
1 PalGov © 2011

 أكاديمية الحكومة الإلكترونية الفلسطينية
The Palestinian eGovernment Academy

www.egovacademy.ps

Tutorial III:
Process Integration and Service Oriented Architectures

Session 2
Overview XML NS and Schema

Prepared By

Mohammed Aldasht

Reviewed by
Prof. Marco Ronchetti and Prof. Paolo Bouquet, Trento University, Italy

2 PalGov © 2011

About

This tutorial is part of the PalGov project, funded by the TEMPUS IV program of the
Commission of the European Communities, grant agreement 511159-TEMPUS-1-
2010-1-PS-TEMPUS-JPHES. The project website: www.egovacademy.ps

University of Trento, Italy

University of Namur, Belgium

Vrije Universiteit Brussel, Belgium

TrueTrust, UK

Birzeit University, Palestine
(Coordinator)

Palestine Polytechnic University, Palestine

Palestine Technical University, Palestine Université de Savoie, France

Ministry of Local Government, Palestine

Ministry of Telecom and IT, Palestine

Ministry of Interior, Palestine

Project Consortium:

Coordinator:
Dr. Mustafa Jarrar
Birzeit University, P.O.Box 14- Birzeit, Palestine
Telfax:+972 2 2982935 mjarrar@birzeit.edu

http://www.egovacademy.ps/�

3 PalGov © 2011

© Copyright Notes

Everyone is encouraged to use this material, or part of it, but should properly
cite the project (logo and website), and the author of that part.

No part of this tutorial may be reproduced or modified in any form or by any
means, without prior written permission from the project, who have the full
copyrights on the material.

Attribution-NonCommercial-ShareAlike
CC-BY-NC-SA

This license lets others remix, tweak, and build upon your work non-
commercially, as long as they credit you and license their new creations
under the identical terms.

Tutorial Map

Title T Name
Session0: Syllabus and overview 0 Aldasht
Sesson1: Introduction to SOA 2 Aldasht
Session2: XML namespaces & XML schema 2 Aldasht
Session 3: Xpath & Xquery 4 Romi
Session4: REST web services 3 M. Melhem
Session5: Lab2: Practice on REST 3 M. Melhem
Session 6: SOAP 2 Aldasht
Session 7: WSDL 3 Aldasht
Session8: Lab 3: WSDL practice 3 Aldasht
Session9: ESB 4 Aldasht
Session10: Lab4: Practice on ESB 4 Aldasht
Session11: integration patterns 4 M. Melhem
Session12: Lab5: integration patterns 4 M. Melhem
Session13: BPEL 3 Aldasht
Session14: Lab6: Practice on BPEL 3 Aldasht
Session15: UDDI 2 Aldasht

Intended Learning Objectives
A: Knowledge and Understanding

3a1: Demonstrate knowledge of the fundamentals of middleware.
3a2: Describe the concept behind web service protocols.
3a3: Explain the concept of service oriented architecture.
3a4: Explain the concept of enterprise service bus.
3a5: Understanding WSDL service interfaces in UDDI.

B: Intellectual Skills
3b1: Design, develop, and deploy applications based on Service
Oriented Architecture (SOA).
3b2: use Business Process Execution Language (BPEL).
3b3: using WSDL to describe web services.

C: Professional and Practical Skills
3c1: setup, Invoke, and deploy web services using integrated
development environment.
3c2: construct and use REST and SOAP messages for web
services communication.

D: General and Transferable Skills
d1: Working with team.
d2: Presenting and defending ideas.
d3: Use of creativity and innovation in problem solving.
d4: Develop communication skills and logical reasoning abilities.

Session Outlines

 XML Overview
 XML document and Grammars

 XML information set
 XML Namespaces
 XML Schema

5 e-Government Lifelong Learning

Overview

• XML is a markup language, like HTML, consists of markup
and text.

• Markup is composed of individual tags.
• Both HTML and XML are languages for exchanging data, but

there is a difference between them.
• See next slide for and initial XML example.

6 e-Government Lifelong Learning

Valid and well-formed XML document

• Valid XML document is one that comply with the constraints
expressed through a given grammar.

• A well-formed XML document is one that comply with XML
syntax expressed in the XML standard.
– But not associated with a distinct grammar.

7 e-Government Lifelong Learning

XML grammars

• Specified by two dominant concepts:
– XML schema and Document Type Definitions (DTDs)

• XML schema is powerful to express structural XML document
constraints than DTDs.

• XML document complying with a DTD or a schema is called
and XML instance or instance document.

• See next slide, for the relationship between XML document
grammar and XML instances resulting from applying the
grammar.

8 e-Government Lifelong Learning

XML document grammar and valid XML instances, [2]

9 e-Government Lifelong Learning

XML Schema, DTD
(XML Document Grammar)

XML Instance,
Instance Document XML Instance,

Instance Document XML Instance,
Instance Document XML Instance,

Instance Document Valid
Documents

XML processor

• Applications are interested in the
structural information and the
XML instance, when XML is used
to exchange data between them.

• XML processor, e.g. SOAP server,
must validate the XML documents
against the XML grammar and
pass the XML instance structure
and payload to the application, e.g.
SOAP message.

XML Application

XML Processor

XML Instance
XML Instance

XML Instance

XML Schema,
DTD

A validating XML processor, [2]

10 e-Government Lifelong Learning

Session Outlines

 XML Overview
 XML document and Grammars

 XML information set
 XML Namespaces
 XML Schema

11 e-Government Lifelong Learning

XML information set

• XML info set, provides a set of abstract data definitions to
represent the information in a well-formed XML document.
– Each well-formed XML document has an associated info set.

• The information set consists of information items.
– Each item describes an XML document part through a set of named

properties

12 e-Government Lifelong Learning

Information item types of an XML information set, [2]

document

document
type

declaration
element

Character
data attribute

Property
children

Property
attribute

13 e-Government Lifelong Learning

Information item types of an XML information set

• document, consists at least of one mandatory root element,
and:
– XML version info (optional) & encoding info for the document. These are

called XML declaration.
– Document type declaration: contains markup declarations provide the

grammar.
– These together is called prolog.

14 e-Government Lifelong Learning

Information item types of an XML information set,
cont.

• element: identified by a name and has a set of associated
attributes.

• attribute: consists of a name and an associated value.
• character data: is an information item comprises the

payload of an XML document.
• comment: element and document information items may

contain comments.

15 e-Government Lifelong Learning

Information item types examples [2]

• Comment info item “may span multiple lines”:
– <!– This is a comment -->

• Element info item:
– element may have no content e.g.: <address/> or
<address></address>

<address>
 <name>Mr Ahmad Ahmad</name>
 <street>11 Alquds Street</street>
 <city>Ramallah</city>
 <postal-code>100</postal-code>
 <country>Palestine</country>
</address>

16 e-Government Lifelong Learning

Information item types examples [2]

• An attribute is specified in the start tag of an element and
consists of a name-value pair.
– This example links an attribute named targetAddress with the

“PS” to the address elements:

17 e-Government Lifelong Learning

<address targetAddress=“PS”>
 <name>Mr Ahmad Ahmad</name>
 <street>11 Alquds Street</street>
 <city>Ramallah</city>
 <postal-code>100</postal-code>
 <country>Palestine</country>
</address>

Information item types examples [2]

• Document info item: look to the following prolog:
<?xml version=“1.0” encoding=UTF-16”?>
<! DOCTYPE address [<!– DTDs go here -->]>
<address> <!– XML instances go here --> </address>

• Document type declaration identified by keyword DOCTYPE
must be identical to the corresponding root element

18 e-Government Lifelong Learning

Information item types examples

• element content: if declared to be character data, this is
indicated by the term #PCDATA. “Parsed Character Data”
– Thus, a valid declaration would be:
<?xml version=“1.0” encoding=UTF-16”?>
<! DOCTYPE address [<!ELEMENT address
(#PCDATA)>]>

• In an XML instance the address element could appear as
follows:

19 e-Government Lifelong Learning

<address>
 Mr Ahmad Ahmad
 11 Alquds Street
 Ramallah
 100
 Palestine
</address>

Element content and mixed content

• We can combine elements and build nested element
declarations.

• DTD syntax provides 5 symbols used to describe manners of
combination.

• Assume e1, e2 and e3 to be elements:
– e1? : ? means none or one element e1.

– e1* : * means none, one or more element e1.

– e1+ : + means one or more than one element e1.

– e1, e2, e3 : , means list of element are chained.
– e1 | e2 : means e1 or e2 can be chosen but not both.

20 e-Government Lifelong Learning

address element can have this structure, [2]

21 e-Government Lifelong Learning

Source, [2]

address

street city Postal-code

title First-name

1 1 n

1

Mandatory

Optional

Containment
Relationship

name country

1 1

Last-name

1 0..1

A DTD describing the address structure, [2]

22 e-Government Lifelong Learning

<?xml version=“1.0” encoding=“UTF-16”?>
<!DOCTYPE address [
<!ELEMENT address (name+, street, city, postal-code,
country)>
<!ELEMENT name (title?, first-name, last-name)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT first-name (#PCDATA)>
<!ELEMENT last-name (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT postal-code(#PCDATA)>
<!ELEMENT country(#PCDATA)>
]>

An instance document could be as shown here

23 e-Government Lifelong Learning

<address>
 <name>
 <title selectTitle=“Mr”/>
 <first-name>Ahmad M.</first-name>
 <last-name>Ahmad</last-name>
 </name>
 <street>11 Alquds Street</street>
 <city>Ramallah</city>
 <postal-code>100</postal-code>
 <country>Palestine</country>
</address>

A valid address XML instance

24 e-Government Lifelong Learning

<address targetAddress=“PS”>
 <name>
 <title selectTitle=“Mr”/>
 <first-name>Ahmad M.</first-name>
 <last-name>Ahmad</last-name>
 </name>
 <street>11 Alquds Street</street>
 <city>Ramallah</city>
 <postal-code>100</postal-code>
 <country>Palestine</country>
</address>

Session Outlines

 XML Overview
 XML document and Grammars

 XML information set
 XML Namespaces
 XML Schema

25 e-Government Lifelong Learning

XML Namespaces

• XML processor must be able to differentiate our XML
address instances from someone else’s address
instances.
– Identification using element type names is not sufficient.

• Some global naming mechanism is required.
• XML namespaces ensure that XML definitions are

unique.
• Using XML namespaces, XML elements can be

distinguished, even if they have identical names.

XML Namespaces concept

• An XML namespace comprises a collection of element
type names & attribute names.

• An XML namespace, is identified by a URI reference.
• The collection of element type names & attribute names,

belonging to the same namespace are identified by the
namespace URI reference.

• See next slide for namespaces example!

Identical markup belonging to different namespaces

<member>
<member-id>

<member-since>
<name>

<address>

<employee-id>
<dept-number>

<name>
<address>

<order>
<order-number>
<order-date>

<name>
<address>

http://companyx.com/ns/employees

http://companyx.com/ns/orders

http://clubx.com/ns/members

Source, [2], with modifications

Qualified names

• A name from a namespace appears in a document as a
qualified name (Qname).

• A Qname consists of a prefix and a local part.
• e.g. cX is the prefix and address is the local part:
 cX:address

• Prefix selects the namespace and local part take care
of the naming within the scope of the namespace.

Declaring XML namespaces

• Done through the reserved namespace attribute xmlns.
• Also, can be done through xmlns: followed by a name

without colons.
• The value of the namespace attribute is the URI reference.
• Linking a namespace to a prefix, e.g.:
 <address xmlns:cX=“http://companyx.com/ns/employees”>

– cX is the prefix for all qualified names belonging to the namespace

• Using a default namespace, e.g.:
 <address xmlns=“http://companyx.com/ns/employees”>

– All subordinate elements are in the same default namespace, unless a
subordinate element overwrites the default namespace.

Declaring a namespace for the address document,
using prefix namespace attribute

<cX:address xmlns:cX=“http://companyx.com/ns/employees”
 targetAddress=“PS”>
 <cX:name>
 <cX:title selectTitle=“Mr”/>
 <cX:first-name>Ahmad M.</cX:first-name>
 <cX:last-name>Ahmad</cX:last-name>
 </cX:name>
 <cX:street>11 Alquds Street</cX:street>
 <cX:city>Ramallah</cX:city>
 <cX:postal-code>100</cX:postal-code>
 <cX:country>Palestine</cX:country>
</cX:address>

Using a default namespace name declaration

<address xmlns=“http://companyx.com/ns/employees”
 targetAddress=“PS”>
 <name>
 <title selectTitle=“Mr”/>
 <first-name>Ahmad M.</first-name>
 <last-name>Ahmad</last-name>
 </name>
 <street>11 Alquds Street</street>
 <city>Ramallah</city>
 <postal-code>100</postal-code>
 <country>Palestine</country>
</address>

An example for an entry of the phone book
maintained by the company

<phonebook xmlns=“http://companyx.com/ns/phonebook”
 <location>Company X Office</location>
 <roomNumber>03.02</roomNumber>
 <!–- Extension -->
 <officePhone>*2911111</officePhone>
</phoneBook>

XML namespaces and attributes

• Default namespaces are not applied to attributes that do not
have a prefix.

• The following example is a valid XML instance.
– Although the local part of the location element attribute is Identical.

<!-- Declare a namespace prefix
<phoneOwner xmlns:phone=“http://companyx.com/ns/phonebook”
 <!-- for illustrative purposes, not a good XML practice. -->
 <phonebook xmlns=“http://companyx.com/ns/phonebook”
 <location department=“HR” phone:department=“HR”>
 Company X Office</location>
 </phoneBook>
</phoneOwner>

Session Outlines

 XML Overview
 XML document and Grammars

 XML information set
 XML Namespaces
 XML Schema

35 e-Government Lifelong Learning

XML schema

• If we want to insert the roomNumber element to the phone
book as follows:
– A roomNumber value must start with 2 digits describing the building

floor, followed by a dot.
– Then, a 2 more digits to represent the room number on that floor.

• No way to specify this pattern through a DTD.
• XML schema allows us to express such a constraints.
• Various data types can be defined with XML schema and new

data types can be derived from existing ones.

An initial XML schema example

<simpleType name=“roomNumberType”>
 <restriction base=“string”>
 <pattern value=“[0-9]{2}\.[0-9]{2}”/>
 </restriction>
</simpleType>

<element name=“roomNumber” type=“roomNumberType”/>

Type definition

Element declaration

The element named
roomNumber is of type
roomNumberType

It is a simple type
based on XML schema
built-in type “string”
restricting the string to
a distinct string pattern
(the string pattern is
also called a facet)

Source, [2]

The structure of an XML schema definition

• An XML Schema Definition (XSD) is itself an XML instance.
– An advantage of the XML schema.

• The top element of the xsd is name schema.
• The XML namespace for a schema definition is
http://www.w3.org/2001/XMLSchema, linked to
prefix xsd. Start a schema definition as:

 <xsd:schema

 xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
 </xsd:schema>

Some of subordinate element types of schema
element.

• element: declares an element used in an XML instance.
• attribute: declares an attribute used in an XML instance.
• simpleType: this element defines a simple type, which is an

XML schema built-in type.
• complexType: this definition typically contains XML

elements and carry attributes, all declared within the type
definition.

XML schema containment structure of a simple
type definition

• Only one exclusive element must be contained in the superior
element.

simpleType

restriction list union

“an approppriate
facet”

“an approppriate
facet”

“an approppriate
facet”

“an approppriate
facet”

“an approppriate
facet”

“an approppriate
facet”

0..1 0..1
0..1

n n n

6 applicable facets 2 applicable facets 12 applicable facets

Mandatory

Optional

Exclusive

Containment
Relationship

Source, [2]

Attribute links between simple type XML schema
elements

Source, [2]

restriction

list

union

XML Schema
Built-in type

“a simple
type”

base

itemType

base

itemType

memberTypes memberTypes

Linked-to
Relationship

A type definition for the title element

Global elements may appear at the top level of an XML
instance:

<xsd: simpleType name=“titleTypeUK”>
 <xsd:restriction base=“xsd:string”>
 <xsd:enumeration value=“Miss”/>
 <xsd:enumeration value=“Mr”/>
 <xsd:enumeration value=“Mrs”/>
 <xsd:enumeration value=“Ms”/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>
 . . .
 <!–- “titleTypeUK” definition goes here -->
 <xsd:element name=“title” type=“tns:titleTypeUK”/>
</xsd:schema>

A type definition for the first-name element

minLength and maxLength

<xsd: simpleType name=“firstNameType”>
 <xsd:restriction base=“xsd:string”>
 <xsd:pattern value=“[A-Z][a-z]*”/>
 </xsd:restriction>
</xsd:simpleType>

<xsd: simpleType name=“firstNameType”>
 <xsd:restriction base=“xsd:string”>
 <xsd:pattern value=“[A-Z][a-z]*”/>
 <xsd:minLength value=“2”/>
 <xsd:maxLength value=“20”/>
 </xsd:restriction>
</xsd:simpleType>

XML schema containment structure of a complex
type definition

• Only one exclusive element must be contained in the superior
element. And an arbitrary number of attribute.

Source, [2]

complexType

sequence choice all

element element

0..1 0..1 n

n n n

Mandatory

Optional

Exclusive

Containment
Relationship

Attribute/
Attribute

group
group

0..1 0..1

element element element element element element

n

Complex type definitions

• The following XML schema presents a group named
nameGroup that is referred to within a complex type
definition, [2].

<!-- this is the named group definition.
<xsd:group name=“nameGroup”>
 <xsd:sequence>
 <!-- Here is the type definition of a name -->
 </xsd:sequence>
</xsd:group>
<!-- Here the named group if referred to within a complex type. -->
<xsd:complexType name=“addressType”>
 <xsd:sequence>
 <!-- Here is the reference to the above defined group -->
 <xsd:group ref=“nameGroup”/>
 . . .
 </xsd:sequence>
</xsd:complexType>

XML schema containment structure for deriving
types by extension

• simpleContent and complexContent elements must be
superior to either restriction or extension elements.

Source, [2]

complexType

Simple
Content

Complex
Content

Mandatory

Exclusive

Containment
Relationship

0..1 0..1

restriction extension restriction extension

0..1 0..1 0..1 0..1

Linking XML schemas to XML instances

• schemaLocation attribute contains value pairs:
– The first value is a namespace.
– The second, provides a link to the schema used for validating elements and

attributes contained in this namespace.

Linking schemas to instances

• To link the address document instance to the address schema
via the schemaLocation attribute, we need to add this
attribute to the instance document.

Example

<cX:address
 xmlns:cX=“http://companyx.com/ns/employees”
 xmlns:xsi=“http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation=“http://companyx.com/ns/employees
 http://localhost/address.xsd”>
 . . .
 <!-- the first URI defines the namespace for elements and -->
 <!-- attributes in this document, for which the second URI -->
 <!-- points to the schema location of the schema that -->
 <!-- can be used to validate these elements and attributes -->
</cX:address>

Summary

During this session we have explained with examples the

following:
1. XML namespaces
2. XML schema

Next session will cover Xpath and Xquery.

References

1. Bray T, Paoli J, Sperberg-McQueen C M, Maler E. Extensible Markup Language
(XML) 1.0 (Second Edition), W3C Recommendation 6 October 2000,
http://www.w3.org/TR/REC-xml, 2000.

2. Olaf Zimmermann, Mark Tomlinson, Stefan Peuser, “Perspectives on Web services-
Applying SOAP, WSDL and UDDI to real-world projects, 2nd edition, Springer, 2005.

http://www.w3.org/TR/REC-xml�

Thanks

Mohammed Aldasht

	Slide Number 1
	About
	© Copyright Notes
	Tutorial Map
	Session Outlines
	Overview
	Valid and well-formed XML document
	XML grammars
	XML document grammar and valid XML instances, [2]
	XML processor
	Session Outlines
	XML information set
	Information item types of an XML information set, [2]
	Information item types of an XML information set
	Information item types of an XML information set, cont.
	Information item types examples [2]
	Information item types examples [2]
	Information item types examples [2]
	Information item types examples
	Element content and mixed content
	address element can have this structure, [2]
	A DTD describing the address structure, [2]
	An instance document could be as shown here
	A valid address XML instance
	Session Outlines
	XML Namespaces
	XML Namespaces concept
	Identical markup belonging to different namespaces
	Qualified names
	Declaring XML namespaces
	Declaring a namespace for the address document, using prefix namespace attribute
	Using a default namespace name declaration
	An example for an entry of the phone book maintained by the company
	XML namespaces and attributes
	Session Outlines
	XML schema
	An initial XML schema example
	The structure of an XML schema definition
	Some of subordinate element types of schema element.
	XML schema containment structure of a simple type definition
	Attribute links between simple type XML schema elements
	A type definition for the title element
	A type definition for the first-name element
	XML schema containment structure of a complex type definition
	Complex type definitions
	XML schema containment structure for deriving types by extension
	Linking XML schemas to XML instances
	Linking schemas to instances
	Summary
	References
	Thanks��Mohammed Aldasht

