
A Parallel Algorithm for Generating Maximal Interval Groups
in Interval Databases Based on Schedule of Event Points

Nabil Arman
Associate Professor of Computer Science

Palestine Polytechnic University, Palestine

ABSTRACT
Interval databases queries are computationally intensive and lend themselves naturally to
parallelization to speed up the solution of such queries. In this paper, a parallel algorithm to
generate all maximal interval groups form a given interval set is presented. The algorithm
makes use of intraoperation parallelism to speed up the generation of the maximal groups.
The development of efficient algorithms to enumerate all intervals that have certain properties
has attracted a large amount of research efforts due to the important role of interval-based
reasoning in different areas like rule-based systems, including Expert Systems (ESs),
Information Distribution Systems (IDSs), and database systems to name a few. These
algorithms are very crucial to answer certain queries about these intervals.

Key Words: Maximal interval groups, interval database, parallel databases.

1. Introduction
Interval-based reasoning has an important
role in many areas like rule-based systems,
including Expert Systems (ESs),
Information Distribution Systems (IDSs),
and database systems. Intervals are
appropriate and convenient for
representing events that span continuous
period of time. One may query an interval
database to determine what events occur
during a given interval. Algorithms to
enumerate all intervals that have certain
properties have attracted a large amount of
research efforts due to the important role of
interval-based reasoning in different areas,
including rule-based systems and database
systems [1,2,3,4,5]. These algorithms have
an important role in all these systems. An
algorithm that finds an interval in an
interval tree, represented as a red-black
tree, which overlaps a given interval is
presented in [4]. However, the algorithm
has the overhead of building and
maintaining the interval tree and it can
only determine pairs of intervals that
overlap. Our algorithm, on the other hand,
determines all interval groups that overlap
and makes use of intraoperation
parallelism to speed up processing.

Many queries in interval databases,
including the generation of maximal
interval groups, have data requirements
that may run into terabytes. Handling such
large volumes of data at an acceptable rate
is difficult, if not impossible, using single-
processor systems. In fact, a set of
commercial parallel database systems, such
as Teradata DBC series of computers have
demonstrated the feasibility of parallel
database queries. As a matter of fact, the
set-oriented nature of database queries
naturally lends itself to parallelization [6].
In a database of n intervals, there is a need
to find all maximal groups, where each
group has the intervals that overlap. In a
temporal database that stores all courses
classes and their times, a query may be
asked to generate all groups of classes that
meet at a certain time point. In an IDS, it is
always needed to check the time validity of
rules to determine if they can be chained.
This has an important role in controlling
the operation of an IDS which is a corner
stone of Command, Control,
Communication, Computer, and
Intelligence (C4I) systems. This paper
presents a parallel algorithm to generate all
maximal interval groups form a given
interval set.

2. Interval Grouping Parallel
Algorithm
The generation of the maximal interval
groups in interval databases can be
parallelized using intraoperation
parallelism. The processing of this query
can be speeded up by parallelizing the
execution of many individual operations
involved in the generation of the maximal
interval groups. To simplify the
explanation and presentation of the
algorithm, it is assumed that there are n
processors, P1, …,Pn, and n disks D1,
…,Dn, where disk Di is associated with
processor Pi.

A serial algorithm that generates the
maximal interval groups was presented in
[7]. The algorithm doesn’t make use of the
benefits of parallel architectures which are
becoming more popular for query
processing in large databases.

Before explaining the grouping algorithm,
some concepts that will be used in the
algorithm are explained. The algorithm
uses the concept of event points and event
point schedule [1]. An event point is a
point on the spatial dimension, where some
intervals are leaving a certain interval
group and other intervals are entering
another interval group. The set of these
event points constitutes a schedule of event
points. In our algorithm, the real schedule
is determined dynamically as the algorithm
progresses. The algorithm uses intervals
where an interval I =],[21 tt is represented

as an object with fields low[I]= 1t (the low

endpoint) and high[I]= 2t (the high
endpoint). Two intervals overlap if their
intersection is not empty. The algorithm
also sorts the intervals in Lexicographic
Ordering. This can be performed using a
parallel sort algorithm like range-
partitioning sort or parallel external sort-
merge[6]. An interval set is sorted in
lexicographic ordering if whenever interval
[i,j] < [h,k] then either i < h or i=h and j <
k. Let IS denote an interval set and let

mttt ,...,, 21 denote all potential event

points. Let 1mt be high[last_interval],

which is an event point representing a
guard condition for the algorithm. Let
LIG(it) denote the Low Interval Group of

it , which is the set of intervals I whose

high[I] >= it and low[I] < it . Let UIG(it)

denote the Upper Interval Group of it ,

which is the set of intervals I whose
low[I]< 1it and low[I] >= it , where 1it is

the next event point. Then for every
event point it and its next event point 1it ,

IG(it) = LIG(it)  UIG(it)

Thus, IG(it) for event point it consists of

the set of intervals whose high[I] >= it

and low[I] < it , and the set of intervals

whose low[I]< 1it and low[I] >= it , where

1it is the next event point of it .

The grouping algorithm is implemented by
the procedure
Parallel_Determine_Interval_Groups as
given in Figure 1, which can be invoked
with any interval set IS to be grouped into
maximal groups, such that each interval
group IG has the maximum number of
intervals such that for any interval I1, and
I2 in IG, I1I2  .
Parallel_Determine_Interval_Groups
Algorithm determines all potential event
points that represent the set of all distinct
low endpoints in the interval set. In doing
that, the interval set IS is partitioned and
allocated to the n processors using range
partitioning on the intervals’ low end
points. Each processor Pi determines all
potential event points in its partition
locally. The results form processors P1,
…,Pn are merged together to form
event_points.

The interval set IS and event_points are
replicated on all n processors to be used in
computing the maximal interval groups.
The event points are distributed on the n
processors in a round-robin scheme, where
each processor Pi determines maximal
interval group Gi based on its assigned
event point locally. If the number of event

Figure 1. Parallel_Determine_Interval_Groups Algorithm

points m is less than the number of
processors n, then m processors are used.
The maximal interval groups from
processors P1, …,Pn are merged to produce
the final result

Example: Consider the interval set:
{[0,1],[0,3],[0,5],[0,7],[0,9],[0,11],[2,13],[
4,13]} and assume there are 4 processors
P1,P2, P3, and P4.

The algorithm sorts the interval set if it is
not sorted using a parallel sort algorithm.
The algorithm then partitions the interval
set using range partitioning. Assume the
partition vector is <1,2,3>. Based on this
vector, intervals whose low end point is
less than 1 are placed on D1. Intervals
whose low end points are greater than or
equal to 1 and less than 2 are placed on D2.
Intervals whose low end points are greater
than or equal to 2 and less than 3 are
placed on D3. Finally, intervals whose low
end points are greater than 3 are placed on
D4. Thus, IS is distributed as follows:

D1 contains [0,1], [0,3], [0,5], [0,7], [0,9],
and [0,11]
D2 contains no intervals
D3 contains [2,13]
D4 contains [4,13]

Therefore, the processors determine the
event points in parallel as follows:

P1 determines event point: 0
P2 determines no event point
P3 determines event point: 2
P4 determines event point: 4

The event pointes from P1, …,Pn are
merged to produce the event points 0,2,
and 4.

After replicating IS and event_points on all
n processors, the algorithm distributes the
event points on the n processors in a round
robin scheme. Therefore,

P1 is assigned event point 0
P2 is assigned event point 2
P3 is assigned event point 4
P4 is not assigned any event point and is
free to be used if needed

The processors determine maximal interval
groups based on the event points as
follows:

(1) Event point jt =0.

Next event point it =2 determined from

the event points
P1 determines the maximal group
IG(jt =0) =

{[0,1],[0,3],[0,5],[0,7],[0,9],[0,11]}
(2) Event point jt =2.

Next event point it =4 determined from

the event points

Procedure Parallel_Determine_Interval_Groups(Interval Set: IS)
{
 Partition IS using range partitioning on interval low end points
 Sort IS in lexicographic ordering using parallel external sort-merge
 Pi determines all potential event points in its partition locally
 Merge results from P1, …,Pn to form event_points
 Replicate IS and event_points on all n processors
 Distribute event_points on the processors in a round-robin scheme
 Pi determines maximal interval group Gi using its assigned event point locally
 Merge IGis from P1, …,Pn to produce the final result
}

P2 determines the maximal group
IG(jt =2)=

{[0,5],[0,7],[0,9],[0,11],[2,13]}
(3) Event point jt =4.

Next event point it =Null since 4 is the

last event point
P3 determines the maximal group
IG(jt =4)=

{[0,5],[0,7],[0,9],[0,11],[2,13],[4,13]}

The maximal groups from the processors
are merged to produce the final result.

3. Conclusion
A parallel algorithm for generating the
maximal interval groups has been
presented. The algorithm is very crucial to
answer certain queries about the intervals
in an interval set. The algorithm can be
used to generate the maximal interval
groups needed in many systems, including
IDS, expert systems, and temporal
database systems. The algorithm makes us
of intraoperation parallelism to speed up
the generation of the maximal interval
groups in an interval database.

References:

[1] A. Aiken, J. Hellerstein, and J.
Widom, Static Analysis Techniques
for Predicting the Behavior of
Active Database Rules, ACM
Transactions on Database Systems,
Vol. 20, No. 1, 1995, pp. 3-41.

[2] S. Chamberlain, Automated
Information Distribution in
Bandwidth-Constrained
Environments, 1994 IEEE
MILCOM Conference Record, Vol.
2, October, 1994.

[3] S. Chinn and G. Madey, A
Framework for Developing and
Evaluating Expert Systems for
Temporal Business Applications,
Expert Systems With Applications.
1997.

[4] T. Cormen, C. Leiserson, R. Rivest,
and C. Stein, Introduction to
Algorithms, McGraw-Hill Book
Company, 2001.

[5] J. Harrison, Active Rules in
Deductive Databases, ACM CIKM,
Washington D.C., USA, November,
1993.

[6] A. Silberschatz, H. Korth, and S.
Sudarshan, Database System
Concepts, McGraw Hill, 2005

[7] N. Arman, “An Efficient Algorithm
for Generating Maximal Interval
Groups in Interval Databases,” J. J.
Appl. Sci., Vol. 6, No.1, 2004, pp.
19-27.

