by summing (1000) energy

values per feature;
†
 high number of feature by summing (100) energy values

per feature.

While in the locally processed image technique (35)

energy values per feature is used. The processing steps are

depicted in Algorithm 3.3. These features are used to build

the mammogram classifier. The sequence of processing

steps is shown in Fig. 7.
5. System structure

In this paper, three techniques for building a computer-

aided diagnosis system for classification of abnormality in

digital mammograms are proposed. The first is a neuro-fuzzy

classifier based on features extracted from the wavelet

analysis of the whole image. It is called globally processed

image. In the second, the region of interest is cropped from

the image then features are extracted from this region and

passed to the classifier. Therefore, we called this technique



Fig. 7. Feature extraction stage.
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the locally processed image. In Section 5.1, the prototype

and block diagram of the techniques are explained.

5.1. The neuro-fuzzy classifier based on features extraction

In the classification stage of the globally and locally

processed image, we apply the ANFIS technique. The

mammography systems block diagram is shown in Fig. 8.

We developed three approaches for the classification

stage that applied on the globally and locally processed

image techniques. These approaches and their block

diagrams are discussed in the next sections. In the

classification stage, ANFIS classifier in every phase is

trained at specific number of training set in each category.

5.2. Globally processed image vs locally processed image

In the globally processed image technique, we consider

the mammogram size, as it is provided in the MIAS dataset,

as the input to the system. On the other hand, in the locally
Fig. 8. Digital mammo
processed image technique, the region of interest is cropped

from the image and considered as input to the system. The

first approach is analogues to radiographers’ mission who

investigate the whole image. Fig. 9 shows the difference

between the two approaches.
5.3. Classification stage

In this stage, we build a classifier with three phases. In

the first one, the ANFIS classifier is applied to classify

mammograms into normal and abnormal categories. The

mammogram is considered abnormal if it contains tumor

(mass or microcalcification). If the result for evaluating the

tested mammogram is abnormal; it is entered to the next

classification stage to determine if it contains mass

or microcalcification tumor. Finally, the abnormal mammo-

gram is classified into malignant or benign in the third stage.

The result in each classifier is computed by evaluating the

tested mammogram features and then computing the
graphy system.



Fig. 9. Mammogram with mass (a) the unit of classification globally

processed image technique (b) the unit of classification in the locally

processed image technique (region of interest).

Table 1

Number of training and testing set

Category No. of

training set

Category No. of

training set

Normal 40 100 Abnormal 40 24

Mass 20 20 Microcalcification 18 6

Mass-benign 10 14 Mass-malignant 10 6

Microcalcification

benign

8 4 Microcalcification

malignant

8 4
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minimum error between the tested one and the output results

to each classifier. Fig. 10 explains this approach.
Table 2(a)

Classification rates for normal and abnormal categories
6. Experimentation results

In this section, many experiments are run based on the

three approaches that were introduced in the previous

chapter. Features are from levels (2–5) and different

combinations of these levels are investigated in all

simulations. The summation of 100 and 1000 coefficients

per feature are tested. The success average is computed, in

each experiment, by dividing the number of right classified

images at the number of all tested images. Each classifier is

trained at different number of iterations. The generalize bell

membership function ‘gbellmf’ and two membership rules

are used because they show better results compared with

other parameters. Furthermore, the best results achieved

at number of iterations (1000 and 5000). All experiments are

set with the same neuro-fuzzy parameter settings so there is

consistency across all experiments.

Scales Stage 1—classifcation rate

Normal (%) Abnormal (%) Average (%)

2–4 73 75 73.4

3–4 82 79.2 81.4

3 54 33 50
6.1. Hardware and software

The system was implemented in MatLab version 6.5. The

recognition training and tests were run on a modern standard

PC (1.8 GHz AMD processor, 128 MB of RAM) running

under Windows 2000.
Fig. 10. Classification stage block diagram.
6.2. Globally processed image

The simulation that are run based on 1000 coefficients

per feature has achieved poor results because of summing

1000 coefficients per feature, the variations between

abnormal and normal coefficients are hidden and become

difficult to distinguish. In the next simulation, experiments

are run based on the summation of (100) coefficients per

feature. The numbers of training and testing sets are shown

in Table 1. Table 2(a) shows the classification rate for

normal and abnormal categories while the simulation results

for mass and microcalcification categories are shown in

Table 2(b). The simulation results for tumor

severities (benign and malign) are shown in Table 2(c).

Results are improved in these experiments compared to the

previous approaches.
6.3. Locally processed image technique

The summation of 35 coefficients per feature is

considered. The same experimental parameters used in the

globally processed image approach are used in this

approach. Results show better performance than the first

approach. The numbers of training and testing sets are

shown in Table 3. Table 4(a) this shows the classification

rate for normal and abnormal categories. The simulation
Table 2(b)

Classification rates for mass and microcalcification categories

Scales Stage 2—classifcation rate

Mass (%) Microcalcifica-

tion (%)

Average (%)

2(d)–4 50 100 61

3–4 85 66.6 80.7

2–3 70 83.3 73



Table 4(b)

Classification rates for mass and microcalcification category

Scales Stage 2—classifcation rate

Mass (%) Microcalcification (%) Average (%)

2–3 87.5 83.3 85.4

2–4 71.4 66.7 64.6

2–5 81.25 66.7 77

Table 4(c)

Classification rates for mass and microcalcification severities

Scales Stage 3—abnormal severity

Mass Microcalcification

Benign

(%)

Malig-

nant (%)

Average

(%)

Benign

(%)

Malig-

nant (%)

Average

(%)

2–3 70 66.7 68.7 75 100 87.5

2–4 80 83.3 81.2 75 25 50

3–4 100 83.3 93.7 50 25 37.5

Table 4(a)

Classification rates for normal and abnormal categories

Scales Stage 1—classifcation rate

Normal (%) Abnormal (%) Average (%)

2–3 72 54.5 66.6

2–4 80 72.7 77.7

3–4 76 68.2 73.6

Table 2(c)

Classification rates for abnormal severities

Scales Stage 2—abnormal severity

Mass Microcalcification

Benign

(%)

Malig-

nant (%)

Average

(%)

Benign

(%)

Malig-

nant (%)

Average

(%)

2–3 64.3 83.4 70 50 100 75

2–4 71.4 83.4 75 50 75 62.5

2–5 85.7 66.7 80 25 75 50
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results for mass and microcalcification categories are shown

in Table 4(b). Finally, the experiment results for classifying

tumor severities (benign and malignant) are shown in

Table 4(c).

6.4. Performance comparison

The first approach tested is neuro-fuzzy classifiers with

the summation of 1000 coefficients per feature. This

approach does not achieve high performance. Then, the

summation of coefficients per feature is reduced to 100. The

classification rates are improved by this increasing of

features. Finally, the region of interest is extracted from

each mammogram and the summation of 35 coefficients per

feature is considered. Best results are achieved by building

classifiers based on DSSC approach architecture. This

approach achieves very well classification rate. Fig. 11

shows the average results of the neuro-fuzzy techniques and

approaches.
7. Conclusion

In this paper we have presented and discussed two

techniques for building a computer-aided diagnosing system

for classification of abnormality in digital mammograms. We

have investigated and analyzed wavelet transform for image

enhancement and features extraction, and the ANFIS

algorithm for classification process. This research has

shown that this method is very effective for the automatic

detection and classification of abnormalities in digital

mammogram. We have examined and compared several

algorithms for each technique. The evaluation of the system

is carried out on MIAS dataset. Our systems achieved very

promising results. Mammography is one of the best methods

in breast cancer detection, but in some cases, radiologists
Table 3

Number of training and testing set

Category No. of

training set

Category No. of

training set

Normal 90 50 Abnormal 42 22

Mass 24 16 Microcalcification 18 6

Mass-Benign 14 10 Mass-Malignant 10 6

Microcalcification

Benign

8 4 Microcalcification

Malignant

8 4
cannot detect tumors despite their experience. Such compu-

ter-aided methods like those presented in this paper could

assist medical stuff and improve the accuracy of detection.

The classification rate of microcalcification cases

achieves the best performance with features extracted

from levels 2–3 because microcalcification is small and

represented as high frequency information—details—which

embodied in the highest levels by wavelet decomposition.

On the other hand, the classification rate of mass cases

achieve the best performance with features extracted from

levels 3–4 because masses have larger sizes and more clear,

and it is represented by low frequency information which

embodied in the lowest levels by wavelet decomposition.
Fig. 11. The average results of the globally processed image technique with

1000 and 100 coefficients per feature, and locally processed image

technique.
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