
ERRDS: A CASE TOOL TO GENERATE AN ER DATA MODEL FROM A
RELATIONAL DATABASE SCHEMA

NABIL ARMAN
Palestine Polytechnic University

Hebron, Palestine

Abstract: A relational database (RDB) schema is a
description of database requirements in terms of a set of
relations and a set of integrity constraints. An Entity-
Relationship(ER) data model is a high-level conceptual
data model that is used frequently for the conceptual
design of databases. ER data models represent a concise
description of users' data requirements without
including implementation details. Because of that, ER
data models are usually used to communicate with non-
technical users since they are easier to understand.
Some relational database designers used the concept of
a universal relation and perform normalization to come
up with the relational database schema, without
developing an ER data model. We advocate that the
best practice for a relational database design is to start
with developing a conceptual schema like an ER data
model and then map it to a relational database schema
(as many CASE tools support). In this article, a case
tool to perform the reverse process, which is generating
an ER data model from a relational database schema, is
presented. This tool is very useful in obtaining a
conceptual schema from a relational database schema.
This tool can also be thought of as a kind of reverse
engineering case tool that aids in the reverse-
engineering of legacy databases to consider new
implementation technology options.

Keywords: Conceptual schema, ER models, automated
software engineering, case tools.

1. INTRODUCTION

The relational data model represents the
relational database as a collection of relations, where
each relation resembles a table of values. Various
constraints on data can be specified in the form of
relational constraints, including domain constrains, key
constraints, and referential integrity constraints.

An ER data model is a high-level conceptual
data model that is used frequently for the conceptual
design of databases. ER data models represent a concise
description of user's data requirements without including
implementation details. Because of that, ER data models
are usually used to communicate with non-technical
users since they are easier to understand. The main
building blocks of an ER diagram are entity types and
relationship types. The process of mapping an ER data
model to a relational database schema is well-
documented in the literature [1, 2]. Many CASE tools are
capable of doing this mapping process automatically like

Oracle Designer, ER Win, etc. On the other hand, little
emphasis has been given to the reverse process, which is
generating an ER data model from a relational database
schema. In this article, a CASE tool that can generate an
ER data model from a relational database schema is
presented. In addition, the details of the algorithm that is
used are explained.

On one hand, some vendors invest in
developing integrated CASE tools, which can aid in the
whole system development process. However, these
systems are expensive to be purchased and justified for
small-scale systems. On the other hand, there is an
increasing interest in developing CASE tools that aid in
a specific phase of system development, such as the
normalization process of a relational database system
[4]. A tool that performs the identification of
composition relationships for UML Class Diagrams is
presented in [5]. The modeling of web-based dialog
flows for automatic dialog control is explained in [6].
Software systems unit test selection based on
operational violations is presented in [7]. These tools
are meant to aid in specific task rather than being used
in the whole system development process. ERRDS
represents a system, in this category, that is aimed at the
reverse-engineering of a relational database schema and
obtaining an ER schema from this relational schema.

2. GENERATING AN ER DATA
MODEL FROM A RELATIONAL
DATABASE SHCHEM

Consider the relational database schema:

R1(A11,A12,…,A1i)
R2(A21,A22,…,A2j), FK: A22R1(A11)
R3(A31,A32,…,A3k)
R4(A41,A42,…,A4l), FK: A41R1(A11) and FK:
A42R3(A31)
R5(A11,A52,…,A5m)
R6(A11,A62,…,A6n)

This schema will be used to illustrate the process of
generating an ER from a relational database schema.
Primary keys are underlined. Foreign keys are
represented using arrows where the arrow starts from
the referencing attribute and points to the referenced
attribute.

A relational database schema consists mainly
of the following:

1. Relations
2. Primary Keys
3. Foreign Keys

An ER schema consists mainly of the following:

1. Entity Types
2. Attributes
3. Relationship Types

It is requested to generate ER constructs that can be
mapped to the relational database constructs. The
process is outlined in the following steps:

1. Relations: Relations are mapped to Entity Types.
Primary keys of the relations become the entity types'
key attributes. Relations' attributes become the entity
types' attributes. For example, R1(A11,A12,…,A1i) is
mapped to an entity type with a key attribute A11 and
regular attributes A12,…,A1i.

2. Foreign Keys: A foreign key is represented by an
attribute or a set of attributes named "Referencing
Attribute(s)" in the referencing relation that refer to an
attribute or set of attributes named "Referenced
Attribute(s)" in another relation or in the same relation
when there is a recursive relationship type. Foreign
keys in a relational database schema represent the
relationship types in an ER schema. Therefore, they are
mainly used to specify the relationship types
between/among entity types. A set of different cases
may occur:

2.1 Relations with one foreign key: If a relation has
one foreign key then there is a relationship type
between the entity types that represents this relation
and the entity type that represents the relation
having the "Referenced Attribute". The cardinality
ratio could be a 1:1 or N:1. Since 1:1 is a special
case of N:1, we generally choose N:1. For example,
FK: A22R1(A11) means that there is a relationship
type between the entity type representing R2 and
the entity type representing R1.

2.2 Relations with two foreign keys: If a relation has
two foreign keys then there is a relationship type
between the entity types that participate in this
relationship (no entity type in this case). The entity
type that represents the relation having the first
"Referenced Attribute" and the entity type that
represents the relation having the second
"Referenced Attribute" become the participating
entity types in this relationship type. The
cardinality ratio of this relationship type is M:N. If
a relation with two foreign keys has additional
attributes, these additional attributes become the

relationship type attributes. For example, the
foreign keys FK: A41R1(A11) and FK:
A42R3(A31) in R4 means that this relation
represents a M:N relationship type between the
entity type representing R1 and the entity type
representing R3 with the remaining attributes in R4

representing relationship type attributes.

2.3 Relations with more than two foreign keys: If a
relation has more than two foreign keys then there
is an n-ary relationship type among these entity
types that participate in this relationship type (no
entity type is generated in this case). The entity
type that represents the relation having the first
"Referenced Attribute" and the entity type that
represents the relation having the second
"Referenced Attribute" …etc, become the
participating entity types in this relationship type.
The cardinality ratio of this relationship type is
M:N in all sides. If a relation with more than two
foreign keys has additional attributes, these
additional attributes become the relationship type
attributes. In fact, this is a generalization of 2.2 and
the example in 2.2 applies here.

3. Relations with all primary key attributes: If a
relation's primary key consists of another relation's
primary key and other attribute(s), then the relation was
a result of a mapped multivalued attribute. In this case,
the attribute other than the original relation's primary
key becomes a multivalued attribute of the original
relation. If there were more than one attribute, other
than the primary key, then the multivalued attribute is
also composite and it becomes a complex attribute in
the entity type that corresponds to the original relation.
For example, relation R5 contains A11 as part of its
primary key and A11 is R1's primary key. Thus, the
attributes of R5, other than A11, represent a
multivalued/complex attribute of the entity type
representing R1.

4. Relations with compound primary keys: If a relation's
primary key consists of another relation's primary key
and other attributes, with additional attributes not being
part of the primary key, then the relation was a result of
a mapped weak entity type. In this case, a weak entity
type is generated with the attribute(s) that were part of
the primary key become the partial key of the weak
entity type and the rest of the attributes become the
weak entity type attributes. For example, R6 has A11 as
part of its primary key and A11 is R1's primary key (i.e.,
the entity type representing R1 is the owner entity type
of the weak entity type representing R6). Thus, R6

represents a weak entity type with A62 as a partial key
and the remaining attributes represents the weak entity
type attributes.

3. DEVELOPMENT PHASES

ERRDS is a CASE tool application that is used
to generate a conceptual schema from a relational
database schema. The remaining of this section is
organized as follows: In section 3.1 the system
requirements analysis is presented. Section 3.2 presents
software system design. In section 3.3, software system
implementation is summarized. Finally, section 3.4
presents software testing and the demo of the system.

3.1 SOFTWARE SYSTEM
REQUIREMENTS ANALYSIS

ERRDS functional requirements can be
summarized by the following functions:
 Reading Relational Database Schema through a

GUI interface or from an XML file. The system
input will be a group of relations that represents a
certain relational database schema with referential
integrity constraints. These constraints are
represented using the primary keys and foreign
keys.

 Generating an ER schema according to the
relations and integrity constraints.

 Producing the ER schema either as a textual
description, that can be saved in a text file for
future use, or as an XML file with self-explanatory
tags.

These major activities represent the major
functional requirements of the system. The non-
functional requirements are similar to those required by
any software application.

3.2 SOFTWARE SYSTEM DESIGN

The software system design consists of two
major activities, namely, GUI interface design, and the
application design. The GUI interface design is a
standard windows application interface with minimal
number of controls to improve the efficiency of the
system. Sample screens are shown in the testing phase
in section 3.4. The application includes functions to
handle the input and output in different formats, as
explained before. The main algorithm for the generation
of the ER schema from the relational database schema
is summarized by the following pseudo code:

ERRDS_Main_Algorithm(Input: RDB schema,
Output: ER schema)
begin
 for each relation r in RDB schema do
 begin
 Store the input in an array after reading from the
 GUI interface or extracting from an XML file.
 // Check the number of attribute in PK
 if number of attribute in PK==1 then
 The relation represents a regular entity type
 else if number of attribute in PK ==2 and

 the relation is all-key relation then
 The relation represents a multivalued attribute
 else if number of attribute in PK>2 and
 the relation is all-key relation then
 The relation represents a complex attribute
 else
 The relation represents a weak entity type
 // Handling relationship types
 if number of FKs==1 then
 The entity type representing relation r
 participates in a relationship type
 else if number of FKs=2 then
 if FKs are primary key of the relation then

 The relation represents a binary M:N
 relationship type

 else
 The entity type representing relation r
 participates in two relationship types
 else if number of FKs>2 then

 if FKs are primary key of the relation then
 The relation represents an n-ary M:N

 relationship type
 else

 The entity type representing relation r
 participates in n relationship types
 end for
end

3.3 SOFTWARE SYSTEM
IMPLEMENTATION

ERRDS System was implemented using
Microsoft VB.NET, which is part of Microsoft Visual
Studio.NET. VB.NET has many advantages, including
rich GUI components, improved availability and
scalability, simplified development environment,
simplified deployment, and improved performance, to
name just a few [3].

The main GUI interface, implemented using
Microsoft VB.NET, is shown in Figure 1.
The File menu has a number of menu items whose
functionality is self-explanatory. It includes an Open
menu item to open an existing file. A Save As menu
item is used to save the generated ER model description
in a file. Finally, the Exit menu item is used to exit the
application. The Edit menu has a number of menu items
whose functionality is self-explanatory. It includes the
standard Edit operations like Copy, Paste and Delete
menu items. The Relational Schema menu has two
menu items. The User Input specifies that the relational
database schema to be input to the application is to be
read from a GUI form. The XML File menu item
specifies that the relational database schema to be input
to the application is to be read from an existing XML
file. Finally, the Help menu contains two menu items.
The View Help menu item is used to show a number of
tips to help and guide the database designer in using the
system. The About menu item shows a brief description
of the application and other relevant information.

Figure 1. Main GUI of ERRDS

Figure 2. Input Form

Figure 3. Output Form

Figure 4. Output in XML Format

3.4 SOFTWARE SYSTEM TESTING AND
DEMO

Users/database designers can interact with the
system GUI interface by completing simple forms and
selecting the appropriate menu items. A user can add a
relation using a form as shown in Figure 2.

The output describing an ER schema from a
relational database schema is shown in Figure 3.

The input may come from an XML file that
can also be viewed from the application. The output of
the application can be in XML format as shown in
Figure 4. Only the relevant content of the XML
document is displayed. Other meta information is not
shown to save space.

4. KEY SUCCESS FACTORS AND
ADVANTAGES

ERRDS is a CASE tool application aims at providing
the relational database designers community with an
easily accessible way to generate an ER schema from a
relational database schema, instead of purchasing an
expensive CASE tool like Oracle Designer or other
tools. More specifically, ERRDS system: reduces the
efforts to generate an ER schema from a relational
database schema using a cost-effective tool. Therefore,
ERRDS can be considered as a contribution to the
promotion of automated software engineering.

5. CONCLUSION

A CASE tool that generates an ER schema
from a relational database schema is presented. This
tool can help in migrating legacy databases to newer
and more powerful database servers by producing a
conceptual schema that is very useful in database
development. The tool can also help in maintaining the
original database schema. Putting this system in use
doesn't mean that the development of the system has
ended but more development can be done to improve
the system efficiency and its functionality. We are
considering the generation of an ER Diagram using a
specification format similar to the Microsoft Visio
format so that the diagram can be opened in Microsoft
Visio. In addition, obtaining relational database schema
directly from relational DBMS/servers such as Oracle
and MS SQL servers and generating the output as
described, is under consideration.

REFERENCES

[1] Elmasri, R. and Navathe, S., Fundamentals of
Database Systems, Addison Wesley, 2004.

[2] Silberschatz, A., Korth, H. and Sudarshan, S.,
Database System Concepts, McGraw Hill, 2005.

[3] Deitel, H., Deitel, P. and Nieto, T., Visual
Basic.NET How to Program, 2nd Edition, Prentice Hall,
2002.

[4] Arman, N., “Normalizer: A Case Tool to Normalize
Relational Database Schemas,” Information Technology
Journal, pp. 329-331, Vol. 5, No. 2, ISSN: 1812-5638,
2006.

[5] Milanova, A., "Precise Identification of
Composition Relationships for UML Class Diagrams,"
Proceedings of ASE-2005: The 20th IEEE Conference
on Automated Software Engineering, pp. 76-85, IEEE
CS Press, November, Long Beach, California, 2005.

[6] Book, M. and Gruhn, V., "Modeling Web-Based
Dialog Flows for Automatic Dialog Control,"
Proceedings of ASE-2004: The 19th IEEE Conference
on Automated Software Engineerin, IEEE CS Press,
November, Linz, Austria, 2004.

[7] Notkin, X., "Tool-Assisted Unit Test Selection
Based on Operational Violations," Proceedings of ASE-
2003: The 18th IEEE Conference on Automated
Software Engineering, IEEE CS Press, November,
Montreal, Canada, 2003.

