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Abstract In Geodesy, the heights of points are normally
orthometric heights measured above the geoid (an equipoten-
tial surface created by the earth masses and rotation which
approximately coincides with the mean sea level) or the nor-
mal heights. It is necessary to transform the GNSS/GPS mea-
sured ellipsoidal heights (h) to classical physical heights
(orthometric H/Normal H). The total gravity potential of the
earth (W) is the summation of two components; gravitational
potential (V) by earth masses and the centrifugal potential (Ω).
The centrifugal potential is directly calculated, while the grav-
itational potential (V) needs to be modeled globally or locally
using given measurements. The global models of the earth
gravitational potential/gravity models (or so-called geoid
models) are mostly given using spherical harmonics (SH). A
modified approach of SH was defined to fit the use of SH for
regional gravity/potential modeling called spherical cap har-
monics (SCH). Due to the numerical difficulties of SCH, a
simplified approach of SCH is selected to be used for a com-
bined modeling of the earth potential using a variety of obser-
vations. This approach is called the Adjusted Spherical Cap
harmonics.

Keywords Earth potential (W) . Gravitational potential (V) .
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Earth gravity potential

There are two types of forces (accelerations) affecting a point
P on the Earth’s surface, see Fig. 1. These types are the grav-

itational acceleration g
*

1 due to the Earth’s mass M and the

centrifugal acceleration z* due to the Earth’s rotation. The total

acceleration g
*
, representing the actual gravity vector, is the

vector summation of both gravitational and centrifugal accel-
erations (Fan 2004):

g
*

¼ g
*

1þ z
*

ð1Þ

The total earth potential (W) as result of the earth gravity g
*

is the summation of potential related to the two acceleration
components. These potential components are the gravitational
potential V and the centrifugal potential Ω. This total gravity
potential is given by:

W ¼ V þΩ ð2Þ

As the angular velocity ω of the Earth around its minor axis
is 0.7292115×10−4s−1as defined by the GRS80 or WGS84
(Hofmann-Wellenhof andMoritz 2005), the centrifugal poten-
tial reads:

Ω ¼ 0:5ω2r2cosϕ ¼ 1

2
ω2 X 2 þ Y 2

� � ð3Þ

In Eq. (3), ϕ is spherical latitude of the point, r is the radial
distance between the point P and the center of the earth.

The centrifugal potential at a point is directly calculated. In
the other hand, the gravitational potential needs to be modeled
using variety of observations. Most of global gravity models
are using the spherical harmonics to model the gravitational
potential (V). Examples of these gravity models are
EGM2008, Eigen06c, and EGM96. The coefficients of these
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models are calculated using combinations of satellite gravity
observations, satellite altimetry, terrestrial gravity, airborne
gravity, marine gravity, and height fitting points. In terms of
SH, the potential (V) reads (Fan 2004):

V r; �ϕ;λ
� � ¼ GM

r

þGM

r

X∞
n ¼ 2

a

r

� �n Xn

m ¼ 0

C
−
nmcosmλþ S

−
nmsinmλÞP−nm sinϕ

−Þ
��

ð4Þ
In Eq. (4), GM is the gravitational constant of the earth.

Cnm and Snm are the fully normalized spherical harmonic co-
efficients. The values of m and n are the integer degree and
order. r; �ϕ;λ

� �
are the spherical coordinates of the point.

While P −
nm sin�ϕ
� �

is the fully normalized Legendre function.

Pnm sinϕ
� �

can be calculated by the recursive formulas (5),

with the abbreviations t ¼ sinϕ and u ¼ cosϕ (Holmes and
Featherstone 2002) as follows:

Pn;m ¼ anmtPn−1;m−bnmPn−2;m ð5aÞ

anm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n−1ð Þ 2nþ 1ð Þ
n−mð Þ nþ mð Þ

s
ð5bÞ

bnm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1ð Þ nþ m−1ð Þ n−m−1ð Þ

n−mð Þ nþ mð Þ 2n−3ð Þ

s
ð5cÞ

P0;0 ¼ 1 ; P1;0 ¼
ffiffiffi
3

p
t ;P1;1 ¼

ffiffiffi
3

p
u ð5dÞ

If n=m, then Pn;m reads:

Pm;m ¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mþ 1

2m

r
Pm − 1; m − 1 ð5eÞ

Spherical Cap harmonics

Themethod of Spherical Cap Harmonics (SCH) (Snm
′ ,Cnm

¢ ) for
modeling the gravity potential was introduced by Haines
(1985a). This method is suitable to be used for modeling the
gravitational potential V in a local cap area covering a region
of interest on the sphere instead of the whole sphere, see
Fig. 2. The position of points in the cap region is described
by a spherical coordinates (α,θ,r) related to the cap pole.
Here,α is the azimuth of the spherical line from the cap pole

λ0;ϕ0;R to the point.θ is the spherical distance from the cap

pole (λ0;ϕ0;R) to point P. The relationship between global
coordinates and local coordinates reads (Younis et al 2011):

tanα ¼ cosϕsin λ−λ0ð Þ
sinϕcosϕ0−cosϕsinϕ0cos λ−λ0ð Þ

ð6aÞ

cosθ ¼ sinϕsinϕ0−cosφcosφ0cos λ−λ0ð Þ ð6bÞ

The gravitational potential V in terms of SCH for a point P
(r,α,θ)within the cap reads (Haines 1988):

V r;α; θð Þ ¼ GM

r

Xkmax

k¼0

R

r

� �n kð ÞXk

m¼0

C
0
nmcosmαþ S

0
nmsinmα

� �
Pn kð Þ;m cosθð Þ

ð7Þ

Fig. 2 Spherical cap area definition (Younis et al 2011)

Fig. 1 The gravitational and centrifugal accelerations of the Earth
(Younis 2013)

8682 Arab J Geosci (2015) 8:8681–8685

Author's personal copy



In Eq. (7), the SCH have an integer order m and a real
degree n(k). The real degree n(k) is the root of the Legendre
functions according to the orthogonality conditions (8a) and
(8b) (Haines 1985b).

dPn kð Þ;m cosθð Þ
dθ

				
θ0

¼ 0 fork−m ¼ even ð8aÞ

Pn kð Þ;m cosθð Þ		
θ0
¼ 0 for k−m ¼ odd ð8bÞ

In Eq. (8a and 8b), k is the integer degree andm is the order.
θ0 is the angular spherical distance from the pole of the cap
area to the boundary of the area of interest.

The Legendre function with the real degree n(k) and the
integer m is not commonly available in the geodetic and the
geophysical literature, as it is in the case of integer degree and
order in Eq. (5a) to (5e). It is defined by an infinite power
series, which must be elaborated iteratively introducing cer-
tain approximations (Haines 1988); these will introduce addi-
tional errors, otherwise, complex algorithms must be used
(Oliver and Smith 1983). The search for the real degrees
n(k) according to the conditions in Eq. (8a and 8b) must be
performed. The algorithms to search for the roots of the Le-
gendre functions are non-direct or iterative resulting on addi-
tional errors. These algorithms are also time consuming (De
Santis et al. 1999). Furthermore, the calculations of Legendre
functions and their derivatives with non-integer degrees are
again a time consuming iterative process (Schneid 2006).

Adjusted spherical cap harmonics

The Adjusted Spherical Cap Harmonics is a modified ap-
proach of SCH that was introduced by De Santis (1992). Its
aim is to avoid the iterative and approximate methods in SCH.
This approach uses the well-known integer order and degree
Legendre functions. The principle enlarges the cap area in
Fig. 2 to a hemisphere using Eq. (9a) to (9d), where the pole
of the hemisphere is also the pole of the cap itself (Franceschi
and De Santis 1994). The scaling of the spherical cap coordi-
nates (α,θ,r) to a hemisphere (adjusted cap) (α ′,θ ′,r ′) reads

s ¼ 0:5π
θ0

ð9aÞ

ϑ ¼ s θ ð9bÞ

α0 ¼ α ð9cÞ

r0 ¼ r ð9dÞ

According to the ASCH definition in Eq. (9), The new
formula is similar to the conventional SH model in Eq. (4).
Here, Legendre function of integer degree and order is used.
Equation (7) is then modified to get the potential (V) using
Eq. (10) (De Santis 1992).

V r;α;ϑð Þ ¼ GM

r

Xkmax

k¼0

R

r

� �n kð ÞXk

m¼0

C
0
knmcosmαþ S

0
kmsinmα

� �
Pkm cosϑð Þ

ð10Þ

The Legendre function Pkm cosϑð Þof integer degree k and
order m in Eq. (5) is used. In Eq. (10), n is a real number. It can
be calculated as function of k (n(k)). n(k) reads according to
De Santis and Torta (1997):

n kð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2k k þ 1ð Þ þ 0:25

p
− 0:5 ð11Þ

In Eq. (11), s is the scale factor computed from Eq. (9a), k is
the degree parameter in the ASCHmodel. For low degree and
order ASCH models, there is an approximate formula of
Eq. (11) that may be used, following De Santis et al. (1997)
reading:

n kð Þ ¼ s k þ 0:5ð Þ ð12Þ

Compared to SCH in Eq. (7), the ASCH in Eq. (10) has the
following advantages: First, the well-known Legendre func-
tion with its recursive formulas is used. Second, there is no
need to search for the roots n(k) of Legendre functions and
their derivatives according to the conditions in Eq. (8a) and
(8a), which is time consuming (De Santis 1992).

Results of a combined solution

In the state of Baden–Württemberg in Germany, 15,000 ter-
restrial gravity points were available. These points are as-
sumed to have measurement accuracy of 0.01 mGal
(1 mGal=1×10−5ms−2) (Torge 2001). The radial component
of gravity measurements is used. While the radial component
of the gravity (gr) is the first radial derivative of the gravita-
tional potential (V) (Hofmann-Wellenhof and Moritz 2005):

gr ¼
∂V
∂r

ð13Þ

In addition to the gravity data, 130 points were used as
height fitting points. These have known normal/orthometric
heights (H) (physical height). Their heights above the ellip-
soid (h) were measured using GNSS. Their estimated mea-
surement accuracy is 0.01–0.02 m. The height anomaly (ζ)
is the difference between both heights (ζ=hP−HN). The geoid
height (N) is the difference between the ellipsoidal and the
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orthometric heights (N=hP−H). These anomalies can be
transformed to potential values using the ellipsoidal normal
potential (U) and the ellipsoidal normal gravity (γ). The ellip-
soidal potential has two components, the gravitational poten-
tial (V’) and the centrifugal potential (Ω). The relation be-
tween height anomaly (ζ)/geoid height (N) and potential read
(Flury and Rummel 2009):

ζ ¼ T p

γq
ð14aÞ

N ¼ ζ þ g þ γ

γ
H ð14bÞ

In Eq. (14a and 14b), γq is the ellipsoidal normal gravity at
the height of (h=HN), g and γ are the mean gravity and normal
gravity of the point, respectively. TP is the disturbing potential
at the point, which reads (Torge 2001):

TP ¼ V P þΩPð Þ− V
0
P þΩP

� �
¼ W P−UP ð15Þ

Substituting Eq. (14) in Eq. (15), the potential of the height
fitting point reads (Younis 2013):

V P ¼ W P−Ω ¼ UP þ γqζ−Ω ð16Þ

The calculation of the ASCH coefficients (Snm
′ ,Cnm

′ ) in a
least squares would need higher degree and order to achieve
an ASCH model that represents the gravity measurement ac-
curacy of 0.01 mGal or fitting points accuracy of 0.02 m. Here,
we have to consider that having amaximumdegree and order n
of the model will have (n+1)2 coefficients (Snm

′ ,Cnm
′ ). To get

more observations, global gravity models can be used as addi-
tional observations. The observations can be used directly as
potential values (V) in 3D grid in the cap area or as a trans-
formed model in the cap area. Here, the transformed coeffi-
cients with stochastic model are used as direct observations
(Younis et al 2011).

Table 1 The residuals of the combined ASCH solution in Baden–
Württemberg with maximum degree of 300

Parameter Gravity points Height fitting points

Number of points 13,671 129

RMSE 0.0032 mGal 0.8 cm

Maximum residual 0.032 mGal 3.3 cm

Minimum residual 0.041 mGal -2.4 cm

Fig. 3 The difference between
height anomalies using ASCH
combined model and the 1 cm-
DFHRS-DB
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The final solution was applied with a maximum degree and
order of 300. The number of unknowns/coefficients (Snm

′ ,Cnm
′ )

were 90,601. The maximum absolute residuals in gravity data
was less than 0.05 mGal. The residuals of the height fitting
points were less than 4 cm, see Table 1.

The height anomalies using Eq. (14) were calculated for a
grid of points using the final model and the compared to the
official anomalies from the height reference surface model of
Baden–Württemberg (DFHRS-DB) as across validation of the
model. The difference was all over the state in the range of
(−2.5–3 cm). The differences are shown in Fig. 3.

Conclusions

The potential of the earth could be modeled in a local area
using ASCH. The coefficients (Snm

′ ,Cnm
′ ) of the Eq. (10) could

be calculated using least squares solutions. This solution was
applied using a combination of different data types as obser-
vations. These data are terrestrial gravity data, height fitting
points, and global gravity models. Other types of observations
can be used like deflections of vertical measured by astronom-
ical methods and Zenith cameras as introduced and derived by
Younis (2013). The use of ASCH enables to calculate the
potential (V) at a given point in the cap area or any of its
derived quantities; gravity, gravity anomalies, gravity distur-
bances, geoid heights, height anomalies, and the deflections of
the vertical. These quantities can be estimated with a high
accuracy as it was proofed in the example of state of Baden–
Württemberg in Germany. These values are highly needed in
geodetic, geophysical, and geological applications.

The use of ASCHmodeling in Eq. (10) is applied similar to
the conventional global SH in Eq. (4). Here, the Legendre
function of integer degree and order is used. In this way, the
problems and difficulties of the SCH in Eq. (7) and the bound-
ary conditions in Eq. (8) to calculate the Legendre function
with the real degree and integer order and their roots are
avoided. In the other side, problems and instability of the
calculations appear near the exterior border of the cap. That
is because there are no available observations outside the cap,
but all observations are completely inside the cap. A simple
solution is applied by using a cap area larger the area of inter-
est. For example, the state of Baden–Württemberg needs a cap

opening angle of θ0=1.425
∘. Instead, a cap opening angle of

θ0=1.7
∘to avoid the problem near the boundary.
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