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Abstract - The expressive power and intelligence of 
traditional database systems can be improved by 
recursion. Using recursion, relational database systems 
are extended into knowledge-base systems (deductive 
database systems). Linear recursion is the most 
frequently found type of recursion in deductive 
databases. Deductive databases queries are 
computationally intensive and lend themselves naturally 
to parallelization to speed up the solution of such 
queries. In this paper, a parallel algorithm to solve the 
generalized partially instantiated form of the same 
generation query in deductive databases is presented. 
The algorithm uses special data structures, namely, a 
special matrix that stores paths from source nodes of 
the graph representing a two-attribute normalized 
database relation to all nodes reachable from these 
source nodes, and a reverse matrix that stores paths 
from any node to all source nodes related to that node.
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1. Introduction

      The development of efficient algorithms to process 
recursive rules and queries within the context of large 
database systems has recently attracted a large amount 
of research efforts due to the important role of recursive 
rules in improving the intelligence of database systems 
and extending them into knowledge-base systems 
[1,2,3,4,5,6,7,8]. One of the main features of these 
intelligent database systems, namely deductive 
databases, is their ability to define recursive rules and to 
process queries on them directly.

      Many queries in deductive databases, including the 
same generation query, have data requirements that may 
run into terabytes. Handling such large volumes of data 
at an acceptable rate is difficult, if not impossible, using 
single-processor systems. In fact, a set of commercial 
parallel database systems, such as Teradata DBC series 
of computers have demonstrated the feasibility of 
parallel database queries.  As a matter of fact, the set-
oriented nature of database queries naturally lends itself 
to parallelization [9].

      In deductive databases, most recursive rules appear 
in a simple form in which the rule’s head appears only 

once  in the body [3]. In general, this type of logic rules 
are called linearly recursive. A same generation (sg) 
rule is a linearly recursive rule of the following form:

sg( nXXX ,...,, 21 ):- par( 21 , XY ), par( 22 , XY ),…, 

par( nn XY , ), sg( nYYY ,...,, 21 )

where “par” is an extensional (base) predicate and “sg” 
is an intentional database predicate. Within the context 
of deductive databases, the extensional database 
predicate “par” is defined by a two-attribute normalized 
database relation with very many tuples as shown in 
Figure 1 (a) [3,4]. Another common view for the base 
relation is represented by a directed graph, as shown in 
Figure 1 (b). For every tuple <x,y> of the base relation, 
there exists, in the corresponding graph, a directed edge 
from node x to node y. The nodes in such a graph are 
the set of distinct values in the two columns of the base 
relation (i.e., the domain). To generate solutions from 
the above recursive rule, another non-recursive rule, the 
exit rule, which defines the predicate 

“sg( nXXX ,...,, 21 )” must exist. This non-recursive 

rule is given by:

sg( nXXX ,...,, 21 ):- par( 1, XY ), par( 2, XY ),…, 

par( nXY , )

      A query on a predicate that is defined by the 
recursive and the exit rule is called a same generation 
query. This query is a headless rule of the form:

:- sg( nXXX ,...,, 21 )

      A query typically involves a predicate symbol with 
some variable arguments, and its meaning or answer is 
the different constant combinations that when bound 
(assigned) to the variables, can make the predicate true. 
In general, an n-place unit query, such as the above one, 
may have different forms depending on the instantiation 
status of the variables [5]. The generalized fully 
instantiated same generation query has the form:

:- sg( nccc ,...,, 21 )



FIGURE 1. THE BINARY RELATION “par” IN (a) TABLE FORM (b) GRAPH FORM

where nccc ,...,, 21 are constants representing nodes in 

the graph. The order of the arguments is irrelevant since 
“sg” is a symmetric relation. Let the instantiated set of 

nodes (ISN) be { nccc ,...,, 21 }, then the answer of 

such a query is either TRUE if nccc ,...,, 21 are at the 

same generation (i.e., the set of nodes nccc ,...,, 21 are 

on the same level of a family tree), or FALSE if 

nccc ,...,, 21 are not at the same generation (i.e., the 

set of nodes nccc ,...,, 21 are not on the same level of 

a family tree).

      Our article presents an algorithm for solving the 
generalized partially instantiated form of the same 
generation query, i.e., a query that has the form:

:- sg( iXXX ,...,, 21 , nii ccc ,...,, 21  )

where iXXX ,...,, 21 are the uninstantiated variables 

whose values are to be determined and 

nii ccc ,...,, 21  are constants representing nodes in 

the graph. The order of the arguments is irrelevant since 
“sg” is a symmetric relation. Let the uninstantiated set 

of nodes (USN) be { iXXX ,...,, 21 } and the 

instantiated set of nodes (ISN) be { nii ccc ,...,, 21  }, 

then the answer of such a query is the set of nodes with 
a cardinality of i that are of the same generation as 

nii ccc ,...,, 21  (i.e., the set of nodes that are on the 

same level of a family tree with nii ccc ,...,, 21  ). 

2. The Structure Used in the 
Algorithm

      The structure used in the algorithm is a special 
matrix. This structure has been used in computing the 
transitive closure of a database relation [5], and in 
developing a sequential algorithm for the generalized 
form of the partially instantiated same generation query 
in deductive databases [4]. This matrix structure has 
been compared with other graph representation 
schemes. The comparison has shown that the matrix 
representation has more information than the other 
schemes [10,11].  In this matrix, the rows represent 
some paths in the graph starting from the source nodes 
to the leaves. Basically, depth-first search is used to 
create the paths of the graph. Instead of storing every 
node in all paths, the common parts of these paths can 
be stored only once to avoid duplications. If  two                      

paths  mn bbbaaaP ,...,,,...,, 21,211 and 

 ln cccaaaP ,...,,,...,, 21,212 have the

common parts < naaa ...,, ,21 >, then 1P   and  2P   can
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(b) GRAPH FORM  
(a) TABLE FORM



0 1 2 3 4 5 6
0 s r o
1 p 0,2
2 g f e d
3 2,6
4 q 1,2
5 m 2,3
6 i h c a
7 b
8 n 5,2
9 k 6,3
10 l 9,1
11 j 6,3

FIGURE 2. (a) MATRIX REPRESENTATION  (b) REVERSE MATRIX REPRESENTATION

0,0 0,1 0,2 1,2 1,3 2,3 2,4 2,5 2,6 3,5 4,1 4,2 5,2 5,3 6,3 6,4 6,5
s r o p 0,2 g f e d 2,6 q 1,2 m 2,3 i h c

6,6 7,6 8,0 8,1 9,1 9,2 10,1 10,2 11,2 11,3
a b n 5,2 k 6,3 l 9,1 j 6,3

FIGURE 3. THE MATRIX AS LINEAR ARRAY

be stored in the two consecutive rows of the matrix as 

 mn bbbaaa ,...,,,...,, 21,21 and < -- n empty 

entries -- lccc ,...,,, 21 , where the first n entries of 

the second row are empty. To prevent the duplicate 
storage of the nodes in the matrix, a different technique 
is used; for the first visit to the node, it is entered into
the matrix and the coordinates of its location are
recorded. On subsequent visits, instead of entering the 
node itself, its coordinates are entered into the matrix (a 
pointer to the already stored node). In this way, only a 
single copy of each of the graph’s nodes is guaranteed 
to be entered in the matrix. Moreover, there will be only 
one entry (either a node or a pointer) in the matrix for 
each edge in the graph. In Figure 2 (a), the matrix 
representation of the graph given in Figure 1 (b) is 
presented. In that graph, there are 25 edges, and in its 
matrix representation there are 25+2 =27 nonempty 
entries in the matrix (another two entries for the nodes s
and n). An important advantage of this matrix structure 
is that it stores a path from each node to all the source 
nodes that can reach the node. In the implementation of 
this sparse matrix, the empty entries are not stored 
explicitly. The matrix can be stored sequentially row by 
row as shown in Figure 3. For each row, storing the 
column  number  of  its  first  non-empty  entry  and  the
sequence of non-empty entries in the row is sufficient. 
Thus, the size of the stored matrix is much smaller than 
the original relation and matrix. After the special matrix 
form is created, a (reverse) matrix, which is the matrix 
representation of the reverse graph, is generated using 
the reverse graph. Let G=(V,E) be a graph, where V is a 
finite set of vertices/nodes and E is a finite set of 
arcs/edges such that each arc e in E is associated with 
an ordered pair of vertices/nodes v and w, written as 

e=(v,w), then the reverse graph RG is given by 
RG=(V,E') where V is a finite set of vertices/nodes (the 
same set of vertices of the original graph) and E' is a 
finite set of arcs such that each arc e' in E' is associated 
with an ordered pair of vertices w and v, written by 
e'=(w,v) for each e=(v,w) in E. The reverse matrix 
representation generated from the graph in Figure 1 (b) 
is the matrix given in Figure 2 (b). An important 
advantage of this matrix structure is that it stores paths 
from every node to the (s). For solving the same 
generation query, we are interested in the parents and 
ancestors of a certain node and not in its descendants 
and this information can be extracted easily from the 
reverse matrix (and not from the original matrix). 
Therefore, we need the reverse matrix representation. 
The reverse matrix can also be stored sequentially row 
by row as explained for the original matrix. In fact, 
there is no need even to store the whole matrix 
structure, because storing the row beginnings, row ends, 
the entries stored at the row ends, and matrix 
coordinates of the nodes is sufficient. This is due to the 
fact that we are interested in the path lengths and not in 
the stored nodes themselves, from the reverse matrix 
structure.

3. The Generalized Partially 
Instantiated Same Generation Query 
Parallel Algorithm

      The evaluation of the generalized partially 
instantiated same generation query can be parallelized 
using intraoperation parallelism. The processing of 
these queries can be speeded up by parallelizing the 
execution of many individual operations involved in the 
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solution of these queries. To simplify the explanation 
and presentation of the algorithms, it is assumed that 
there are n processors, P1, …,Pn, and n disks D1, …,Dn, 
where disk Di is associated with processor Pi.

      A benefit of the matrix structure is that it stores 
paths from the source nodes to all nodes reachable from 
these source nodes. This means that the nodes in the 
matrix are clustered on the source nodes of the graph, 
i.e., starting from any source, all nodes reachable from 
that source can be accessed. The reverse matrix 
structure stores paths from each node to all source 
nodes related to that node, which means that the nodes 
in the reverse matrix are clustered on the leaves of the 
graph, i.e., starting from any node, all source nodes 
related to that node can be accessed. As mentioned 
before, there is no need even to store the whole matrix 
structures, because storing the row beginnings, row 
ends, the entries stored at the row ends, and matrix 
coordinates of the nodes is sufficient. This is due to the 
fact that we are interested in the path lengths and not in 
the actual paths and the stored nodes themselves. These 
structures, which are small, in size, when compared to 
the original structures, are replicated across all the 
processors.

      The replicated structures can be used to solve the 
generalized partially instantiated same generation 
query. In solving such a query, the parallel algorithm 
proceeds as follows:

(1) Starting from each node ci in the instantiated set of 
nodes (ISN), a processor Pi computes all path lengths to 
all relevant source nodes using the replicated structures 
generated from the reverse matrix structure, where each 
processor works on one node. During this computation, 
only the row beginnings and ends are used. After that, 
these path lengths are sorted locally by the processors in 
ascending order, according to the source nodes and 
lengths, and duplicate paths are removed.

(2) The source nodes obtained from the above step are 
partitioned in a round-robin technique across all the 
processors. Taking each source node and using the 
replicated structures generated from the forward matrix 
structure, all nodes having the same path lengths are
determined by each processor. Let this set of nodes in 
the result be (RS) for a certain path length. In this step, 
only the row beginnings and row ends are also used in 
the computation of the paths. 

(3) Having all nodes (RS) collected in step (2), the 
algorithm makes sure that all nodes in ISN are in the 
result i.e., ISN RS. In addition, the number of nodes 
in RS-ISN should be greater than or equal to the 
number of nodes in USN 
(i.e.,  |RS-ISN| |USN|). The result of the query will 
consist of all combinations of the nodes in the set RS-
ISN.

      The parallel algorithm for the generalized partially 
instantiated same generation query can be summarized 
as follows:

Procedure    Parallel_Generalized_Partially_
Instantiated_Same_Generation_Query()
begin

Distribute the nodes in ISN to the available 
processors using a round-robin scheme
Starting from ci in ISN, Pi computes all path 
lengths to all relevant source nodes using the 
reverse matrix structure
Each processor Pi sorts, locally, path lengths in 
ascending order
Each processor Pi remove duplicate paths
find source nodes that are common to all nodes in 
ISN using all Processors Pi

Partition source nodes using round-robin 
technique
Starting from sj, Pi collects the nodes RS that are 
of length l from sj

        if  ISN RS and |RS-ISN| |USN| then
             the result of the query will consist of all 

combinations of the nodes in RS-ISN
end

      The path lengths will be sorted because the 
algorithm will collect all the nodes in the same 
generation with the given node in a single step. For 
example, if a certain node has a set of path lengths 

{ klll ,...,, 21 | klll  ...21 } from the selected 

query node, then all nodes that are reachable from that 
source node with these path lengths are collected in a 
single step. The duplicate paths will be removed 
because they will not add new nodes to the solution set.

      The intelligence of the algorithm is exhibited by the 
approach it uses to answer the queries. The algorithm 
considers only the relevant part of the database/graph, 
i.e., it considers only the set of nodes that are somehow 
relevant to the instantiated part of the query (the nodes 
in ISN). In addition to that, the algorithm jumps from 
one node to another, skipping many nodes on the paths 
of the underlying graph, since it only uses the row 
beginnings and row ends of the matrices in the 
computation of the paths rather than the nodes of the 
graph themselves. 

      Depth-first search based techniques, such as the 
magic-sets rule rewriting technique and the counting 
technique [6], consider all source nodes of the graph. 
Starting from each source node, all nodes of the graph 
reachable from that node will be considered, even 
though such nodes may not be related to the instantiated 
set of nodes in the query. Our algorithm, on the other 
hand, determines the set of relevant source nodes by 
starting from one of the nodes in the instantiated set 
using the reverse graph.



      Another important aspect is the benefit obtained 
from the parallelism of the query solution. As 
mentioned before, intraoperation parallelism is used to 
speed up the execution of the algorithm.

If the number of nodes in ISN is less than the number of 
processors, then |ISN| number of processors are used. If 
the number of processors is greater than |ISN|, the nodes 
of ISN are assigned to processors in a round-robin 
scheme. If |ISN| is equal to the number of processors, 
then node ci is assigned to Pi.

Example: Assume there are three processors P1, P2, and 
P3, with.three disks D1, D2, and D3 respectively. For the 
graph in Figure 1 (b), the answer of the generalized 
partially instantiated same generation query

:- sg(j,i,g,X)

is computed as follows.

(1) The algorithm starts from the instantiated arguments 
and distributes the nodes j,i,g to processors P1, P2, and 
P3 respectively. P1 starts with j and computes all path 
lengths to all relevant source nodes. P2 and P3 do the 
same for nodes i and g respectively. These paths are 
sorted and duplicates are removed locally on each of the 
processors. Thus, this step generates one path of length 
2 from j to source node n using processor P1. This step 
also generates two paths of length 2 and 3 from i to n 
using processor P2. Finally, the step generates a path of 
length 3 from g to n and a path of length 2 from g to s 
using processor P3.

(2) From the above step, the algorithm determines that n
is the only relevant source node (the source node s is 
not considered in the computation since it is not 
common to all nodes in ISN). Therefore, the algorithm 
starts from n and uses the forward matrix structure to 
determine all nodes with path lengths of 2 from source 
node n. When a node of path length 2 is reached, it is 
recorded and the search continues until all relevant parts 
of the graph is traversed up to path lengths of 2 (the 
search terminates at this point for the current path of the 
graph since nodes with lengths greater than 2 are 
irrelevant in answering the query) or until leafs are 
encountered. The set of nodes in the result is 
RS={g,i,k,j}.

(3) Based on the above, X=k is the only answer of the 
query..

4. Conclusion

      This paper presents a parallel algorithm to solve the 
generalized partially instantiated same generation query 
in deductive databases. The algorithm exhibits some 
intelligence by focusing on the relevant portion of the 
graph/database rather than considering all source nodes 
of the graph. In addition, the algorithm uses

intraoperation parallelism to execute many steps in 
parallel. The algorithm uses special data structures, 
namely, a matrix representation of the graph, 
representing the two-attribute normalized database 
relation, and a reverse matrix representation of the 
reverse graph.
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