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Tutorial Map 

Title T Name 
Session0: Syllabus and overview 0 Aldasht 
Sesson1: Introduction to SOA 2 Aldasht 
Session2: XML namespaces & XML schema 2 Aldasht 
Session 3: Xpath & Xquery 4  Romi 
Session4: REST web services 3 M. Melhem 
Session5: Lab2: Practice on REST 3 M. Melhem 
Session 6: SOAP 2 Aldasht 
Session 7: WSDL 3 Aldasht 
Session8: Lab 3: WSDL practice 3 Aldasht 
Session9: ESB 4 Aldasht 
Session10: Lab4: Practice on ESB 4 Aldasht 
Session11: integration patterns 4 M. Melhem 
Session12: Lab5: integration patterns 4 M. Melhem 
Session13: BPEL 3 Aldasht 
Session14: Lab6: Practice on BPEL 3 Aldasht 
Session15: UDDI 2 Aldasht 

Intended Learning Objectives 
A: Knowledge and Understanding  

3a1: Demonstrate knowledge of the fundamentals of middleware. 
3a2: Describe the concept behind web service protocols. 
3a3: Explain the concept of service oriented architecture. 
3a4: Explain the concept of enterprise service bus.  
3a5: Understanding WSDL service interfaces in UDDI. 

B: Intellectual Skills 
3b1: Design, develop, and deploy applications based on Service 
Oriented Architecture (SOA). 
3b2: use Business Process Execution Language (BPEL). 
3b3: using WSDL to describe web services. 

C: Professional and Practical Skills 
3c1: setup, Invoke, and deploy web services using integrated 
development environment. 
3c2: construct and use REST and SOAP messages for web 
services communication. 

D: General and Transferable Skills 
d1: Working with team. 
d2: Presenting and defending ideas. 
d3: Use of creativity and innovation in problem solving. 
d4:  Develop communication skills and logical reasoning abilities. 



Session Outlines 

 XML Overview 
 XML document and Grammars 

 XML information set 
 XML Namespaces 
 XML Schema 
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Overview 

• XML is a markup language, like HTML, consists of markup 
and text. 

• Markup is composed of individual tags. 
• Both HTML and XML are languages for exchanging data, but 

there is a difference between them. 
• See next slide for and initial XML example. 
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Valid and well-formed XML document 

• Valid XML document is one that comply with the constraints 
expressed through a given grammar. 

• A well-formed XML document is one that comply with XML 
syntax expressed in the XML standard. 
– But not associated with a distinct grammar. 
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XML grammars 

• Specified by two dominant concepts: 
– XML schema and Document Type Definitions (DTDs) 

• XML schema is powerful to express structural XML document 
constraints than DTDs. 

• XML document complying with a DTD or a schema is called 
and XML instance or instance document. 

• See next slide, for the relationship between XML document 
grammar and XML instances resulting from applying the 
grammar. 
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XML document grammar and valid XML instances, [2] 
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XML Schema, DTD 
(XML Document Grammar) 

XML Instance, 
Instance Document XML Instance, 

Instance Document XML Instance, 
Instance Document XML Instance, 

Instance Document Valid 
Documents 



XML processor 

• Applications are interested in the 
structural information and the 
XML instance, when XML is used 
to exchange data between them. 

• XML processor, e.g. SOAP server, 
must validate the XML documents 
against the XML grammar and 
pass the XML instance structure 
and  payload to the application, e.g. 
SOAP message. 

XML Application 

XML Processor 

XML Instance 
XML Instance 

XML Instance 

XML Schema, 
DTD 

A validating XML processor, [2] 
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XML information set 

• XML info set, provides a set of abstract data definitions to 
represent the information in a well-formed XML document. 
– Each well-formed XML document has an associated info set. 

• The information set consists of information items. 
– Each item describes an XML document part through a set of named 

properties 
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Information item types of an XML information set, [2] 

document 

document 
type 

declaration 
element 

Character 
data attribute 

Property 
children 

Property 
attribute 
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Information item types of an XML information set 

• document, consists at least of one mandatory root element, 
and: 
– XML version info (optional) & encoding info for the document. These are 

called XML declaration. 
– Document type declaration: contains markup declarations provide the 

grammar. 
– These together is called prolog. 
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Information item types of an XML information set, 
cont. 

• element: identified by a name and has a set of associated 
attributes. 

• attribute: consists of a name and an associated value. 
• character data: is an information item comprises the 

payload of an XML document. 
• comment: element and document information items may 

contain comments. 
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Information item types examples [2] 

• Comment info item “may span multiple lines”: 
– <!– This is a comment --> 

• Element info item: 
– element may have no content e.g.: <address/> or 
<address></address> 

 
<address> 
 <name>Mr Ahmad Ahmad</name> 
 <street>11 Alquds Street</street> 
 <city>Ramallah</city> 
 <postal-code>100</postal-code> 
 <country>Palestine</country> 
</address> 
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Information item types examples [2] 

• An attribute is specified in the start tag of an element and 
consists of a name-value pair. 
– This example links an attribute named targetAddress with the 

“PS” to the address elements: 
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<address targetAddress=“PS”> 
 <name>Mr Ahmad Ahmad</name> 
 <street>11 Alquds Street</street> 
 <city>Ramallah</city> 
 <postal-code>100</postal-code> 
 <country>Palestine</country> 
</address> 



Information item types examples [2] 

• Document info item: look to the following prolog: 
<?xml version=“1.0” encoding=UTF-16”?> 
<! DOCTYPE address [<!– DTDs go here --> ]> 
<address> <!– XML instances go here --> </address> 

• Document type declaration identified by keyword DOCTYPE 
must be identical to the corresponding root element 
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Information item types examples 

• element content: if declared to be character data, this is 
indicated by the term #PCDATA. “Parsed Character Data” 
– Thus, a valid declaration would be: 
<?xml version=“1.0” encoding=UTF-16”?> 
<! DOCTYPE address [<!ELEMENT address 
(#PCDATA)> ]> 

• In an XML instance the address element could appear as 
follows: 
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<address> 
 Mr Ahmad Ahmad 
 11 Alquds Street 
 Ramallah 
 100 
 Palestine 
</address> 



Element content and mixed content 

• We can combine elements and build nested element 
declarations. 

• DTD syntax provides 5 symbols used to describe manners of 
combination. 

• Assume e1, e2 and e3 to be elements: 
– e1? : ? means none or one element e1. 

– e1* : * means none, one or more element e1. 

– e1+ : + means one or more than one element e1. 

– e1, e2, e3 : , means list of element are chained. 
– e1 | e2 : means e1 or e2 can be chosen but not both. 
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address element can have this structure, [2] 
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Source, [2] 

address 

street city Postal-code 

title First-name 

1 1 n 

1 

Mandatory 

Optional 

Containment 
Relationship 

name country 

1 1 

Last-name 

1 0..1 



A DTD describing the address structure, [2] 
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<?xml version=“1.0” encoding=“UTF-16”?> 
<!DOCTYPE address [ 
<!ELEMENT address (name+, street, city, postal-code, 
country)> 
<!ELEMENT name (title?, first-name, last-name)> 
<!ELEMENT title (#PCDATA)> 
<!ELEMENT first-name (#PCDATA)> 
<!ELEMENT last-name (#PCDATA)> 
<!ELEMENT street (#PCDATA)> 
<!ELEMENT city (#PCDATA)> 
<!ELEMENT postal-code(#PCDATA)> 
<!ELEMENT country(#PCDATA)> 
]> 
 



An instance document could be as shown here 
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<address> 
 <name> 
    <title selectTitle=“Mr”/> 
    <first-name>Ahmad M.</first-name> 
    <last-name>Ahmad</last-name> 
 </name> 
 <street>11 Alquds Street</street> 
 <city>Ramallah</city> 
 <postal-code>100</postal-code> 
 <country>Palestine</country> 
</address> 



A valid address XML instance 
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<address targetAddress=“PS”> 
 <name> 
    <title selectTitle=“Mr”/> 
    <first-name>Ahmad M.</first-name> 
    <last-name>Ahmad</last-name> 
 </name> 
 <street>11 Alquds Street</street> 
 <city>Ramallah</city> 
 <postal-code>100</postal-code> 
 <country>Palestine</country> 
</address> 



Session Outlines 

 XML Overview 
 XML document and Grammars 

 XML information set 
 XML Namespaces 
 XML Schema 
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XML Namespaces 

• XML processor must be able to differentiate our XML 
address instances from someone else’s address 
instances. 
– Identification using element type names is not sufficient. 

• Some global naming mechanism is required. 
• XML namespaces ensure that XML definitions are 

unique. 
• Using XML namespaces, XML elements can be 

distinguished, even if they have identical names. 



XML Namespaces concept 

• An XML namespace comprises a collection of element 
type names & attribute names. 

• An XML namespace, is identified by a URI reference. 
• The collection of element type names & attribute names, 

belonging to the same namespace are identified by the 
namespace URI reference. 

• See next slide for namespaces example! 



Identical markup belonging to different namespaces 

<member> 
<member-id> 

<member-since> 
<name> 

<address> 

<employee-id> 
<dept-number> 

<name> 
<address> 

<order> 
<order-number> 
<order-date> 

<name> 
<address> 

http://companyx.com/ns/employees 

http://companyx.com/ns/orders 

http://clubx.com/ns/members 

Source, [2], with modifications 



Qualified names 

• A name from a namespace appears in a document as a 
qualified name (Qname). 

• A Qname consists of a prefix and a local part. 
• e.g. cX is the prefix and address is the local part: 
 cX:address 

• Prefix selects the namespace and local part take care 
of the naming within the scope of the namespace. 



Declaring XML namespaces 

• Done through the reserved namespace attribute xmlns. 
• Also, can be done through xmlns: followed by a name 

without colons. 
• The value of the namespace attribute is the URI reference. 
• Linking a namespace to a prefix, e.g.: 
 <address xmlns:cX=“http://companyx.com/ns/employees”> 

– cX is the prefix for all qualified names belonging to the namespace 

• Using a default namespace, e.g.: 
 <address xmlns=“http://companyx.com/ns/employees”> 

– All subordinate elements are in the same default namespace, unless a 
subordinate element overwrites the default namespace. 

 



Declaring a namespace for the address document, 
using prefix namespace attribute 

<cX:address xmlns:cX=“http://companyx.com/ns/employees” 
    targetAddress=“PS”> 
 <cX:name> 
    <cX:title selectTitle=“Mr”/> 
    <cX:first-name>Ahmad M.</cX:first-name> 
    <cX:last-name>Ahmad</cX:last-name> 
 </cX:name> 
 <cX:street>11 Alquds Street</cX:street> 
 <cX:city>Ramallah</cX:city> 
 <cX:postal-code>100</cX:postal-code> 
 <cX:country>Palestine</cX:country> 
</cX:address> 



Using a default namespace name declaration 

<address xmlns=“http://companyx.com/ns/employees” 
    targetAddress=“PS”> 
 <name> 
    <title selectTitle=“Mr”/> 
    <first-name>Ahmad M.</first-name> 
    <last-name>Ahmad</last-name> 
 </name> 
 <street>11 Alquds Street</street> 
 <city>Ramallah</city> 
 <postal-code>100</postal-code> 
 <country>Palestine</country> 
</address> 



An example for an entry of the phone book 
maintained by the company 

<phonebook xmlns=“http://companyx.com/ns/phonebook” 
 <location>Company X Office</location> 
 <roomNumber>03.02</roomNumber> 
 <!–- Extension --> 
 <officePhone>*2911111</officePhone> 
</phoneBook> 



XML namespaces and attributes 

• Default namespaces are not applied to attributes that do not 
have a prefix. 

• The following example is a valid XML instance. 
– Although the local part of the location element attribute is Identical. 

<!-- Declare a namespace prefix 
<phoneOwner xmlns:phone=“http://companyx.com/ns/phonebook” 
  <!-- for illustrative purposes, not a good XML practice. --> 
  <phonebook xmlns=“http://companyx.com/ns/phonebook” 
 <location department=“HR” phone:department=“HR”> 
   Company X Office</location> 
  </phoneBook> 
</phoneOwner> 
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XML schema 

• If we want to insert the roomNumber element to the phone 
book as follows: 
– A roomNumber value must start with 2 digits describing the building 

floor, followed by a dot. 
– Then, a 2 more digits to represent the room number on that floor. 

• No way to specify this pattern through a DTD. 
• XML schema allows us to express such a constraints. 
• Various data types can be defined with XML schema and new 

data types can be derived from existing ones. 



An initial XML schema example 

<simpleType name=“roomNumberType”> 
   <restriction base=“string”> 
 <pattern value=“[0-9]{2}\.[0-9]{2}”/> 
   </restriction> 
</simpleType> 

<element name=“roomNumber” type=“roomNumberType”/> 

Type definition 

Element declaration 

The element named  
roomNumber is of type  
roomNumberType 

It is a simple type 
based on XML schema 
built-in type “string” 
restricting the string to 
a distinct string pattern 
(the string pattern is 
also called a facet) 

Source, [2] 



The structure of an XML schema definition 

• An XML Schema Definition (XSD) is itself an XML instance. 
– An advantage of the XML schema. 

• The top element of the xsd is name schema. 
• The XML namespace for a schema definition is 
http://www.w3.org/2001/XMLSchema, linked to 
prefix xsd. Start a schema definition as: 

 <xsd:schema 

      xmlns:xsd=“http://www.w3.org/2001/XMLSchema”> 
 .. .. </xsd:schema> 



Some of subordinate element types of schema 
element. 

• element: declares an element used in an XML instance. 
• attribute: declares an attribute used in an XML instance. 
• simpleType: this element defines a simple type, which is an 

XML schema built-in type. 
• complexType: this definition typically contains XML 

elements and carry attributes, all declared within the type 
definition. 



XML schema containment structure of a simple 
type definition 

• Only one exclusive element must be contained in the superior 
element. 

simpleType 

restriction list union 

“an approppriate  
facet” 

“an approppriate  
facet” 

“an approppriate  
facet” 

“an approppriate  
facet” 

“an approppriate  
facet” 

“an approppriate  
facet” 

0..1 0..1 
0..1 

n n n 

6 applicable facets 2 applicable facets 12 applicable facets 

Mandatory 

Optional 

Exclusive 

Containment 
Relationship 

Source, [2] 



Attribute links between simple type XML schema 
elements 

Source, [2] 

restriction 

list 

union 

XML Schema 
Built-in type 

“a simple 
type” 

base 

itemType 

base 

itemType 

memberTypes memberTypes 

Linked-to 
Relationship 



A type definition for the title element 

Global elements may appear at the top level of an XML 
instance: 

<xsd: simpleType name=“titleTypeUK”> 
   <xsd:restriction base=“xsd:string”> 
 <xsd:enumeration value=“Miss”/> 
 <xsd:enumeration value=“Mr”/> 
 <xsd:enumeration value=“Mrs”/> 
 <xsd:enumeration value=“Ms”/> 
   </xsd:restriction> 
</xsd:simpleType> 

<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”> 
 . . . 
 <!–- “titleTypeUK” definition goes here -->  
 <xsd:element name=“title” type=“tns:titleTypeUK”/> 
</xsd:schema> 



A type definition for the first-name element 

minLength and maxLength 

<xsd: simpleType name=“firstNameType”> 
   <xsd:restriction base=“xsd:string”> 
 <xsd:pattern value=“[A-Z][a-z]*”/> 
   </xsd:restriction> 
</xsd:simpleType> 

<xsd: simpleType name=“firstNameType”> 
   <xsd:restriction base=“xsd:string”> 
 <xsd:pattern value=“[A-Z][a-z]*”/> 
 <xsd:minLength value=“2”/> 
 <xsd:maxLength value=“20”/> 
   </xsd:restriction> 
</xsd:simpleType> 



XML schema containment structure of a complex 
type definition 

• Only one exclusive element must be contained in the superior 
element. And an arbitrary number of attribute. 

Source, [2] 

complexType 

sequence choice all 

element element 

0..1 0..1 n 

n n n 

Mandatory 

Optional 

Exclusive 

Containment 
Relationship 

Attribute/ 
Attribute 

group 
group 

0..1 0..1 

element element element element element element 

n 



Complex type definitions 

• The following XML schema presents a group named 
nameGroup that is referred to within a complex type 
definition, [2]. 

<!-- this is the named group definition. 
<xsd:group name=“nameGroup”> 
  <xsd:sequence> 
    <!-- Here is the type definition of a name --> 
  </xsd:sequence> 
</xsd:group> 
<!-- Here the named group if referred to within a complex type. --> 
<xsd:complexType name=“addressType”> 
 <xsd:sequence> 
    <!-- Here is the reference to the above defined group --> 
    <xsd:group ref=“nameGroup”/> 
 . . .  
  </xsd:sequence> 
</xsd:complexType> 



XML schema containment structure for deriving 
types by extension 

• simpleContent and complexContent elements must be 
superior to either restriction or extension elements. 

Source, [2] 

complexType 

Simple 
Content 

Complex 
Content 

Mandatory 

Exclusive 

Containment 
Relationship 

0..1 0..1 

restriction extension restriction extension 

0..1 0..1 0..1 0..1 



Linking XML schemas to XML instances 

• schemaLocation attribute contains value pairs: 
– The first value is a namespace. 
– The second, provides a link to the schema used for validating elements and 

attributes contained in this namespace. 



Linking schemas to instances 

• To link the address document instance to the address schema 
via the schemaLocation attribute, we need to add this 
attribute to the instance document. 

Example 

<cX:address 
  xmlns:cX=“http://companyx.com/ns/employees” 
  xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance 
  xsi:schemaLocation=“http://companyx.com/ns/employees 
     http://localhost/address.xsd”> 
 . . . 
   <!-- the first URI defines the namespace for elements and   --> 
   <!-- attributes in this document, for which the second URI  --> 
   <!-- points to the schema location of the schema that       --> 
   <!-- can be used to validate these elements and attributes  --> 
</cX:address> 



Summary 

 
During this session we have explained with examples the 

following: 
1. XML namespaces 
2. XML schema 

Next session will cover Xpath and Xquery. 
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