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Abstract—P2P-based social networking services are severely
challenged by churn and the lack of reliable service providers,
especially considering the high frequency of posts and profile
updates of their users. Improved consistency and data availability
shall facilitate better acceptance, which in turn will enhance
privacy, an inherent benefit of this class of systems.

We present Lilliput, a P2P storage primitive designed with
the characteristics of Online Social Network workloads in
mind. Lilliput separates the storage of static bulk data (videos
and photo albums) from the essential social glue (e.g. basic
profile information, frequent updates, notifications, and personal
messages): it provides the latter through agile, lightweight
replica groups. Extensive simulations show that Lilliput ensures
high data availability (99.07% to 99.64%) and consistency, with
a small bandwidth usage under realistic usage and load models.

Index Terms—Online Social Networks; P2P; Decentralized;
Storage; Overlays

I. INTRODUCTION

Online social networks (OSNs) have radically changed the
way people interact and share personal data. However, cen-
tralized OSNs like Facebook raise many concerns regarding
privacy, ownership, and censorship. The end-user in these
systems is at the mercy of (i) the goodwill of service providers
to not abuse their pivotal role and (ii) ability of providers to
prevent abuse by malicious outsiders and insiders.

Several solutions have been proposed in the last years to
improve privacy and censorship resistance in OSNs. Among
them, realizing OSN features over a peer-to-peer (P2P) infras-
tructure has been widely proposed and explored in the last
years, and it is vastly looked at as a promising approach (e.g.
see [1]-[9] and the references therein).

Existing P2P-based OSNs (both academic and open-source
community initiatives) emulate the feature set of popular social
networking services like Facebook and Twitter. We argue that
these systems are not mature enough to provide easy-to-use
and reliable service. This is mainly because they rely on very
strong assumptions in their design and evaluations, especially
with respect to churn behaviour of peers. In particular, the
churn rates measured in popular OSNs (e.g. in Facebook [10])
are too high to reliably replicate the entire profiles in a P2P
manner. That is to say, too many peers are needed, under
a realistic churn, to guarantee 24/7 availability of up-to-date
profiles.

Instead, our goal in this paper is to realize a P2P-based
OSN that is lightweight and at the same time provides high
data availability and consistency. To that end, we propose to
dedicate the P2P storage primarily to the essential social glue
(e.g. basic profile information, recent updates, notifications,
and messages). In contrast, the old and rarely accessed [10]
bulk data (e.g. photo albums and videos) can be encrypted
and stored by a third party (e.g. a cloud provider), without
disclosing comprehensive communication patterns.

The rationale behind this design choice is threefold: First,
the essential social glue contains the most critical data from
privacy’s point of view, like communication patterns and
the social graph. It cannot be hidden from centralized stor-
age providers by means of encryption, since the exchange
of ciphertext unveils this information. Therefore, centralized
storage of such data should be avoided. Second, the design
mitigates the negative impact of storing and serving stale
bulk data on quality-of-service. Third, decreasing the size of
replicated data mitigates both the impact of free-riding peers
as well as the incentives to free ride.

The proposed design is also supported by recent research on
user behaviour in OSNs. For instance, Paul et al. [10] recently
showed that 84.79% of displayed news-feeds in Facebook is
not older than 24 hours. They also showed that 41.76% of
shared content consists of external links which only need a
few bytes to be stored and disseminated. These results imply
that the total volume of the essential social glue is small, thus
can be easily maintained by a P2P infrastructure.

The main contribution that we present in this paper is
Lilliput, a set of protocols to realize a storage service for
lightweight P2P-based OSNs. Lilliput lies in the middle of
the solution space between the two extremes: Distributed Hash
Tables (DHTs) and static group-based replication [2]. By this,
we attempt to identify a sweet-spot in the trade-off between
high profile availability and low resource consumption.

Lilliput consists of small data overlays (i.e. replica groups)
each of which is created by the data owner. Other peers
are invited to join the overlay till the number of participants
reaches a preset (small) threshold. From that moment onwards,
the data owner can disconnect, and the participating peers
will manage the churn in the overlay on their own. Lilliput
motivates cooperation among peers by providing reciprocity



in serving and replicating data. It also benefits from the high
likelihood to serve the same content by incrementally updating
data rather than transmitting entire copies of the data.

We show via extensive simulations that Lilliput, even with
small replica groups and under high churn rates, can keep the
essential social glue online and up-to-date. We show also that
this is achieved using a small amount of network resources.

The remainder of this paper is structured as follows: We
review the related work in Section II where we point out the
gap this paper fills. Next, we describe Lilliput in details in
Section III and evaluate it in Section IV. After that, we discuss
several aspects in Section V. Finally, we conclude the paper
in Section VI

II. RELATED WORK

P2P-based storage systems have been studied widely in
the last years. General-purpose P2P storage approaches like
Oceanstore [11] and UniStore [12] are designed to provide
a persistent storage for predominantly static data. That is to
say, they are not optimized to store frequently updated social
data. In the remainder of this section, we focus only on prior
studies that are highly related to ours, i.e. P2P-based OSNs
and storage approaches designed specifically for OSNs.

Most existing works on P2P-based OSNs [1], [S]-[7],
[13], [14] take a holistic view on the system. Availability,
consistency, and dissemination of profiles received peripheral
attention in these studies. Instead, they focus on the system
design, communication protocols, and encryption schemes.
Majority of these studies relies on either social friends or an
underlying storage service (e.g. a DHT) to replicate profiles.

Notable, more related, studies include [15], SuperNova [3],
My3 [16], GemStone [17], and S-DATA [18]. The focus
of [15] is mainly on dissemination of profile data (using
friends), while the focus of SuperNova is on bootstrapping
and incentives for participation.

The main idea of My3 is to select a subset of trusted friends
to replicate profile data as well as to perform access control.
My3 requires each user to grant these friends a complete access
to her profile data. It also assumes that these friends will
enforce the access control benevolently, and will not abuse the
data they have access on. We argue that these are very strong
assumptions! Furthermore, My3 relies on the assumption that
each user has a small subset of friends whose online time
patterns cover the online times of all other friends. This is a
patently wrong assumption, and can lead to extremely poor
data availability [19].

In Gemstone, each profile owner selects a set of peers
to replicate her profile data based on criteria like online
experience and social relationship. One important issue in such
a design is that profile data very likely will be replicated on
peers with churn patterns similar to that of the profile owner.
This obviously translates to low profile availability.

S-DATA addresses the aforementioned issue of Gemstone
by introducing an external centralized service with global
knowledge to select peers with complementary churn patterns
to that of the profile owner to replicate her data. Based on this

knowledge, each member of a replica group hosts profiles of
all members. We highlight two issues in S-Data: First, changes
in the churn behaviour of any participating peer necessitates
the creation of a new group. Second, S-DATA assumes users
to trust the centralized service (to not misuse the knowledge
of churn patterns).

In addition to the issues discussed above, the aforemen-
tioned approaches store the entire data in the OSN. In a
popular OSN with realistic churn rates [10], this translates
into massive volumes of data requiring too many nodes to
guarantee 24/7 data availability and consistency.

Lilliput addresses the aforementioned issues, thus con-
tributes to the progress of P2P-based OSNs as follows: First,
Lilliput dedicates the P2P storage primarily to the essential
social glue. Amount of this data has been shown [10] to
be small enough to be maintained by a P2P infrastructure.
Second, replica groups are created in Lilliput based on the cur-
rent status of the network, i.e. without any assumptions about
churn patterns. This way, Lilliput does not prefer long-lived
nodes (over short-lived ones) for data replication, thus does not
overload them. In addition, this also implies that nodes do not
have to explicitly disclose or exchange churn patterns. Third,
Lilliput does not prefer friends for data replication. The result
is rather an agile storage service which requires low network
resources. Lilliput provides highly available, yet consistent,
storage even in the presence of frequent updates.

III. INTRODUCING LILLIPUT
A. System Overview

Each user who joins the social networking service the first
time creates a profile and establishes an overlay to replicate
her data. Created overlays are small, connected, and identified
by IDs derived from the handles of the users who created
them. In particular, overlay sizes can be between three and
nine nodes. Such small sizes help to achieve scalability, as
they allow for flooding a profile and its updates at affordable
cost. We chose a minimum of three nodes because with only
two nodes, and one of them dies, the last node may not live
long enough till it finds new overlay members and replicate
content to them. As for the maximum, we chose nine nodes
because our experiments (Section IV-B3) show that the overlay
maintenance traffic grows too fast with a higher number of
nodes. The exact size can be adapted according to system
settings and environment.

Each overlay is registered and can subsequently be found
using a discovery service. The discovery service itself is out
of the scope of this paper. It can be implemented using any of
the well-known approaches (e.g. DHTs or central registries).

B. System Environment Assumptions
We make the following assumptions to make sure that
Lilliput is suitable under challenging conditions:

o Heterogeneity of Devices: We assume P2P-based OSN
applications to run on a variety of devices, including
PCs, laptops, tablets, and smart phones. This implies that



the potential to contribute storage, computational, and
bandwidth resources to the OSN is heterogeneous.

We argue that requiring nodes to contribute according
to their resources is not the best design choice. This is
because free-riding peers, a well-known problem in P2P
systems (e.g. see [20], [21]), will lie about their resources
so that they keep their contributions low without losing
benefit. We handle this problem by requiring low, yet
equal, resource contributions from all nodes.

e Churn: The devices that contribute to the OSN will not
be accessible all the time. That is to say, we assume users
to connect their devices to the OSN only during the times
when they gain a benefit from the OSN.

C. Security Goals and Threat Models

The main goal for building distributed OSNs (like P2P-
based ones) is to protect the user data both from centralized
OSN providers as well as from external attackers. In the
following, we show that the design of Lilliput fulfils this goal.

We use the confidentiality, integrity, availability (CIA)
model to guide policies for information security within Lil-
liput. We describe how availability is achieved in Lilliput in
Subsection III-E. As for confidentiality and integrity of user
data, they can be achieved by applying existing encryption
schemes. In particular, we use the Profile Management Scheme
(PMS) [22] which can ensure confidentiality and integrity
while minimizing key distribution and storage overheads.
Without loss of generality, we adopt the adversary model of
[22], i.e. the PPT attacker who can, among other features,
access and modify messages.

The PMS scheme, however, does not provide mechanisms
for secure messaging. We fill this gap in Lilliput by allowing
the message sender to include an encrypted link into the public
section of the receiver’s profile. This link points to the message
(or a set of messages) that is stored at the sender’s profile to
mitigate the chances to overwhelm the receiver’s abilities to
receive messages. Such a link is signed both by the message
sender as well as by the nodes replicating the profile.

D. Definition of Data Structures

In the following we describe the two main data structures
that are maintained for the operation of Lilliput:

1) User Profile: A user profile is a container enclosing all
data items owned by a user. It consists of three sections: (i)
a header for metadata (size, IDs, etc.), (ii) a payload section
containing data to be downloaded upon interest, and (iii) an
inbox for user messages. Integrating all data items of one user
into one container reduces the overhead of checking integrity,
and also simplifies replica maintenance.

In Lilliput, we use the PMS-SK scheme [22] to protect
the confidentiality of user data, applying its key handling
mechanism as well as the provided user profile operations.
This choice is motivated by the demonstrated capabilities of
PMS-SK, particularly in protecting user data from unintended
access as well as in achieving perfect unlinkability.

As it is proposed in [22], we define all data items to be
stored in key-value pairs: “A profile P is modeled as a set of
pairs (a,d) € % x {0,1}* where .# C {0,1}* is the set of
possible attribute indices a and d corresponding values stored
in P. We assume that within a profile P, attribute indices
are unique. Furthermore, we assume that each profile P is
publicly accessible but is distributed in an authentic manner
by its owner Up € U. Also, every user U owns at most one
profile and the profile owned by U is denoted FPy.”

2) Candidate List: Each node maintains a candidate list of
nodes that can be invited to join the profile’s replica group.
The list can include both nodes obtained by a discovery service
and those encountered during normal operation (e.g. in other
replica groups, or during profile requests). The candidate list
is shared among all replica group members.

To reduce the number of stale entries in candidate lists, each
node removes from its candidate list the candidates that deny
invitation requests as well as those that timeout.

E. Bootstrapping and Maintenance Protocols

We describe in this subsection the protocols that are nec-
essary to establish and maintain data overlays (i.e. replica
groups) in Lilliput. We assume the existence of P2P overlays
with basic services like DHT lookup and peer sampling.

1) Bootstrapping: Each node acquires a unique ID the
first time it joins the OSN. This ID is used to identify
both the node in overlay operations as well as the profile of
the corresponding user within the social networking service.
Node IDs in Lilliput are generated either at random or by
hashing a unique string (e.g. e-mail address). After acquiring
an ID, the node joins and registers in the discovery service.
Next, it creates a profile and the corresponding data overlay,
establishes an initial candidate list, and starts normal operation.

2) Creation of Data Overlays: To maintain profiles in Lil-
liput, each profile owner has to establish her own data overlay.
For this, the profile owner creates an initial data structure
containing the overlay ID (the same as the owner ID). The
profile owner then leverage the lookup service to randomly
select the allowed minimum number of replica nodes (r_min
= 3), and invite the selected nodes to join the overlay. This
procedure is repeated till r_min nodes accept the invitation.
Next, the profile owner establishes a TCP connection to send
the initial data structure to the r_min nodes.

The profile owner will act as leader for her own data overlay
as long as her node is online. In the absence of the profile
owner, the node whose ID is closest to the overlay ID is
elected as a leader using a form of the Bully algorithm [23].!
More precisely, the first node that detects the absence of the
leader will calculate the distances between the overlay ID and
the IDs of the overlay members (including its own ID). The
closest online node is then elected as the new leader (heartbeat
messages are used to check whether a node is online or not).

IThis is just a design decision to elect a unique leader quickly. However,
any other leader election algorithm can be used.



3) The Invitation Procedure: To achieve 24/7 availability,
at least one node in each data overlay has to be available at
every point in time. To that end, the nodes in the data overlay
will select and invite other nodes whenever the number of
participating nodes drops below r_min.

As illustrated in Fig. 1, the invitation procedure is led
by the overlay leader. More precisely, the overlay leader
selects a node from the candidate list (selection strategies are
discussed in Subsection III-G), and sends to the selected node
an invitation message. This message contains the overlay ID,
the leader ID, and optionally the ID of another node in the
data overlay with which to perform the initial data transfer.

The invited node can either reject the invitation (e.g. because
its storage is overloaded) or accept it and respond with an
invitation acknowledgement. In case of rejection, the overlay
leader will remove the invited node from its candidate list,
and invite the next node in the candidate list. In contrast, in
case of accepting an invitation, the invited node will open
a TCP connection either with the overlay leader or with the
designated download node, if available, and request the data.

After a successful initial transfer, the invited node sends
a data acknowledgement to the overlay leader as well as
heartbeat messages to the other overlay members. After that,
this node is considered an established overlay member.

4) Monitoring the Overlay Status: Since nodes are invited
to join data overlays upon demand, the number of available
profile replicas (i.e. the current overlay size) should be mon-
itored continuously. To this end, overlay nodes periodically
exchange heartbeat messages. More precisely, these messages
are used to detect failed or disconnected nodes, thus know
when the overlay size drops below r_min. The same messages
are also used to measure and disseminate round-trip-times
among nodes as well as utilization of node resources.

5) Reconnecting Nodes to Data Overlays: To reduce band-
width consumption, nodes that come back online after a
downtime will first try to reconnect to the data overlays to
which they were previously participating. In case the attempt
fails, the node removes the corresponding data (so that the
freed storage can be used to store data of other data overlays).
However, in case the failed attempt was made by the node that
originally created the overlay (i.e. the data owner), the node
will re-instantiate its data overlay.

F. Application Protocols

Application protocols are the protocols used to read from
and write to data overlays. Read and write operations are
initiated by a client application and handled by a member of
the corresponding data overlay.

In write operations, the contacted node disseminates the
written data to the other overlay members. Once all overlay
members sent the write request, the first contacted node sends
an acknowledgement back to the client application.

G. Node Selection Strategies

As mentioned above, when the size of a data overlay drops
below r_min, the overlay leader will select a node from its

candidate list and invite it to join the overlay. The node
selection strategy might affect the system performance. We
examined Lilliput with the following three selection strategies:
1) Random: Nodes are selected from the candidate list at
random.
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equalizeConnections: With this strategy, the overlay
leader attempts to equalize the number of data overlays
shared with other nodes, for load balancing purposes.
To do so, the node selection algorithm calculates, for
each candidate node, a score inversely proportional to
the number of overlays (s) the node is sharing with the
leader. The node with the highest score is then invited to
join the overlay.

Note that the case s = 0 implies assigning the same
(highest) score to all candidate nodes that are not sharing
any overlay yet with the leader, thus inviting all of them.
To avoid this, such nodes are assigned random scores
between 0 and the maximum score (Spqz):

if s=0

Smaz - Tand([0, 1])
score = )
if s>0

(Smaz — $) + rand([—0.01,0.01])
The small random factor (rand([—0.01,0.01])) provokes
nodes with the same score to be chosen randomly.

3) filterShortTimeThenEqualizeConnections: Here, candi-
date nodes are scored similar to the equalizeConnections
strategy. The only difference is that new nodes (e.g. those
that have been online for less than two minutes) will
be scored zero, thus will not be invited. The rationale
behind this strategy is twofold: First, new nodes cannot
contribute much to profile availability and simultaneously
they cause high synchronization traffic. Second, such
nodes may prefer to dedicate their network links in
the first few minutes foremost to bootstrapping-related
messages.

IV. EVALUATION

To assess both the efficiency of Lilliput as well as the
availability it provides, we performed an extensive packet-level
simulation study. We describe our evaluation assumptions,
setup, and parameters in Subsection IV-A. After that, we
discuss the results in Subsection I'V-B.

A. Assumptions and Setup

1) Churn Assumptions: Churn describes how peers arrive
and depart a P2P system over time. It reflects the unreliability
of nodes in the system. In addition, measuring the performance
of P2P-based systems is always related to the churn model.

We used the KAD trace of Steiner et al. [24], [25], a realistic
and widely accepted trace, to generate churn. More precisely,
we built a churn generator that generates trace files from the
KAD trace with the desired properties.”> Our churn generator

20ur churn generator is available for download at https://www.p2p.tu-
darmstadt.de/research/p2p-churn-generator/
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Fig. 1: Sequence diagram of the invitation procedure

generates synthetic trace files for arbitrary numbers of nodes,
simulation durations, and time-zone distributions. We derived
arrival rates for single time-zones that exhibit a clear diurnal
pattern (Fig. 2). Furthermore, in all traces we assumed in
average about 11% of nodes to be online and had situations
with only 7.9% of nodes in the system (Fig. 3). This makes
our churn model more challenging than the churn models used
in previous evaluations of P2P-based OSNs.

2) Simulation Environment: We used OMNeT++ [26] (gen-
eral purpose network simulator) in conjunction with OverSim
[27] (overlay network simulation framework). OverSim sup-
ports simulations driven by trace files. However, we modified
OverSim such that nodes leave the system and return later with
their states preserved. Furthermore, we modified OverSim’s
SimpleUnderlay network topology such that latencies among
nodes are assigned based on their time-zones (for this, nodes
were placed in an euclidean coordinate system according to
their time-zones).

3) Setup and Parameters: We simulated with several OSN
sizes of 1000, 5000, 10000, and 15000 nodes, distributed
over four different time-zones. Simulating with larger OSN
sizes was computationally infeasible (we simulated using a
24-core machine with a 160-GB RAM). We argue that higher
simulation abstraction levels which allow much larger network
sizes do not reflect realistic timing patterns like packet-level
simulations do.

Each node was equipped with a reliable Internet connection
(1-Mbit uplink, 10-Mbit downlink) as well as a 500-MB
storage space. Latency between two nodes was calculated
by summing three components: (i) a fixed value of 20 ms
(according to OverSim’s SimpleUnderlay topology), (ii) a
fraction of the euclidean distance between the positions of the

two nodes, and (iii) a random jitter. The maximum latency
was set to 600 ms. With such resources, nodes can provide
the required contribution to the P2P system.

In the following, we summarize the other parameters:

o 7_min: The minimum overlay (i.e. replica group) size. We
started experiments with r_min = 2, and then increased
it. The results showed that r_min values higher than 4
did not help to significantly improve profile availability
but caused high resource consumption.

o r_max: The maximum overlay size. This value can range
between r_min+ 1 and co. Our experiments showed that
r_max values greater than 9 result in a very high heartbeat
messaging overhead.

o profileSize: We simulated with a profile size of 10 MB.
According to the results of [10], this size is enough to
store what we call the essential social glue (recall that
Lilliput is not designed for long term storage of bulk
data).

o maxStorageSize: The device owner may want to limit the
storage which is used by Lilliput to host other users’
profiles. We evaluated the effect of this limit on profile
availability and network load with three values: 500 MB,
1000 MB, and oo.

4) Measurements: Each experiment lasted for 14 simulated
days. The first five days were used as a warm-up period. The
results reported below are based on the observations from day
6 till day 14. In particular, we measured the consumed storage
space, the bandwidth utilization, the number of connections
as well as the number of overlays each node participated in.
For the data overlays, we reported the overall availability over
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time, the number of concurrent active nodes and the total
number of invited nodes. Finally, we measured the ratio of
data overlays available with respect to the total number of
overlays created over time.

B. Simulation Results

The results we discuss below represent simulations applied
the filterShortTimeThenEqualizeConnections node selection
strategy, motivated by its features (see Subsection III-G).

As a first step we justify the size of the experiment and
show that increasing the number of nodes by factor 15 does
not change the results in general (Fig. 4). In the following,
we present and discuss the most important numerical results,
mainly focusing on: profile availability, communication over-
head, and storage utilization.

1) Profile Availability: Excluding the warm-up period, we
discovered parameter combinations that led to an availability
above 99.07% (Table I). With r_min = 3 and r_max = 8§,
96.37% of the profiles have never been offline during the
whole simulation time. The profiles that have been offline at
least once had a median availability of 84.28%.

Overlay size Overlays available 24/7 Total time availability
(%) (%)
1k 97.6 99.64
10k 96.4 99.18
15k 96.37 99.07

TABLE I: Availability of data overlays

2) Communication Overhead: The communication over-
head is an important issue, especially in mobile environments.
Users may reject to use an OSN application that utilizes
a large part of the available bandwidth. We measured the
communication overhead by the amount of data that is sent
and received by each node (Fig. 5).

The bandwidth utilization is driven by the assumed churn,
the replication parameters (r_min,r_max), the maximum
storage space, and sizes of the stored objects. The churn influ-
ence on bandwidth utilization can translate into the probability
of nodes to rejoin overlays in relation to those needing an
entire new copy of the data.

Fig. 6 shows the amount of traffic needed to keep data
online for 14 days (i.e. experiment time), under different
combinations of replication parameters (r_min, r_max) as
well as two different maximum storage spaces (500 MB and
1 GB). We can see that significantly increasing r_min would
increase the bandwidth utilization while increasing r_max
would decrease it. These results can be explained as follow: On
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the one hand, increasing r_min means increasing sizes of data
overlays, thus increases number of flooding messages as well
as invitations. On the other hand, increasing r_maxz means
increasing the probability that nodes rejoin data overlays, thus
the probability to update a stale copy of a profile (rather than
transferring a new copy of the data). As for the influence of
the maximum storage space, we can see that increasing it from
500 MB to 1 GB would result in reducing the traffic. This
is because a higher storage capacity translates into a higher
probability that nodes rejoin data overlays.

Fig. 7 compares the amounts of sent data to the amounts
of received data per node, with respect to r_min (changing
r_max did not impact the results). The differences between
the two (sent and received) are attributed to nodes leaving the
system during data transfer (i.e. caused by heavy churn).

3) Optimized Parameter Selection Strategy: The r_min
parameter needs to be at least 3 to achieve a reasonably high
availability (Fig. 8). In spite of slowly increasing payload data
transmission effort per node, the total traffic in the system

quickly explodes when setting the value of r_min to 4 or
higher (Fig. 7). This is attributed to the increasing amount of
overlay maintenance traffic. We thus argue that the value 3 is
the best choice for r_min.

The parameter r_max should be set to 8 to achieve the
highest profile availability while minimizing the total traffic
in the system (Fig. 6, Fig. 8). Increasing r_max above 8 does
not improve availability. However, in case of limited storage
(500 MB), r_max > 8 even reduces the availability. This is
because it becomes harder to find nodes with spare resources
during the invitation process.

The storage utilization in Lilliput strongly depends on the
chosen values of r_min and r_max. To determine the effect of
a limited storage on the system performance, we experimented
(as mentioned in Subsection IV-A3) with three different
storage sizes: 500 MB, 1000 MB, and oo. We found that
limiting the storage usage to 500 MB does not cause any
performance disruption. With such a limited storage, as can be
seen in Fig. 9, each node exhausts its storage capacity when
r_min > 2.
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V. DISCUSSION
A. Comparison to Related Work

In contrast to Lilliput, the related works discussed in Section
IT use static replication schemes to ensure data availability

in distributed OSNs. Static replication, however, requires to
find a minimal set of nodes that are expected to provide 24/7
availability with their accumulated online periods. This works
well only when assuming either long online durations of at
least a minor fraction of stable nodes or stable diurnal online
time patterns of a majority of nodes in the replication set.

We consider S-Data [18], based on its features and proper-
ties, the closest related work to Lilliput. It has been evaluated
under a much more conservative churn model. Even though,
it achieves a notably lower profile availability than Lilliput. In
particular, the authors state that: “For a mean peer uptime of
8 hours it is possible to have more than 93% of the groups
online even under 50% failure rate”.

B. Data Consistency

Content freshness is not an issue for Lilliput. This is because
the content is replicated in a fully connected overlay in which
participating nodes share identical copies of the content. More
precisely, the profile owner has to be online to update her
profile. When the profile owner is online, she serves access
requests to her profile data from the original copy. The profile
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owner, being part of her own overlay, makes sure that the
replicas are up-to-date. This is done by uploading her profile to
the replicating nodes. The replicating nodes can subsequently
serve access requests (that arrive while the profile owner is
offline) with the latest copy of the requested data.

Two cases in which the consistency is challenged do remain:
(i) if a breakdown occurs during a profile update (from
the profile owner to replicating nodes, or among replicating
nodes), and (ii) if a breakdown occurs after a message has
been sent, but before it has been delivered to the profile owner.
We do not see any chance to tackle the first case. Regarding
the second one, the only chance for the message sender to
make sure that the message arrived is to check back later.

C. Robustness Against Selfish Nodes

Selfish nodes are the ones that do not offer any storage
resources but burden the system by replicating their data.
This is possible either if the incentive scheme is gamed or in
case a sybill attack creates multiple identities and successfully
establishes multiple replica overlays.

The robustness of Lilliput against selfish nodes depends
on the spare resources that exist in the system. During our
experiments, we found that the total amount of storage per
node, on average, needs to be at least 50 times larger than the
profile size to achieve high data availability while minimizing
bandwidth utilization. That is to say, with a maximum profile
size of 10 MB, every node should provide only 500 MB of
local storage on average. However, when half of the nodes
provide 1 GB of storage, the other half could potentially act
selfishly without affecting the functionality.

VI. CONCLUSION

We introduced Lilliput, a storage primitive for P2P-based
OSNs. Lilliput is placed in the middle of the solution space
between the two extremes: DHTs and static replication groups,
aiming to combine their advantages. The novel idea of Lilliput
is to disentangle static bulk data from the essential social data,
and to devote the P2P storage foremost to the latter. This
way, Lilliput significantly reduces the size of replicated data,
thus reduces the bandwidth utilization as well as the storage
overhead. Lilliput provides reciprocity of nodes in serving and
replicating profiles to motivate cooperation. It also benefits
from the high likelihood to serve the same content by only
updating profiles instead of transmitting entire profiles.

By extensive simulations, we showed that Lilliput can be de-
ployed under heavy churn and still maintains data redundancy
to achieve an outstanding profile availability (above 99%).
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