
A Semi–automated Approach for Generating

Sequence Diagrams from Arabic User Requirements

Using a Natural Language Processing Tool

Abstract—a sequence diagram is one of the UML models that

are usually used within the analysis phase in software system

development. Since generating such sequence diagrams is done

usually in a manual way, automated or semi-automated support

will be appreciated and will provide important and practical

help. In this paper, we propose a new semi-automated approach

for generating sequence diagrams from user requirements

written in Arabic. In this novel approach the user Arabic

requirements are parsed using a natural language processing tool

to generate the part of speech tags of the parsed user

requirements. A set of proposed heuristics are to be applied to

obtain the sequence diagram components; objects, messages and

work flows transitions (messages). The generated sequence

diagram is to be represented using XMI to be drawn using

sequence diagrams drawing tools. Using three different case

studies as a bench mark from Isra Computer and Programming

Company, the proposed approach will be evaluated in terms of

correctness and completeness of participants and messages
exchanged between them.

Keywords—Unified Modeling Language (UML), Automated

Software Engineering, Sequence Diagram

I. INTRODUCTION

The sequence diagram shows how processes in software
sys-tem interact with each other based on time. In analysis
phase it is used to illustrate the objects that participate in the
use case and the messages passing between them over time
while in design phase the sequence diagram is used to
distribute the use case behavior to classes [1], [2].

This paper addresses the problem of generating sequence
diagram from Arabic user requirements, written in Arabic, in a
semi-automated approach using a natural language processing
tool namely MADA+TOKAN. All UML models are usually
produced based on user requirements. The process of
transforming the user requirements into the UML diagrams is
normally done by human analysts which is time and money
consuming and also an error-prone process because the user
requirements are usually written in natural language. The
human analyst may make mistakes during reading a large
number of natural language user requirements which may
produce an incorrect model. In addition, if a change is needed
to be applied to the model then a lot of effort, money and time
will be wasted during the modification process in order to
accommodate the needed changes. So, the need for an

automated or semi-automated approach becomes urgent to save
a lot of time, effort, and money [10].

The rest of the paper is organized as follows: the section of
related works presents the literature studies and any related
works; the section of constructing sequence diagrams describes
the methodology used for generating the sequence diagram
models from Arabic user requirements; the section of
validation presents the validation and implementation of our
proposed approach, and finally, the section of conclusion
presents the main issues related to the proposed approach

II. RELATED WORKS

In general, the related literature studies about generating

sequence diagrams can be mainly divided into two types; the
full automation and semi-automation of sequence diagrams. In
both types, as it has been stated in many related studies, the
generation of sequence diagrams usually depends on some
UML diagrams such as class diagrams and use case diagrams
as a first step before generating the sequence diagrams, how-
ever there were no studies to generate sequence diagrams
directly from Arabic user requirements or without using other
UML diagrams as pre-step.

A. Semi-automated Methods for Generating Sequence

Diagrams

Recent studies presented semi-automated approaches for

generating sequence diagrams using use case or other UML

diagrams [12], [4], [17], [6]. Thakur and Gupta presented a

semi-automatic approach to translate the use case descriptions

into sequence diagrams [7]. The study also presented a set of

rules for writing and rewriting the descriptions of use case

diagram that can be understood and helpful for both developers

and experts which also can be then transformed and translated

to build the sequence diagrams. B. Full-automated Methods for

Generating Sequence Dia-grams

B. Full-automated Methods for Generating Sequence

Diagrams

A method that uses the use case specifications (UCS) in

generating a sequence diagram is presented by Mason and

Supsrisupachai [8]. In this study the generation of sequence

diagram was based on UCS written in Spanish language. Yue

et al., proposed an approach to automatically generate the

 Nermeen Alami Nabil Arman Faisal Khamyseh

Palestine Polytechnic University Department of Mathematics Department of Mathematics

Deanship of Graduate Studies and Computer Science and Computer Science

and Scientific Research Palestine Polytechnic University Palestine Polytechnic University

Hebron, Palestine Hebron, Palestine Hebron, Palestine

sequence diagrams from use case specifications, UCSs is

presented [18] in which the objects are identified using a set of

heuristic rules.

 C. Generating other UML Diagrams from User Requirements

A set of studies that are related to generating other

diagrams from user requirements was published. A set of

studies to propose algorithms for generating use case and

activity diagrams from Arabic user requirements by [10], [11]

were presented, in the first study a semi-automated algorithm

for generating activity diagram from Arabic user requirements

using MADA+TOKAN NLP tool. In which the elements of the

activity diagram have been extracted from Arabic user

requirements. The second study is also about generating use

case diagram from user requirements written in Arabic in

which a set of heuristic rules were proposed to obtain the use

cases diagrams.

Another two important recent studies were about generating

sequence diagrams from user stories written in English natural

language [12], [13]. The first study used an algorithm worked

by reading a text file of user stories and for each user story

generated an XMI file which later on is transformed into

sequence diagram using UML2 tool. The second study is about

generating behavioral diagrams (sequence and activity

diagrams) by transforming the statements of the requirements

into a structured representation (intermediary structured using

frames), in which those frames were translated into UML

models. In this paper, the authors used grammatical knowledge

patterns and lexical and syntactic analysis to analyze the

requirements in order to get the frames for the corresponding

requirements statements. By using the knowledge patterns in

the resulted frames, the activity and sequence diagrams are

generated. This study was presented using a set of performed

case- studies.

As reported above, the generation of static and/or the

dynamic models has been done using automatic and semi-

automatic approaches. Most of the studies were for the purpose

of deriving the static structure or class diagrams meanwhile the

number of fully automated approaches was very few.

Moreover, the sequence diagrams has been rarely generated in

both types; the automated and the semi-automated. The reason

behind that is that sequence diagrams differ from other UML

diagrams, in which it cannot be mapped to graphical diagrams

for sequence diagrams have the lifelines that are represented

using vertical lines whereas the nodes in graphical diagrams are

usually circles or boxes. Another reason for the scarcity of the

sequence diagram research compared to the graphical diagram

that has nodes is that the connection points in the graphical

diagrams are usually placed on one of the sides of the node for

incoming and outgoing connections whereas in sequence

diagrams the messages are placed over the vertical line

horizontally [10].

III. CONSTRUCTING SEQUENCE DIAGRAM

MODELS

The main measure to find out the success of the software

system is by measuring how much the output system meets the

preset purpose and for what is intended to do. To have good

results, we should have good requirements, and the good

requirements should have a set of characteristics based on

IEEE standards for Software Requirements Specifications,

those characteristic require that user requirements should be

correct, unambiguous, verifiable, traceable, complete and

Consistent. It is assumed that the requirements are good in the

sense implied by the IEEE good requirements assumptions

[14], [15].

In this section the sequence diagram key parts are extracted

from Arabic user requirements after using a natural language

processing tool called MADA+TOKAN to split and tokenize

Arabic user requirements texts. Once this is performed, a set of

proposed heuristics are used to construct the sequence diagram

model as presented in subsequent subsections. Finally the

resulted sequence diagram is expressed in XMI to be drawn

using UML drawing tools.

A. MADA+TOKAN

MADA+TOKAN is a Toolkit for Arabic Tokenization,

Discretization, Morphological Disambiguation, POS Tagging,

Stemming and Lemmatization [9]. MADA+TOKAN is a free

tool, very customizable and versatile toolkit for NLP Arabic

applications. It is for the purpose of extracting morphological

and contextual information from the raw Arabic text in order to

be used for other applications. It mainly consists of two main

components: MADA and TOKAN. MADA is the service of

giving new Arabic text by adding morphological and lexical

information, while the TOKAN is the utility of generating

segmentation (Tokenization) based on the information

produced from the MADA process in order to identify the stem

of the words. Having the two utilities together

(MADA+TOKAN) provide a powerful tool for preprocessing

for the applications of NLP such as Automatic Speech

Recognition (ASR) [16], [17].

A set of user requirements cases of real system scenarios

from ISRA SOFTWARE and PROGRAMMING COMPANY

were written in Arabic and some of these requirements are used

in our examples. ATM system example is presented below.

حيث يقوم الصراف بطلب الرقم السري وم الزبون بإدخال البطاقة الى الصرافيق

من الزبون، يدخل الزبون الرقم السري الى الصراف ليقوم الصراف بإرسال

ثم يقوم ،يقوم البنك بإعادة النتيجة الى الصراف ،المعلومات الى البنك للتحقق منها

، الصرافويقوم الزبون بإدخال طلبه الى ، الصراف بعرض الخيارات للزبون

ويقوم الصراف بارسال اشعار ، يرسل البنك رسالة نجاح العملية الى الصراف

 . تنفيذ العملية للزبون

MADA+TOKAN results are two tags for each word as in

Table I and Table II; the first tag from Table I is the word type

(verb, noun, punctuation, particle, etc.) while the second tag

from Table II which is the word parsing (verb, subject, object,

etc.). These tags based on the developed heuristics are used in

determining the participants and messages of the sequence

diagram as described below.

Table I: MADA+TOKAN Word Grammar Tags

T

able

II:

MA

DA

+TO

KA

N

POS

Tag

s

Befo

re

start

appl

ying

the

prop

osed

appr

oach

, the following conditions should be met:

 Each tag for each POS is expressed using the

following set (Word, Word Type, Level, POS Tag).

 Each requirement is a verbal sentence, and each

verbal sentence is an action and for each action there

is a subject and sometimes an object.

 The tag <PNX> tag means the end of the sentence by

comma (,) or full stop (.), but in this phase sentences

or user requirements statements will be separated not

based on <PNX> tag - which represent (.), (،) in order

to order to analyze verbal sentences, so when we say

requirement or sentence, we mean a set of tags

between two consecutive <VRB> tags.

 In UML terms, subjects called senders, objects called

receivers, both subjects and objects called participants

and actions called messages.

This approach is applied via two phases, the first phase

including the scanning of the resulted tags from

MADA+TOKAN to define the subjects set which is a subset of

participants set. At the beginning of applying the proposed

approach, the following sets should be declared:

Subjects= {}

Receivers = {}

Participants = {}

Subjects set is a set of distinct words that has a POS tag of

<SBJ> in the results of parsing a specific scenario. Subjects set

will be used in subsequent phases to find the callers of that

scenario, Receivers is the set of the distinct receivers of the

actions in the same scenario while the Participants is the set of

distinct callers and receivers. Subjects set should be defined at

the first phase of scanning the parsing results while Receivers

and Participants sets will be defined and updated during the

second phase of constructing sequence diagram key parts.

Also, a sequence table should be constructed and updated

during the approach analysis process with the structure shown

in Table III.
TABLE III. SEQUENCE DIAGRAM TABLE STRUCTURE

B. Participants Identification

The participants of sequence diagram include:

 Sender/ Caller

 Main Actor

 Receiver

By applying the first phase of scanning MADA+TOKAN

parsing results on ATM system scenario, we can find that the

resulted Subjects are as follow:

Subjects = { الزبون ،الصراف، البنك }

1) Sender Identification: The sender or the

caller for each statement represents the subject of the

action of that statement, which means senders are

identified based on subject tags.

For each statement the sender of that statement is the

subject of <SBJ > tag.

Example:

 يقوم الزبون بإدخال البطاقة الى الصراف

Using MADA+TOKAN tool the statement parsing results as

shown in Table IV.

Table IV: MADA+TOKAN POS Tags

Here the main subject is <SBJ > tag which is <الزبون>

Generalization:

Rule P1: For each user requirement statement with the

following set of POS tags: <Word, NOM, level, VRB>

<Word, NOM, level, SBJ> or <Word, NOM, level, SBJ>

<Word, NOM, level, VRB> find the <Word, NOM, level,

Dependency Tag Word Grammar

Subject SBJ اسم كاد/ اسم ان/ اسم كان/ مبتدأ/ نائب فاعل/ فاعل /

اسم مفعول/ اسم فاعل

Object OBJ اسم / مصدر/ اسم مفعول/ مفعول لاسم/ مفعول لفعل

 مجرور

Predicate PRD خبر كان / خبر ان/ خبر لمبتدأ

Topic TPC مبتدأ

Idafa IDF مضاف اليه

Tamyiyz TMZ تمييز

Modifier MOD ظرف/ حال/ صفة

Flat ------ علامات ترقيم مكررة/ رقم/ اسم اعجمي / اسم علم

POS tag Tag abbreviation Word Type

Verb VRB فعل معلوم

Passive

Verb
VRB-pass فعل مجهول

Nominal NOM اسم

Particle PRT أداة/ حرف

Punctuation PNX علامة ترقيم

Proper

Noun
PROP اسم علم

Error ERR خطأ

 Unknown غير معروف

Statement # Sender Receiver Message

Word Word Type Level Grammar

 VRB 0 يقوم

 NOM 1 SBJ 1 الزبون

 PRT 1 MOD + ب

 NOM 3 OBJ إدخال

 NOM 4 IDF البطاقة

 PRT 4 MOD إلى

 NOM 6 OBJ الصراف

 NOM 7 MOD حيث

SBJ> tag to find the sender or the caller of that statement.

Then the founded subject should be added to the Participants

group. If there is no <SBJ> tag, there is no sender and no

message which means discarding the full statement.
2) Main Actor Identification: Main actor for any system

is the first subject in that system, based on resulted

tree bank of MADA+TOKAN tagger, the first subject

should have the level number of (1) after a verb of

level (0) which is the root.

Generalization:

Rule P2: To find the main actor, search for the subject

<Word, NOM, 1, SBJ> tag of the level (1) in all resulted

MADA+TOKAN POS tags. Then add it to Participants set, if

it is not exist in it. If it is existing then just mark it as main
actor.

3) Receiver Identification: The receiver for each

statement represent the object for the action of that

statement. So, receivers are identified based on objects

tags. But, as the authors supposed, objects tags can be

a receiver or a message. To find the receiver for each

user requirement statement:

Find all < Word, NOM, level, OBJ > tags within each

statement. And find the object that belongs to subjects group

because each object in different point should be a subject

(sender). If none of the objects are within subjects group then

the last object of that statement is the receiver.

Update Participants set by adding the found receiver to it.

Referring to Table IV, we can find that we have two objects in

this statement:

OBJ = {< إدخال NOM 3 OBJ > , < الصراف NOM 6 OBJ > }

 The first object < إدخال > is not belonging to

subjects group then it’s not the receiver.

 The second object <الصراف> is belonging to

subjects group then it i’s the receiver.

 Update Participants group and sequence table:

Generalization:

Rule P3: To find the receiver for each statement, apply the

following rules on all <OBJ> tags within a statement:

For each <OBJ> tag of the following set < Word,

Word- Type, level, OBJ >
Check if it the Word-Type is NOM then

check if the object is belonging to Subjects

group
If yes, then this object is a receiver Else, it is

a message (in the next section)

Else, the last object in this statement is the

receiver and all other objects are messages

between the same sender and receiver within

this statement.

Check if it the Word-Type is VRB then
discard it

C. Message Identification

Messages are the actions for each statement, and usually

the message is more than one tag, to find the message

within user requirements statements, we have to find the

<OBJ> tag that is not the receiver. Sometimes this tag is

followed by an idafa <IDF> or modifier <MOD > tags to

construct the message between two participants. Referring

to Table IV, we can find that we have two objects in this

statement:

 The first object < إدخال > is not belonging to

subjects group then it i’s a message:

 The next tag for this tag is < البطاقة NOM 4

IDF > so the full message is < إدخال NOM 3

OBJ > < البطاقة NOM 4 IDF >, “إدخال البطاقة”.

 The second object is <الصراف>, based on rule

P2 it is a receiver and not a message.

 Update sequence table

Generalization:

Rule M1: To find the message for each statement, apply
the following rules on all <OBJ> tags that are not within
a subject statement:

If the object tags are <Word, NOM, Level_NO,

OBJ> and it is not belonging to the receivers group

then it is a message and to find the message:

If the next tags is <Word, NOM, Level_NO,

IDF> then the message is <Word, NOM,

Level_NO, OBJ> + <Word, NOM, Level_NO,

IDF>

Else if the next tag is <Word, NOM, Level_NO,

MOD> then the message is <NOM, Level_NO,

OBJ> + <Word, NOM, Level_NO, MOD>

Else the message is <Word, NOM, Level_NO,

OBJ>

Update sequence table

D. Algorithm of Applying Heuristics

In this section the used algorithm for applying the

proposed heuristics on the resulted tags from parsing

user requirements in MADA+TOKAN is presented as

follow:

Input: Arabic User

Requirements

Result: Sequence Diagram

Subjects = {}, Receivers = {}, Participants = {},

Sequence_ table [] []
Subjects= All <SBJ> tags

// Based on Subjects group

Find main actor based on Rule P2

Add main actor to Participants group and mark it as the

initiator

// Each statement is a set of tags between two <VRB>

tags

For all Arabic user requirements statements do

Apply Rule P1 to find the sender

Update Participants group and Sequence

table Apply Rule P3 to find the receiver

Update Receivers, Participants groups and

Sequence table

Apply Rule M1 to find the

message Update Sequence

table

end

By applying the algorithm on all statements of ATM

system, the results will be as follows:

Participants = { {الزبون *، الصراف، البنك

Subjects = { الزبون، الصراف، البنك }

Receivers = { الزبون، الصراف، البنك }

While the final sequence table as shown in Table III. We

can see that statement number 5 has been discarded based on

Rule P1. The next step is transforming the results for each

row in final sequence table (message, sender and receiver) into

XMI to be drawn using UML drawing tools.

Table III: FINAL SEQUENCE TABLE

V. EVALUATION

The next step in this research is the evaluation of the

proposed approach. Once the approach proves to be beneficial,

it will be implemented as a software tool that can be used to

generate the sequence diagram model from Arabic user

requirements.

VI. CONCLUSION

In this paper, a new semi- automated approach for
generating UML sequence diagrams from Arabic user

requirements was proposed. The proposed approach is

essential in object oriented applications, in requirements

analysis phase and in software especially in generating UML

sequence diagrams from Arabic user requirements. The

proposed approach has the main advantage of dealing with

Arabic language and also a set of heuristics were proposed and

applied on a set of tokens resulted from natural language

processing tool called MADA+TOKAN to obtain sequence

diagram key parts which include (participants and

messages). Finally, the proposed approach is to be validated
and implemented in further research efforts.

VII. ACKNOLEDGEMENT

The authors would like to than the Software Engineering

Research Group members at Palestine Polytechnic University,

especially Mr. Ibrahim Nassar for his help regarding

MADA+TOKAN tool and Dr. Khaled Daghmen for his help

regarding software engineering and algorithms.

REFERENCES

[1] Gegentana. A Systematic Review of Automated Software Engineering.
ADDIMaster of Science Thesis in Program Software Engineering and

Management SON-WESLEY, 2011.

[2] Paul Harmon and Mark Watson. Understanding UML- The Developers
Guide. Morgan Kaufmann Publishers, 2005.

[3] M. G. Ilieva and O. Ormandjieva. Models Derived from Automatically

Analyzed Textual User Requirements . Software Engineering Research,
Management and Applications, 2006. Fourth International Conference

on, pages 13 –21, IEEE, 2006.

[4] Liwu Li. Translating use cases to sequence diagrams. Automated
Software Engineering, 2000. Proceedings ASE 2000. The Fifteenth

IEEE International Conference on, pages 293– 296, IEEE, 2000.

[5] Daniel Popescu, Spencer Rugaber, Nenad Medvidovic, and Daniel M.
Berry. Reducing Ambiguities in Requirements Specifications Via

Automatically Created Object-Oriented Models . Innovations for
Requirement Analysis. From Stakeholders Needs to Formal Designs,

5320:103–124, Springer, 2008.

[6] Nayanamana Samarasinghe and Stephane S. Som. Generating a Domain

Model from a Use Case Model . IASSE, page 278, 2005.

[7] Evaluation of Novel Approaches to Software Engineering (ENASE),
2014 International Conference on, IEEE, 978-989-758-065-9:19, 2014.

[8] P. A. J. Mason and S. Supsrisupachai. Paraphrasing use case

descriptions and Sequence Diagrams: An approach with tool support.
Electrical Engineering/Electronics, Computer, Telecommunications and

Information Technology, 2009. ECTI-CON 2009. 6th International
Conference on, 2:722 – 725, IEEE, 2009.

[9] Jitendra Singh Thakur and Atul Gupta. Automatic generation of

sequence diagram from use case specification . ISEC ’14 Proceedings of
the 7th India Software Engineering Conference, 20, ACM, 2014.

[10] Nabil Arman and Sari Jabbarin. Generating Use Case Models from

Arabic User Requirements in a Semiautomated Approach Using a
Natural Language Processing Tool. J. Intell. Syst, 24(2):277286, 2015.

[11] Ibrahim Nassar and Faisal Khamayseh. A Semi-Automated Generation

of Activity Diagrams from Arabic User Requirements. NNGT Int. J. on
Software Engineering, 2, 2015.

[12] Meryem Elallaoui, Khalid Nafil, and Raja Touahni. Automatic gener-
ation of UML sequence diagrams from user stories in Scrum process.

2015 10th International Conference on Intelligent Systems: Theories and
Applications (SITA), IEEE, page 16, 2015.

[13] Richa Sharma, Sarita Gulia, and K. K. Biswas. Automated generation of

activity and sequence diagrams from natural language requirements.

[14] Bashar Nuseibeh and Steve Easterbrook. Requirements Engineering: A
Roadmap . ACM, Proceedings of the Conference on The Future of

Software Engineering, ICSE(ISBN:1-58113-253-0):35–46, 2000.

[15] Roger S. Pressman. IEEE Recommended Practice for Software Re-
quirements Specifications. IEEE Computer Society, Std 830, 1998.

[16] Imran Sarwar Bajwa and M. Abbas Choudhary. FIntegrating natural

language techniques in OO-Method. PSpringer-Verlag, 978-3-540-
24523-0:560–571, 2005.

[17] Nizar Habash, Owen Rambow, and Ryan Roth. MADA+TOKAN: A

Toolkit for Arabic Tokenization, Diacritization, Morphological Disam-
biguation, POS Tagging, Stemming and Lemmatization. In Proceedings

Statement # Sender Receiver Message

 إدخال البطاقة الصراف الزبون 1

 طلب الرقم الزبون الصراف 2

 الرقم السري الصراف الزبون 3

 المعلومات الى البنك الصراف 4

5

 ارسال النتيجة الصراف البنك 6

 عرض الخيارات الزبون الصراف 7

 ادخال طلب الصراف الزبون 8

 ه الى الصراف الزبون 8

 رسالة نجاح الصراف البنك 9

 ارسال اشعار الزبون الصراف 10

of the fifth international conference on Language Resources and

Evaluation, ISBN-13:978-0130969729:35–46, 2006.

[18] Tao Yue, Lionel C. Briand, and Yvan Labiche. Automatically Deriving
UML Sequence Diagrams from Use Cases . Simula Research Labora-

tory, Technical Report 2010-04, 2010.

