
Palestine Polytechnic University

College of Engineering & Technology
Electrical & Computer Engineering Department

Graduation Project

Wireless Keyboard

Project Team

Mohammad Abu Sway
Majdi Hnahen

Project Supervisor

Eng. Amal Dwiek

Graduation Project Report
Submitted to the Department of Electrical and Computer Engineering in the College

of Engineering and Technology

Palestine Polytechnic University
This report is submitted in partial fulfillment of the requirements for the degree of

B.Sc. in Computer Systems Engineering

Hebron- Palestine
2008

" yll tiSisly @sol?
Palestine Po!vtechnic University

ru}
"W'he library Ai.slt
28a&....a-.,
Closs ~1.~;

s\ -!
&<Ly ·ta»7s 0 - ~ y

························ ·················

...... ·················· ························ ································

···

iii

Palestine Polytechnic University
Palestine - Hebron

College of Engineering & Technology
Electrical & Computer Engineering Department

Project Name

Wireless Keyboard

Project Team

Mohammad Ahmad Abu sway Majdi Khaled Hneehen

According to Electrical & Computer Engineering Department in Palestine
polytechnic university and live follow-up of our supervisor on our project
and agreement of examinant commission member we present this project

to Electrical & Computer Engineering Department in Palestine polytechnic
university to finish the requirement for the degree of Bachelor in computer

system engineering

Supervisor signature

...

Supervisor signature

.

Department chief signature

...

1V

DEDICATION

To those who give of themselves

So that others may live

To our Families for their patience

To our Colleagues for their support and encouragement

To our Supervisor Eng. Amal Dweik for her supports and advices

V

T
r

ACKNOWLEDGMENT

All praise be to Allah The Ultimate Guide and The Cherisher who
gave us the courage and ability to complete this project with a satisfying
degree of perfection. The most deserving of our acknowledgments is our
respected supervisor Dr. Amal Dweik who helped us throughout the
research of the present project. Next we want to express our deepest
gratitude to our teacher Eng Sarni Al Salameen and Eng Rasmi Sayed
Ahmad for taking. all the pain to help us in troubleshooting and give us
some valuable tips. Thanks are also due to all those who by way of
encouragement, prayer or advice might have contributed directly or
indirectly towards the actualization of this work.

W Mohammad Abusway
Majdi Hnehen

~ Dated: 23/01/2008

vi

Abstract

The system design wireless keyboard by using a keyboard contains 102 keys to

108 keys, to convert it to wireless keyboard with Radio Frequency signal

The project contains tow main parts

First: Transmitter circuit that will be connected with keyboard to receive data from
keyboard and transmit it to computer.

Second: Receiver circuit that will be connected with computer to receive data from
transmitter and convert it to computer.

We expect from this project to achieve successful percent about %90 because
there is some error that cause from the hardware part.

vii

co@5 Lal/

Ala ,l Cy le 3itell lid 39l) el5L] ,4015149 7,<LY @@lia Ass! d= !&3 ls seig­
'-4 :ubl.JI ~ ~ Y..J t.bi LJA t..,y.t.J4 ~I M w_,,... Jl:il4_, PS2 J-= I~ ~ t_,y.t.JI ~.., ¥LJI

: 04,..,L...I 0~ t_,_µ1 M-' ~"ti.JI :k._,l ~ J_,......._,.JI J&,11_, y_,,...h11 ~ PS2 ~.., 0H

4L.>.! ~ LJA.J &ti.JI :k._,l LJA ww~I J4i:i....4 rfa. ~j.;JI 1~.., &ti.JI :k._,l LJA JL...Jjl ~: J_,';/1 ~j.;JI
.~WI ~j.;JI ~ J4i:i.,..YI ~ ~) J:!.:\1)1 wl_J.:.) Y.t=-

~) ww~I Ji,i_, J}~I ~I LJA ~YI wl_}..:.)'I JL,w,..,4 ~j.;JI I~ rfa..., rfa..J Jt.,w,..,YI ~: ~WI ~j.;JI
. .i.k. ~_;.b _, '½-ii.?.- ~ PS2 I~ ~ ~I ~ w _,,... Jl:il4_, y _,,...h11

viii

,,, .'•/• ... :TO:,•,
s!
-;.,

a

Chapter 1: Introduction 1

Chapter 2: Theoretical Background 13

IX

Chapter 4:Detailed Technical Design

4.1-1 Detailed description of'theprojectphases\I%5%\%\ill53.
4.2 Subsystem detailed design 54
421.Transmitting Subsystem®\Ill\llididl#flt#.s4.%
4.2.2 ATMega32 Processors 56
4.23RcceivingSubsystem-\\453%%%34#%#%%3I:IN\BE s9.g

Chapter 5: Software System Design

. •.· ..., .:·~· .:,:·,.:•--.:\t:>,. :;·.:~. :/. ·.·· .
. . '·~-:-., _ .. _. .'·.:;.:·:·. ':: . ··.- :·:. . . , ..

'iap er : m_pleme~tatioii n -
.' • ,, ••• -:· • • :, ' <.. • -

. ·.•· .,: .. ,•: .• .· ... _.-.:--.~ ~ _:.- _.·: _--:._ ..
,_ .. - -~ ::-:.· ., > :~ .. ,: ~--:. :~ '\ J:· -~- ·.: .. __ ;_;:_·-:~~~-~ .. :~. -~~'~:_-"i;}~-~ : i~;~·~·-·. . ' -'[~
6.1 Introduction
6.2 Implementation+-vs
%, kt.s. av
6.3.1.1 Microcontroller testing

. ~ .j)) ::\ .. : .f.r<11:15.rri.itter :aefd:t~~iy ei: r~~tt~g :.L:; .. ::-. ~ ~~.
6.3.1.3 keyboard

52

62

71
.: : .

'
72

·.; ... , .. c .. ;, .. .-.·i.·•.""·· J}: ~-.,,._ .. ;, .
74

X

6.3.1.4 Input Circuit Testing
6.3.1.5 Output Circuit Testing
6} -~~. . : "·, ·sttbsysteni.:-'.testirtg:i,:·<i ,·::--.··i.:·_,_ ·•,::.c..::~:;:2;,,'::iD,:,/.:.;·:\;;,>,;;,,.;.;:•,;,:,:.;:,:,:./;'.'{',ioiil.i
6.3.3 .. _softwa~~-i~;ti~g .,. ~-- 1s
... -- .-._. .. ·,·· .. _,·;•_: .',·' .-· .. ---:-::--:--~.- .-·,._:.~ _.,. -_ .. -.}':-- .,. , , .. , roofs
7.1 one USlOilS •'1:i. ···•,•, 'pi-

._,; _,

7.3 Fu

LIST OFT ABLES

Table 1.1:Development plan and team duties for the second semester 2006/2007 =4.
Table 1.2:Suggested development plan and team duties for first semester2007/2008. 5
Table1.3Th'costtoreaccompoamt\%NINI\Ill4fl[6
Table 1.4: Project scheduling stages and time table for the second

semester 2006/2007.

""CC"®"" Table 2.1: Serial Port Pins
Table 4.1: Electrical Characteristics of RT4-XXX ~-·.·::: ··,:·: :o:·,., /:··· ·: . ·.:>~:. : .• :T.
Table 4.2:Electrical Characteristics of RR3-XXX ·.

. ·- ·. . ·~-· .

60

X1

LIST OF FIGURES

Xll

Figure(q.9): Re~d seqondJ?it_, \ ... ' ;: _: : .. • .:- .. -•: , - . .> ,:. _. .. ·.• .. i. ../i.:,<:.,· .. :-i :_'/:: .. 8~>._.::
Figure(6.10): Read bit7 81
Figure(6.11) Read he last bit and light the led on port B#22%,55/81
Figure(6.12):Receive Ox55 by the UART _,.

1
__ .. ,,., .. :•~'·' _ 82

Figure(.6.13)':·s·end 0x$·s-fo·compctteFoii:6sciilosco·pe/_.'.:=-. · -.- .. \/·:'.;/}(''.\::j~~\

xiii

1

Introduction

1.1. Overview

1.2. General Idea of the System

1.3. Literature Review

1.4. Human resources

1.5. Estimated Cost

1.6. Time Schedule

1.7. Risk Management

1.8. Project Scope
1.9. Report's Contents

1.1 Overview :

Wireless keyboard is a technology which enables the work with computer

without constraint like cable or distance by using wireless technology.

You can set upright holding the keyboard away from your body, and hold it where
you want.

The system design a wireless keyboard that uses Radio Frequency (RF) to
transmit signals to the computer.

1.2 General Idea of the System:

A keyboard is a primary input device. Using a keyboard, a person can type a

document, use keystroke shortcuts, access menus, play games and perform a variety

of other tasks.

In our project we will design a wireless keyboard by using a keyboard
contains 102 keys. In general, the computer today has several types of input/ output

devices which are connected to computer by wires. In our system we wish to reduce
the number of wires by converting the local keyboard to wireless keyboard.

1.3 Literature Review

Wireless technology is becoming one of the technologies which is used i

large area in our life ,like network , and can be designed in different ways .

The system use this technology to build a wireless keyboard, This technology

is used in several projects some could be mentioned below :

In Palestine polytechnic university, one of the projects that uses wireless is

Portable Security System ,done by the Susan Abu Sharekh and Waheba yaghmoor

and, their system uses radio frequency technology to transmit signal between sinsor

and to the computer to process the signal and provide the user with condition in the

dedicated place which we will use in our project .

In the world exist many systems based on wireless technology like wireless

keyboard using Infrared, Bluetooth and RF such as students Luke Hejnar and Sean

Leventhal designed wireless keyboard using RF.

1.4 Human resources:

The team of the project consists of two students in electrical and computer

Engineering .

Project Team:

i

Mohammad Abu sway

Majdi hneehen

Supervisor:

Eng. Amal Al-Dweik

The following table shows the tasks for the team members for second semester of
2007.

Table 1.1: Development plan and team duties for the second semester 2006/2007

2007
ID The Task 2no [2n17 [224 I a [3no [an4] 3/31 I 4/7 I 4/14 I 4/21 I 4/29 I s5 [sr2

1 Decision of [a] idea

2 Full d
[All Team] Description

3 Study
I All Team I

4 First Design
I liajdi I

5 Initial]Mohammad [implementation

6 Revision I All I
7 Documentation

I All Team I

The following table shows the suggested tasks of the team members for the first

semester 2007.

Table 1.2: Suggested development plan and team duties for first semester2007/2008.

2007
ID The Task ans]sins]iors [oio] 10110 I ion] a+ [10/31 I "7[iw:] a[iiaa [s

1 Hardware

I circuits All I
2 Interfacing

I circuit All Team I
3 Software

I implementation All Team I 4 Testing

I I ALL
5 Documentation /

I All

1.5 Estimated Cost:

The project needs both hardware equipments and software programs that are

used to program the Microcontroller (MC) , so we will purchasing all needed

electronic components and parts and software programs.

The Hardware Components. There are many electrical Chips and equipments

have to be provided Such as:-

Table 1.3: The cost for each Component

0

t

Component Cost(S)

RT4-433 12$

RR4-433 12$

Two Microcontrollers 40$

One Keyboard 3$

Wires 1$

Power supply 2s

Two Prototyping breadboards 4$

I STK 500 board 2$

Miscellaneous electrical components 2s

Total cost 82$

1.6 Time schedule:

In the following tables we view the stages in designing and building the

components of the project and the timing for each stage.

Table 1.4: Project scheduling stages and time table for the second semester

2006/2007.

i

I

i
Sep 2006 I I Dec 2006 I ID Task Name Oct 2006 Nov 2005 Start Finish Duration I [sr or]voa [ors]oz] was] s [al wo]us] raa [so]

I 1 Idea Decision 09/20/2006 09/26/2006 1w 7
2 Full Description 09/27/2006 10/10/2006 2w V 7::::,
3 Study 10/11/2006 11/28/2006 7w v ··---·l:,. -

.
4 Primary Design 11/08/2006 11/28/2006 3w A

i 5 Primary Implementation 11/2 1/2006 12/11/2006 3w V 6
6 Revision 12/07/2006 12/20/2006 2w v--·-
7 Documentation 10/19/2006 12/20/2006 9w \I le

7

Table 1.5: Suggested Project scheduling stages and time table for the :first

semester2007 /2008.

2007
ID The Task Start Finish Duration ±±El±l±l± lH±hell±le . - . -

1 Hardware circuits FirstW Tenth W 10\/V Ill . I
-

2 Interfacing circuit Second \IV Fourth \IV 4\/V I ANl Tean I
3 Software Third \IV Tenth W 7\/V [____ --·· AJmrn

I

I implementation

4 Testing Tenth \IV Thirteenth W 3W I LL I
5 Documentation FirstW Fourteenth W 14W Ail I

1.7 Risk Management

There are some possible risks that may occur in our project in both hardware

and software.

V

1- Technology Risks

Such risks may occur because of the software or hardware used in the system.

- Hardware Risks:

- Device failure: the microcontroller may crash because of high voltage supply or
other problems.

-tool risk , like breadboard , resistor ,and crystal .

- important pins of microcontroller is failed like interrupt pin .

- power supply give un expected vales .

-Oscilloscope doesn't give accurate signal .

-The bred board used doesn't arrive any signal .

-Software Risks:

- Compiler give unwanted hex value

-compiler need to be updated.
-The software on the keyboard side has task , any problem in this task may cause risk

- computer where program and compiler work may damage .

- oscilloscope in the lab may give wrong signal .

- power supply may give wrong value which cause risk in our plan of project .

A

2 - People Risks

- Illness of one or more of group members.

- Group meeting difficulties

3 - Tools Risks

Lose of any support software or hardware used to develop the system, like

microcontroller programming tools and case tools in software.

4- Requirements Risks

Risks that might occur if new changes are required in the system requirements

that need major changes in the system design.

S - Estimation Risks

- Risks that may derive from the wrong estimation 111 the system design,

implementation, resources and management.

- Such as read data by MC from the keyboard at inappropriate times will be generate

incorrect code.

Risk Avoidance:

- Taking care when using hardware components and using them accordino to their
b

specifications.

- Taking care of the team's member's health during the project development.

- Good estimation and usage of the projects budget and resources.

- Good estimation of system requirements.

Risk Management:

- Software development environment risks will be handled by the backup of

software.

-Including an extra amount of the hardware components we already have, so when

any problem occurs we can find an alternative for the component we lost.

- People risks are handled by using work load balancing on students especially when
a member can't perform some of his tasks, then it will be done by other member.

1 •

1.8 Project scope:

After completing the main requirements of our project, it can be used with

a computer as any wire keyboard with enhanced features as:
- Trade show displays

- Using wireless keyboard for games, printing, control on the computer..etc .

- management your computer from any where in the room .

1.9 Report content:

Report consists of four chapters; the following is a brief description of each

chapter.

Chapter 1: Introduction

This chapter presents overview of project, general idea of system, literature

review, human resources, estimated cost, time schedule, risk management, project

scope, and report content .

Chapter 2: Theoretical back ground

This chapter talks in more details about the basic component used 111 the

project and theoretical back ground.

Chapter 3: Architectural Design

This chapter details the design concepts, introduces project objectives, shows

the general block diagram of the system and explains how the system works.

Chapter 4: Detailed Technical Design

This chapter presents out lines formal procedure for design, discusses design
options and justifies those chosen for the project.

Chapter 5: Software System Design

This chapter handles the software related to our system, depicts flowcharts

about system operation.

Chapter 6: System implementation and Testing

This chapter handles implementation of the project and block testing ,unit

testing , integration testing of the system . The testing comprises both software and

hardware testing.

Chapter 7: Conclusion and Future work

This chapter provides the conclusions that will be concluded after working

the system, and suggestion for future work.

2
Theoretical Background

2.1. Overview

2.2. System Requirement

2.3. Theoretical Background

2.4. System Components

\ r"

2.1. Overview:

This chapter provides an ill str:5 the c. 1 tustrative theoretical background of our project
applications in general and for :h f · · · react ol its components in particular, and the system
requirements .

2.2. System Requirements:

2.2.1 User Requirements

User requirements contains the following:

2.2.1.1 Functional Requirements

1- when the user presses any key on the keyboard , the keyboard wi 11 generate

a code that represents the keys.

2- the receiver circuit should receives the same code from transmitter circuit.

3- wireless keyboard will be implemented under windows or any other operating

system.

2.2.1.2 Non-Functional Requirements

Non-Functional Requirements described as follows :

Flexibility

The wireless keyboard will provide the user a higher flexibility of usage than
traditional keyboard.

Efficiency

The wireless keyboard with radio frequency solves the problems of other

wireless keyboards with infrared technology such as the distance between the

transmitter and the receiver circuit.

2.2.2. System Requirements

There are a requirement that specify the system details and specification .

2.2.2.1 Functional Requirements

-The wireless keyboard includes radio frequency transmitter and receiver circuits to

transfer the input signal to computer.

\ o

2.2.1.2 Non-Functional Requirements

Non-Functional Requirements described as follows :

Flexibility

The wireless keyboard will provide the user a higher flexibility of usage than
traditional keyboard.

Efficiency

The wireless keyboard with radio frequency solves the problems of other

wireless keyboards with infrared technology such as the distance between the

transmitter and the receiver circuit.

2.2.2. System Requirements

There are a requirement that specify the system details and specification .

2.2.2.1 Functional Requirements

-The wireless keyboard includes radio frequency transmitter and receiver circuits to

transfer the input signal to computer.

\ o

-This circuits will be monitored by two microcontrollers, one of them receive the
signal from a keyboard then to radio frequency transmitter. The microcontroller in

computer side will receive the signal from RF receiver, then send it to the computer

The C program running on the microcontroller responsible for interfacing signal
between the transmitter and the receiver circuits .

2.2.2.2 Non Functional Requirements

I- Reliability: the system should be reliable, meaning it must send the code

represent the keys which we press not other code. For example when user press (Ctrl

+ A) keys, the microcontroller of the key board should send the represent the two,
keys we press.

2- Speed: The system must have a fast response to the user's actions.

3- Portability: the user must be able to change the place of the keyboard.

2.3 Theoretical Background:

As we have mentioned previously this project is fully constructed over a

· · b t the keyboard and PC we have used RF signal to establish communication eiween •

communication.

2.3.1 Transmitter

A transmitter is an electronic device which with the aid of an antenna propagates an

electromagnetic signal such as radio, television, or other telecommunications.

A transmitter usually has a power supply , an oscillator, a modulator, and amplifiers

for audio frequency (AF) and radio frequency (RF). The modulator is the device

which modulates the signal information onto the carrier frequency, which is then

broadcast. Sometimes a device contains both a transmitter and a radio receiver, with

the combined unit referred to as a transceiver.

More generally and in communications and information processing, a transmitter is

any object (source) which sends information to an observer (receiver). When used in

this more general sense, vocal cords may also be considered an example of a

transmitter.

Types of Transmission Signals

There are many types for signal transmission these types are:

Ultrasound:

T

2.3.1 Transmitter

A transmitter is an electronic device which with the aid of an antenna propagates an

electromagnetic signal such as radio, television, or other telecommunications.

A transmitter usually has a power supply , an oscillator, a modulator, and amplifiers

for audio frequency (AF) and radio frequency (RF). The modulator is the device

which modulates the signal information onto the carrier frequency, which is then

broadcast. Sometimes a device contains both a transmitter and a radio receiver, with
the combined unit referred to as a transceiver.

More generally and in communications and information processing, a transmitter is
any object (source) which sends information to an observer (receiver). When used in

this more general sense, vocal cords may also be considered an example of a

transmitter.

Types of Transmission Signals

There are many types for signal transmission these types are:

Ultrasound:

f V

Ultrasound is sound of such high frequency, that is, it can not be heard by the human

ear. Atypical ultrasound transducer operates at a frequency of 40 KHz but the ear can

hear up to 20KHz. Ultrasound transducer is relatively inexpensive and the circuit
required is simple to build.

Radio Frequency (RF):

Radio control has the advantage of the operating over a far greater range than

ultrasound, also it does not require the physical connection as in the cable control, it

is very popular for the control of aircraft's, boat's etc.

RF Advantages:

Not line of sight.

Not blocked by common materials: can penetrate most solids and pass through walls.

Longer range.

Not light sensitive.

Not as sensitive to weather/environmental conditions.

T

RF Disadvantages:

Higher cost than infrared.

Federal Communications Commission (FCC) licenses required for some products.

Lower speed: data rate transmission is lower than wired and infrared transmission.

Bluetooth Advantages:

Its wireless. Eliminate messy and confusing cables at home, the office, or when
traveling.

It's inexpensive. Vendors can incorporate it into their products and consumers can

upgrade older equipment cheaply.

Uses radio signals so can pass through walls and does not require line of sight.

Lower power consumption. Won't drain your battery.

2.5 GHz radio frequency ensures worldwide operation.

No thinking required. The devices find one another and connect without any user

input at all.

Bluetooth Disadvantages:

T

New type of technology and must be accepted unequivocally by all vendors and

manufacturers in order to guarantee compatibility among the array of products.

Designed for only short-range communications certified to no more than 100 meters
(with hub broadcaster.)

Data transfer speeds are not as fast as other wireless technologies.

Infrared (IR):

Infrared (IR) is a light-based transmission technology and is not spread spectrum IR

devices can achieve a maximum data rate of 4 Mbps at close range, but as a light­

based technology, other sources of IR light can interfere with IR transmissions.

The typical data rate of an IR device is about 115 kbps, which is good for

exchanging data between handheld devices.

An important advantage of IR networks is that they do not interfere with spread
spectrum RF networks. For this reason, the two are complementary and can easily be

used together.

IR Advantages:

Low power requirements: therefore ideal for laptops, telephones, personal digital

assistants.

Y

J

Low circuitry costs: $2-$5 for the 1ti: 3di a/de 3di» :.,, 3 3 10 entire coding/ lecoding circuitry

Simple circuitry· no special or pro · t I d · · d b · d · pne ary har'ware IS reqmre , can e mcorporate
into the integrated circuit of a product.

Higher security: directionality of the beam helps ensure that data isn't leaked or
spilled to nearby devices as it's transmitted.

Portable.

High noise immunity: not as likely to have interference from signals from other
devices.

IR Disadvantages:

Line of sight: transmitters and receivers must be almost directly aligned (i.e. able to

see each other) to communicate

Blocked by common materials: people, walls, plants, etc. can block transmission

Short range: performance drops off with longer distances

Light, weather sensitive: direct sunlight, rain, fog, dust, pollution can affect

transmission

Speed: data rate transmission is lower than typical wired transmission

2.3.2 Microcontroller:

Y

A microcontroller is a cheap single chip microcomputer. Single-chip microcomputer

indicates that the complete microcomputer system lies within the confine of the

integrated circuit chip. Mici·ocontrollers are capable of storing and running the

program that was written, compiled and downloaded into it. The main parts of a

microcontroller generally consist of the Central Processing Unit (CPU), Random

Access Memory (RAM), Read Only Memory (ROM), input/output lines (I/0 lines),
serial and parallel ports, timers and other peripherals such as analog to digital (AID)
converter and digital to analog (D/ A) converter.

Why to use a Microcontroller?

Microcontrollers are inexpensive microcomputers. The microcontroller's ability to

store and run unique programs makes it very flexible.

2.3.3 Serial Port:

It is an 1/0 device is just a way to get data into and out of a computer. The serial port

· h th · st a connector It converts the data from parallel to serial and 1s muc more an JU •

changes the electrical representation of the data. Inside the computer, data bits flow

:. illel(ires at the same time). Serial flow is a stream of bits over a In para e usmg many w
· I · (h t mit or receive pin of the serial connector). For the serial singe wire sucl as rans

h fl ·1 ust convert data from parallel (inside the computer) to port to create sue a ow, 1 m

serial on the transmit pin and conversely.

Y Y

T

T

Pins and Wires:

The pins and the wires of the serial port; the PC's used 6 pin connectors but only

about 4 pins were actually used so today most connectors are only 4-pin. Each of the

4 pins usually connects to a wire. Besides the one wire used for transmitting and

receiving data, another pin (wire) is signal clock .and other ground and one to

voltage , (see figure 2.2 and Table 2.1).

s l
• ~",0; •. ,o.,o.'"! ,,, ":!! } _] ,.;JI

'Q\ ,o;·

2='® (At the computer)

Figure 2.2: 6 PIN MINI-DIN FEMALE (PS/2 STYLE) at the computer.

Table (2.1): Serial Port Pins

~-.---.----.-------·-···- -· [Pin [Name [Dir] Description
11 IDATAj jK.eyData
p p Noc-ssee,ea
~ !GND 1-• land __
~!vcc I·==-+ !Po,.ver , +5 '"\.TDC
Is (cLI< I-+ ;;....lc_Io_c_k_· _
G [ve [sot connected

2.4 System Components

2.4.1 Hardware Components:

In this section we provide fill xl, : 1te a tul explanation of each component and each part
of this project. The system consists of the following components:

Keyboard

Transmitter Unit.

Receiver Unit.

A TMega32 Microcontroller.

2.4.1.1 keyboard (KBD) :

A keyboard's primary function is to act as an input device. Using a keyboard, a

person can type a document, use keystroke shortcuts, access menus, play games and

perform a variety of other tasks. Keyboards can have different keys depending on the

manufacturer. They're also placed at a similar distance from one another in a similar

pattern, no matter what language or alphabet the keys represent.

Most keyboards have between 80 and 110 keys, including:

Typing keys

A numeric keypad

Function keys

Y£

T

Control keys

Figure 2.3: The Keyboard

Inside the Keyboard

A keyboard is a lot like a minit Ith: · .: .: 1a,ure computer. t as its own processor and circuitry

that carries information to and from that processor. A large part of this circuitry

makes up the key matrix.

Figure 2.4:The microprocessor and controller circuitry of a keyboard

The key matrix is a grid of circuits underneath the keys. In all keyboards each

circuit is broken at a point below each key. When you press a key, it presses a

switch, completing the circuit and allowing a tiny amount of current to flow through.

The mechanical action of the switch causes some vibration, called bounce, which the

processor filters out. If you press and hold a key, the processor recognizes it as the

equivalent of pressing a key repeatedly.

When the processor finds a circuit that is closed, it compares the location of

that circuit on the key matrix to the character map in its read-only memory (ROM).

A character map is basically a comparison chart or lookup table.

It tells the processor the position of each key in the matrix and what each keystroke

or combination of keystrokes represents. For example, the character map lets the

processor know that pressing the a key by itself corresponds to a small letter "a" but

the Shift and a keys pressed together correspond to a capital "A."

?rte Ott It"LtEEL , - ... -~~ '-,
"a + ass, ?+sis '5#8S ({

-1/:., ,.. - f' I

. ~ ,c' . ,. '

,

Figure 2.5:The key matrix

A computer can also use separate character maps, overriding the one found 111 the

keyboard.

PC Keyboard Theory

The keyboard contains processor to scan which key pressed then it will send scan

codes to your computer. The scan codes tell your Keyboard Bios, what keys you

have pressed or released. Take for example the 'A' Key. The 'A' key has a scan code
of IC (hex). When you press the 'A' key, your keyboard will send 1 C down it's serial

line. If you are still holding it down, for longer than it's typematic delay, another IC

will be sent. This keeps occurring until another key has been pressed, or if the 'A' key
has been released.

However the keyboard will also send another code when the key has been released.

Take the example of the 'A' key again, when released, the keyboard will send F0

(hex) to tell you that the key with the proceeding scan code has been released. It will

then send IC, so you know which key has been released.

Your keyboard only has one code for each key. It doesn't care it the shift key has

been pressed. It will still send you the same code. It's up to your keyboard BIOS to

determine this and take the appropriate action. The keyboard doesn't even process the

Num Lock, Caps Lock and Scroll Lock. When you press the Caps Lock for example,

the keyboard will send the scan code for the cap locks. It is then up to your keyboard

BIOS to send a code to the keyboard to turn on the Caps lock LED.

When an extended key has been released, it would be expect that F0 would be sent to

tell you that a key has been released. Then you would expect E0, telling you it was

an extended key followed by the scan code for the key pressed. However this is not

the case. E0 is sent first, followed by F0, when an extended key has been released.

Y V

Scan Codes

The diagram below shows the Scan Code assigned to the individual keys. The Scan

code is shown on the bottom of the key. E.g. The Scan Code for ESC is 76. All the
scan codes are shown in Hex.

(fiJ (F2J (F3J rm
~~~.~ 

(Ff) (FF') (F7J (NJ 
(DU(OBJ)() (F81 (f10J (F11J (F1i) 

{@Jut LOU 

(on 
Sw) 

Figure 2.6:Scan code 1 

As you can see, the scan code assignments are quite random. In many cases the 

easiest way to convert the scan code to ASCII would be to use a look up table. Below 

is the scan codes for the extended keyboard & Numeric keypad. 

YA 



E0
1
~2S07C.~ E11477E1F014F0?7 
Pr scr, fausa 
Ser 7E ~ 

~~(Pup') 
~~~ 
(s)(ea)(» s
~~~ 

E LEOLA) EE#f; CG)» 
EIG, l..I3.J nter 

( 7~ J Q EOSA 

Figure 2.7: scan code 2 

Keyboard to Computer 

The keyboard is free to send data to the PC when both the KBD Data and KBD 
Clock lines are high (Idle). The KBD Clock line can be used as a Clear to Send line. 

If the PC takes the KBD Clock line low, the keyboard will buffer any data until the 

KBD Clock is released, ie goes high. Should the Host take the KBD Data line low, 

then the keyboard will prepare to accept a command from the host. 

The transmission of data in the forward direction, ie Keyboard to Host is done with a 

frame of 11 bits. The first bit is a Start Bit (Logic 0) followed by 8 data bits (LSB 

First), one Parity Bit (Odd Parity) and a Stop Bit (Logic 1 ). Each bit should be read 

on the falling edge of the clock. 

n 



Idle 

«w FF] 
Idle - ·· Li 

so ' 7j5,{5's'z> 
-l<eyboarcl 

-Host 

Figure (2.8): One byte transmission from the Keyboard 

The above waveform represents a one byte transmission from the Keyboard. The 

keyboard may not generally change it's data line on the rising edge of the clock as 

shown in the diagram. The data line only has to be valid on the falling edge of the 

clock. The Keyboard will generate the clock. The frequency of the clock signal 

typically ranges from 20 to 30 Khz. The Least Significant Bit is always sent first. 

Computer to Keyboard 

Idle 

Clock 
Idle 

Data 

II II II II UlJlJu 
__o 2js 4'sjs 7P± 

Figure (2.9): One byte transmission to the Keyboard 

y" , 

NI 



The Host to Keyboard Protocol is initiated by taking the KBD data line low. 

However to prevent the keyboard from sending data at the same time that you 

attempt to send the keyboard data, it is common to take the KBD Clock line low for 
more than 60us. This is more than one bit length. Then the KBD data line is taken 
low, while the KBD clock line is released. 

The keyboard will start generating a clock signal on it's KBD clock line. This 
process can take up to I 0mS. After the first falling edge has been detected, you can 

load the first data bit on the KBD Data line. This bit will be read into the keyboard 

on the next falling edge, after which you can place the next bit of data. This process 

is repeated for the 8 data bits. After the data bits come an Odd Parity Bit. 

2.4.1.2 RT4-433 Transmitter: 

Figure. (2.10): RT4-433.92 Transmitter 

XX tr itter that is a hybrid circuit that allows realizing a We use a RT4-X. ansm 



complete radio transmitter. It is a wireless (AM) transmitter with range up to 75m; it 

can be used in car alarm system or gate remote controlling. It is a complete RF 
transmitter with very stable frequency. 

The transmitter unit consists of one microcontroller ,and the wireless 

transmitter. When a person press any key on keyboard special signal will be 

generated , a signal will be send to the MCU on the transmitter which is programmed 

so that it can handle with all keyboard keys. 

The transmitter is responsible for sending the appropriate message from the 

transmitter MCU to the receiver circuit next to computer. 

How Does Transmitter Work? 

We will explain all the levels of transmittion process, as shown in the Figure(2.1 l ). 

#llillli» +socs ecol®l # .j T yf! 
JlJ1J1fl_--~-O-ata-~ J\jV\ Modulator 1--t>C>>---' ) 

D> Processing lilt L--.---~ f/ V ~ ___/ 
Figure 2.11: Basic transmitting unit 



Frequency Source (Carrier): 

In order to make the information signal pass through the air, it must be 

modulated on to a carrier signal which is sufficiently stable with temperature and 

other factors to allow detection by a tuned receiver in the presence of interference. 

The two most important factors affecting the design of a carrier frequency 

source are: Frequency Stability and Phase Noise. 

The stability of the oscillator with temperature determines the channel 

spacing required to contain the modulated carrier signal. Conversely, for a given 

regulated channel spacing, the frequency stability determines the maximum data rate 

that can be supported without violating the channel boundary. 

The oscillator phase noise results in a broadband component to the carrier 

signal which will extend into adjacent channels. If the phase noise is too high, this 

can corrupt the modulation source itself, and limit adjacent channel selectivity due to 

reciprocal mixing, as shown in Figure (2.12). 

adjacent 
channel _,,,-· .,,,~- 

adjacent channel 
mixed into wanted 
channel by oscillato 

,_phase noise 
' (, ..... v~- __ ) 

Figure 2.12: Reciprocal Mixing with Non-Ideal Oscillator 



Modulation: 

The method of imposing the information signal onto the carrier signal is termed 

modulation which can be AM modulation or FM modulation and must be 

accomplished cost effectively and accurately for maximum range and minimum 
interference . 

Amplitude modulation (AM) is a method of impressing data onto an alternating­ 

voltage (AC) carrier waveform. The highest frequency of the modulating data is 

normally less than 10 percent of the carrier frequency. The instantaneous amplitude 

varies depending on the instantaneous amplitude of the modulating data. 

Amplification: 

The amplifier is a key part of the transceiver, and must be efficient which means low 

cost and possibly linear. 

Output power is dictated by regulation, range requirement, cost and linearity 

3®] 
f 2»c = r EE » 

Figure 2.13: Output power of amplification 

r'£ 



Antenna: 

The antenna is often the most poorly engineered part of a communication system. 

Good design will ensure maximum range, high amplifier efficiency (good 

matching), good selectivity, minimal pollution, good interference rejection, good 
sensitivity. 

2.4.1.3 RR3-433 Receiver 

Because we are making a wireless system, we need to transmit the signals from the 

door to the receiver module which is designed such that it can handle the message 

from transmitter. 

Here we used the RR3-433 receiver, which is compatible with the used 

transmitter. 

Figure. (2.14): RR3-433.92 Receiver 

j"o 



How Does Receiver Work? 

We will explain all the levels ft· · · · · oi transmission process, as shown in the Figure (2.15). 

I er JTTn 
pl] [Demodulator}®sh ------» Proc ;,,ss i ng 

Front End 

Figure 2.15: Basic block for receiver. 

Reception 

Key to the sensitivity is the receiver 'front end'. The main task is to boost weak 

wanted signals, often in the presence of strong unwanted signals which introduce 

minimal noise and distortion. In many cases, some selective filtering is required to 

assist this task. 

Demodulation 

The process of removing the information signal from the carrier is termed 

demodulation. The aim is to design a circuit (or algorithm) that will achieve this task 



optimally in the presence of noise, interferenc·e and varying signal strength, 

frequency and phase, in addition of being power efficient and cheap. 

Data Processing 

Pre and post processing of the information signal is often implying some form of 

micro process with the presumed complexity, cost, power consumption and size 

penalties. The benefits of matched filtering, error detection and correction ( coding). 

2.4.1.4 A TMega32 Processors : 

!PD11¥' 

(XC:tt/Tl!i,l, PBO 1 
{T1} PB,"I 2 

,;r:NTI'./AINl!!_l, PS2 3 
fOCC\'.l"Jl"J,iJ, ·ps2, ~ 

(-lfflJ P84 :5 
{MOS!,j P85 ij 
{12D; ;P86 :r 
-2CK; PB-7 !;l 

RES=T ii 
vcc 11! 
GND 11 

XTL2 12 
xTAL T 13. 

~RY..D) PDQ 1 .tj 
f,irXO) PTI•'I 15 
(INT<!!) PD2 1El 
(INTt) P23 11 

{OC."IB) PJJ4 1 !:!, 
{OC"IA) ?DS 1!l' 
{1:CPt) Pi.06 20 

PAD ,;A,C11:.:J1 
P.>''d •;ADC' ) 
P.A2 ,:?,DC2) 
P./'!2, ,:,",DC'.:!) 
=A4 ,23-3 
PAS ,'.,",DC!::) 
PAE. ,;ADC>3J 
F:A7 (.r.DC?: 
A?5F 
GIC 
A\CC, 

PC7 (T:>3C:2J 
p,c.g •~·03C1) 
=CS {TD; 
PC± TDo 
C3 {T'S) 
PC2 (TC-~~:, 
p,r:::'j (80.A.J 
P.C.O (Sr:;L, 
=D7 CI 

F. ·2 16. Pin layout for ATMega32 Processor . 1gure . • 

'r'V 



ADM2JI] 

2.4. 1.5 Why this microcontroller: 

High- performance , low-power 

Advance RISC Architecture 

Nonvolatile Program and Data Memories 

1- 32K Bytes of In-System Self-Programmable Flash 

2- 1024 Bytes EEPROM Endurance: 100,000 Write/Erase Cycles 

3- 2K Byte Internal SRAM 

4- Programming Lock for Software Security 

Special Microcontroller Features 

1- External and Internal Interrupt Sources 

2- Internal Calibrated RC Oscillator 

2.4.2 Software Components : 

The software of the system is 

1- First, it listen for incoming data from the UART. 
' 

2- Second it echoes these codes to the computer. 
' 

r"A 



The microcontroller decodes the sequence of bytes it receives using the state 
machine shown. As bytes are read from the UART they are added to a queue to be 
sent on the PS/2 bus. 

When the connection is idle, and there is data to send, the rnicrocontroller sets 

several state variables. These state variables cause an interrupt to generate a clock 

signal on the PS/2 port and to place data on the PS/2 data line. This interrupt occurs 

four times for every clock cycle, writing the data, stop, start and parity bits to the 
PS/2 connection. 

The software on the keyboard side has a tasks: 

It listens to the data coming from the keyboard and it sends it out to the transmitter 

through the UART. 

The keyboard generates a clock on the Clock line and sends its data on the Data line. 

Whenever the clock is goes low, 1 bit of data is present on the Data line and the 

microcontroller reads it. 

To read the data line at the appropriate times., When the interrupt executes, one data 

bit is shifted into a register. 

Since the ps/2 protocol sends a start bit, followed by 8 data bits, then a parity and a 

stop bit, we only shift in the data bits into a register. Once we have the 8 data bits, 

we place the byte into a queue. 

I 

ii 

1 

I 



-----------1 
The ps2 protocol also allows the computer to talk to the keyboard. To do this, we 

also use the external edge triggered interrupt to place a data bit on the DATA line at 
the appropriate times so that the keyboard can get it. 

All of this operation we will program the MC to do this task in good way. 

t • 

E 

I 
Ii 



AAA!MJ] 

Sumary 

This chapter provides an illustrative theoretical background for our project 

applications in general and for its each component in particularly like types of 
Transmission Signals as RF,IR and Bluetooth, and how the wire keyboard works 

and description fro all chips we will use in our project such as MC, transmitter 
circuit and receiver circuit and other chips. and the system requirements for user and 
system. 



3 
i Al 

Architectural Design 

3.1 Introduction 

3.2 Project Objectives 

3.3 General Block Diagram 

3.4 How System Works 

3.5 System modeling 

; 



3.1 Overview 

The wireless keyboard consists of a wired 102-key ps/2 keyboard, two 

Atmega32 microcontrollers, one 433.92MHz transmitter and one 433.92MHz 
receiver from Radiotoxic. 

Our design can be divided into two parts: the keyboard side and the computer 
side. 

; 

On the keyboard side, we have one of the microcontrollers connected to the 

keyboard and to the transmitter. The keyboard communicates with the 

microcontroller and the microcontroller sends data out to the transmitter by using it's 

built in UART. 

On the computer side, we have the other microcontroller connected to the 

computer and to the receiver. The computer communicates with the microcontroller 

and the microcontroller gets data from the receiver through its build in UART. 

Note that we use the UART because they allow us to easily set the transmit 
and receive rate and they do all the transmitting and receiving in the background. 



3.2 System Objectives 

This project supports many id d »bi : leas an objectives that can be summarized as follows: 

I- The user can use the keyboard without cable constrain or distance he can 
' 

work with computer and set in the way he want . 

2- To make wireless technology available in computer field so any one can use 

and run this technology with out difficulties and provide software required to 

run wireless circuit under computer area . 

3.3 System Block Diagram 

figure (3. I) shows block diagram for the system. It consists of several uni ts to be 

accomplished and integrated to each other to form the final wireless keyboard system 

,These units are: 

Keyboard : When the user presses any key the signal Data, Clock, VCC, GND 1s 

generated from the microcontroller of the key board, this signal sent to the 

microcontroller of receiver circuit serially, where only one signal at a time . 

££ 



fJI 

Microcontrollers : The MC responsible to reads data from keyboard and it will be 
transmitted to transmitter circuit . 

the ps2 protocol also allows the computer to talk to the keyboard . To do this, MC 

must do this work by telling keyboard to send data or not . 

RT4-433: Is the chip that send the signal to the RR3-433 Receiver. The transmitter 

operates from a 4.5-5.5V supply, making it ideal for battery-powered applications. 

RR3-433: It receives the signal from RT4-433 transmitter and sends it to MC then 

to computer to perform the tasks. 

y y 
Transmitter Receiver 

I Microcontroller 

t ummaa:s:aum~?f- 
%wsons» poison no 

I Microcontroller 

t c- 
,r--- - 

Figure ( 3.1 ) general block diagram of system 



3.4 How Does The System W: ·? or . 

When a key is pressed is not suffi . . . 1c1ent reason to generate a key code. A user may 
hold a key down for many tens of milliseconds before releasing it. 

The keyboard controller must not t k · · generate a new ey sequence every time it scans 
the keyboard and finds a key held down. Instead , it should oenerate a single key 

I::> I::> 

code value when the key goes from an up position to the down position (a down key 
operation). 

Upon detecting a down key stroke, the microcontroller sends a keyboard scan code 

through the transmitter as radio frequency signal to the receiver in key computer 
side circuit . 

receiver sense the radio frequency signal and generate electrical signal, amplified, 

filtered and then entered to computer through serial port then the microprocessor 

process this signal and perform the actions that related to this signal, the action that 

microprocessor perform it may be control to software or generate external signal for 

hardware control connected with computer through parallel port. 

When the scan code arrives at the PC, a second microcontroller chip receives the 

scan code, does a conversion on the scan code, makes the scan code available at I/O 

I 



port 60h, and then interrupts the processor and leaves it up to the keyboard JSR to 
fetch the scan code from the I/O port. 

3.5 System Modeling 

I 

3.5.1 Data Flow Model 

KEY BOARD INPUT 

I 
input 

processing Data To Tra.nsrnitter -~ Transmitter 
I 

Output_ · J:._ Data To Receiver 
Processing : Curcuit 

I 

Receiver 

RF sipaat 

Data to Sorlal port _,,_ ~- __ _j 

Figure ( 3 .2 ) data flow model 

£V 



3.5.2 User Case Model 

A ·-- - 
Transmiter curcuit 

I 
Receiv r curcuit 

Serial Port 

Operating 
System 

Figure ( 3.3) User Case Model 

£ A 



I 

3.5.3 Sequence Diagram 

A uls, 
I I □-• User Press 0:\ . b [! 

: . .-, .. ~ ... :.i ..... _.._. .. _ . .Jf 

I I [yes[] 

j Keyboard [ 
··,·········,7,·•·.·,·1 ····· ... ,._.,.,,.,,,. 

Transmitter ] 

I 
I 
I 
I 
I 
I 
I 

[]= Data •I f I 
I I 

FD 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

09 : 
r-', Perform ,-l, 
Lt tJ 

. ( 3 3) Sequence Diagram--:::=:;;;:::===::;::::;:;=:::;;::::=:~ 
Figure · (§. ~·'fic...t ~"" 

- ~IJ.! • 
Palestine Polytechnic University 

{Peg 
The zary 3i&ft 

Acc. ......232.l2....Awa» 
Closs -~, u; 



I 

Summary 

In this chapter we talk about the objective of our project , and the idea that 

make the wireless keyboard is better for user, then we explain the major component 

and subsystem of our project , and how this component work to gather to handle any 
keys was pressed . 

O 



pg]] 
I 

4 

Detailed Technical Design 

4.1. Detailed description of the project phases 
4.2. Subsystem detailed design 



--------....,. 

4.1. Detailed description of the project phases 

this section describe the design details of the system as a whole and the details 

for each component in the system . the following figure generally view the main 

component in our system and how they are connect to each other . 

Keyboard Power 
Supply 

6 Pin Mni - Dim 

Computer 

6 Pin Mini - Dim 

~~ 
( >+ 

Power Mcrocootroner Micro controller Supply 

Receiver • UART UART Transmitter , 

. 4 I· Overall System Block Diagram Figure·. . 

keys on the keyboard, signal is generated to F. 4 I h the user presses any 
1gure . w en ·ill send the code to transmitter RT4­ . h ame port wI the MC via port D then via t e s 

433.92 which will send the code to receiver. 



In other side The computer connects to the microcontroller through a 6-pin 
min-DIN plug and provides power to run both the microcontroller and the receiver, 
thus there is no need for any batteries. 

The microcontroller receives data from the wireless keyboard using the 

receiver (RR3-433.92). The data output of the receiver is passed to the RXD pin of 
the microcontroller. 

4.2. Subsystem detailed design 

In this section the schematics, characteristics, features, and the specifications 

of each component and subsystem will be presented. 

4.2.1 Transmitting Subsystem: 

. d. . m of the transmitting subsystem, Figure (4.1) shows the schematic 1iagran 
d the RF transmitter. which is constructed of the MC an 

sf" 



~cc w 
KEYBOARD _ATmega32 

DATA PBO 
w 

PB! 

vcc 
PB1 
P83. 
PB4 

GND 
PB5 RT4-433 
PB6 

CLOCK 
PB7 \ICC EA m N Ci[\J[l 

vcc 
GND 
XTA_L2 

12MHz 

~ 

20pF 20pF 

Figure (4.1): Schematic Diagram of Transmitting Unit 

The pin connections of the transmitter according to our project requirements 

are listed in the Table ( 4.1 ). 

o£ 



wen]l] 

Table (4.1): Electrical Characteristics of RT4-XXX 

Pin(s) Symbol Characteristic Specification 

1 Vee Supply Voltage Positive of 5V power supply 
2 GND Ground Negative of 5V power supply 
3 IN Modulation Input Connected to pin 17 of the MC 
4 EA External Antenna Connected to the Antenna 

4.2.2 A TMega32 Processors 

• 
• 
• 

Features for ATMega32 

High- performance , low-power 

Advance RISC Architecture 

Nonvolatile Program and Data Memories 

1- 32K Bytes of In-System Self-Programmable Flash 

2- 1024 Bytes EEPROM Endurance: 100.000 Write/Erase 

Cycles 

3- 2K Byte Internal SRAM 

. Lock for Software Security 4- Programming 



.0 Special Microcontroller Fe t a,ures 

l- External and Internal Interrupt Sources 

2- Internal Calibrated RC Oscillator 

Pin Descriptions: 

VCC : Digital supply voltage. 

GND: Ground 

Port A (PA 7 .. PAO): Port A serves as the analog inputs to the AID Converter.Port A 
also serves as an 8-bit bi-directional IIO port, if the AID Converter is not used.Port 

pins can provide internal pull-up resistors (selected for each bit). 

The Port A output buffers have symmetrical drive characteristics with both high sink 

and source capability.When pins PAO to PA7 are used as inputs and are externally 

pulled low, they will source current if the internal pull-up resistors are activated. The 

Port A pins are tri-stated when a reset condition becomes active, even if the clock is 

not running. 

o 



Port B (PB7 .. PBO) : Port B is an 8-bit bi- . . . . . 
directional I/O port with 111ternal pull-up 

resistors (selected for each bit). The Port .. _ . . 
. . . B output buffers have symmetrical drive 

characteristics with both high sink and 4,, =' source capability, 

As inputs, Port B pins that are externally pull d l .11 : le ow w1 source current if the pull- 
up resistors are activated. The Port B pins tri sq · s are 1-state when a reset condition 
becomes active, even if the clock is not running. 

Port C (PC7 .. PC0): Port C is an 8-bit bi-directional J/0 port with internal pull-up 

resistors (selected for each bit). The Port C output buffers have symmetrical drive 

characteristics with both high sink and source capability. 

As inputs, Port C pins that are externally pulled low will source current if the pull-up 

resistors are activated. The Port C pins are tri-stated when a reset condition becomes 

active, even if the clock is not running. 

If the JTAG interface is enabled, the pull-up resistors on pins PC5(TOI), PC3(TMS) 

and PC2(TCK) will be activated even if a reset occurs. 

Port D (PD7 .. PDO): Port D is an 8-bit bi-directional J/0 port with internal pull-up 

· ( l d .c: h bit). The Port D output buffers have symmetrical drive resistors seecte tor eac) ·1'. 

characteristics with both high sink and source capability. 

II pulled low will source current if the pull-up 
As inputs, Port D pins that are externar!y .. 

D · e tri-stated when a reset condition becomes 
resistors are activated. The Port pins ar 

active, even if the clock is not running. 

o \V 



4.2.3 Receiving Subsystem: 

Figure ( 4.2) presents the schematic diagram of the receiving subsystem, 
which is constructed of the decoder and the RF receiver. 

,. 

Computer 

I-- 

DATA 

ATmega32 

7, t PBO . 'J.1,.1 
C PBl 
t P82 
C PB3 
t P84 

{ C PB5 
)Wkc PB6 tr ----cm 
[pp lo _.v 

} {JGD 
,--------t----1;.. YiAL2 .. ,, . 

.-----t--,~ XTAll 
[RD 

C TXD 
C tNTO 
C 1NT1 
C PD4 
C PD5 
C P05 

vcc 

GND L...-.- ----+-, 

CLOCK~~ 

1lMHz 

-~- 
ur 7tr 

#p 
h [ 
P.A3C \ . . \ 
PA4C- ~.4QI 
PA5 .. 1----+,---- .. 
i. 
"h fa ARH 
g[ fL orv ~ 

A'l(,C :J 
PC7C 
PCf] 
uD 
PC40 
PC3 :l 
A:p 
PC10 
PCO J 
PD7Q 

\ / 
\/ \ 

RR3-433 

J l l l Li l I 

f R ceiving Unit . (4 2)· Schematic Diagram o e Figure • · 



The pin connections of the 1·ece1·v · d" · · 
er according to our project requirements are 

shown in the Table ( 4.3). 

Table (4.3): Electrical Characteristics of RR3-XXX 

Pin(s) Symbol Characteristic Specification 

1,10,12,15 Vcc Supply Voltage Positive of 5V power supply 
4 i m 

2,7, 11 GND Ground Negative of 5V power supply 
my IN Antenna Input Connected the Antenna 3 

13 NC Not connected 

14 OUT Connected to the MC 
,., 



Summary 

In this section we described the design details of our project as a whole the 

details for each component in the system and the two side of our project, computer 

side and keyboard side, the detail description of component and how it will work • 



5 

Software System Design 

5.1 Introduction 

5.2 Software project 

5.3 How Software System Work? 

5.3.1 Keyboard Side Software 

5.3.2 Computer Side Software 

5.4 Code Listing 



5.1 Introduction: 

In this chapter we are going t d .· 
• 

0 0 0 escube the software system design and to 
describe some of the using methods d 1 . an algorithm design as followed. 

And it contains the flowchart fi 11 . . _ . . . or al processes in this project from first step in 
the project (initialize the ports & t · · · • ransmutting signal & receiving it ) to the final step 
(send signal to computer ). 

5.2 Software Project 

programmer was used to program the ATmega32 microcontroller, the program 

written in C language must be translated into hex value, where the microcontroller 

can understand it. Code VisionA VR software is the software used to convert C code 

into hex code to be load on microcontroller. physically, program represent a file o the 

computer disk ( or in memory if it read in a microcontroller ), and is written 

according to the rule of the C language for microcontroller programming. 

Translator interprets each instruction written in C language as a series of zero 

and ones which have meaning for the internal logic of the microcontroller. Figure 

(5.1) represent the basic phase of programming the ATmega32. 



AT mega3? 

[la n 

Figure (5.1): ATmega32 Programming Phases 

Different programming languages access the port, and specify the operation 
microcontroller must perform. C language is a programming language with built in 

function , which is used for reading ,and writing to the port . 

With C language, it is easy to work with microcontroller, we can read and write 

from port easily and we can use library of-C. language to perform the different logical 

and arithmetic operation. using C language· is much better than assembly language 

since the size of code required to build the system is much less than the size of code 

in assembly language. 

5.3 How System Software Works? 

· • fl h rt will be introduced to describe the program of both In this section, tow clia 

and the keyboard side circuit. flowcharting is a tool for the computer side circuit, 

analyzing processes . 



5.3.1 keyboard Side Software 

The software on the keyboard . d h . 
. SI e as two main task : it listens to the data 

coming from the keyboard and it d 
sen out to the transmitter through the UART .The 

keyboard generates a clock on the Cl k 1 · • oct line and sends its data on the Data line. 

Whenever the clock is goes lo 1 bi' fd: · w, Ito ata IS present on the Data line and the 
microcontroller reads it. 

Since the keyboard protocol sends a start bit, followed by 8 data bits, then a 

parity and a stop bit, we only shift in the data bits into a register. Once we have the 8 

data bits, we place the byte into a queue. 

To make sure that the system works correctly means it can reads the data bytes 

correctly, we will send tow byte that are 0xAA and then the byte 0xFF into the 

queue before each data byte. 

The OxFF byte indicates that the next byte is a data byte and should not be 

ignored. Furthermore, we maintain timer2 to keep track of how long it has been 
since we transmitted some data. If more than approximately 25mSec has elapsed, we 

transmit 0xAA after 0xFF. 

. d ars quite long, there is only a piece of it that is 
Although the mterrupt co eappee . . 

:. ' taken. rest of the time, the program is inside the 
executed every time the mterrupt IS a · . . 

thy checking if the queue is empty and if the 
main while loop where we are constan y ± 

UART is free to send data. 



The following flow h c art, figure (5 3) . 
to meet the hardware specific +%> °'·describe how the progra sl cification. 9gram should work 

start 

Send data to 
computer 

End 

YES 

Receive Data 
from Keyboard 
Put it in Queue 

Re ad OxAA to Queue 

Figure (5.3) : flow chart Keyboard side 

5.3.2 Computer Side Software 

The software on the computer side has two main tasks. First, it listens for 

incoming data on the UART, determining which bytes correspond to keyboard code. 

Second, it echoes these codes to the computer. 



There is an initial OxAA. Then OxFF is sent. This indicates that the next byte 
will be a valid data byte. Finally, a data byte is sent. Since the microcontroller uses 

the UART to receive data from the receiver, it polls the UART regularly to see if it 

has received any bytes. As bytes are read from the UART they are added to a queue 
to be sent on the port . 

The following flowchart, figure (5.4), describe how the program should work 
to meet the hardware specification. 

YES Receive Data 
> l rrom RR3433 

NO 

NO If queue not empty 
s not receiving 75 

YES 

Put Data to Queue 

send data to 
com] ·uter 

End 
h rt Computer side 5 4). flowc a 

Figure ( · • 



6 
Implementation And Testing 

6.1 Introduction 

6.2 Implementation 

6.3 Testing 



6.1 Introduction 

In this chapter we are going to show the implementation and testing processes 

for the system. The implementation and testing was done by using the following 
tools and components: 

• 
• IC stands. 

I 0*20 cm broad board . 

• All the ICs that are depicted in the. design chapter (see chapter 4). 

• Wrapper tool for wrapping the connectors on the I Cs stands. 
• wire cutter. 

• A digital Millimeter for testing. 

• Oscilloscope . 

d t ti:vg IJart reflect a software or This has more than one issue to be teste . some es in 

hardware. 

t a single device independent from In addition, testing procedure concentra e on 
overall system. 

6.2 Implementation 

'» ·d ith the testing operation, since 
; ess is synchronized win % 

The implementation proces to ensure that are no en ors 
. will take many testing steps 

each implementation phase dware prototype. 
. 1 tation was a har The actual project implemen 



The first step for implementin the . 
. . g system is done through the simulator, 

where the simulator give us an accurate %_. 
:. e implementation since there is no possibility 

of hardware risk. after writing any roor . . . 
:. Pogram to be implemented, first, we compile i 

and then simulate them on the simulatcr th · . . 
or, 1e simulator where the program written 

correctly give us an accurate result with no error. 

The second step is implement the system on the bred board, implementation on the 

bred board is difficult some thing and not always give us the same result as on the 
simulator. 

To obtain the same result there many thing to do, since microcontroller need some 

tutorial must be done, the first time we implement the program on bred board we go 

nervous and we don't know what happen, where is it work good on simulator, but 

after we made the tutorial it is become better. 

6.3 Testing 

. . h tern They are not ordered in any manner, Here are the testing 1ssue for t e sys · . 
integrity and operation .there is many type of rather they represent a way of system 

testing have to be explained for the system : 



6.3.1 Hardware Testing 

6.3.1.1 Block Testing 

6.3.1.1.1 Microcontroller testing 

Microcontroller is one of the major component used in the system, there is 
many configuration must be established for the microcontroller to work successfully. 

For ATmega32 microcontroller in our system, we test the ATmega32 by 

configuring the port C of ATmega32 as output, and assume that there is digital data 

over it. we specify any known value on the port C and connect parallel led's to the 

port, to ensure that the A Tmega32 work successfully the value specified in the 

program must be appear on the led's. 

Here is the program used to test the microcontroller, written by C language. 

#include <Mega32.h> 

void main(void) 
{ 

DDRC = OxFF; 
PORTC=Ox00: , 

//set LEDs to all output 
//set all LED's to off 

} 

y 



6.3.1.1.2 Transmitter and Receiver Testing 

Here we test the transmitter and receiver which is one of major component of 

the system, transmitter send data from keyboard_side circuit to the computer_side 
circuit, while the receiver receive data from transmitter in the computer side circuit. 

system to be work successfully, transmitter must send data correctly and the receiver 

receive it in the same rate. so, before any step of building the system we must sure 

that the data transfer accurately and without noise. 

The best way to test the transmitter and receiver is through the oscilloscope, we 

assume that serial data input to the transmitter to be transferred as analog signal, the 

receiver in the other side must accept the analog signal and convert it to digital data, 

the system will transmit 0x55 and receives 0x55 as shown in figure(6.1) the data 

input to the transmitter. 

. t to the transmitter Figure (6.1) data 1npu 



figure (6.2) show the output d ata from recc; ever 

Figure (6.2) output data from receiver 

we note that the data input and <lat . . . a output IS the same ' so the transmitter and 
receiver test 1s passes . 

6.3.1.1.3 keyboard 

keyboard that provide the system for digital data must tested here by 

oscilloscope, we want to ensure that the keyboard interrupts the microcontroller 

elevenths time when any key pressed, and eleventh bit transmitted serially from 

keyboard. 

The figure (6.3) view the eleventh interrupt when any key pressed, the clock 

from keyboard is represent the interrupts. 



Figure (6.3) keyboard clock and data 

6.3.1.2 Integration Testing 

6.3.1.2.1 Input Circuit Testing 

The input circuit is the keyboard_side circuit, where the data from keyboard 

processed and send out to the receiver, for the input circuit we need to ensure that the 

data is stored in the microcontroller and send out through the UART to the 

transmitter, the way used here to test the input circuit is, when a key (A) on the 

keyboard pressed the value (ClH) must stored in the query. 

We build the program so that when a key (A) pressed, the serial data from keyboard 
to the edir ·compare the value on the query with (CIH), if it's 

e port store ma query, so we . . ff 
Cqual ,the led attached to the port must go on, other wise, 1sg0 Ol · 



6.3.1.2.2 Output Circuit Testing 

The output circuit is the com;uter . . . . . . 
· pt ,_side circuit, in this circuit the ATmega32 

microcontroller must accept the data and c :, 56 
·· process it to be transmitted to the computer 

we build a program assuming that an value ·· ' ' of character like (A) stored and must out 
through the port serially. 

6.3.1.2.3 subsystem Testing 

After testing the component of the system keyboard, microcontroller, 
transmitter and receiver . First , we connect the microcontroller with transmitter in 
the keyboard side circuit , and assume that there is a character stored in queue have 
to be transmitted to the transmitter through the UART. 

Here we make sure that the data reach the transmitter through the UART, by 
connect the output pin from UART with led, we note the series of bits reach the 
transmitter when sequence light appear on the led • see figure (6.4). 

y £ 



Figure (6.4) ATmega32 and transmitter testing 
Second , we connect the microcontroller and the receiver in the computer circuit 

side , Here we want to ensure that the data come from transmitter is accepted by the 

receiver and the receiver convert it to sequence of digital data . output data from 

receiver connected to the led to ensure that receiver accept analog signal and 

convert it to digital data ,sequence of light also appear here .see figure (6.5) . 

itter and receiver testing 
Figure (6.5)ATmega32 .transmil€ 



6.3.2 Software Testing 

The goal of testing softwar . e is to establish confide +n + 
is fit for purpose of the system th. ent that the software system 

' is mean that the system I b 
its intended use. The level of required Pust be good enough for 

mre confidence depend on th 
expectation of the system user and th e system purpose ,the 

e current marl t · . Ketung environment for the system 

Determining is the most problematic task it t k I · ' 1 00 us ong time and several trials 

working on it . Finally we managed to determine th t· .c- • d I · e lime for telay, delay is must be 

very accurate since we read the serial data depending on the delay between each bit 

and the increasing or decreasing of the delay cause problem . · 

Next, it significantly important to test the USART. Therefore, a simple program was 

designed to read data from USART to the transmitter .USART and transmitter or 

receiver operate with different baud rate ,in communication with each other must 

operate with the same baud rate, but the baud rate of transmitter and receiver is fixed 

while the baud rate of the USART is dynamic and must be change by programmer to 

be the same with the transmitter and receiver baud rate. 

Its simply to make it same but this not mean that the chip must be always work 
. fi (6.7) we assume that specific value transmitted 

successfully, as shown m the 1gure · 
b h

. an that the data transmitted successfully 
Y USART, when the led become on t is me . 

. use if baud rate is wrong no data will be 
and baud rate is the same in both side. beca 

transmitted . 

y 



- 

®ell.ell.bbl&id,l&ala 
Figure( 6. 7 ) baud rate tes·;--· -- 

in other hand the other software test of the part of th . e system like ports and rest 
circuit can simply made. 

we tested all programs via A VRsimulatorIDE to determine all programs work 

correctly. 

The following figure show how the MC receives data from the keyboard when start 

program the clock line and data line will be high as figure(6.7) 

yN 



The following figure show what happen when clock line goes low the MC 

d the data on data line (0 or D )after that goes to high like the clock generate will rea 
by keyboard. 

-~-=~,-,-"""C""."··• _ . 
Ii§\,·;,,.:..;::;.;..;:;;;__- __ ._,,,; 

1 
1 
T 
i 
T r 
! 
J 
1 

Laa] 

y 



The following show when th e MC re d ea the bi It 7 

r 
i r 
1 
T 
r 
I 
! 
I 

[a 

Figure( 6.11 ): Read the last bit and light the led on port B 

y A 



The figure( 6.12) assume that the computer side receive Ox55 hex by the 
RT and figure ( 6.13 ) show how the Ox55 will be translated serially to computer. UA 

( Ptogrom Locatron ,--···---- F·\,.,s.,1· .s-J<. -~-•'-"'\by De\ay\R_Dclay 
11 Mtc-tocon1tollo1 I ATmcga32 I Clod. Frequency r-·-·i~ioMHz 

Me>:l lmln1clion 

ra .. 
~ __ .J l romo.1 ART Transmitter ~talus ~~~i:Re -------, Cancel j j r- Pull-up 

xBulfei (empil Rx Buffer I .._____ ---- -~· 
xShllReg: (emp_ . - R,Buffer tpORTA,7 

xn progress Bx ,n progi, . ;::~r----------------- r PuU-up PT Bgceiverlnput soa, lg 

Send Byte (Dec) Ii Send Byte (Hex) 1 a!!!l!~!!i!!!.:!::=:!!!! !:::::;;l f"POFiTAT 
nd String l X l l r Pull"p 

if"""5 ,, 
I i!di::!!.±:t=!:...i....:.::.........~ 

IJMP 

... 
R'.,DIPDO 
T'.-D/PD1 
INTO/PD2 lt-lT1/PD3 
rrTDATYA 

3 
5 sS 
6 35 
7 \24 
8 '33 

ul 
11 3J 
12 :3 
1J :?8 
14 27 
15 26 
1$ 25 
17124 
1Q ')";! 

Pc?/f65? 
PC'8!TOSC1 
PC5/TDI 
PC4/TDO 
PC3/TMS 
PC2/TCY. 
Qr, /Cf)A 

Clo·e I z netesh [ii» .[dupiw --4.3 -j'lit as ~, :ooc R1.2 Im rrrrrrr-r · • <oGD f¼o • roo rrrrrrrr : . 1• iooo R13 loo rrn-rrrr , I $OGE oo 
i1 f.QOE R14 ~ rr_ ~r_r __ ·rrr ..::. [wGF foo i ~OOF _R15 i vu __ 

. ( 6 12 )·Receive 0x55 by the UART Figure , · 

em:,m:yet 
.'' .. %"[rkfeaene)["1?bill: .... ' .,. ll I Almega32 I • 

oco,.,o er · _ ··--·· , NE:Y.l lnc-uuclron ~-.,.-, 
; ir:,sl1uction ,-- ·- . . .. . \ l r- DE~ R_24 

BRNE -2 .., L------·-· -~--···- . ---:--·-···---·-- 
,. 

It% ]. ansaacs ] 
T 1ansm1tei Status . R~ Shilt Reg: (empty) 
er. (empty) R Bulfer 1: (emply] 
t Reg: (em~ty) - ' , R: Buffer 2,; ·(empt\')· 
ogress: Rx irt Jl1®ftlSS 
Receiv ~----- 

end Byte lHej i I : ~ I EIIL _ 

u 11 , ro ➔ I n-<J: ·""" •SS/PB4 5 ?.o PA4,i>.DC4 
M0:I/PB5 6 35 PA5iADC5 
MISO/PBti 7 34 PA6!ADCb 
SCI /P87 3 33 P.o.7//:,DC7 

, 9 32 · 
· 10 }1 . , 
' '1 ?JJ 1lboal p7/1gr2 

ij1 
...... ,«-,,-'!'.:::"::~'.'.":..'. .'.'.".. :::-: ..l ! Pi:iRfci:1 

1 Pulup 

ORiA.i 
Puil-sp 

f5RfA.6 
Pr;ll-up 

,nacltve) 

I 

_ __...,____; 

Figure( 6.13 

--st,A; ! ca FA w Refresh I • • e ·r AlwaysOnlop . Oscilloscop 
ter on 

d 0x55 to compu ): Sen 

Dose 



7 
Conclusions and Future Works 

7 .1 Conclusions 

7 .2 Problems 

7.3 Future Work: 



7.1 Conclusions 

Many experiences were added t tl .. 
.- o he team cognitive knowledge through this 

Project. Many conclusions can be stat d h b · · · 
e 1ere, ut only significant and important ones 

are described: 

• Each subsystem was implemented in its own circuit and tested by means of 
Hardware and Software. At the next testing stage two or more subsystems 

were combined together to check the influence of their outputs on each other. 

to check its work and test the complete system program on it. 

• Building Wireless Keyboard was a great way of combining all we have 

learned over the five years at PPU. We were able to design, build and 

implement the project. We learned how to deal with serial communication. 

■ Starting the work in any project is hard ,so, the beginning must be in more 

accurately and carefully . 

dl.f-c.erence between the theories and the real world There is a big ch 
implementation. 

: viable for implementation in a project d ·h t r ideas were This project prove tha ou 
1 l.fe problem. that resembles area - 1 

Y 



• Each device was tested individuall in . . . . . . 
;%. Dy small circuit( with certain purpose) to 

study its behavior and make + : 
. b. Sure it works properly and can do its expected 
JO · ! 

7.2 Problems 

System completion in regard to its objectives is an implementation dependent 

issue. Problems are natural things. Encountering problems and limitations is very 

common in such a huge project specially when dealing with electronic devices. 

Here are problems faced the project team during the system implementation: 

• Choosing the appropriate chip requires long time , while we study and plan 

the project many thing may change , some feature of programming may 

found in some kind of chips . 

■ When we started our work on the project, we had built prototypes for all 

· ·1 · Id breadboards from the university lab. which led into circus using0. ' 

damage for some integrated chips. 

• . de ices due to the wrong connections, or high Internal damage m some levi 
lid to the devices during the implementation. voltages, or currents supplic 



■ Time and effort were wasted b 
ecause of the bad choices we have made 

such as: ' 

✓ In the first semest d • 
ster we decided to use ATmega32, but its 

unavailable in Market: Then we decided to use Pl Cl 8F452. 

✓ During the test ti · h' · is chip was damaged, and then the university 
brings ATmega32 then we decided to return to it. 

7.3 Future Work: 

We tried our best to choose the rational design to achieve the objectives of 

our project. We also believe that any work can not reach the perfection. Still a lot of 

thought and ideas can be utilized to enhance the current work achieved. Here are 
some of them: 

■ In this system we have used keyboard from the market in the future we can 

build a special design for a keyboard. 

■ Providing a Mouse beside the keyboard so the controlling on the computer 

will be completed by using the same chip receiver and transmitter. 

A£ 



References 

Books: 

Author Name Book Name Publisher Year 

Lawrence 
Handbook of RF and wireless 

Livermore dowla farid 2004 technology - 
National 

Laboratory 

Modern wireless technology hagkin _sireon Prentice Hall 2004 

Wireless communication system wany _xiaodony Prentice Hall 2001 

Wireless communication principle 
theodare Prentice Hal] 2003 rappaport 

and practice 

~ tk...'.i 
2005 ~ Y. atmel avr «2l 1as±ly C ,,hall ac 2ass- ±.C f' . 

e '\3 
; 

7' -'% 
2005 wt...&.:i.aavr y\ar Cg\ic 

e:'\3 



Web Site: 

1- http://en.wikipedia.org/wiki/Computer ke 6 
1 ey oard 

2- http://www.osdev.org/wiki/Keyboard Input 

3- http://computer.howstuffworks.com/keyboard .htm 

4- http://www.atmel.com/dyn/resources/prod documents/doc25 03 .pdf 

5- http://www.telecontrolli.com/pdf/receiver/rr3.pdf 

6- http://www.telecontrolli.com/pdf/transmitter/rt4.pdf 

7- http://www.astro.virginia.edu/class/skrutskie/astr174/al 74intro.s07.pdf 

8- http://en.wikipedia.org/wiki/Radio_frequency 

9 -http:/ /electronics.howstuffworks.com/radio 

IO h // ·k· d" /w/i"ndex php?title=Radio frequency&action=history - ttp:»'en.wiipelia.orgy · • 

A 



Appendices 

Appendix A: Datasheets of Project Components 

Appendix B: Source Code 

AN 



Appendix A 

Datasheets of Project Components 

A 



Appendix B 

Source Code 

Computer_side_code 

Keyboard_side_code 



Computer_side_code 

#include <Mega32.h> 

#include <delay.h> 

#define CLK TIME 180 

#define RESPOND WAIT 528 

//define ps/2 data line states 

#define IDLE 0 

#define INHIBIT 1 

#define BUSY 2 

#define REQUEST 3 

//define some useful maps to bits 

#define UART IN UCSRA.7 

#define CLK OUT PORTA.7 

#define DATA OUT PORTA.6 

#define CLK IN PINA.5 

#define DATA IN PINA.4 

//state of the data line 

char transmitting, receiving, waiting; 

//variables for writing to PS/2 port 

char position, PS2byte, PS2parity; 

char clockState; 



//define clock states 

#define HIGH 0 

#define FALLING 1 

#define LOW 2 

#define RISING 3 

//define queue values 

#define QUEUELEN 100 

#define TRUE 1 

#define FALSE 0 

char queue[QUEUELEN]; //queue of data sent by keyboard. (first in, first out) 

char queueFull; //indicates if queue is full 

char queue Empty;//indicates if queue is empty 

char queueln; //indicates where to put data into queue 

char queueOut; //indicates where to take data out of queue 

char queuePut( char d); 

char queueGet(void); 

I /put data into queue 

//get data from queue 

void send(void); /// send data to computer 

l/0 = waiting 

Ill = received AA last 

Ih2= received FF last next in is good 

II char preamble_state; 

//break code was received 



char break code· - ' 

char parity(char x )//calculat . ate the parity f y o) a character 
{ char temp, i; 

temp=l; 

for(i=0;i<8;i++) 

{ 

temp=temp(x&I); 

x>>=l; 

} 

return temp; 

} 

//insert data into queue. R t 1 ·r e urn I queue full, or 0 if inserted data sucessfully 

char queuePut( char d) 

{ if (queueFull==TRUE)//check if queue is full 

return(TRUE); 

queue[ queue In ]=d;/ /insert d into queue 

queueln++;//increment where to stick in the next d value 

queueEmpty=FALSE;//indicate queue isnt' empty anymore 

if (queueln==QUEUELEN) //if reached the end of the queue 

queueln=0; //wrap around to the beginning 

if (queuein==queueOut) //if queueln caught up to queue Out 

queue Full=TRUE; //indicate queue is full 



return(0); 

} 

//get data out of queue. Return o if que 
ue empty or the actual data if not empty 

char queueGet(void) 

{ chard; 

if (queueEmpty==TRUE) //check if queue is empty 

return(0); 

d=queue[queueOut];//get data out of queue 

queueOut++;//increment location where to get next d value 

queueFull=F ALSE;//indicate queue isn't full anymore 

if ( queueOut==QUEUELEN)//if reached the end of the queue 

queueOut=0; //wrap around to the beginning 

if (queueOut==queuein) //if queueOut caught up to queuein 

queueEmpty=TRUE; 

return(d); //return the data from queue 

//indicate queue is empty 

} 

//determine the state of the data line 

char clockStateNow(void) 

I* 

: ...... 64g)//I'm doing something if(transmitting [] receiving [] waiting 

return(BUSY); 

4 r" 



f(CLK_IN==0)//computer is inhi; 
1biting commmunication 

return(INHIBIT); 

if(DATA_IN==O)//computer wants to d . 
sen something 

b 

return(REQUEST); 

*/ 

retum(IDLE);//nothing happening 

} 

void initChip(void) 

{ 

OCRlA =CLK_TIME; //compare match to drive tile clock to PC 

OCRIB= RESPOND_ WAIT; 

TCCRIB = 0x0l; //Run counter at full speed 

TCCRlA = 0x00; //nothing needed here, no output 

TIM SK = Ox 18; //Set the compare A interrupt and compare B interrupt 

queueFull=FALSE;//queue is not full 

queueEmpty=TRUE;//queue is empty 

queueln=0; //where to insert into queue 

queueOut=0; //where to take out of queue 

PORTA= 0xC0; //initialize outputs to high 

DORO= 0x00; 

DDRB = 0x00; 

DORA= 0xC0; 

DDRC = 0xFF; 

d. t" n (see initial wiriing comments) //set data hirectto 

//set LEDs to all output 



PORTC=Ox0O; : 
/lsiet all LED's to ofr 

UCSRB = Ox 18 ; //enable only the receiver, no interrupts 

UCSRC=OxB6; //odd parity, 8-bit data segments 

UBRRH =0xO1; 

UBRRL = 0x76; //need to BR 2000 

#asm 

se1 

#endasm 

} 

void send(void) 

{ 

if( transmitting) 

{ 

inti=l; 

II ·t data out here if(clock State==HIGH) /write 

{ 

// start bit 

DATA_OUT=0; 

delay_us(3); II wait 40 mies 

CLK_OUT=0; 

for(;i<9;i++ )//data bits 

it 40 mics {delay_us(3); // wai 

S?b te&0x01; DATA_OUT=P - y 



! 
~- 

I ) 

PS2byte =PS2byte>>1­ 
' 

CLK OUT=I· » 9 

delay_us(3); 

CLK OUT=O: 
®® 

DDRB = 0xFF· 
' 

PORTB =OxAA; 

} 

II******************* Parity Bit****************** 

delay _us(3); II wait 40 mies 

DAT A OUT=PS2parity; 

CLK_OUT=l; 

delay_us(3); II wait 40 mies 

CLK_OUT=0; 

delay_us(3); II wait 40 mies 

[//3kkkkkkk Stop 3jf kk 

DATA_OUT=l; 

CLK_OUT=l; 

delay_us(3); II wait 40 mies 

CLK_OUT=0; 

delay_us(3); II wait 40 mies 

CLK_OUT=l; 

DDRC= 0xFF; 

PORTC=0x7f; 



// transmitting=0; 

} 

else 

{ 

II 

II 

CLK_OUT=1; 

DATA_OUT=I; 

II clockState=HIGH· 
' 

} 

} 

void main(void) 

char inFromRF· 
' 

char myState; 

initChip();//initialize chip 

while(l) 

{ 

if(U ART_ IN) 

{ //fl 

//handle uart, make sure you receive the preamble before registering a symbol 

inFromRF=UDR; 

if!UCSRA.2) 

{ //f2 

4 V 



if(inFromRF==OxAA)y 

else 

{ 

queue Put(inFromRF); 

} 

} //ef2 

} //efl 

myState=clock State\Now();//check if th Ii- : : • ie ine is idle 

/ if(myState==REQUEST) 

{ 

DDRC = 0xFF· 9 

PORTC=0x00· ' 
receiving= 1; 

position=0; 

}*/ 

if (myState==IDLE) && !queueEmpty )//is it idle and is there something to 
II send 

{ //1 

PS2byte = queueGet(); 

if(PS2byte!=0) 

{ ///2 

transmitting= 1; 

position=0; 



clock State=HIGH; 

PS2parity = parity(PS2byte); 

send(); 

} //e2 

} //el 

} /l end_while 

} //e_main 



Keyboard_side_code: 

#include <Mega32.h> 

#define rDAT PIND.7 

#define rCLK PIND.3 

#define wDAT PORTD.7 

#define wCLK PORTD.3 

#define TRUE I 

#define FALSE O 

define QUEUELEN I 00 

char receive; //indicate that int2 interrupt should work as reciever (if 1) or 
I /tranmsitter (if 0) 

char countln; //count how many Low CLK pulses we have seen as we receive 
//data from keyboard 

char countOut; //count how many Low CLK pulses we have seen as we transmit 
//data to keyboard 

unsigned char dataln; //will store the data bits corning in from the keyboard 

unsigned char dataOut; //will store the data bits we are sending out to the keyboard 

char parity In; //will store the calculated parity of data coming in from the keyboard 

char parityOut; //will store the calculated parity of data we are sending out to the 
keyboard 

char pError; //will store if there was a parity error in data sent by keyboard 

char queue[QUEUELEN]; //queue of data sent by keyboard. (first in. first out) 

} e 



char queueFull; //indicates if queue is pal; 

char queue Empty;//indicates if queue is empty 

char queueln; //indicates where to put data into queue 

char queueOut; //indicates where to take data out of queue 

char rxDone; //indicate done receiving frame 

char txDone; //indicate done transmitting frame 

char t2visits; //times gone into timer2 interrupt without any resets of the counter 

void initialize(void); //initialize mcu 

void initialize Ky Bd(void);//initialize keyboard 

char queuePut( char d); //put data into queue 

char queueGet(void); //get data from queue 

void TXtoKyBd(char d); //send command to keyboard 

void RXfromKyBd(void); //receive data from keyboard 

Return 1 if queue full, or o if inserted data sucessfully //insert data into queue. 

char queuePut( char d) 

{ if (queueFull==TRUE)//check if queue is full 

return(TRUE); 

queue[ queueln J=d; //insert d into queue 



queueln++: 
//increment where to stick in the next d value 

queue Empty=FALSE: , 

if (queueln==QUEUELEN) //if reached the end of the queue 

.//indicate queue isnt' empty anymore 

queueln=0; 
//wrap around to the beginning 

if (qUeueln==queueOut) //if queueln caught up to queueOut 

queue Full=TRUE; //indicate queue is full 

return(O); 

} 

//get data out of queue. Return 0 if queue empty or the actual data if not empty 

char queueGet(void) 

{ chard; 

if ( queueEmpty==TRUE) //check if queue is empty 

return(O); 

d=queue[ queueOut]; 

queueOut++; 

queue Full=FALSE; 

//get data out of queue 

//increment location where to get next d value 

//indicate queue isn't full anymore 

if (queueOut==-QUEUELEN) //if reached the end of the queue 



queue Out=0: 
//wrap around to the beginning 

if ( queueOut=queueln) //if queueOut caught up to queueln 

queue Empty=TRUE;//indicate queue is empty 

return(d); //return the data from queue 

} //on every falling clock edge generated by the keyboard, either receives or sends 
//data 

interrupt [EXT_INTI] void external_int l(void) 

{ //when receiving data 

if(receive- ·TRUE) 

{ countln++; //count how many clock pulses we have seen 

//if countln=1, then seeing the start bit 

//if countin=2 to 9, then seeing data bits 0 to 7 

//if countln=I 0, then seeing the parity bit 

//if countln= 11, then seeing the stop bit 

if (countln== 1 )//seeing start bit 

{ dataln=0; 

. . a not done (just starting) =FALSE: //receiving rxDone=» o - · 

lock transition in 200uSec h ck for no c //set up timer0 to c e 

TCNTO=O; //reset timer0 

- 



T'CCR0=Ox0B;//put timer0 into compare match mode. prescaler of 64, 

TIMSK=(TIMSK&Ox FD)]Ox02; //make bit1=1 to enable compare match 

//interrupt; 

} TIFR=TIFR&OxFD; //make bitl=0 to clear the timer0 comp match flag 

else if((countln>I) && (countin<IO)) //data bits being sent 

{ TCNTO=O; //reset timerO since saw a clock signal 

TIFR=TIFR&OxFD;//make bit1=0 to clear the timer) comp match 
¢ dataln=dataln>> I ;//shift data right by I 

if (rDAT==1) //if DAT line is I 

{ datain=datain/Ox80; /shift in a received bit of 1 
parityln++; /update the parity 

} 

} 

else if ( countln==IO) //parity bit being sent 

{ 

. 0 since saw a clock signal TCNTO=O; I !reset timer . 

bit I =O to clear the timerO comp match TIFR=TIFR&OxFD; !!set ' .. 

//partiy should be odd 

d .·1 + rDAT) is odd 0 I) / /if ( calculate pall y if ((parityin+rDAT)&Ox . 

1+f - 



pError=FALSE; //he 
> en no parity error ' 

' 
else 

pError=TRUE; //otherewise the 
ere was a parity error 

} 

else if (countln== ] l) 
//stop bit being sent 

{ if(dataln== Oxfr) 

{ 

PORTC=Oxff: 
' 

DDRC=0x07· 
' 

} 

TCCR0=0x00; //stop timer0 since seen last clock 

TCNT0=0; //reset timer0 

TIMSK=TIMSK&0xFD;//set bit1=0 to disable timer0 interrupt 

TIFR=TIFR&0xFD;//set bit1 =Oto clear the timer) comp match 

if(ipError && (datain!=0xAA) && (datain!=0xFA) && (dataln!=OxFC)) 

{ 
queuePut( datain); //insert data into queue 

} 

rxDone=TRUE; //indicate that we have received a frame 

\ + - 



countin=0· //reset e 
>count since have seen the end of frare 

parityln=0; 
//clear parity for next time 

} 

} 

else { 

countOut++; 
//coutn how many clock pulses we have seen 

//if countOut=l, then seeing ourselves pulling line low to inhibit cmmunication 

//if count0ut=2 to 9 then we wi11 be sending data bits 0 to 7 

//if countOut=l 0, then we wi11 be sending out the parity bit 

//if countOut=11, then we will be sending out the stop bit 

//if countOut=12, then seeing the "ack" bit 

if ( countOut==l) //seeing ourslves pulling the line low to inhibit communication 

{ 

II . that we keep CLK low for at least 1 00uSec set up timer so 

TCCRIA=0x00; //normal waveform generation 

I form generation and full clock speed (12MHz) TCCRIB=0x0l; //norma wave. 

TCNTI=0; //reset timerl to 0 

- 



OCR1A=1680; //140uSec12MHz=1680cc,, 

TIMSK=(TIMSK&OxEF)]Ox 10; //set bit4=1 to 1 to enable Output Compare A 
. . 

//match interrupt • 

//set up timer0 to check for no· clock transition in 200usec 

TCNTO==0; //reset timer0 

TCCRO=OxOB; //put timerO into compare match mode, prescaler of 64; 

TIMSK =(TJMSK&OxFD )/Ox02; //set bit!= I to enable compare match interrupt; 

TIFR=TIFR&OxFD; //set bitl=0 to clear the timer0 c0mp match flag 

parity Out=0; //reset parity 

txDone=FALSE; //transmitting not done(just starting) 

} 

else if ( countOut> 1 &&countOut<I 0) //data bits being sent 

{ 

. • a clock signal TCNT0==0; !!reset t1mer0 smce saw 

• lear the timer0 comp match flag TIFR==TIFR&OxFD; //set b1tl-0 to c 

. . I if (data0ut&Ox01)//if lowest bit is a 

I t the keyboard { wDAT=I; //write out a 0 

·t O t++· //calculate the parity pan y u , 

} 

1 +N 



else 

wDAT=O; 
//write out a 0 to the keybar-g 

} 

dataOut=dataOut>>1;//shift data right 6y 1,,,,, 
O get next it next time 

else if (countOut==1 0)//send parity bit. 

{ 

TCNTO=O; !!reset timer0 since saw a clock signal 

? 
TJFR=TIFR&OxFD; //set bit! =Oto clear the timer0 comp match flag 
if(parityOut&0xO 1) //if parity is odd 

wDAT=O;//write out a 0 to the keyboard 

else 

wDAT=I; //write out a 1 to the keyboard to make it odd parity 

} 

else if ( countOut== 11 )//sending out the stop bit 

{ 

. a clock signal TCNT0=O· //reset timer0 smce saw ' 



TIFR=TIFR&OxFD; //set bit1=0 to clear the timer comp ate, 

wDAT=I ;//write the stop bit (when change DDR, this will also activate the pullups) 

DDRD-OxOO; !!make DAT line input, CLK input already. Do this so kybd can send 
II ack bit 

} 

else if (countOut==12)//getting the ack bit of'0 on DAT 
i 

{ 

TCCRO=OxOO;//turn off timer0 since seen last clock 

TIMSK=TIMSK&OxFD; //set biO=0 to turn of timer0 comp match interrupt 

TIFR=TIFR&OxFD; //set 'bit I =Oto clear timer0 comp match flag 

txDone=TRUE;//transmitting done 

countOut=O; //reset countOut for next time 

parity Out=O;//reset parity for next time 

} 

} 

GIFR=O; 

} 

0 S so can send stuff to keyboard for at least IO u ec //used to make CLK low 

PA(void) PA] timer l_com interrupt [TIMI_COM 



{ TIMSK=TIMSK&OxEF. 7y,,4,,, 
• /set bit4=0 to turn off interrupt 

TCCR1B=Ox0O; //turn off timer (saves power) 

DDRD=Ox8O; //make CLK an input, keep DAT as out 

wCLK=I; //write 1 to B.2 so pullup turn on 

wDAT=O; //write O to DAT, this is the start bit. ..kybd will start generating a 
II clock any moment now 

} 

//if this executes, then it has been at least 200uSec between elk pulses while 
receiving or transmitting data to keyboard 

interrupt [TIMO_COMP] timer0 _ comp(void) 

{ TIMSK=TIMSK&OxFD; //set bit I =Oto tum off timer) comp match interrupt 

TCCR0=0x00; //turn off timer0 

TIFR=TIFR&0xFD; //set bit I =Oto clear timer0 comp match flag (just in 

//case its set) 

countln=0; 

countOut=0; 

parityln=0; 

/ /reset counters 

//reset parity calculations 

parityOut=0; 

txDone=TRUE; or but pretend you are done //there was some err ' 

\1» 



rx Done=TRUE: 
' 

receive=TRUE; //put syste :. 
> {em into receive mode (just a default option) 

wDAT==I; //turn on pull ups 

wCLK==I; 

DDRD=OxOO; //set DAT and CLK to input 

} 

//used to make sure we send something approximately every 25msec 

interrupt [TIM2 _ OVF] timer2_overflow(void) 

{ t2visits++; 

//after visit this interrupt without reseting 6 'times, then about 25msec 

//elapsed since last time we sent something 

if (t2visits== 15) 

{ 

queuePut(OxAA); 

t2visits=O;//reset number of visits 

} 

} 

//initialize the mcu 



void initialize(void),{ s' 

DDRD=Ox00; //make PORTD pin D.3 and D.7 input for CLK and DAT 

PORTD=Ox88; //write 1 to B.7 and B.3 so pullups on for wCL.K and wDAT 

MCUCR=Ox08; //intl triggered on falling edge 

GICR=0x80; //intI enable 

//TimerO set up. The rest will be done inside the external interupt 

OCR0=50; //Timer0 Outoput compare when 
//50 (decimal) ....1/(16Mhz/64)50= 200u Sec. 

//Timer2 set up. 

TCCR2=Ox06; //prescal by 256 

TIMSK=(TIMSK&OxBF)/Ox40; I/set bit6=I to enable overflow interrupt 

I/UART 

UCSRB=0x08; //enable transmitter only 

de 8bit words, 1 stop bit ,odd parity UCSRC=0xB6; II Asynchronous mo ' 

UBRRH =OxO 1; 

h this 374 BR 2000 UBRRL =0x76 ; //need to c ange 

DDRC=0xff; 

PORTC=Ox ff; 

DDRA=Ox ff; 

tc to output //for testing, set por 

: t LEDs off //for testmg,se 

. orta.0 to output //for testmg set p 



PORTA=Ox00; //for testing,set o 0 

receive=TRUE; //put intl interupt into recieve moq, 

countln=0; //no low clock pulses seen ye; 

countOut=0; 

parityln=0; //calculated parity at o 

parity Out=O; 

I/set up queue 

queue Full=FALSE;//queue is not ful] 

queue Empty=TRUE;//queue is empty 

queueln=0; //where to insert into queue 

queue Out=O; //where to take out of queue 

rxDone=F ALSE; //haven't finished receiving 

txDone=F ALSE; //haven't finished transmitting 

#asm 

sen 

#endasm 

} 

void initializeKyBd(void) 



{ dataln=0: 
' 

countln=0; 

RXfromKyBd(); //put into receive mode 

while(!rxDone) ; //wait until get 0xAA 

TXtoK y Bd(OxFF); //put int tranmsit mode, tell kybd to reset itself 

while(!tx Done); //wait until transmitting done 

RXfromKyBd); //put into receive mode 

while(!rxDone); //wait until get OxFA (ack) from kybd that it got the command 

RXfromK y Bd); //put into receive mode 

while(!rxDone); //wait until get OxAA (reset sucesfull) from kybd 

TXtoKyBd(OxF4); //put into transmit mode, tell kybd to enable all keys 

while(!txDone); //wait until transmitting done 

RXfromKyBd); //put into receive mode 

while(!rxDone); //wait until get OxFA (ack) from kybd that it got the command 

} 

//set interrupt to be in receive mode 

void RXfromKyBd(void) 

{ receive=TRUE; //set int2 to receive mode 



rxDone=F ALSE; //reset 

wDAT=1­ 
' 

wCLK=1­ 
' 

//pull ups on 

//pull ups on 

DDRD=OxOO: 
' 

countin=0· 
' 

} 

//set DAT and CLK t · o input 

//sets interrupt to be in transmit mode 

void TXtoKy Bd(char d) 

{ receive=F ALSE; //set int2 into transmit mode 

txDone=F ALSE; //reset 

dataOut=d; //the data to transmit 

DDRD=0x88;//set DAT and CLK to output 

wDAT=l; //keey DAT high 

wCLK=0; //pull CLK low to signal that you want to communicate. Int2 

//will trigger right away 

} 

void main(void) 

{ initialize(); //initialize mcu 

:..:.4]j ·Ky Bd(); //initialize keyboard initialize) .y' 9 



while(I) { 

if((lqueueEmpty) && (UCSRA&Ox20)) //if queue not empty and UART is avanlfe 

{ t2visits==O; //reset timer2 count value 

TCNT2=0; //reset timer2 

TIFR==TIFR&OxBF; //set bit6==0 to reset overflow flag 

UDR==queueGet(); //send data out 

} 

} 

} 


