
A Parallel Algorithm for the Generalized Partially
Instantiated Same Generation Query in Deductive

Databases

Nabil Arman
Associate Professor of Computer Science

Palestine Polytechnic University
Hebron, Palestine

Abstract - The expressive power and intelligence of
traditional database systems can be improved by
recursion. Using recursion, relational database systems
are extended into knowledge-base systems (deductive
database systems). Linear recursion is the most
frequently found type of recursion in deductive
databases. Deductive databases queries are
computationally intensive and lend themselves naturally
to parallelization to speed up the solution of such
queries. In this paper, a parallel algorithm to solve the
generalized partially instantiated form of the same
generation query in deductive databases is presented.
The algorithm uses special data structures, namely, a
special matrix that stores paths from source nodes of
the graph representing a two-attribute normalized
database relation to all nodes reachable from these
source nodes, and a reverse matrix that stores paths
from any node to all source nodes related to that node.

Keywords: Deductive Databases, Linear Recursive
Rules, Same Generation Query, Parallel Databases.

1. Introduction

 The development of efficient algorithms to process
recursive rules and queries within the context of large
database systems has recently attracted a large amount
of research efforts due to the important role of recursive
rules in improving the intelligence of database systems
and extending them into knowledge-base systems
[1,2,3,4,5,6,7,8]. One of the main features of these
intelligent database systems, namely deductive
databases, is their ability to define recursive rules and to
process queries on them directly.

 Many queries in deductive databases, including the
same generation query, have data requirements that may
run into terabytes. Handling such large volumes of data
at an acceptable rate is difficult, if not impossible, using
single-processor systems. In fact, a set of commercial
parallel database systems, such as Teradata DBC series
of computers have demonstrated the feasibility of
parallel database queries. As a matter of fact, the set-
oriented nature of database queries naturally lends itself
to parallelization [9].

 In deductive databases, most recursive rules appear
in a simple form in which the rule’s head appears only

once in the body [3]. In general, this type of logic rules
are called linearly recursive. A same generation (sg)
rule is a linearly recursive rule of the following form:

sg(nXXX ,...,, 21):- par(21 , XY), par(22 , XY),…,

par(nn XY ,), sg(nYYY ,...,, 21)

where “par” is an extensional (base) predicate and “sg”
is an intentional database predicate. Within the context
of deductive databases, the extensional database
predicate “par” is defined by a two-attribute normalized
database relation with very many tuples as shown in
Figure 1 (a) [3,4]. Another common view for the base
relation is represented by a directed graph, as shown in
Figure 1 (b). For every tuple <x,y> of the base relation,
there exists, in the corresponding graph, a directed edge
from node x to node y. The nodes in such a graph are
the set of distinct values in the two columns of the base
relation (i.e., the domain). To generate solutions from
the above recursive rule, another non-recursive rule, the
exit rule, which defines the predicate

“sg(nXXX ,...,, 21)” must exist. This non-recursive

rule is given by:

sg(nXXX ,...,, 21):- par(1, XY), par(2, XY),…,

par(nXY ,)

 A query on a predicate that is defined by the
recursive and the exit rule is called a same generation
query. This query is a headless rule of the form:

:- sg(nXXX ,...,, 21)

 A query typically involves a predicate symbol with
some variable arguments, and its meaning or answer is
the different constant combinations that when bound
(assigned) to the variables, can make the predicate true.
In general, an n-place unit query, such as the above one,
may have different forms depending on the instantiation
status of the variables [5]. The generalized fully
instantiated same generation query has the form:

:- sg(nccc ,...,, 21)

FIGURE 1. THE BINARY RELATION “par” IN (a) TABLE FORM (b) GRAPH FORM

where nccc ,...,, 21 are constants representing nodes in

the graph. The order of the arguments is irrelevant since
“sg” is a symmetric relation. Let the instantiated set of

nodes (ISN) be { nccc ,...,, 21 }, then the answer of

such a query is either TRUE if nccc ,...,, 21 are at the

same generation (i.e., the set of nodes nccc ,...,, 21 are

on the same level of a family tree), or FALSE if

nccc ,...,, 21 are not at the same generation (i.e., the

set of nodes nccc ,...,, 21 are not on the same level of

a family tree).

 Our article presents an algorithm for solving the
generalized partially instantiated form of the same
generation query, i.e., a query that has the form:

:- sg(iXXX ,...,, 21 , nii ccc ,...,, 21 )

where iXXX ,...,, 21 are the uninstantiated variables

whose values are to be determined and

nii ccc ,...,, 21  are constants representing nodes in

the graph. The order of the arguments is irrelevant since
“sg” is a symmetric relation. Let the uninstantiated set

of nodes (USN) be { iXXX ,...,, 21 } and the

instantiated set of nodes (ISN) be { nii ccc ,...,, 21  },

then the answer of such a query is the set of nodes with
a cardinality of i that are of the same generation as

nii ccc ,...,, 21  (i.e., the set of nodes that are on the

same level of a family tree with nii ccc ,...,, 21 ).

2. The Structure Used in the
Algorithm

 The structure used in the algorithm is a special
matrix. This structure has been used in computing the
transitive closure of a database relation [5], and in
developing a sequential algorithm for the generalized
form of the partially instantiated same generation query
in deductive databases [4]. This matrix structure has
been compared with other graph representation
schemes. The comparison has shown that the matrix
representation has more information than the other
schemes [10,11]. In this matrix, the rows represent
some paths in the graph starting from the source nodes
to the leaves. Basically, depth-first search is used to
create the paths of the graph. Instead of storing every
node in all paths, the common parts of these paths can
be stored only once to avoid duplications. If two

paths  mn bbbaaaP ,...,,,...,, 21,211 and

 ln cccaaaP ,...,,,...,, 21,212 have the

common parts < naaa ...,, ,21 >, then 1P and 2P can

X Y
s
s
r
r
q
q
p
p
n
n
n
m
m
l
l
k
j
i
h
g
f
f
e
c
c

r
q
o
p
p
m
o
g
m
k
l
g
i
k
j
i
i
h
c
f
e
d
d
a
b

s

r

o

q

p m

n

l

j

k

g

f

e

d

i

h

c

ba

(b) GRAPH FORM
(a) TABLE FORM

0 1 2 3 4 5 6
0 s r o
1 p 0,2
2 g f e d
3 2,6
4 q 1,2
5 m 2,3
6 i h c a
7 b
8 n 5,2
9 k 6,3
10 l 9,1
11 j 6,3

FIGURE 2. (a) MATRIX REPRESENTATION (b) REVERSE MATRIX REPRESENTATION

0,0 0,1 0,2 1,2 1,3 2,3 2,4 2,5 2,6 3,5 4,1 4,2 5,2 5,3 6,3 6,4 6,5
s r o p 0,2 g f e d 2,6 q 1,2 m 2,3 i h c

6,6 7,6 8,0 8,1 9,1 9,2 10,1 10,2 11,2 11,3
a b n 5,2 k 6,3 l 9,1 j 6,3

FIGURE 3. THE MATRIX AS LINEAR ARRAY

be stored in the two consecutive rows of the matrix as

 mn bbbaaa ,...,,,...,, 21,21 and < -- n empty

entries -- lccc ,...,,, 21 , where the first n entries of

the second row are empty. To prevent the duplicate
storage of the nodes in the matrix, a different technique
is used; for the first visit to the node, it is entered into
the matrix and the coordinates of its location are
recorded. On subsequent visits, instead of entering the
node itself, its coordinates are entered into the matrix (a
pointer to the already stored node). In this way, only a
single copy of each of the graph’s nodes is guaranteed
to be entered in the matrix. Moreover, there will be only
one entry (either a node or a pointer) in the matrix for
each edge in the graph. In Figure 2 (a), the matrix
representation of the graph given in Figure 1 (b) is
presented. In that graph, there are 25 edges, and in its
matrix representation there are 25+2 =27 nonempty
entries in the matrix (another two entries for the nodes s
and n). An important advantage of this matrix structure
is that it stores a path from each node to all the source
nodes that can reach the node. In the implementation of
this sparse matrix, the empty entries are not stored
explicitly. The matrix can be stored sequentially row by
row as shown in Figure 3. For each row, storing the
column number of its first non-empty entry and the
sequence of non-empty entries in the row is sufficient.
Thus, the size of the stored matrix is much smaller than
the original relation and matrix. After the special matrix
form is created, a (reverse) matrix, which is the matrix
representation of the reverse graph, is generated using
the reverse graph. Let G=(V,E) be a graph, where V is a
finite set of vertices/nodes and E is a finite set of
arcs/edges such that each arc e in E is associated with
an ordered pair of vertices/nodes v and w, written as

e=(v,w), then the reverse graph RG is given by
RG=(V,E') where V is a finite set of vertices/nodes (the
same set of vertices of the original graph) and E' is a
finite set of arcs such that each arc e' in E' is associated
with an ordered pair of vertices w and v, written by
e'=(w,v) for each e=(v,w) in E. The reverse matrix
representation generated from the graph in Figure 1 (b)
is the matrix given in Figure 2 (b). An important
advantage of this matrix structure is that it stores paths
from every node to the (s). For solving the same
generation query, we are interested in the parents and
ancestors of a certain node and not in its descendants
and this information can be extracted easily from the
reverse matrix (and not from the original matrix).
Therefore, we need the reverse matrix representation.
The reverse matrix can also be stored sequentially row
by row as explained for the original matrix. In fact,
there is no need even to store the whole matrix
structure, because storing the row beginnings, row ends,
the entries stored at the row ends, and matrix
coordinates of the nodes is sufficient. This is due to the
fact that we are interested in the path lengths and not in
the stored nodes themselves, from the reverse matrix
structure.

3. The Generalized Partially
Instantiated Same Generation Query
Parallel Algorithm

 The evaluation of the generalized partially
instantiated same generation query can be parallelized
using intraoperation parallelism. The processing of
these queries can be speeded up by parallelizing the
execution of many individual operations involved in the

0 1 2 3 4 5 6
0 o r s
1 p 0,1
2 q 0,2
3 d e f g 1,1
4 m 2,2
5 n
6 3,2
7 a c h i 4,4
8 k 5,5
9 1 5,5
10 j 9,5
11 b 7,1

solution of these queries. To simplify the explanation
and presentation of the algorithms, it is assumed that
there are n processors, P1, …,Pn, and n disks D1, …,Dn,
where disk Di is associated with processor Pi.

 A benefit of the matrix structure is that it stores
paths from the source nodes to all nodes reachable from
these source nodes. This means that the nodes in the
matrix are clustered on the source nodes of the graph,
i.e., starting from any source, all nodes reachable from
that source can be accessed. The reverse matrix
structure stores paths from each node to all source
nodes related to that node, which means that the nodes
in the reverse matrix are clustered on the leaves of the
graph, i.e., starting from any node, all source nodes
related to that node can be accessed. As mentioned
before, there is no need even to store the whole matrix
structures, because storing the row beginnings, row
ends, the entries stored at the row ends, and matrix
coordinates of the nodes is sufficient. This is due to the
fact that we are interested in the path lengths and not in
the actual paths and the stored nodes themselves. These
structures, which are small, in size, when compared to
the original structures, are replicated across all the
processors.

 The replicated structures can be used to solve the
generalized partially instantiated same generation
query. In solving such a query, the parallel algorithm
proceeds as follows:

(1) Starting from each node ci in the instantiated set of
nodes (ISN), a processor Pi computes all path lengths to
all relevant source nodes using the replicated structures
generated from the reverse matrix structure, where each
processor works on one node. During this computation,
only the row beginnings and ends are used. After that,
these path lengths are sorted locally by the processors in
ascending order, according to the source nodes and
lengths, and duplicate paths are removed.

(2) The source nodes obtained from the above step are
partitioned in a round-robin technique across all the
processors. Taking each source node and using the
replicated structures generated from the forward matrix
structure, all nodes having the same path lengths are
determined by each processor. Let this set of nodes in
the result be (RS) for a certain path length. In this step,
only the row beginnings and row ends are also used in
the computation of the paths.

(3) Having all nodes (RS) collected in step (2), the
algorithm makes sure that all nodes in ISN are in the
result i.e., ISN RS. In addition, the number of nodes
in RS-ISN should be greater than or equal to the
number of nodes in USN
(i.e., |RS-ISN| |USN|). The result of the query will
consist of all combinations of the nodes in the set RS-
ISN.

 The parallel algorithm for the generalized partially
instantiated same generation query can be summarized
as follows:

Procedure Parallel_Generalized_Partially_
Instantiated_Same_Generation_Query()
begin

Distribute the nodes in ISN to the available
processors using a round-robin scheme
Starting from ci in ISN, Pi computes all path
lengths to all relevant source nodes using the
reverse matrix structure
Each processor Pi sorts, locally, path lengths in
ascending order
Each processor Pi remove duplicate paths
find source nodes that are common to all nodes in
ISN using all Processors Pi

Partition source nodes using round-robin
technique
Starting from sj, Pi collects the nodes RS that are
of length l from sj

 if ISN RS and |RS-ISN| |USN| then
 the result of the query will consist of all

combinations of the nodes in RS-ISN
end

 The path lengths will be sorted because the
algorithm will collect all the nodes in the same
generation with the given node in a single step. For
example, if a certain node has a set of path lengths

{ klll ,...,, 21 | klll  ...21 } from the selected

query node, then all nodes that are reachable from that
source node with these path lengths are collected in a
single step. The duplicate paths will be removed
because they will not add new nodes to the solution set.

 The intelligence of the algorithm is exhibited by the
approach it uses to answer the queries. The algorithm
considers only the relevant part of the database/graph,
i.e., it considers only the set of nodes that are somehow
relevant to the instantiated part of the query (the nodes
in ISN). In addition to that, the algorithm jumps from
one node to another, skipping many nodes on the paths
of the underlying graph, since it only uses the row
beginnings and row ends of the matrices in the
computation of the paths rather than the nodes of the
graph themselves.

 Depth-first search based techniques, such as the
magic-sets rule rewriting technique and the counting
technique [6], consider all source nodes of the graph.
Starting from each source node, all nodes of the graph
reachable from that node will be considered, even
though such nodes may not be related to the instantiated
set of nodes in the query. Our algorithm, on the other
hand, determines the set of relevant source nodes by
starting from one of the nodes in the instantiated set
using the reverse graph.

 Another important aspect is the benefit obtained
from the parallelism of the query solution. As
mentioned before, intraoperation parallelism is used to
speed up the execution of the algorithm.

If the number of nodes in ISN is less than the number of
processors, then |ISN| number of processors are used. If
the number of processors is greater than |ISN|, the nodes
of ISN are assigned to processors in a round-robin
scheme. If |ISN| is equal to the number of processors,
then node ci is assigned to Pi.

Example: Assume there are three processors P1, P2, and
P3, with.three disks D1, D2, and D3 respectively. For the
graph in Figure 1 (b), the answer of the generalized
partially instantiated same generation query

:- sg(j,i,g,X)

is computed as follows.

(1) The algorithm starts from the instantiated arguments
and distributes the nodes j,i,g to processors P1, P2, and
P3 respectively. P1 starts with j and computes all path
lengths to all relevant source nodes. P2 and P3 do the
same for nodes i and g respectively. These paths are
sorted and duplicates are removed locally on each of the
processors. Thus, this step generates one path of length
2 from j to source node n using processor P1. This step
also generates two paths of length 2 and 3 from i to n
using processor P2. Finally, the step generates a path of
length 3 from g to n and a path of length 2 from g to s
using processor P3.

(2) From the above step, the algorithm determines that n
is the only relevant source node (the source node s is
not considered in the computation since it is not
common to all nodes in ISN). Therefore, the algorithm
starts from n and uses the forward matrix structure to
determine all nodes with path lengths of 2 from source
node n. When a node of path length 2 is reached, it is
recorded and the search continues until all relevant parts
of the graph is traversed up to path lengths of 2 (the
search terminates at this point for the current path of the
graph since nodes with lengths greater than 2 are
irrelevant in answering the query) or until leafs are
encountered. The set of nodes in the result is
RS={g,i,k,j}.

(3) Based on the above, X=k is the only answer of the
query..

4. Conclusion

 This paper presents a parallel algorithm to solve the
generalized partially instantiated same generation query
in deductive databases. The algorithm exhibits some
intelligence by focusing on the relevant portion of the
graph/database rather than considering all source nodes
of the graph. In addition, the algorithm uses

intraoperation parallelism to execute many steps in
parallel. The algorithm uses special data structures,
namely, a matrix representation of the graph,
representing the two-attribute normalized database
relation, and a reverse matrix representation of the
reverse graph.

REFERENCES

[1] F. Banchilon, D. Maire, Y. Sagiv, and J. Ullman,
Magic Sets and other Strange Ways to Implement Logic
Programs, Proc. 5th ACM Symp. On Principles of
Database System, 1986, pp. 1-15.

[2] R. Elmasri, and S. Navathe, Fundamentals of
Database Systems, Addison Wesley, 2004.

[3] G. Qadah, L. Henschen, and J. Kim, Efficient
Algorithms for the Instantiated Transitive Closure
Queries, IEEE Transactions on Software Engineering,
Vol. 17, No. 3, 1991.

[4] N. Arman, An Intelligent Algorithm for the
Generalized Fully Instantiated Same Generation Query
in Deductive Databases, Proceedings of the 4th

International Arab Conference on Information
Technology (ACIT’2003), pp. 224-228, December 20-
23, 2003, Arab Academy for Science and Technology,
Alexandria, Egypt.

[5] I. Toroslu, G. Qadah, and L. Henschen, An Efficient
Database Transitive Closure Algorithm, Journal of
Applied Intelligence 4, 1994, pp. 205-218.

[6] J. Ullman, Principles of Database and Knowledge-
Base Systems, Computer Science Press, 1989.

[7] C. Young, H. Kim, L. Henschen, and J. Han,
Classification and Compilation of Linear Recursive
Queries in Deductive Databases, IEEE Transactions on
Knowledge and Data Engineering, Vol. 4, No. 1, 1992.

[8] N. Arman, An Efficient Algorithm for the
Generalized Partially Instantiated Same Generation
Query in Deductive Databases, The International Arab
Journal of Information Technology, pp. 142-146, Vol.
1, No. 1, 2004.

[9] A. Silberschatz, H. Korth, and S. Sudarshan,
Database System Concepts, McGraw Hill, 2005.

[10] N. Arman, Graph Representation Comparative
Study, Proceedings of the 2005 International
Conference on Foundations of Computer Science
(FCS'05), June 27-30, 2005, Las Vegas, USA.

[11] N. Arman, Graph Representation: Comparative
Study and Performance Evaluation, Journal of
Information Technology, pp. 465-468, Vol. 4, No. 4,
ISSN: 1812-5638, 2005.

