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Abstract

The inverted pendulum represents a challenging problem in control and it has been widely used
to investigate and develop new control strategies that can effectively deal with non-linearities.
Our “Inverted Pendulum” consists of a horizontal rod (swinging arm) and vertical rod
("pendulum"). The horizontal rod is connected to a motor to balance and control the angle of the
vertical rod by state feedback method, that is designed and simulated by MATLAB and
Simulink. [1]

The aim of this project is to stabilize the inverted Pendulum at its perpendicular state
(equilibrium), such that the angle is controlled quickly and accurately so that the pendulum is
always be at that angle in the presence of disturbances, simulation results show that the
pendulum is stabilized and achieved the desired transient response specifications using state
feedback control strategy while considering the input as a torque applied to the upper joint
connecting the swinging arm with the pendulum, also we considered and achieved the stability
robustness due to variation in the system parameters.
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List of symbols

Definition
Length of vertical link.
Length of upper link (horizontal link).

The angle between the perpendicular line of first link and
the second link.

The angle between the vertical state (90 Degree) and the
link.

Mass of the upper link (horizontal link).

Mass of vertical link.
Mass hanged.

Mass for motor case.
Mass for motor armature.

Gravity force.

Radius for armature.

Polar moment of inertias for vertical link (Pendulum)

Polar moment of inertias for horizontal link (Arm link)

Kinetic energy for vertical link (Pendulum)
Kinetic energy for horizontal link (Arm link)
Potential energy for vertical link (Pendulum)
Potential energy for horizontal link (Arm link)
Half-length of the arm link

Length of the arm link

Moment of inertia for the center of gravity for horizontal part

VIII

SI-Unit

Degree

Degree
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1.1 Recognition of the need

Need to stabilize and control an inverted pendulum using a horizontal swinging arm
that is attached to the top of the pendulum by using any dedicated control method,
and conduct some experiments that can help us to understand. In addition to do the
modeling, analysis and the controller design and simulate the experiment.

1.2 Requirements:

This section discusses the requirements of the system as follows:

1)
2)

3)
4)
5)
6)
7)
8)

9

The pendulum must be stable in its pedicellar state.

The system should return to its initial condition in time period two sec (settling
time), with an overshoot less than 10%.

The system can handle with disturbances that effect the system that less than 30
degree (0.523 radian).

The system is made of Aluminum, on plant, open system, no necessary to be
painted.

The length of pendulum arm less than one meter, the length of swinging arm less
than twice of the pendulum arm length.

Power supply must be at most 24VDC.

The system must be safe for the user and the system itself.

The system will have switch on/off power, the disturbances that will affect the
system will by hand (small external force).

The system must be easy to maintenance, and further development on future.



1.3 System overview:

The Figure 1-1 shows the system that is built with the requirements that are proposed
and stated above. We add more components if we need to make it more stable and
safer. However, the setup in Figurel-1 includes:

1.

2.

(98]

DC motor with Encoder2 to measure ¢ .Therefore, we can observe the angular
velocity ¢.

Encoderl at the end of pendulum arm to measure 6 .Therefore, we can observe the
angular velocity 6.

Two masses in the horizontal link (Hanged mass).

Horizontal link attached with motor and vertical link attached with encoder.

Figure 1-1 System overview



1.4 Literature reviews

Many literatures, papers and researches study the inverted pendulum, especially
different ways and concepts to stabilize the inverted pendulum, changing the center
of gravity of the system, moving cart on the center of the inverted pendulum, using
different types of controllers to stabilize the equilibrium point and reject
disturbances.

We will now show you some literature reviews that we collect as following:

1.4.1 Swing-up control of inverted pendulum using pseudo state
feedback:

Yamakita, and Kobayashi [2] have studied the swing-up of a pendulum from the
stable hanging state to the upright position, and he presents a new type of pendulum
on a rotating arm fixed to a rotating shaft and a swing up control algorithm based on
state space feedback. Figure (1-2) represents the proposed controller realized on a
personal computer.

43 A/D boar T ]
pessasessesessen er t—
D/A boar @ —

® Personal computer

Figure 1-2 Configuration of the system [2]

They proposed a robust swing-up control using a subspace projected from the whole
state space based on pseudo-state, the control determined depending on the
partitioning of the state as a bang-bang type control. [2]

They applied a new kind of inverted pendulum (TIT ech pendulum), and the
effectiveness and robustness of the planned control checked and examined by many
experiments.



1.4.2 Control of the inverted pendulum using poles placement pole
with help Ackerman’s method:

Priecinsky, and Paskala [3] used modern control method by poles placement with
help of Ackerman’s method, Figure (1-3) represents their system that consist of cart,
motor and vertical pendulum. Ackermann’s formula is used for inverted pendulum
control, with a view to determine full-state feedback gain. It is generalized in the
sense of desired eigenvalues instead of characteristic polynomial coefficients.

pendulum

O==0D

Figure 1-3 Setup of inverted pendulum [3]

They tested their system using simulation analysis and in real - time experiments
which consists of hardware system PS600 and control units, see Figure (1-4)

» -]

<Fa
E-_; Saturation L
A
Step
Prefilter phi ko0
Radians Scope
a W to Degrees
e
Pendelum
Feedback
vector

Figure 1-4 Simulink scheme of full-state feedback control



1.4.3 Stabilizing inverted pendulum using state feedback:

Hroub [4] has studied ECP model 505 inverted pendulum system consists of a
horizontal sliding rod and vertical "pendulum" rod. Figure (1-5) represents the whole
system that consist of a horizontal rod that is connected to electrical motor through
rack and pinion mechanism. Thus, it steers left or right to balance and control the
position of the vertical rod. He used state feedback control for stabilize their system
and using MATLAB as a major software.

Electromechanical

Apparatus

Executive
Software

Real-time Controller
Servo Amplifier

e

o)
[ 8e 00

Figure 1-5 Configuration of the system

The structure of controller must be selected carefully due to the non-minimum phase
characteristics.



1.5 Alternative design:

The plant that is shown in Figure 1-6 is the ECP model 505 Inverted pendulum apparatus,
which exists in the computer control lab at Palestine Polytechnic University (PPU). It
consists of pendulum rod which supports the sliding balance rod. The mechanism itself
is open-loop unstable and non-minimum phase, thus closed-loop feedback control is
essential for equilibrium point. The balance rod is driven via a belt and pulley which in
turn is driven by a drive shaft connected to a dc servo motor below the pendulum rod.
The pendulum rod angle is controlled by moving the sliding rod on the presence of
gravity using servo motor in the end of pendulum arm. The weights at the bottom may
be adjusted to alter the inertia configurations of the pendulum rod, and as a result the
dynamics of the system. A brushed dc motor and encoders are used to drive the sliding
rod through measurements of the angular position of the pendulum rod and linear
position of the sliding rod. Therefore, the only input on the plant is the force applied at
the sliding rod. [3]

Balance Weights

(Removable brass weights to
further adjust plant dynamics)

e Sliding

= Balance Rod
\‘/
; Linear Joint
DI’IVG Spr ocket (Linear ball bearings)
(Translates motor torque
to force on balance rod)
Rod Angle
Sensor

/ (High resolution encoder)
Pendulum Rod

(Encloses balance rod
drive shaft)

Servo Motor /
Shaft Encoder

(Motor drives balance rod,
encoder measures X. View
obstructed)

= F Counter
f Weights

(Movable/removable
brass weights)

Pivot Axle
(Ball bearing
supported)

Figure 1-6 The ECP model 505 Inverted pendulum [3]
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2.1 Introduction

This section describes the stabilization of an inverted pendulum via a swinging arm
workflow, including the system components (subsystems), parts functions and relations

between elements, see Figure 1-1.

2.2 Conceptual design schematic

Conceptual design schematic for our project in the Figure 2-1:

II)I'ivmg 51([)5_\/5t0m]

Power Subsystem |

DC Volt

——y

Control
'% Signal

I_Tn[ln‘nmlum Processing

Subsystem l

Control Signal

4apoouy

S
C

ne
I 42poouy

N

PWM Signal

Rotational Force

PWM Signal Measurements unit

subsystem

[T
LR

Fncoder Signal (Data)

Pla‘tuating Subs \/52‘0171'

Figure 2-1 Conceptual design schematic

///
€\ ﬂg
AR)-)s

LY

g
els

Figure 2-1 shows the system operative blocks, we have power supply that is connected
to both controller and driver. The driver is connected to the controller that process the
value of Encoderl and Encoder2, the Encoderl provides the state of angle 8, and the
Encoder2 provides the state of angle ¢, and gives actions to the driver that connected
to the motor to rotate and, and the encoder1 provide us feedback for any change in 8
so, the controller will generate different actions that depends on the state of 6.

10
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3.2 Design requirements



3.1 Introduction

This chapter will discuss the mechanical design of our project that shown in Figure 1-1.

3.2 Design requirements

First, we define specifications that are supposed to be in our project, the requirements of
the design as follows:

e The system is made from the Aluminum, and on a plant that not declined, also
the system should be open system, and there is no need to be painted.

e The system must be safe by turning off the DC motor if the vertical link
(pendulum) declines more than 20 degree.

e The length of pendulum arm is between 20cm and 50cm, since the length of the
vertical link is 30cm, the length of swinging arm less than twice of the pendulum
arm length.

3.3 Design through solid works

In this section we design the mechanical parts using SolidWorks [5], the mechanical
parts that we designed include the pendulum arm and swinging arm.

12
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4.1 Introduction

In this chapter we will show the mathematical model of the system that consists of
two second order nonlinear differential equations, these equations are derived using
Lagrange approach, two models will be derived for the system, first the linear system
for controller design and analysis purposes, second nonlinear model for testing and
simulating the dynamic system response as accurately as possible.

my, 4 m
e | [9

1n2'12

O

Figure 4-1 The system in 2-D

Figure 4-1 represents the location of the angles and the input of the system, and each
symbol what is represented for.

15



4.2 Lagrange approach

In order to obtain the mathematical model for our system, Lagrange’s approach [6] is
used to drive the basic differential equations that govern and optimize the system
dynamics, since Newton's formulation of classical mechanics is not convenient.

The Lagrange differential equation:

d (0T aT ou

 (aa) ~ () + (5r) = @ (41)
Where:
T: The total kinetic energy of the system.
U: The total potential energy of the system.

qi: The generalized coordinates that describes system motion.
Qi: Generalized forces and torques which acts in each generalized coordinate.

16



4.3 Non-linear expression

Based on Figure 4-1, the total kinetic and potential energies of the system can be
expressed as:

For vertical part (pendulum) (I,):

Total kinetic energy:

since we have rotation about fixed axis the kinetic energy will be

. -y 2
Ty = 5J,0% +-m(1,6) (4-2)
and J, is equal to;
_my L,
=~

Where J, is the polar moment of inertia for horizontal link , and 8 is the angular velocity.

The total kinetic energy will be;

1 l2 .
Ty = 1|22 4 13| 62 (4-3)

Total potential energy:

Uy = mygy, + megy. (4-4)
where:
j— lz 6
Yy = > cos
and
y. = l,cos60

17



Then the total potential energy will be;

U, = [% + mc] gl,cosO (4-5)

For horizontal part (1,):
Total kinetic energy:
Since we have translation and rotation the kinetic energy will be;
T3 = Transiation t Trotation (4-6)

where:

1 N2
Tiransiation = E [ma +2m3; + ml](lze)

1 .
Trotation = EIG (QD + 6)2

\* 1 1
1 2 2
IG = 2m3 (5) + Emlll + EmaRa

and I; is moment of inertia for the center of gravity for horizontal part.
Total potential energy:
The total potential energy for this part;

U, = (mg + my)glycos + 2msgl,cosf (4-7)

Now for the total energy for the whole system:

The total kinetic energy is the summation between T; and T;

Tiotar =T1 + T,

1 12 : . 1.2
Trotar = 5 [(% + lzzmc) 0% + (g + 2mz +m,)(1%26%) + (2m3 ==+

Ml maR2) (6 + 9)?] (4-8)

18



and the total potential energy:

The total potential energy is the summation between U; and U,;

Utotar = Uy + U,

- Upotar = glycos6 [(% + mc) + (mg +my) + 2m3] (4-9)

Appling Lagrange’s equation for each generalized coordinate 8 and ¢, yields:

1) In @ direction:

The Lagrange’s equation in 6 direction given as follows:

d (0T oT au
G - (5) + (55) =0 (4-10)
where:
d (0T\ .. [m; ) > 1 1 ,
%(%) =150 [?+ mg + 2m; +m1] + ¢ |2m; (E) +Em1l1 +§maRa
) N 11
+6 2m3 (5) +Em111 +EmaRa
oT o
0
au ) m,
0 = —gl,sin 8 [[m, + 2m3; + m,] +7 +m,]

19



Let assumed that;
N 11

Cl = 2m3 (E) +Em111 +§maRa

m;

Cz=l§[3

+m, + 2m;3 +m1]

m,

Cg = glz[[ma + 2m3 +m1] + 2

+m.]
Applying Eq. (4-10) and simplifying it yields:

6(C,+Cy) + $Cy —sinfC;3 =0 (4-11)

2) In ¢ direction:

The Lagrange’s equation in ¢ direction given as follows:

d (0T oT ou
a(a)—(aﬁ(@) = Tm (4-12)
Where;
d(aT)_ 5[ (11)2+ 1 12+1 p2
dt\ag) ~ | \2) T Ty Mala
} N 11
+6 2m3 (5) +Em111 +EmaRa
oT
dp
aU_O
dp

Applying Eq. (4-12) and simplifying it yields:

6C, + ¢C, =T, (4-13)
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4.3.1 Linearization

In this section, we want to take the linear case of the previous equations; we want to

linearize our system to build the state space model;
Using Egq. (4-11) and Eq. (4-13)

Now by assuming that the both angles ¢ and 6 are small values, that is:

sinf =0
sing = @
cosf =1
cosp =1
thus,
62,¢2,0,¢ =0

Therefore Eqn.4-11 and Eqn.4-13 can be written as:

6(C,+Cy) +$C, —6C3=0

4.3.2 State space model

Using the linearized model of the system we have:
See Eqn.4-14 and Egn.4-15
Now by solving the equations we found the values of 8 and ¢

. C T
Q=p=2—_=10
C, Cy
C2
. c;  Tm(@FgD
G =08t
C2 C2

Now, to yield the state space representation for the linear system, four state are
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needed to describe the system. These are chosen to be 8, 8, and ¢ . The output of the
system is Ty, the state space model of the system is expressed as follows:

x =Ax + Bu
y=Cx

where:

A; is the plant system matrix.
B; is the input matrix.

C; is the output matrix.

Let us assume that:

dx . .
X, =60 - d—tl gives > X, =X,

A dx, . . - C3 u
x, =0 > —= gives 2> X, =0 =x;,———
2 dt g 2 10,7,
dx . .
X3 =@ o d—: gives > X3 = X4

C2

. dxy . 9 P TR C3 u(1+C1)

X, =@ —>—= gives Xy =@ =x;,=>——1
dt Cy Cy

where:
u= T,

Thus, the state space model for the system is described by the state equations:

0
. -1
0 0 1 o oll]e@ ra
6 | _[(G/C) 0 o offé + 02 y
o | |0 0 0 1ffe C
@ /G 0 0 ofle]l |-+7D
C;
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and the measurement equation:

( 4-18)

<

Il
oo or
coro
or oo
R o oo
| | D

All states are measured using two encoders because each encoder help us to observe the
other states of the angular velocity for each angle.

For output of the system we have two angles, but we have one angle to be monitored and
take it value so,

¥o=[1 0 0 0] (4-19)

S LCDD

Since;
C,=[1 0 0 0]

Y, 1s the output to be controlled.
C,: is the controlled output matrix.
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The system parameters are defined in Figure 4-2;

Ts=0.0628318;%% (sec) Sampling time
12 =0.37; %% (m)length of vertical link.
11=0.34; %% (m)length of upper link (horizantal).
mc =0.1325; %% (kg)mass for motor case.
ma = 0.1325; %% (kg)mass for motor armuture.
m3 =0.1;%% (kg)mass hanged.
ml =0.232;%% (kg)mass of the upper link (horizantal).
m2 =0.1915;%% (kg)mass of vertical link
Ra = 0.006;%% (m)raduls for armuture.
g=9.81; %% (m/s"2) gravity force.
%%we assumed the values for the lengths and masses of our system

Figure 4-2 System parameters

The Figure 4-2 represents the real parameters, that used for achievement this project, to
get satisfied response. We know that our parameters are suitable from the simulation that

we used in MATLAB.

By substituting the values in the Figure 4-2 into state space model matrices yields;

0 0 1 o0 oyfe
g -318182 0 0 Of|af,
o |T]0 0 0 1f|e
@ -31.8182 0 0 0l[¢
o
yo=[1 0 0 O] g)
¢
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4.4 Controller design

4.4.1 Introduction

In this chapter we want to design a controller to give the requirements we decided using
a state feedback controller needed to be robust here, we will talk about the sate feedback
controller for the linear system, non-linear system, comparing between the outputs states
of two systems, and the robustness parameters limits of the controller, the controller is
to be built by MATLAB and Simulink [9].

In control engineering, a state space representation is a mathematical model of a
physical system as a set of input, output and state variables related by first-order
differential equations. The state space representation (also known as the "time-domain
approach") provides a convenient and compact way to model and analyze systems with
multiple inputs and outputs. Unlike the frequency domain approach, the use of the state
space representation is not limited to systems with linear components and zero initial
conditions. However, in state feedback method you can place the eigenvalues anywhere
in the S-plane to get the desired response, in Figure 4-3, we note the design of state space
plant.

—’B4><> X,l X y
—_ C [0]
S 0%

Figure 4-3 Plant

4.4.2 Linear system

According to the linearized equations of our system, see Eq. (4-14) and Eq. (4-15)
and the state space representation that we build, see Eq. (4-20) and Eq. (4-21)
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Now, we will apply the state feedback controller for the linear system, according to the
requirements for the project we apply damping ratio = [0.8,0.9] that gives us overshoot
less than 10%, for that the system must return to the stable condition in less than two
seconds we apply Settling time less than two seconds, we have natural frequency = [2.22-
2.5](rad/s), by adding two times factor of safety to the system we have natural frequency
5 (rad/s), to be able to design a state feedback controller, the controllability of the system
must be checked. If an input to a system can be found that takes every state variable from
a desired initial state to a desired final state, the system is said to be controllable;
otherwise, the system is uncontrollable.

To check the possibility for the closed loop poles of the system; as to achieve stability
and desired transient response, the controllability of the system is checked. The
controllability of the pair (4, B) is checked by calculating the controllability matrix (Cm),
such that:

Cy =[BAB - A" 1Blum

If €y, has a rank n (full row rank), then the system is controllable, and it’s possible to
find a gain vector [K]. To find a gain vector pole placement concept will be used, pole
placement method, in this method the gains are calculated as to place the eigenvalues of
the system matrix,

which are the closed-loop poles, in the desired location. After determining the desired
poles location, MATLAB function (place) can be used to calculate the necessary gain
values.

Regulator design:
For the regulator design, the problem in this section is to design a state feedback

controller that stabilizes the inverted pendulum at its inverted position, which is the
desired operating position, see Figure 4-4.
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open-loop plant

Figure 4-4 Plant design with regulator

1. Principle:
The inverted pendulum open loop system dynamics are given by:

x = Ax + Bu
y =Cx

Recall that the system poles are given by the eigenvalues of A. Want to use the input
u to modify the eigenvalues of A to change the system dynamics. Assume a full-state
feedback of the form:
u=r—Kx
Where:
1: is some reference input.
K: is a gain vector.
Find the closed-loop dynamics:
X =Ax + B(r — Kx)
% = (A— BK)x + Br
x=A.x+ Br

y =Cx
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Where A,: the closed loop system matrix

So, the eigenvalues of A, (the closed loop poles) could be placed anywhere in the S-
plane to get the desired response just by changing in matrix K. But to be able to do
that, the open loop system must be controllable.

. Controller:

The open loop poles and zero for the system are found to be:
Open loop poles:

0.0000 + 0.0000i

0.0000 + 0.0000i

0.0000 + 5.6408i

0.0000 - 5.6408i

Open loop zeros: two zeros on the origin [0+0i]

The open loop system is margin stable.

To check the controllability of the pair (4, B), first the controllability matrix is
calculated, and then its rank is found. This is performed using MATLAB as follows:

C,, = ctrb(A,B)

R, = rank(C,,)
Which is found to be 4, full rank, meaning that the system is fully controllable, and the
gain [K] can be calculated to achieve the desired response. The gain K can be found
either by pole placement or optimal control methods. Assuming the natural frequency
(wn) and the damping ratio ({) of the desired closed loop poles rang between
(5) rad/s and (0.8 to 0.9) respectively.

By applying the requirements in equation = - { * wn £ wn */ (1- {2) we get:
Poles = [-4.0000 -3.0000i -4.0000 +3.0000i -4.5000 -2.1794i -4.5000 + 2.1794i]

With MATLAB, the gains required to achieve the desired closed loop poles are found
as follows:

K = place(4, B, Poles)

K =[-5.3181 -0.2375 -0.0590 -0.0401]

. Simulink model:

The regulator is built and simulated using MATLAB-Simulink, Figure 4-5 shows the
Simulink model with initial condition 5 degree for pendulum arm angle.
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K*u g
N ¢ Output
Torque Output phiangle angle ¢
Torque
K" f p 1 Co*u g
+ S 8 Output
B Integrator Co Angle 6
»
States Output
A
states
2 +

-K

Figure 4-5 Linear system on Simulink

For response of the scopes as following:

For (angle (8)) scope:

Angle (0) Response

I— Pendulum Response

b
=]
=

Angle (radians)
S
=
N

-0.02

-0.04

0 0.5 1 1.5 2 2.5 3
Time (seconds)
Figure 4-6 angle (8) scope the condition of pendulum angle (6)

In Figure 4-6, we see the state of the pendulum angle (8), note that the response starts
from the initial condition that we give, and it shows the settling time is around 2 (sec)
and the maximum angle is around 0.035 (rad).
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For (states) scope:

States Response

6 —0
- ——-0 Dot
@
4 N e ¢ Dot
2r 7 4
& 0= =
g s i
= . e
= . e
-2 -
-4 F 4
-6 : : : : :
0 0.5 1 1.5 2 2.5 3

Time (seconds)
Figure 4-7 states scope output of each state

In Figure 4-7, this scope represented each state of the linear system, and the reaction of the
state’s corresponding to the initial condition, note that all states return on final value in less than
2 sec.

For (Torque) scope:

Torque Response
0.5 1

T

04 y

0.3 1

= =
N
T
1

T

N | 1

Torque (N.m)

=
T

T

-0.1 T

T

-0.2 , | | | | i
0 0.5 1 1.5 2 25 3
Time (second)

Figure 4-8 Torque scope expected torque of the motor.

The Figure 4-8, gives us approximate expected torque of the motor to be controlled to
be used to build the system and it shows maximum torque at 0.138 (N.m) and overshoot
5%.
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For angle (¢) scope:

1

Angle (¢) Respons

0.8

0.6

0.4

0.2 r

0

-0.2

Angle (radian)

-0.4

-0.6

-0.8

— Arm Response

0.5

1.5 2 2.5 3
Time (seconds)

Figure 4-9 angle (@) scope the condition of angle (@).

In Figure 4-9, we note the reaction of the upper angle (¢) that moves to return to the
stable state, around 0.91 (rad) and the settling time is around 1.91 (sec)

4.4.3 Non-linear system

According to the non-linear equations of the system,;

6(C,+C,) + $C; —sinBC; =0

In this section we want to build the system according to the non-linear equations of the

system.
Let;

dx
X, =0 - —
dt
. dx
X, =0 - =2
dt
x dX3
3= @ 2

gives 2>

gives 2>

gives 2>

.X:1=XZ
. . C
X, = 0 = sinx; = — —

G2 G2

X3 = X4
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c
Cs u(1+C—i)
C; C;

. dx. . . . .
Xp =@ > d_t4 gives > X, = ¢ = sinx,

Since;
u= T,

Now, the system will be built by the Simulink on the MATLAB, since we have four
states each one of the states will be defined on functional blocks

output

Non-linear
System

Figure 4-10 Non-linear system with linear gain

In Figure 4-10, non-linear system that have the gain for linear system as feedback.
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1. Simulink build:

fen o
x1 X
e ¢ J}—— ,:
fon
Y ‘ y q ) x1scope
o E : X .Ilj

sinangle(x1) Gain1 1

s statesn
Integrator

—>{u ‘ y »
fen
X N[
Torquen
—»lu 4 y @ + »
fcn 4’@
sinangle(x1) Gain
fan
x4
X

term1

@7 Product power
4 U fneark

term

Figure 4-11 Non-linear system on Simulink

In Figure 4-11, the four states are built by the functional blocks using the same gain
vector [linear K] for the linear system.

2. Output response:

In this part, after the non-linear system was built, we will take now over the scopes
responses to compare them with linear system output, for the same initial condition.
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For x1 scope:
Angle 0 Response

0.1 '
0.08
0.06
0.04
0.02

0

Angle (radians)

-0.02

-0.04

-0.06 | |

Time (seconds)

0 0.5 1 1.5 2

2.5

Figure 4-12 x1 Scope is the pendulum angle (6)

The Figure 4-12, tells us the condition of the pendulum angle (8), note that the response
starts from the initial condition that we give, and it shows the settling time is around 2

(sec) and the maximum angle is around 0.035 (rad).

For states scope:
States Response

6
—0
-, ——-0 Dot
A ®
4 F N e ¢ Dot
2 -

Data States
—]

-2

e

-6 . ! : .
0 0.5 1 1.5 2
Time (seconds)

2.5

Figure 4-13 States scope is non-linear states conditions.
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For Figure 4-13, this scope represented the states of the non-linear system, we see that
the states of non-linear system are symmetry with the states of the linear system.

For Torque scope the output is as follows:
Torque Response
05 7

0.4 1
~_ 0.3 L .

0.2 a

0.1 T

Torque (N.m

-0.1 .

-0.2 C 1 1 1 1 1 3
0 0.5 1 1.5 2 2.5 3
Time (second)

Figure 4-14 Torque scope is expected torque needed for non-linear system

The Figure 4-14, gives us approximate expected torque of the motor to be controlled to
be used to build the system and it shows maximum torque at 0.138 (N.m) and overshoot
5%.

For power scope:

Power Response
06F f T T T T =

04
0.2

0
-0.2
-0.4

Power (watt)

-0.6

-0.8

'1 C L 1 1 1 1 il
0 0.5 1 1.5 2 2.5 3
Time (second)

Figure 4-15 power scope is the expected power needed of the motor

The Figure 4-15, represents the product between ¢ and the needed expected torque of
the motor, which gives us the power of motor needed, hence the maximum power is
needed around 0.88 (W).
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For velocity scope:
Angular Velocity Response
6 [ T T T ]

Angular Velocity (rad/sec)

0 0.5 1 1.5 2 2.5 3
Time (second)

Figure 4-16 Velocity scope the expected velocity needed of the motor

The Figure 4-16, represents the velocity of our inverted pendulum and as we see here
the maximum velocity that our system could reach is 5.6 (m/sec) and the settling time is
around 1.88 (sec).

Conclusion:
The non-linearity of the system is weak since the response of the non-linear system and

the linear system are identical, that’s mean if we use the linear system or the non-linear
system to build the system we will have same results.

4.4.4 Stability Robustness

In this section, we will discuss the effect of changing the parameters of the system, using
the same controller that we used for building the system, and study the stability when
changing in location of poles in each of the possible cases.
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Angle 0 Response
0.1 C T T T T T ]

0.08
0.06
0.04
0.02

Angle (radians)
[—

-0.02

-0.04 [ 4

-0.06 C I 1 1 I 1 7
0 0.5 1 1.5 2 25 3
Time (seconds)

Figure 4-17 The response of angle with the system parameters (normal system)

In Figure 4-17, the response of the system in our chosen parameters (Figure 4-2), note
that our system gives us the requirement’s that included in building the system, using
“damp” code on MATLAB we have;

Pole Damping  Frequency  Time Constant
(rad/seconds) (seconds)

-4.00e+00 + 3.00e+001  8.00e-01 5.00e+00 2.50e-01
-4.00e+00 - 3.00e+00i  8.00e-01 5.00e+00 2.50e-01

-4.50e+00 + 2.18e+001  9.00e-01 5.00e+00 2.22e-01
-4.50e+00 - 2.18e+001  9.00e-01 5.00e+00 2.22e-01

And for the location on S-plane we note in Figure 4-18 that the location of poles satisfies
the required location of them for the controller that we build that have gain;

K =[-5.3181 -0.2375 -0.0590 -0.0401]
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Pole-Zero Map

><| LIS T T T T : L
US L e 066. .- 052 -0'4 7 0.26 0.12

Imaginary Axis (seconds")

. 066 .. 052 04026 012
A et

-3 . L ! [ I . 1
-4.5 \'/-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0
Real Axis (seconds'1)

Figure 4-18 Poles and zero location for closed loop system

now we will study the effect of changing parameters in such a different of cases as
following:

1. Swinging arm length [; —=between (0.1:0.4) (m)

2. Pendulum arm length [, — between (0.1:0.7) (m)

3. Swinging arm weight m; — between (0.05:1) (kg)
4. Pendulum arm weight m, — between (0.15:0.6) (kg)
5. Hanged mass weight m; — between (0:0.5) (kg)
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Case 1: [; —between (0.1:0.4) (m);

Pole-Zero Map
10 X » X T T B T . T T
0968 . ;0935 0.88 0.8
ol e : , . } |
0.986
6l .
4 .
-0.997
2+ i

TP s00500032 %w@wwx&gm&m@mm&w ><><><><~<W—d)ath for|P;
PathforP1 : ‘ )L/v

R 5*« |

Imaginary Axis (seconds ™)

6 Path foriP,
0.986
_8 B . . . . . 7
0968 - . 0935 " 088 0.8 062 0%
-10 fet [ 1 2 . 1 . | 1 | AR |
-40 -35 -30 25 -20 15 -10 5 0 5

Real Axis (seconds'1)

Figure 4-19 Poles paths as l; changing

In Figure 4-19, for P; path we note that P;was on the very stable location on s-plane as
we increased on the length P; more closer to the unstable location, for P,we see that P,
was close to the unstable location as we increased in length until 0.2 m P, is going far
but if we increased more than that P, return to be closer to the unstable location, for P
the pole is close to the origin as we increased on length until 0.2 m P; is return back to
be closer to the unstable region, for P, is the same for P,, from tha we note that the
dominant poles of the system are close to the imaginary axis the system, the effect of
changing the length is critical that’s mean any small change in the length of swinging
arm causes big change in the system, note that we can’t increase the length more than

l . o .
;1 = [,, length 0.2 as we can note perfect for this system it satisfies the requirements of

the system, in case the swinging arm was shorter, the system needs more time to reach
the final value because of the increasing in natural frequency, and more overshoot
because the decreasing on the damping ratio of the dominant poles of the system, and
the system is in unstable region in the S-plane, for shorter [; the system marginally
stable, can’t handle with 30-degree disturbances.
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Case 2: [, — between (0.1:0.7) (m):

Pole-Zero Map
20 x . ‘ — , . s !

08— 066" 052, 04 026 0.12

035538
15 - Path for P,

09
10 |

25 20 15

Imaginary Axis (seconds'1)

-25 -20 -15 -10 -5 0 5
Real Axis (seconds")

Figure 4-20 Poles paths as 1, changing

In Figure 4-20, for P, path we note that the pole was on the very stable region as we
increased on the length it’s going to be closer from unstable region but if we increased
more than 0.4 m the pole is return back to the stable region, for P; path if the length was
small the pole will be far from unstable region but as we increased in length the pole is
going to be closer to the unstable region, for P; and P, paths we note that the poles for
small length is close to the unstable region, as we increased on the length the poles is
going to be more stable but if we increased more than 0.4 m the poles (P;&P,) is return
back to be closer to the unstable region, note we have that all location poles are in the
stable side of S-plane, as we increased the length the dominant poles are going away
from the imaginary axis until we reach 0.4, it seems that the system return to the
imaginary axis as we increased more length is more closer to the imaginary axis, that’s
mean increasing more length causes something like critically stable that’s maybe can’t
handle with big range with disturbances and need more energy to make the system stable,
since the damping ratio is increased.
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Case 3: m; — between (0.05:0.3) (kg):

Pole-Zero Map
6 T . L — T - T T
050 0.76. .- 064 05 034 016
4 h ‘Pa\thforP4 .
0.94 S . T
2 2lo08s o T e |
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®© oL .’ -
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P 0 - 076 . 084 05 034 06
-10 -8 6 -4 2 0 2

Real Axis (seconds'1)

Figure 4-21 Poles paths as m, changing

From Figure 4-21, for P; path we see that if we have small mass P;will be at the stable
region as we increased the mass P;will be more closer to the unstable region, for P, and
P; paths we see that for the small mass the poles are in stable region as we increased the
poles still in the safe region but as we increased the mass the damping ratio is decreased,
for P, path as we increased the mass the pole going away to the stable region but if we
increased more than 0.15 kg the pole start to increase the overshoot and decreasing in
damping ratio, we note that the weight of the swinging arm makes the system faster to
stabilize, but as we increased the weight the system is closer to the imaginary axis it
means it’s harder to be controlled for the same motor and torque.
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Case 4: m, — between (0.15:0.6) (kg):
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Figure 4-22 Poles paths as m, changing

In Figure 4-22,for P, path we see that for small weight the pole is in stable region but as
we increased in weight the damping ratio increased and its more closer to the unstable
region, for P; path we see that for small weight the pole is in stable region but as we
increased in weight the damping ratio increased and the pole is going to away from
unstable region, for P; and P, paths as we increasing the mass the poles is going away
from the unstable region but the damping ratio is decreasing, in case the pendulum arm
weight was small the system will be faster as we increased the weight, the system speed
1s decreased and the overshoot is decreased, but if we increased the mass more than 0.4

kg the system speed is almost the same

but the system overshoot is increased, the weight

of the arm will affect the controller and the system maybe can’t handle with this case for

chosen torque of motor.
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Case 5: m3 = between (0:0.3) (kg):

Pole-Zero Map
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Figure 4-23 Poles paths as msz changing

In Figure 4-23, for P; path we see that P; was in very stable region with high damping
but as we increased the mass the pole is going to be closer to unstable region and the
damping ratio is decreased but if we increased more than 0.1 kg the pole damping ratio
will be increased again, for P, path the pole is close to the unstable region and have high
damping ratio but if we increased the mass P, is going to be stable but increasing more
than 0.1 kg will cause more decreasing on damping ratio and closer to the unstable
region, for P,&P; paths the poles closer to the unstable region and have very small
damping increasing until 0.1 kg will decrease the damping ratio be more stable, more
than 0.1 kg will cause decreasing in damping and return to be closer to unstable region,
if we don’t have any hanged mass on the swinging arm the dominant poles are close to
imaginary axis, but as we increased the mass the system is almost go away from the
imaginary axis but if we increased the mass more than 0.2 kg its start again to close to
the imaginary axis cause increasing in the overshoot of the system.
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Chapter 5: Selection for electrical components

5.1 Introduction
5.2 Electrical parts
5.3 Arduino



5.1 Introduction

This chapter introduces the design of electrical components in the
subsystems, explaining the motors design, electric driver, and the encoders.

5.2 Electrical parts

The inverted pendulum electrical parts include motor and interfacing circuits that
connect these encoders with the system controller. The inverted pendulum electrical
parts are listed as follow:

5.2.1 Dc Motor

For this project we need one motor for that swinging arm in the tip of the pendulum arm,
from the simulation result we conclude the specifications of the motor like the speed
(rad/sec) see Figure 4-18 and the torque (N.m) see Figure 4-16.

For the selection we need to take factor of safety for the specifications we assume the
initial condition for the pendulum angle (pi/6), for this we have the maximum torque and
speed that will needed to achieve the stabilization.

For the pervious specification was found a motor for that specifications and this motor
was chosen for achieved the goal and it shows as follows:

voltage no load At maximum efficiency stall reducer
Workable Rated Speed Current Speed Current Torque Output Torque Current Ratio Size
I6-12V 12V 250 680 200 32 18 42 50 15.5 56 24 |

Figure 5-1 Motor workspace

1-1 Rated Voltage: 72v.
1-2 Direction of Rotation: CWwhen viewed from output shaft side
1-30perating Temperature and Humidity:Temperature range of -710C~+50C,Humidity range of 30%~80%
1-4Storage Temperature:Temperature range of -20C~+60C
2.Measuring Conditions:
2-1Motor Position:To be place t horizontally when measuring
2-2Power Supply: Regulated DC power supply
--No load speed: 17-2240rpm.
--Robotics, Small Appliance, Fanner, Electric Curtain;
--Medical Pump, Surgery Tools, Medical Stirrer, centrifugal Machine; Electric Valve, Actuator, medical device
--Electric motor,low noise,low current and no spark.

Figure 5-2 DC motor specifications
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It shows No-load (speed and current) and the maximum efficiency (speed, current,
torque and the output power).

Since we are using DC motor with a gear, the gear ratio is 56.

We made a system identification to get the parameters that does not exist in the website
that we purchased so, we used oscilloscope that exist in the lab as a way to identify our
DC motor parameters, see the figure below:

Be-Mow’ 19 17116 0w CURSOR
: : : : : : Source

Horizontal

VYertical

SCAN
CHL ==1U

Figure 5-3 DC motor response

Using the knowledge that we learned from the control book [10], using section 4.3 for
first-order systems, we built the transfer function for the response of our DC motor using
the figure below:
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Figure 5-4 First order response

So, from the oscilloscope we got the final value, it is equal 4.92 Volt, we will calculate
T at 0.63 as follow:

7 = 0.63 * the final value
7=3.0996

., The final value zg —4.92

. :% ~3.0996 —a=0323
K
=-492 K =4.92%(0323) = 1.587

So, we can now write the transfer function for our DC motor without including the gear
in our calculations, and this will help us to get the parameters for our DC motor.

1.587 (5-1)

G(s) = S70323

We built the actual response using MATLAB Simulink as follows:

1.587
——P >
s+0.323

Step Transfer Fcn Scope

Figure 5-5 Motor Simulink model
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Voltage

The output of the scope with step input:

0 2 4 6 8 10 12 14 16 18
Time (sec)

Figure 5-6 Motor response for step input

Using the previous method that described above, we will now produce the transfer
function for our DC motor including the gear, this transfer function represents the whole

DC motor.
1.5867 (5-2)

Using the transfer function (5-2), we designed PI controller for our DC motor to control
the horizontal arm position, that will help us to stabilize the inverted pendulum (vertical

rod).
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Magnitude

The Figure below represents PI controller for our DC motor with gear as follow:

>

Gain

|

Step

@ s

1
—»I}—»—S—

a

Gain1  Integrator

1.587

s+11.2

Transfer Fcn

Figure 5-7 Pl-controller Simulink

The output for the scope in the Figure 5-7 above as follows:

01

02

03 04 05

Time (sec)

06

0.7

08

Figure 5-8 DC motor response with Pl-controller

09

Scope

In the Figure 5-8 the specifications for this response are that overshoot is around 10%
with 0.3 settling time so, the gains are K, = 9.28 and K; = 302
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5.2.2 Encoders:

For the project to have full states that needed to control the system two encoders will be
needed first encoder will be connected with the swinging arm or with the shaft of the
motor, for the previous shown Dc motor it has hall sensor (encoder), the other encoder
will be coupling with the pendulum arm.

5.2.2.1 Hall Encoder:

For this encoder it will be attached with the motor as shown in Figure 5-9, this encoder
as measuring the pulses using the Arduino gives (1920P/R), with frequency (0-1.37
KHz) this encoder will give the states of ¢ .

Figure 5-9 The hall sensor

5.2.2.2 Pendulum Encoder:

This encoder is incremental rotary encoder two phases gives (600P/R) for that total
pulses (2400P/R), with frequency (0-20 KHz), NPN output collector for the wiring
diagram (phase A: Green, phase B: White, Vc.: Red, 0V: Black). See Figure 5-10.

Figure 5-10 Incremental Encoder
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5.3 Arduino:

This subsection will discuss the Arduino for the system, as this system have two encoders
to read values, two interrupts will be needed to achieve the response and action that needed,
for that Arduino Mega is best option to achieve this, It has 54 digital input/output pins (of
which 14 can be used as PWM outputs), 16 analog inputs, 4 UARTSs (hardware serial ports),
a 16 MHz crystal oscillator, a USB connection, a power jack, an ICSP header, and a reset
button. It contains everything needed to support the microcontroller; simply connect it to a
computer with a USB cable or power it with AC-to-DC adapter or battery to get started, and
it suppled 5 Volt, see Figure 6-7.

5.4 Power supply:

Figure 5-11 Power supply

In Figure 5-11, we used this power supply to supply our electrical components,
as follows the red +5Volt, yellow +12Volt, Black is the common.
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6.1 Introduction

This chapter will discuss the integration of the hardware and software parts of the system,
this chapter will contain the hardware parts, how its connected to each other, and the
software, the code and any other needed programing.

6.2 Hardware connections:

This section discusses the integration of hardware of the system, and explain how its
connected to each other.

6.2.1 Plate:

This subsection discusses the plate dimensions and specifications, the plate is made
from wood, with dimension (57*27%*2) cm.

6.2.2 Pendulum arm:

This subsection discusses the coupling of the pendulum arm with the incremental
encoder as shown in the Figure 6-1.

Figure 6-1 Pendulum Arm &yka‘tﬂé N

The pendulum arm was coupling with bearing in both sides, and with shaft was holding
as shown in the Figure 6-1, small shaft was been added to do coupling with the
incremental encoder to decrease the pressure on encoder shaft.
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Figure 6-2 Encoder coupling

The Figure 6-2 is shown the encoder after been connected with coupling.

6.2.3 Swinging arm:

This subsection discusses the connection of the swinging arm with the shaft of the motor,
and the hanged masses, see the Figure 6-3

 Sourk

TSRSV

el

Lok

IAFZO0

59510800
—

‘Z B

Figure 6-3 Motor

The Figure 6-3 is shown the motor after been connected to the top of the pendulum arm.
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Figure 6-4 The system

The Figure 6-4 is shown the system after integration of the hardware, note that the
swinging arm was chosen to be in different lengths for calibration the system in
experiment purpose.

6.3 Electrical connections:

This section will discuss the wire connection for the electrical parts with each other,
the Figure 6-5 is shown how the rotary encoder (that measure pendulum angle) must
connected to take the correct values.

63



Breadboard

Power T v

Rotary Encoder Ground %
Resistors

Phase A 4.7kQ 1/4W

To Controller —>>
Phase B

V enp

Figure 6-5 Incremental encoder wiring

Figure 6-6 Driver L29SN

The Figure 6-6 is shown the used driver (L298N) for controlling the motor, since the

driver need three inputs from the controller (two direction & PWM control) and two
outputs will go to the motor.
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Figure 6-7 Arduino Mega Connection

For Figure 6-7 the connection with Arduino mega will be as follows:

Pin 10 connected to 2 PWM output to the driver.

Pins 8 and 9 connected to = Direction output to the driver.
Pin 20 and 21 connected to = Incremental encoder phases.
Pin 2 and 3 connected to > Hall sensor phases.
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6.4 Arduino programming

This subsection will discuss the parts of the main code that used to achieved this
project as blocks, the figure shown the basic main parts of the code, for this system the
processing unit will check the state of pendulum angle, as the system starts at the
perpendicular state it considered the angle is zero, then the system check any change in
the angle and do the calculations to the output of the motor, then check the state of the
pendulum angle in loop, and give different output each time depending on the changing
on pendulum angle, see Figure 6-8.

—»{ START <
Yes
<>
Yes
> Calculate u
 /
No Output u

L

Figure 6-8 Processing flow chart
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The following Figure represents the concept in how we programmed our system using
Arduino mega:

u DC motor T System plant output
and
PI controller

u=u; +r

Controller

u; = —[Kyxy + Kyxy + Kaxs + Kyx,)

Figure 6-9 The concept that we programmed our system

Thus,

r: Is the reference and it is equal zero.

u,: The value of the state feedback.

u: The required value of voltage that need to enter the DC motor to give a suitable torque.
7: The suitable torque that required to drive the system to be stabilized.

e: Is the error between the value of the state feedback and the value of the DC motor (PI-
Controller).

K, : Represents the gains that needs to be added for the system.

Xn: Represents the states and it is measured by two encoders.
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7.1 Introduction

This chapter will discuss the experiment and results for the project, using Arduino as
controller and for different lengths of swinging arm, the Figure 7-1 shown the different
length that used in this project.

Figure 7-1 Swinging arm different lengths

7.2 Experiment # 1

For this section achievement the length of the swinging arm is 0.2 m as shown in
Figure 7-2 for this length, we did three trials in different hanged mass for each side
100gr, 200gr and 250gr, for all the trials the system was failing because the length was
not enough to provide a required torque to stabilize the pendulum arm, and the
equilibrium point was hard to find for this length.

Figure 7-2 First length 0.2m
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Results for trials in the first experiment:

Mass (gr) Result Comments
100 Fail The torque not enough so, it needs more
torque
200 Fail The torque not enough so, it needs more
torque
250 Fail The torque not enough so, it needs more
torque

7.3 Experiment # 2

For this section the length of swinging arm is 0.34 m as shown in Figure 7-3 for
this length, we did five trials in different hanged mass for each side 50gr, 100gr, 150gr,
200gr, and 250gr, for the last mass the system succeed to be stabilized the pendulum at
small disturbances (less than 5 degree) but, for rejection disturbances more than (5
degree) and less than (10 degree) needs more torque to stabilize the pendulum, and to
avoid the damage for the motor, experiment three was achieved using new length taller
than 0.34m .

Figure 7-3 Second length 0.34m
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Results for trials in the second experiment:

Mass (gr) Result Comment

50 Fail The torque not enough so, it needs more torque

100 Fail The torque still not enough so, it needs more
torque

150 Fail The torque still not enough so, it needs more
torque

200 Almost The torque cannot stabilize the pendulum very

success well so, it needs more torque
250 Success The torque can stabilize the pendulum very well
at small disturbances (less than 5 degree)

7.4 Experiment # 3

For this section the length of swinging arm is 0.5 m as shown in Figure 7-4 for this
length, we did five trials in different hanged mass for each side 50gr, 100gr, 150gr,
200gr, and 250gr, for the mass 150gr the system stabilized itself at small disturbances
and for adding more masses like 200gr and 250gr respectively, the system become more
stable and reject less than (13 degree), and the equilibrium point was easy to find for this
length.

Figure 7-4 Third length 0.5m
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Results for trials in the third experiment:

Mass (gr) Result Comment

50 Fail The torque not enough so, it needs more torque

100 Almost The torque cannot stabilize the pendulum very

success well so, it needs more torque

150 Success The torque can stabilize the pendulum very well
at small disturbances (less than 5 degree)

200 Success The torque can stabilize the pendulum very well

at medium disturbances (less than 10 degree)

250 Success The torque can stabilize the pendulum very well

at large disturbances (less than 13 degree)

7.5 Summery

To achieve the goal of this project three experiments for different lengths and different
masses were done to study the effect of the swinging arm length and weight on the
controller and other parameters, for the short arm the system was unstable and cannot
stabilize itself, and the equilibrium point was hard to find for this short length.

For the medium length the system at the fourth and the fifth mass almost succeed and
the system stabilized itself and as the result we expect that if we add more masses at the
same length it will hold the pendulum better but it will require more torque.

For the larger length the system at the first mass fail but in the other masses the system
stabilized itself and as the result we expect that if we add more masses at the same length
it will hold the pendulum better and it will not require high torque as the previous length
(medium length), and the equilibrium point was easy to find for this length, since the
damping ratio in the real system is too small the pendulum arm stabilize in settling time
2 seconds and stay for 3 seconds in the stable condition and failing if the encoder didn’t
detect the changing in the pendulum angle
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Chapter 8: Conclusions and recommendations
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8.2 Conclusions
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8.1 Introduction

This chapter will discuss the conclusions that been concluded in implementation for this
project and recommendations for future work on this project.

8.2 Conclusions

After implementation this project, project team conclude some conclusions as follows:

The length and the weight of swinging arm have main effect on the system.

We can control our system smoothly and easily whenever the length is large, the
swing arm gives more stability to our pendulum.

The motor selection depends on the swinging arm weight and hanged masses that
effects the total torque applying on the shaft motor.

8.3 Recommendations

After implementation this project, project team was outputting some recommendations
for future work as follows:

Firstly, for mathematical modeling for the system derive the equations of the system
as function of the voltage the input of the system must be voltage.

Secondly, for the pendulum arm, friction must add to the coupling with encoder to
decrease the speed of the system and the speed for the selection motor.

Thirdly, add more stability to the system by adding two springs in both sides for the
pendulum therefore the system trying to stabilize itself without any failing.

Lastly, trying to implement this project using DAQ as a processing unit.

74



[1]
[2]
[3]
[4]
[3]
[6]

[7]

[8]

[9]

References

Mathworks, “MATLAB - Mathworks - MATLAB & Simulink,” Www. Mathworks. Com.
2016.

K. Furuta, M. Yamakita, and S. Kobayashi, “Swing-up Control of Inverted Pendulum
Using Pseudo-State Feedback,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng., 2007.
A. Rybovic, M. Priecinsky, and M. Paskala, “Control of the inverted pendulum using
state feedback control,” Proc. 9th Int. Conf. ELEKTRO 2012, pp. 145148, 2012.

I. Hroub, “inverted pendulum,” no. June, 2014.

SolidWorks, “3D CAD Design Software,” Dassault Systemes, 2019. .

S. Widnall, “Lecture L20 - Energy Methods: Lagrange * s Equations Derivation of
Lagrange ’ s Equations in Cartesian Coordinates,” Energy, 2009.

M. Huebla, “Non-holonomic Differential Drive Mobile Robot Control & Design : Critical
Dynamics and Coupling Constraints,” intoxicacion as frecuentes y sus Princ. factores
influyentes en ninios atendidos en el Serv. Pediatr. del Hosp. Prov. Gen. docente
riobamba periodo enero-agosto del 2013, 2013.

B. Joshi, R. Shrestha, and R. Chaudhary, “Modeling , Simulation and Implementation of
Brushed DC Motor Speed Control Using Optical Incremental Encoder Feedback DC
Motor Model Simulink Modeling , Simulation and Parameter estimation,” Proceeding
1IOE Grad. Conf., 2014,

D. Baez-Lopez, “Simulink,” in MATLAB with Applications to Engineering, Physics and
Finance, 2009.

[10] N. S. Nise, Control Systems Engineering, 6th Edition. 2012.

76



