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Abstract 
 

In the past few years, some problems related to mobile robots have risen, such as 

mapping, localization, and object detection. Scientists and researchers have been racing to find 

ways to solve these problems ever since. Although, limited work has been developed to combine 

these problems into one intelligent mobile robot. This project makes use of the past researches 

about the mentioned problems, with the help of Robot Operating System (ROS), to make a 

simulation of a mobile robot capable of mapping a maze environment and localizing itself inside 

it, to navigate and detect a certain object in that environment. 

In this project, the simulated robot uses a laser sensor (LIDAR) to scan the environment. 

ROS then transforms this data into occupancy grid map, which the robot then uses to localize 

itself through the adaptive Monte Carlo Localization algorithm (MCL). The robot makes use of a 

camera, and uses the You Only Look Once algorithm (YOLO) for object detection. The robot 

can also find the shortest path for navigation through Dijkstra’s algorithm. 

A software provided by ROS called Gazebo is used to simulate the robot navigating 

inside the simulated environment. One hundred simulated localization experiments have been 

done and distributed equally across 10 maze environments. The resulting success rate was 62%, 

and the average time of localization and navigation for the successful attempts was 139 seconds. 
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 الملخص 
 

الموقع،  وتحديد  الخرائط،  كرسم  المتحركة،  بالروبوتات  المتعلقة  المشاكل  من  مجموعة  الأخيرة، ظهرت  الآونة  في 

لل يتسابقون  والباحثين  العلماء  العديد من  الأجسام.  الرغم من  واكتشاف  على  الحين.  ذلك  منذ  المشاكل  هذه  لحل  لطرق  وصول 

. هذا المشروع  متحرك واحدذكي  ذه المشاكل وحلها باستخدام روبوت  ذلك، عدد محدود من الأبحاث والأعمال جرت لجمع ه

محاكاة  ل  ، لعم(Robot Operating System (ROS))يستفيد من الأبحاث السابقة في المشاكل المذكورة، بمساعدة برنامج  

 .المتاهة وتحديد موقعه داخلها، للتنقل واكتشاف جسم محدد في هذه لمتاهةادر على رسم خريطة روبوت متحرك قل

بعدها بتحويل هذه    (ROS)لمسح البيئة. يقوم    (LIDAR)مجس ليزر    لمحاكىا  في هذا المشروع، يستخدم الروبوت 

ستخدمها الروبوت بعد ذلك لتحديد موقعه باستخدام خوارزمية تي ي ، ال(Occupancy Grid Map)خريطة شبكية  البيانات إلى  

المواقع   لتحديد  كارلو  الروبوت    .(Monte Carlo Localization (MCL))مونتي  ويستخدم   You)خوارزمية  كاميرا، 

Only Look Once (YOLO))  للتنقل باستخدام خوار  معرفة. يستطيع الروبوت أيضا  لاكتشاف الجسم  زميةأقصر طريق 

 .(Dijkstra’s algorithm)كسترا داي

لمحاكاة حركة الروبوت داخل بيئة افتراضية. تم عمل مئة تجربة   (ROS)المقدم من    (Gazebo)تم استخدام برنامج  

%، ومعدل زمن تحديد الموقع والتنقل للمحاولات 62متاهات. نسبة النجاح الناتجة كانت    10تحديد موقع مقسمة بالتساوي على  

 ثانية. 139ان حة كالناج
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1.1 Introduction 

In any time and in any place, there is always a need to move and to transfer objects from one 

place to another. Hands are used to remove a stone out of the way, a shopping cart is used to 

collect grocery, a conveyor belt is used to move products in a factory, and ships are used to 

transfer cargo. All of these are different methods to achieve the need of moving objects. 

In the last few decades, robots have been replacing humans in a lot of aspects mainly to reduce 

efforts and to save time. Robots can do tasks that humans cannot do, such as going through a 

very thin tunnel, or moving heavy objects. They can also be used to do risky tasks, like moving 

objects in a very high place, or even defusing a bomb. 

Mobile robots have the capability to move around in their environment and are not fixed to one 

physical location. Mobile robots can be autonomous (AMR - autonomous mobile robot), which 

means they are capable of navigating in an uncontrolled environment without the need for 

physical or electro-mechanical guidance devices. Alternatively, mobile robots can rely on 

guidance devices that allow them to travel in a pre-defined navigation route in relatively 

controlled space (AGV - autonomous guided vehicle). 

The evolution of mobile robots nowadays lead for some problems to rise, such as Mapping, 

Local and Global Localization, Kidnapped Robot problem, and more. These problems have 

encouraged the scientists around the world to find methods, and to build algorithms to solve 

them. 

This project is about making an intelligent mobile robot that can map a maze-like environment 

and can localize itself inside that environment, using Robot Operating System (ROS), and by 

interacting with the environment through a laser sensor (LIDAR). 

 

1.2 Recognition of the need 

To help humans save time and efforts, there is a need for mobile robots capable of mapping an 

environment and then be able to localize itself inside that environment and navigate in it. 

Requirements 

• The mobile robot should be able to map the environment around it. 

• The robot should localize itself in the environment. 

• The robot should choose an optimal path to reach a predefined target. 

• The environment is a variable maze, not specific and it has no specific connotations. 

• The robot must be portable in order to be placed in a random place within the maze. 

• The robot must determine the best way to pass through the maze to reach the target. 

• The maze should be suitable so that the robot is able to move within it. 

• The robot must have a rechargeable battery. 

• The robot should avoid hitting the maze walls. 

• The robot must be user friendly. 

 

 

 



3 

 

1.3 Project Importance 

The principle that we are working on in the project is that the robot works to determine its 

location within a maze and then to move a box located in a certain place within the maze. 

The maze can be considered as a specific factory or facility such as a port, and the process of 

transporting and arranging products using automatically working robots has the same principle 

of the work of our project. 

Nowadays, products are transported inside factories and other facilities by human effort, even 

machines like forklifts are manually operated and under the supervision of human. But if we 

look at the problems of this profession, we can see that man cannot transport goods and arrange 

them in the best way, unlike the robot, which transports and arranges the goods in the optimal 

way by some software lines, which provides storage space for goods, and also saves effort and 

time. 

Moreover, mobile robots are also widely used in people’s daily lives, such as house cleaning, 

medical services, catering services military, intelligent transportation and entertainment.[1]  

Nowadays, mobile robots are widely used in field of applications to reduce human efforts and 

save time. Mobile robots can navigate an uncontrolled environment without the need for physical 

or electro-mechanical guidance devices. It relies on guidance devices that allow them to travel a 

pre-defined navigation route in relatively controlled space. 

 

1.4 Literature Review 

This section presents the most important papers and previous work that are related to our project. 

 

1.4.1 Papers related to mapping and localization 

In [1], the authors focused on some application where  mobile robot works in our lives, 

such as house cleaning, medical services, catering services, military, intelligent 

transportation and entertainment.  

So, if mobile robots work autonomously in these areas, those robots must be able to build 

maps of the surrounding environment. The robot explores every corner of the 

surroundings and determines its position in the map and the orientation of the body 

according to the surrounding environment, by using the open source mapping algorithms, 

karto SLAM1, hector SLAM software package for indoor SLAM, which can get the 

indoor grid maps in ROS graphical tool RVIZ. 

Their methodology depends on implementing the algorithm of SLAM. It depends on that 

the mobile robot contains a LIDAR to scan the indoor environment, realizes self-

localization and builds a map of an anonymous environment. To measure the mapping 

error of each SLAM algorithm, run gmapping2, karto SLAM and graph-based SLAM 

using UTM- 30LX LIDAR to ensure the robot navigates correctly in the surrounding 

environment. 

 
1 SLAM: Simultaneous Localization and Mapping 
2 Gmapping: Grid Mapping 
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They used a Raspberry Pi as the main controller to run their robot (four wheeled car) to 

complete the indoor SLAM, and all experiments were conducted based on the Robot 

Operating System (ROS). The Urban Search and Rescue (USAR) environment was built 

using the ROS simulation tool Gazebo, and their car was used to test hector SLAM in 

Gazebo.  

They used single-line LIDAR as a 2D laser scan to match data acquisitioned in the 

practical experiments with the map built using the open source algorithms gmapping, 

karto SLAM, and hector SLAM software package for indoor SLAM. 

In their experiment they drew the maze, which was 10 meters long and 6 meters wide, 

and established the URDF1 model of the car by using the Rviz tool and running 

gmapping to simulate the results in the match environment. They used the hector SLAM 

algorithm for further simulations, when the speed is set to 0.2 m/s and the angular 

velocity to 1 rad/s, it works fine, however, once set the speed of the car to more than 0.2 

m/s and the angular velocity to more than 1 rad/s, the mapping effect of hector SLAM is 

not satisfactory, because hector SLAM does not use the data of the odometer in the robot. 

So when the car spins too fast, it does not know that it is rotating. At this time, the laser 

data collected is not matched with other parts in the map resulting in ‘ghosting’. Hector 

SLAM uses only 2D LIDAR data, and there is no obvious choice for loop closure 

detection, this is why the hector SLAM results are less accurate. 

These experiments were carried out in the laboratory, the experimental environment is a 

closed environment with dimensions of 16 meters by 10 meters, and all experiments of 

the SLAM algorithm were performed in the same environment. 

They implemented three different SLAM algorithms in order to better implement the 

algorithm. The robot was equipped with rpLIDAR A1, IMU2 sensor and an odometer to 

provide more information feedback for the actual implementation of the gmapping in the 

experimental environment, the map was constructed by using the karto SLAM algorithm. 

In some experimental tests, especially in complicated environments, the robot has to stay 

for a while waiting for the LIDAR to collect more data, so high-precision grid maps can 

be constructed. 

 

In [2], the authors talked about replacing industrial robots or manipulator robots with 

smarter robots in terms of navigation and recognizing the environment autonomously. 

The environment was implemented as a maze in the studied case. Robots should be able 

to follow the maze and get out of it intelligently. 

They pointed out that there are many solutions that can be applied to solve maze 

problems, such as maze mapping algorithm that applies the concept of left / right hand 

rule or wall follower rule in searching for a way out of the maze.   

The goal of their study is to design a robot that has a good safe navigation system that 

prevents it from colliding with the walls of the maze.  

For the navigation system, the wall follower robot uses the maze mapping method with 

the left-hand rule, to learn the wall distance and its position, which uses RAM3-based 

 
1 URDF: Unified Robot Description Format, which is an XML format for representing a robot model 
2 IMU: Inertial Measurement Unit 
3 RAM: Random Access Memory 
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artificial neural network methods. This neural network has 3 RAM nodes to process the 

received environmental patterns. The left sensor, the right sensor, and the front sensor 

have 8 bits of the input pattern, the pattern will be optimized into 4 bits stored in the 

RAM node, so that the computing process in the robot becomes faster and simpler. 

The algorithm of maze mapping here is used when the target position is unknown, the 

robot will see the right or left wall and navigate along the maze until it finds a target. 

Research methodology is divided into several stages, the robot will process the map every 

time it is facing an intersection and a dead end, the codes are stored in the robot’s 

memory and will be arranged continuously every time the robot faces an intersection and 

a dead end until the robot reaches the finish position.  

The codes used when mapping are: 

• “L”, this code indicates that the robot has turned left because it passed an 

intersection. 

• “F”, this code indicates that the robot keeps going because it meets an intersection 

three times with the right or the left turn. 

• “0”, this code means that the robot encounters a dead end and walks back to the last 

intersection. 

After exploring and storing the entire maze and knowing the finish position of the maze, 

the entire route is analyzed so that it can be optimized. The process of simplifying the 

route is by identifying a deadlock code on the route that has been saved. If there is a 

deadlock code, the code will be simplified. 

The robot was able to get out of the maze using the left-hand rule algorithm, the data 

analysis on RAM also runs as desired displayed in data simulation. 

 

1.4.2 Previous work on object recognition 

The idea of the graduation project in [3] is based on replacing humans with robots to do 

repetitive or risky tasks. For example storage management in a warehouse/industrial 

environment, the authors designed a mobile manipulator with three main tasks, to find 

itself within a maze, to go to a certain location in the maze and find a known object, pick 

up the object and move it to a designated area. 

They used Monte Carlo Localization (MCL) Technique, which uses Particle Filter 

algorithm to determine the robot’s current position accurately, then updates it every time 

the robot moves. 

MCL first generates all the possible poses of the robot, initially, the poses are all over the 

map. Then as the robot moves and measures distances to the surrounding environment, 

MCL takes two inputs, the robot’s pose relative to the starting position, and a LIDAR 

measurement from the Time of Flight (TOF) sensor. 

To pick up an object and bring it to a particular location in the map, they used computer 

vision. 

For object detection, the authors implemented deep learning to train the robot to detect 

the given object in a picture. 
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The chosen object was designed with white body and black corner so that the black 

corners can be detected easily to use manipulator after that to pick it up. 

 

1.4.3 Researches featuring control systems of mobile robots 

Many researches have been conducted to study trajectory tracking control problem of  

wheeled mobile robot (WMR) with several control strategies, for example, adaptive 

control [4, 5], fuzzy logic control [6], neural network control [7], Fuzzy adaptive iterative 

learning control [8], and survey on various motion control problems of WMR [9]. 

Mobile robot control system can be classified into three categories. The first one is the 

sensor-based control-based approach. Such control system is emphasized on how to 

model the motion of a robot in a dynamic environment [10], The control process to 

produce estimation and predictions of the mobile robot movement is dependent on the 

information coming from the sensors [11]. 

The second category is the approach of using a path planning [12]. The control system 

organizes the movement of the robot through the planned path, and thus can move 

according to the goal position that is set up. The mapping of the environment is created to 

have collision-free path of robot movement. The control of the robot is depending on 

minimum distance, energy and time.  

The third category presents the optimization algorithm and is developed for controlling 

with accurate trajectory. The controller design is based on mathematical model of the 

robot that we are working on. The approach is for tracking the mobile robot errors 

between reference and actual trajectory [13]. However, the whole categories of the 

control system only operate when the linear velocity is not zero. Therefore, a mobile 

robot is hard to control, especially in a short time trajectory following with Minimum 

errors. So nonlinear control is an approach which is used to solve this problem [14, 15]. 

Although the problem is solved, , it yielded slow convergence[15]. 

 

1.5 Action plan 

Table 1.1 and Table 1.2 show the action plan for the first and second semesters distributed on 32 

weeks. 
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Table 1.1 Action plan for the first semester 

                     Weeks 

   

Tasks 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

 

9 

 

10 

 

11 

 

12 

 

13 

 

14 

 

15 

 

16 

Identification of Project 

Idea 

                

project requirement and 

collecting data 

                

Project Proposal 

Chapter 1 

                

Conceptual Design 

Chapter 2 

                

Robot Operating 

System (ROS) 

Appendix B 

                

Kinematics and 

Dynamics 

Appendix A 

         

 

       

Robot Navigation 

Chapter 3 

                

Object Localization 

Chapter 4 

                

 

 

Table 1.2 Action plan for the second semester 

                     Weeks 

   

Tasks 

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 

Maze Generation                 

Maze Building 

(Simulation) 
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Mapping Simulation                 

Localization 

Simulation 
                

Real Maze Building                 

Building Connection 

Between the Robot and 

ROS 

        
 

 
       

Mapping experiments                 

Data Collection                 

Labeling the Object                 

Build the Model                 

Object Detection                 

Localization and 

Navigation 

Experiments 

                

Experiments and 

Results 

Chapter 5 

                

Conclusion and Future 

Work 

Chapter 6 
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1.6 Cost table 

Table 1.3 shows the estimated cost of the project, where the hardware parts are provided by the 

department of Mechanical Engineering and the department of Computer and Information 

Technology in the Palestine Polytechnic University. 

 

Table 1.3 Cost table 

Tools and device Number 
Piece price 

(NIS) 
Price (NIS) 

Turtlebot 2 1 2515 2515 

Workspace 1 50 50 

Cables, Wires 1 50 50 

Kinect sensor 1 160 160 

Laptop 1 500 500 

Workstation 1 3000 3000 

2D Laser range finder (LIDAR) 1 3870 3870 

 Total (NIS) 10145 
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 Conceptual Design 
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2.1 Introduction 

This chapter describes the workflow of the intelligent mobile robot that can map the environment 

and then can localize itself and navigate inside that environment, including the subsystems, the 

system components, and the relationship among them. 

 

2.2 Decomposition 

The main problem was divided into several decomposed tasks: 

• Robot type 

• Distance sensors types 

• Mapping method 

• Localization method 

• Optimal path calculation method 

• Object detection and localization method 

 

2.3 Ideas, Evaluation, and Selection 

2.3.1 Robot type 

A differential-drive mobile robot was decided to be used because it's very easy to control 

and move inside the maze. 

Initially, the idea of designing and building a robot was suggested; however, this is time 

consuming and is not the project goal. Therefore, it was decided that using an already 

made robot from the internet is a better idea (Figure 2.1). 

 

 

Figure 2.1 Simple DDMR on the internet [16] 

This robot and its actuators have the drawback of the very small and inaccurate, so a 

Turtlebot 2 robot was suggested (Figure 2.2). This robot has high accuracy, it's available 
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at the university, it's compatible with many programs, its mathematical model is 

available, and it comes with a number of useful sensors we can use in the project. 

 

Figure 2.2 Turtlebot 2 [17] 

2.3.2 Distance sensors types 

To move inside the maze, a robot needs some sensors to detect obstacles around it and 

measure the distance of the walls from the robot. 

The initial idea was using an ultrasonic sensor that rotates 360 degrees and collects 

information as in Figure 2.3, but this would cause the robot to stop over and over again 

and it is time consuming, so it was suggested to put four or eight ultrasonic sensors 

around the robot as in Figure 2.4, to save some time. However, a measurement problem 

raised up, when the walls are not perpendicular with the sensor beams, the sensor cannot 

read any signal. 

 

 

Figure 2.3 Ultrasonic sensor mounted on a servo motor 
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Figure 2.4 eight ultrasonic sensors mounted to cover 360 degrees 

As a result. The Turtlebot 2 is used with its sensors. Further, the Kinect (Figure 2.5) and 

LIDAR (Figure 2.6) can be used. 

 

 

Figure 2.5 Kinect sensor 

 

 

Figure 2.6 LIDAR sensor 
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2.3.3 Mapping method 

The environment can be mapped in two ways: 

• Manual: 

By adjacency matrix which is a square matrix used to represent a finite graph. The 

elements of the matrix indicate whether pairs of vertices are adjacent or not in the 

graph. This way is good for small environments, since it doesn’t require the robot 

to map itself, also the maze must be regular and cellular, and each cell is similar to 

each other. This method can be very exhausting and inaccurate for large and 

irregular environments.[18] 

• Stochastic: 

This method is more complex, although it needs an accurate sensor for scanning 

and high processing capabilities. It is more accurate, reliable, and it can scan large 

areas.[19] 

The latter method is chosen because the maze is variable, unspecified, and 

irregular. 

 

2.3.4 Localization method 

The robot must figure out its position inside the maze that it has already mapped. 

 The two suggested methods are: 

• Particle filter (Monte Carlo localization) [20] 

• Markov localization [21] 

The first method is chosen because it is more accurate, easier to be implemented, and it 

does not require high memory space compared to the second one. However, it has high 

computational complexity. 

 

2.3.5 Optimal path calculation method 

The best way to choose the best path is by using Dijkstra's algorithm, because it always 

finds the shortest path and it does not require a lot of time. On the other hand it requires a 

lot of space. Dijkstra's algorithm is considered greedy since it goes for the closest node 

hoping to find the shortest path. [18] 

   

2.3.6 Object detection and localization method 

There were two devices to do object detection that were suggested: 

1) Webcam  

2) Kinect 
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Kinect is better than the webcam because Kinect has depth sensor and it's compatible 

with ROS.[22]  

 

2.4 Relationship among components 

Figure 2.7 shows a schematic of the conceptual design, explaining the relationship 

between the system components. 

 

 

Figure 2.7 Conceptual Design Schematic  
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 Robot Navigation 
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3.1 Introduction 

Robot navigation means the robot’s ability to determine its own position in a frame of reference 

and then to plan a path towards the goal location. In order to navigate in its environment, the 

robot requires a representation of the environment and the ability to interpret that 

representation.[23] 

In this project, we divided our robot’s navigation problem into three sub-problems, mapping, 

localization, and finding the optimal path for navigation. The following sections present each one 

of them in details. 

 

3.2 Mapping 

For the robot to localize itself inside an environment, it needs to have a map of that environment. 

And because we don’t have maps for all environments, we need a way to make this map and 

save it, so the robot can refer to it when it navigates. The process of making a map for an 

environment is called mapping.[24] 

Mapping with mobile robots is not an easy task, because maps are defined over a continuous 

space, resulting in a huge space of possible maps. Even using discrete approximations, such as 

the grid approximation, could result in more than 105 variables to describe a map.[24] 

Of course, the difficulty level is not the same for all mapping problems. There are some factors 

that affect the difficulty of mapping problems, below are the most important of them[24]: 

• Size: The larger the environment, the more difficult it is to map. 

• Noise in perception and actuation: Mapping would be very easy if there was no noise in 

the robot’s sensors and actuators. Mapping gets more difficult if the noise is large. 

• Perceptual ambiguity: If the environment has different places look alike, the mapping 

problem gets more difficult. 

• Cycles: When the robot goes point to point through a path and returns in the same path, the 

odometric error is cancelled, but if the robot returns in a different path, the error could 

accumulate to a huge amount. 

There are several methods used to map an environment. In this project, we are using Occupancy 

Grid Mapping method.[24] 

Occupancy grid maps address the problem of generating consistent maps from noisy and 

uncertain measurement data, assuming that the robot pose is known. The occupancy grids 

represent the map as a field of random binary variables arranged in an evenly spaced grid, and 

each variable corresponds to the occupancy of the location it covers. Approximate posterior 

estimation is implemented by occupancy grid mapping algorithms for those random 

variables.[24] 

Occupancy Grid Mapping Algorithm 

The main concept when talking about occupancy grid mapping is the posterior probability over 

maps given the data from the sensors and the path of the robot, which can be represented by the 

equation below[24]: 
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Where 𝑚 is the map, 𝑧1:𝑡 is the set of measurements up to time 𝑡, and 𝑥1:𝑡 is the path of the 

robot, that is, the sequence of all its poses.[24] 

The most common domain of occupancy grid maps are 2D floorplan maps, which describe a 2D 

slice of a 3D world. For a robot navigating on a flat surface, 2D maps are usually sufficient. 

Also, occupancy grid techniques can be generalized to 3D representations, but at significant 

computational expenses.[24] 

Since the map is discretized over a finite number of cells, we can describe that in the following 

equation[24]: 

 
i

i
m m=                                                              (3.2) 

Where 𝑚𝑖 denotes the grid cell with index 𝑖. 

Each 𝑚𝑖 contains a binary occupancy value, which specifies whether a cell is free or occupied. 

We are using ‘0’ for free cells and ‘1’ for occupied ones.[24] 

The standard approach for occupancy grid mapping breaks down the problem of the whole map 

into a collection of binary cell problems with static states, each problem can be represented by 

equation (3.1) as follows[24]:     
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The posterior probability over the whole map can be approximated as the product of the posterior 

probability of its cells[24]: 
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To avoid numerical instabilities for probabilities near zero or one, occupancy grid mapping 

algorithm uses the log-odds representation of occupancy[24]: 
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The probabilities are easily recovered from the log-odds ratio[24]: 
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Using Bayes rule on equation (3.5), and after simplifying we get: 
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Which can be represented as: 

 log log logmeasodd odd odd+ −+=   (3.8) 
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Where 𝑜𝑑𝑑+ is the new value of odds, 𝑜𝑑𝑑− is the previous value of odds, and 𝑜𝑑𝑑𝑚𝑒𝑎𝑠 is the 

update in the odds based on the current measurement. 

Note that the expression 𝑝(𝑚𝑖) or 𝑝(𝑚𝑖 = 1) refers to the probability that a grid cell is 

occupied.[24]  

In ROS, occupancy grid mapping can be used using the command ‘gmapping’.[25] 

Auto Mapping 

Instead of moving the robot manually inside an environment, ROS gives the ability to let the 

robot explore the environment by itself using the Rapidly-Exploring Random Tree algorithm 

(RRT), and by using gmapping with it, the robot gets the ability to map the environment 

automatically without any assessments. 

 

3.3 Localization 

Localization is the process of establishing correspondence between the map coordinate system 

and the robot’s local coordinate system. It is the main perceptual problem in robotics, since all 

robotics tasks require knowledge of the location of the robots and the objects being manipulated, 

although not necessarily within a global map.[24]  

Mobile robot localization (or sometimes called position estimation or position tracking) is the 

problem of determining the pose of the robot relative to a given map of the environment. Mobile 

robot localization is partial problem of the general localization problem.[24] 

Localization could be considered as a problem of coordinate transformation, since maps are 

described in a global coordination system, which is independent of the pose of the robot. 

Knowing this coordinate transformation is a necessary prerequisite for robot navigation, because 

it enables the robot to express the location of objects of interests within its own coordinate frame. 

This coordinate transformation can be determined by knowing the pose 
T

t x y   =x of 

the robot (position in 𝑥, 𝑦 and orientation around 𝑧), which is sufficient assuming it is expressed 

in the same coordinate frame as the map.[24] 

The main problem in getting the pose is that most sensors do not give a noise-free measurement, 

also sometimes the pose cannot be sensed directly. Because of that, the robot has to integrate 

data over time to determine its pose, since a single sensor measurement is usually insufficient to 

determine the pose.[24]  

Localization problems are not at the same level of difficulty, they depend on the type of 

knowledge that is available initially and the run time. There are mainly three types of 

localization problems with an increasing level of difficulty[24]: 

• Position tracking. Position tracking assumes that the initial pose of the robot is known, 

and that the pose error is small because the effect of such noise is usually small, so 

localizing the robot can be achieved by accommodating the noise in the robot’s motion. 

The pose uncertainty is often approximated by a unimodal distribution such as the 

Gaussian distribution. Since the uncertainty is local and confined to region near the robot’s 

true pose, the position tracking problem is considered a local problem. 

• Global localization. In this problem, the initial pose of the robot is unknown. The robot is 

placed somewhere in the environment, but is lacks information of where it is. Some 
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approaches to global localization does not assume boundedness of the pose error. Global 

localization is more difficult than position tracking, and unimodal probability distribution 

is usually inappropriate. In fact, global localization subsumes the position tracking 

problem. 

• Kidnapped robot problem. In this problem, the robot can get kidnapped and teleported to 

some other location during operation. This problem is a variant of the global localization 

problem, but it is even more difficult because in global localization, the robot knows that it 

doesn’t know where it is, but in the kidnapped robot problem, the robot might believe it 

knows where it is while it does not. One might argue that robots are rarely kidnapped in 

practice; however, the practical importance of this problem lies in the fact that most 

localization algorithms cannot be guaranteed never to fail. This problem gives the robot the 

ability to recover from failures which is essential for truly autonomous robots. Localization 

algorithms can be tested by kidnapping to measure its ability to recover from global 

localization failures. 

The above problems can be solved using Monte Carlo Localization algorithm. 

 

3.3.1 Monte Carlo Localization (MCL) 

Monte Carlo localization algorithm is arguably the most popular localization approach to 

date. It uses particle filters to estimate posterior probabilities over robot poses.[24] 

This localization algorithm is applicable to both local and global localization problems. 

MCL is easy to implement, and tends to work well across a broad range of localization 

problems, which explains why it has become one of the most popular localization 

algorithms in robotics.[24] 

The basic MCL algorithm represents the belief 𝑏𝑒𝑙(𝑥𝑡) 
1 by a set of 𝑀 particles 
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t t t tX x x x         = . The initial belief 𝑏𝑒𝑙(𝑥0) is obtained by randomly 

generating 𝑀 such particles from the prior distribution 𝑝(𝑥0), and then assigning the 

uniform importance factor to each particle. The algorithm then samples one particle at a 

time from the motion model, using particles from present belief as starting points. The 

measurement model is then applied to determine the importance weight of each 

particle.[24] 

Figure 3.1 shows a one-dimensional hallway example of MCL. First, a set of pose 

particles is drawn randomly and uniformly over the entire pose space as initialization for 

the algorithm as shown in Figure 3.1a. As the robot senses the door, MCL assigns 

importance factors to each particle. The resulting particle set is shown in Figure 3.1b. The 

height in this figure represents the importance weight for each particle. Note that the set 

of particles in Figure 3.1a and Figure 3.1b are identical, the only thing modified by the 

measurement update are the importance weights.[24] 

Figure 3.1c shows the particle set after resampling and after incorporating the robot 

motion. This phase results in a new set of particles which has a uniform importance 

weights, but with an increased number of particles near the three most probable places. 

With a new measurement, new importance weights are assigned non-uniformly to the 

particle set as shown in Figure 3.1d. You can see now that most of the cumulative 

probability mass is centered on the second door, which is the most likely location.[24] 

 
1 𝑏𝑒𝑙(𝑥𝑡) = 𝑝(𝑥|𝑧1:𝑡) for binary static states. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

Figure 3.1 One-dimensional hallway example of MCL 
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The whole cycle is then repeated, when the robot moves, another sampling step happens, 

and a new particle set is generated, see Figure 3.1e.[24] 

Properties of MCL 

MCL can approximate almost any distribution of practical importance. It is not bound to 

a limited parametric subset of distributions. Increasing the total number of particles 

increases the accuracy of the approximation. The number of particles 𝑀 is a parameter 

that enables the user to trade off the accuracy of the computation and the computational 

resources necessary to run MCL.[24] 

A common strategy for setting 𝑀 is to keep sampling until the next pair 𝑢𝑡 and 𝑧𝑡 has 

arrived. In this way, the implementation is adaptive with regards to the computational 

resources, the faster the processor, the better the localization algorithm. However, care 

has to be taken that the number of particles remains high enough to avoid filter 

divergence.[24] 

A final advantage of MCL pertains to the non-parametric nature of the approximation. 

MCL can represent complex multi-modal probability distributions, and blend them 

seamlessly with focused Gaussian-style distributions.[24] 

 

3.3.2 Recovery from failures 

In its present form, MCL solves the global localization problem but cannot recover from 

robot kidnapping, or global localization failures. In places other than the most likely pose, 

the particles eventually disappear. At this point, the particles converge near a single pose, 

and the algorithm is unable to recover if this pose happens to be incorrect.[24] 

MCL, like any other stochastic algorithms, may accidentally discard all particles near the 

correct pose during the resampling step. This is a significant problem, and it gets more 

significant if the number of particles is small or if the particles are spread over a large 

volume.[24] 

Fortunately, this problem can be solved by a rather simple heuristic. The idea of this 

heuristic is to add random particles to the particle sets. This injection of random particles 

can be justified mathematically by assuming that there is a small probability that the 

robot might get kidnapped, so a fraction of random states is generated in the motion 

model. Even if the robot does not get kidnapped, an additional level of robustness is 

added because of these random particles.[24] 

This version of MCL with the ability to solve the kidnapped robot problem is called the 

Augmented or the Adaptive Monte Carlo Localization algorithm (AMCL).[24] 

In ROS, we can use the AMCL algorithm using the node (amcl). We can also include the 

launch file (amcl_diff.launch) to start the node with a series of configured parameters. 

This configuration is the default and the minimum setting needed to make it work. The 

contents of the (amcl_diff.launch) launch file which shows the configured parameters 

with their default values are appended.[26] 

For more information on the AMCL algorithm with ROS, refer to [20]. 
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3.4 Optimal Path 

In graph theory, the optimal path (shortest path) problem is the problem of finding a path 

between two vertices (or nodes) in a graph such that the sum of the weights of its constituent 

edges is minimized.[27] 

In this section, we are presenting an algorithm that can solve the optimal path problem, which is 

Dijkstra's Algorithm. 

Dijkstra's Algorithm 

Dijkstra's algorithm is an algorithm, which was conceived by computer scientist Edsger W. 

Dijkstra in 1956 and published three years later, for finding the shortest paths between nodes in a 

graph, which may represent, for example, road networks. 

The algorithm exists in many variants. Dijkstra's original algorithm found the shortest path 

between two given nodes, but a more common variant produces a shortest-path tree by finding 

the shortest paths to all nodes in the graph from one fixed source node.[28] 

A pseudo code for the algorithm is shown in Figure 3.2. 

 

Figure 3.2 Pseudo code for Dijkstra's algorithm.[29] 

Consider the following example shown in Figure 3.3, which illustrates the Dijkstra's Algorithm. 

Our objective is to find the shortest path from A to every other vertex. The table in the figure 

shows the shortest distance from A to every other vertex, and also it shows the shortest sequence 

of vertices from A to every other vertex, i.e. the shortest path. 

Dijkstra's Algorithm works as follows, we use two lists, ‘visited’ (initially empty) and 

‘unvisited’ (initially contains all vertices) to keep track of the vertices we have visited and the 

ones we haven’t visited yet. 

Initially, we set the distance from A to A to zero, and since the distances from A to all other 

vertices are unknown, we set them to a very high value (infinity), as shown in Figure 3.3a. 

According to the algorithm in Figure 3.2, we visit the unvisited vertex with the smallest known 

distance from the start vertex, in this case, it’s A itself. For the current vertex, calculate the 

distance of each neighbor from the start vertex. In this case, the neighbors if A are B and D, and 

the distance from start to each one of them is 6 and 1 respectively. Now, if the calculated 



24 

 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 3.3 A simple example illustrating Dijkstra's Algorithm 
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distance is less than the current known distance, we update the shortest distance and the previous 

vertex with the current vertex. Since the previous distance value is larger for both B and D, we 

update the table as shown in Figure 3.3b. 

Next we remove the current vertex (A) from the list of unvisited vertices, and we add it to the list 

of visited vertices, so we don’t visit it again. 

The algorithms then repeats itself, we visit D since it has the current shortest distance between 

the unvisited vertices, and the same process is done as shown in Figure 3.3c. 

After visiting all vertices, the table becomes as shown in Figure 3.3d. It shows the shortest 

distances between A and all other vertices, and it shows the previous vertex lead to the shortest 

distance. 

  



26 

 

 Object Detection 
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4.1 Introduction 

For the final part of our project, Recognize and localize a specific object, Preparing to pick up it 

and bring it to a particular location within the map,  Computer vision was chosen to detect the 

object by using You Only Look Once (YOLO) algorithm from images which will be taken by 

the camera. 

The task was separated into two small sections: 

• Detect object and move towards it. 

• Perform the object’s pose estimation with respect to the camera’s coordinate frame. 

Anaconda [30, 31] was used to detect the object with OpenCV [32] (Open Source Computer 

Vision Library), and NumPy library which is an open source library adding support for multi-

dimensional arrays and matrices, along with a large collection of high-level mathematical 

functions to operate on these arrays [33]. 

 

4.2 YOLOv4 Custom Training 

4.2.1 Introduction 

The YOLO v4 release lists three authors: Alexey Bochkovskiy, the Russian developer 

who built the YOLO Windows version, Chien-Yao Wang, and Hong-Yuan Mark Liao. 

Most of the modern accurate models require many GPUs for training with a large mini-

batch size, and doing this with one GPU makes the training really slow and impractical. 

YOLO v4 addresses this issue by making an object detector which can be trained on a 

single GPU with a smaller mini-batch size. It is also YOLO v4 achieves state-of-the-art 

results at a real time speed on the MS COCO dataset with 43.5 % AP running at 65 FPS 

on a Tesla V100 GPU. 

 

4.2.2 Preparing Darknet 

There are very few implementations of the YOLO algorithm that exists on the web. The 

Darknet is one such open-source neural network framework written in C and CUDA and 

serves as the basis of YOLO. It is fast, easy to install, and supports CPU and GPU 

computation. Darknet is used as the framework for training YOLO, meaning it sets the 

architecture of the network. The first author of Darknet is the author of YOLO itself (J 

Redmon). 

Download a darknet file for Yolo v4 from Alexey’s GitHub account by Git tool, Git is an 

open source distributed version control system designed to handle everything from small 

to very large projects with speed and efficiency. It was originally developed by Linus 

Torvalds in 2005 to ease the development of the Linux Kernel [34]. 
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4.2.3 Collecting Data 

1,200 images were taken of the target in different lights, angles and positions to increase 

accuracy as shown in Figure 4.1, 80% of them used for training and 20% as validation set 

for testing to evaluate the performance of the model. 

 

 

Figure 4.1 Images of Our Target 

4.2.4 Labeling 

One of the most important part in the data science process is data pre-processing which 

makes data scientists put lots of time and effort into. Particularly, in the context of 

machine learning, data pre-processing requires a step of labeling. This is the step to detect 

and label data samples into multi-classifications so that the labeled data can be used in the 

further machine learning process. 

Labeling the Target in the images by labeling tool which is a graphical image annotation 

tool which provides images with bounding boxes after labeling and it supports YOLO 

format [34], with this tool, a circumferential rectangle is placed around the object 

manually image by image Such as in Figure 4.2.  

The object has been named Target, then the label is saved as a text file containing the 

coordinates of the four corners of the rectangle.  



29 

 

 

Figure 4.2 Labelling the Target 

 

4.2.5 Google Colab 

Google Colaboratory, or "Colab" is a widely popular cloud service for machine learning 

that features free access to GPU and TPU computing. 

With Colab you can import an image dataset, train an image classifier on it, and evaluate 

the model, all in just a few lines of code. Colab notebooks execute code on Google's 

cloud servers, meaning you can leverage the power of Google hardware that works with 

Ubuntu 18.04.3 operating system, including GPUs and TPUs, regardless of the power of 

your machine. All you need is a browser. 

As of October 13, 2018, Google Colab provides a single 12GB NVIDIA Tesla K80 GPU 

that can be used up to 12 hours continuously, and 68GB storage disk with 12.72GB of 

RAM, Recently, Colab also started offering free TPU. 

There are several benefits of using Colab over using your own local machines. Some of 

the benefits of Colab are: 

• It's not required to do an environment setup, because it comes with important 

packages pre-installed and ready to use. 

• Provides browser-based Jupyter Notebooks. 

• Free Cloud service with free GPU 

• Store Notebooks on Google Drive 

• Importing Notebooks from Github 

• Document code with Markdown 

• Load Data from Drive 
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• Colab is used extensively in the machine learning community with applications 

including: 

• Getting started with TensorFlow 

• Developing and training neural networks 

• Disseminating AI research 

• Creating tutorials 

The darknet file is compressed after adding the data file to it and uploading it to Google 

Drive, then a Google custom file is created. 

 

4.2.6 Start Training 

First, we have to connect the custom file with Google servers, and change the hardware 

accelerator of runtime to GPU to use the google colab in a GPU mode, after that mount 

Google Drive files to google colab. 

Before we start the model training process, at the beginning we have to Setup custom 

darknet environment by following these steps by using some Linux commands, since the 

server is running on Linux operating system: 

• Update repository list 

• Extract the uploaded darknet file into the runtime 

• Go to darknet directory 

• Change permission of darknet of folder to executable 

• Compile darknet framework 

• Remove default backup folder of darknet if exist 

• Create asymbolic link to save the wight directly into google drive backup to get a 

copy of models on our Google Drive for fear of losing data or a sudden internet 

interruption 

• Start training with arguments 

The training process includes continuous several hours depending on the amount of data 

present, this chart in Figure 4.3 shows the overall training loss over time during learning, 

and validation mean average precision (mAP) against iteration number for the training, 

pitted against iterations. As seen in the graph the average loss flattens out past the 1200 

mark, and In Figure 4.4, the outcome of learning process. 

After completing the training process, a weight file is downloaded from backup file in 

google drive, and the configuration file is used with it to detect the object. 
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Figure 4.3 Plot of Average Training Loss and Overall Validation mAP Against Number of Iterations 

 

Figure 4.4 Outcome of Learning Process 
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4.3 Object Detection 

Object identification with anaconda is done by the flowchart below in Figure 4.5. 

 

 

Figure 4.5 Object Detection Flowchart  
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 Experiments and Results 
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5.1 Introduction 

This chapter concludes the experements done using Gazebo simulator for the different parts of 

this project and shows the yeilded results from these experements. 

We have done experements on 10 randomly generated mazes with a constrained size between 

2×2 and 10×10 cells wise, and the cell being a 2m×2m square. 

 

5.2 Mapping 

We built the 10 mazes on Gazebo, then the robot mapped each of them using the auto mapping 

method explained in section 3.2. Figure 5.1 is a block diagram generated by ROS using the 

command (rqt_graph), that shows all the nodes and topics running by ROS while mapping the 

environments. The nodes and topics that are most related to our project are highlighted in red. 

 

 

Figure 5.1 A Block Diagram of All the Nodes and Topics Running by ROS During the Mapping Phase 

 

The mapping results are represented in Table 5.1. 
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Table 5.1 The Experimented Mazes and the Resulting Maps 

Maze 

Number 
Reference Maze Resulting Map 

1 

  

2 

  

3 
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4 

  

5 

  

6 
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7 

  

8 
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9 

  

10 

  

 

The above results verify that the mapping subsystem works as intended. 

 

5.3 Localization and Navigation 

For each one of the generated mazes, we did 10 localization experements for a total of 100 

experements where, for each experement, we placed the robot in a random initial pose inside the 

maze, and gave it a random goal pose, while providing the respective map. 

Figure 5.2 is a block diagram generated by ROS using the command (rqt_graph), that shows all 

the nodes and topics running by ROS during the localization and navigation phase. The nodes 

and topics that are most related to our project are highlighted in red. 
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Figure 5.2 A Block Diagram of All the Nodes and Topics Running by ROS During the Localization and Navigation Phase 

 

In each experement the robot navigates while trying to localize itself until it stops with one of the 

following three cases: 

Case 1: The robot succeeds to localize itself and reaches the goal 

Case 2: The robot fails to localize itself and gives up 

Case 3: The robot localizes itself in a wrong position and thinks it succeeded 

For each experiment, we recorded the case and measured the time of localization and navigation 

for the successful ones, the results are represented in Table 5.2. 
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Table 5.2 Localization and Navigation Experemental Results 

          Maze 

Case 
1 2 3 4 5 6 7 8 9 10 Total 

Case 1 7 6 5 7 5 7 6 3 8 8 62 

Case 2 0 2 1 2 0 0 1 1 2 1 10 

Case 3 3 2 4 1 5 3 3 6 0 1 28 

Success 

Rate 
70% 60% 50% 70% 50% 70% 60% 30% 80% 80% 62% 

Avg Time 

(sec) 
170 87 185 205 58 138 135 282 144 61 139 

 

Below is a timestamp representation of a successful localization attempt by the robot on maze #6 

with T being the time when the goal pose was sent. On the figures, the right window shows the 

simulated environment by Gazebo, and the left window is Rvis showing multiple things 

including the map, a virual robot navigating inside it, a highlight of what the robot is scanning, 

and the particles of the particle filter. 

• At T-4, the goal pose has not been sent to the robot yet, the robot is placed in a random 

pose, the initial pose of the virtual robot is as close to the center of the map as possible, 

and the particles are distributed across the whole map as shown in Figure 5.3. 

 

 

Figure 5.3 Localization Status at T-4 
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• At T, the goal pose has just been sent, the global plan has been set, and the robot is about 

to start navigating as shown in Figure 5.4. 

 

 

Figure 5.4 Localization Status at T 

 

• At T+4, the robot has moved his first steps and the particles are starting to converge as 

shown in Figure 5.5. 

 

 

Figure 5.5 Localization Status at T+4 
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• At T+10, as the robot continues to move, the particles are converging more and more in 

specific places as shown in Figure 5.6. The virtual robot changes position to try to 

loacalize itself in the most probable position, but notice that there are no particles in the 

correct position. 

 

 

Figure 5.6 Localization Status at T+10 

 

• At T+11, as shown in Figure 5.7, a portion of the particles are respread around the map 

by the AMCL algorithm as an attempt to recover from a possible localization failure 

(which actually happened in this example) as explained in section 3.3.2. 

 

 

Figure 5.7 Localization Status at T+11 
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• At T+23, the particles converged again, but still not in the correct position. Look at 

Figure 5.8. 

 

 

Figure 5.8 Localization Status at T+23 

 

• At T+33, another respreading action is attempted, the virtual robot keeps trying the 

positions where the particles converge, but still not correct as shown in Figure 5.9. 

 

 

Figure 5.9 Localization Status at T+33 
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• At T+44, some particles converged in the correct place for the first time as seen in Figure 

5.10. 

 

 

Figure 5.10 Localization Status at T+44 

 

• At T+55, the virtual robot is finally placed in the correct position. Look at Figure 5.11. 

 

 

Figure 5.11 Localization Status at T+55 
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• At T+82, the robot navigates straight to the goal pose and stops for a successful 

localization and navigation attempt, as shown in Figure 5.12. 

 

 

Figure 5.12 Localization Status at T+82 

The above results verify that the localization and the optimal path subsystems work as intended. 

 

5.4 Object Detection 

Random images of the object to be detected were taken from various positions, lights and 

shooting angles. The prediction confidence of object recognition was as follows in the Figure 

5.13 - Figure 5.20. 

 

 

Figure 5.13 99.69% Prediction Confidence 
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Figure 5.14 99.30% Prediction Confidence 

 

 

Figure 5.15 95.10% Prediction Confidence 



47 

 

 

Figure 5.16 97.35% Prediction Confidence 

 

 

Figure 5.17 90.12% Prediction Confidence 

 

 

Figure 5.18 86.23% Prediction Confidence 
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Figure 5.19 95.95% Prediction Confidence 

 

 

Figure 5.20 99.60% Prediction Confidence 

The above results verify that the object detection subsystem works as intended. 

 

5.5 Integration of Subsystems 

After verifying that each subsystem achieves its goal individually, this section shows how those 

subsystems integrate with each other to achieve the goals of the project. 

In the mapping phase, the Rapidly-Exploring Random Tree algorithm searches for the nearest 

undiscovered area in the environment, and creates a goal pose for the robot. Dijkstra’s algorithm 

then finds the optimal path for that goal and creates a global plan. The robot then moves towards 

the goal through that plan. While the robot moves, the LIDAR sensor scans the surroundings and 

the encoder measures the displacement continuously and they both send the data to the 

Occupancy Grid Mapping algorithm which creates a map for the environment. This cycle is 
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repeated until the whole environment is discovered. The map then can be saved to be used in the 

localization phase. 

In the localization phase, the robot is usually placed in an initial pose arbitrary. The user must 

provide the map of the environment (which was created earlier) and must specify an approximate 

position of the target object before the localization is started. Initially, the robot assumes it is in 

the center of the map, the particles of the particle filter are spread across the map, and an initial 

global plan is created by Dijkstra’s algorithm towards the target object. The robot starts moving, 

the LIDAR sensor starts scanning the environment and the encoder starts measuring the 

displacement, and the data is sent to the Adaptive Monte Carlo Localization algorithm (AMCL). 

As the robot moves, the particles converge in some places by the AMCL depending on the 

gathered data. The robot tries to localize itself in the places where the particles are converged, 

and each time, Dijkstra’s algorithm creates a new global plan. This cycle is repeated until the 

robot localizes itself in the correct place and navigates towards the target object. 

When the robot gets close to the target object, the object detection phase starts. The camera starts 

capturing frames of the place where the object is approximately at. These frames are analyzed 

and compared to a custom model for the object which was built previously using the You Only 

Look Once algorithm (YOLO). If the prediction confidence of the target object at any frame is 

above 40%, then the object is considered to be detected, and the robot is then ready for further 

interactions with the object. 

The validation of the system can be achieved after experimental results of the integrated system 

is done. 
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 Conclusion and Future Work 
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6.1 Conclusion 

In this graduation project, we made an intelligent mobile robot to map mazes and then localize 

itself inside them. The robot also can detect and localize a certain object within its environment. 

The Mapping is done using the Occupancy Grid Mapping algorithm and is automated using the 

Rapidly-Exploring Random Tree algorithm, for localization, the robot uses the Adaptive Monte 

Carlo Localization algorithm (AMCL), Dijkstra's algorithm is used for planning the optimal 

path, and You Only Look Once (YOLO) is the algorithm used to create a model to recognize and 

detect the object. Gazebo, a simulation program, is used to navigate a Turtlebot robot inside 

virtual maze environments. The connections between the virtual robot and the algorithms 

mentioned earlier was done through Robot Operating System (ROS). 

One hundred localization experements were done across 10 mazes. We were able to calculate the 

success rate and the average time of the successful attempts of localization and navigation using 

the data collected. 

 

6.2 Future Work 

Some suggestions for future work include modifying the localization algorithm to gather more 

data before judging when the particles are hardly converged in more than one position to reduce 

localization failure, mounting a robotic arm on the robot to interact with objects, automatic 

docking for recharging when the battery is low, and 3-D scanning of the environments for more 

detailed maps. 
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 Kinematics and Dynamics of the Mobile Robot 
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A.1 Introduction  

In this chapter, the kinematics and dynamics of a differential drive mobile robot are derived, and 

the differences between the two models and limitations of the kinematic model are explained. 

 

A.2 Non-Holonomic motion 

Wheels are the most common mechanism to achieve locomotion in mobile robots. Any wheeled 

vehicle is subject to kinematic constraints that reduce its local mobility, for instance, a car can 

reach any final configuration in its plane, but it cannot move sideways. Depending on the goal 

configuration, it requires to perform a series of maneuvers (such as parallel parking) to reach the 

desired state. [35] 

So, the holonomic and non-holonomic systems have to be defined. Consider a mechanical 

system whose configuration 𝑞𝜖𝐶 is described by a vector of generalized coordinates, where C is 

the configuration space of the proposed system and coincides with 𝑅𝑛. For considered system, a 

constraint is called Kinematic when it only involves generalized coordinates (𝑞) and velocities 

(�̇�).[35] 

A nonholonomic constraint is called a Pfaffian constraint if it is linear in q , that is, if it can be 

expressed in the form: 

 

  ( ) 0T
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In compact matrix form the above j Pfaffian constraints can be written as: 
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The nonholonomic constraint encountered in mobile robotics is the motion constraint of a disk 

that rolls on a plane without slipping (Figure A.1). The no-slipping condition does not allow the 

generalized velocities x ,
 
y and   to take arbitrary values. 

Let  r  be the disk radius ,   is wheel angle of rotation which is shown in Figure A.1. Due to the 

no-slipping condition the generalized coordinates are constrained by the following equations: 

(A.4) cosx r =   

(A.5) siny r =   

 

Which are not integrable. These constraints express the condition that the velocity vector of the 

disk center lies in the midplane of the disk. Eliminating the velocity in Eq. (A.4, A.5) gives: 

 
cos sin

x y
v r

 
 == =   (A.6) 

Or 

 sin cos 0x y − =   (A.7) 

 

 

Figure A.1 The generalized coordinates x, y, and φ. 

 

A.3 Kinematics model 

Differential drive mobile robot (DDMR) is considered as unicycle vehicle that has a single 

orientable wheel, its configuration is completely described by q. 

Kinematic modeling is the study of the motion of mechanical systems without considering the 

forces that affect the motion, so the goal is to represent the robot velocities as a function of the 

driving wheels velocities along with the geometric parameters of the robot.[35] 

Indoor and other mobile robots use the differential drive locomotion type. The Pioneer DDMR is 

an example of differential drive WMR. The geometry and kinematic parameters of this robot are 
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shown in Figure A.2. The pose (position/orientation) vector of the DDMR and its speed are 

respectively:[35] 
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The angular positions and speeds of the left and right wheels are  ,
l l

  ,  ,r r 

respectively: 

 
r

l





 
 
  

=q   (A.10) 
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=q   (A.11) 

The following assumptions are made: 

• Wheels are rolling without slippage. 

• The guidance (steering) axis is perpendicular to the plane x yO . 

• The point Q which is shown in Figure A.2 coincides with the center of gravity G, that is 

|| || 0GQ = . 

Let  rv and 
l

v  which are shown in Figure A.2 be the linear velocity of the right and left wheel 

respectively, and 
Qv  the velocity of the wheel midpoint Q of the DDMR. Then, from Figure A.2 

we get: 

 r Q
v v a= +   (A.12) 

 Ql
v v a−=   (A.13) 

Adding and subtracting rv  and 
l

v
 
we get: 

 ( )
1

2 rQ l
v v v= +   (A.14) 

 2 r l
a v v = −   (A.15) 
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Figure A.2 Geometry of differential drive WMR [35] 

 

Figure A.3 Diagram illustrating the nonholonomic constraint [35] 

Where, due to the nonslip assumption, we have: 

 , , ,r r l l
v r v r = =   (A.16) 

   

As in Figure A.3, 
Q

x  and 
Q

y  are given by: 

 cos
Q Q

x v =   (A.17) 

 cos
Q Q

y v =   (A.18) 

 
And so the kinematic model of this DDMR is described by the following relations: 

 ( )cos cos
2 rQ l

r
x    = +   (A.19) 

 ( )sin sin
2 rQ l

r
y    = +   (A.20) 
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 ( )
2 r l

r

a
  = −   (A.21) 

From the kinematic model ((4.19),(4.20),(4.21)) can be written in the driftless affine form: 
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Or 

 p = Jq   (A.23) 

 
And J is the DDMR’s Jacobian: 
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Here, the two 3-dimensional vector fields are: 
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The field  g1  allows the rotation of the right wheel, and  g2  allows the rotation of the left wheel. 

Now, in view of the assumed constraints (pure rolling with no lateral slip) the linear and 

translational velocity of the robot frame (centered at Q ) can be expressed as: 

 

 

cos 0
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Q

Q
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w







 
                
   

=   (A.27) 

 

Where 
Qv   and ω are the linear and angular velocities of the DDMR respectively. The linear 

velocity of the DDMR in the Robot Frame is therefore the average of the linear velocities of the 

two wheels: 



58 

 

 
( )

2

r l

Q

r
v

 +
=   (A.28) 

 

And the angular velocity of the DDMR about the normal (z-axis) is: 

 
( )

2

r l
w

r

a

 −
=   (A.29) 

 

Equations (A.28 and A.29) can be inverted to get the inverse velocity equations as: 
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  (A.30) 

 

A.4 Dynamic model 

The robot kinematics do not represent the actual inputs of the robot motors (i.e. forces and/or 

torques). In other words, we consider that the motors give enough torques to drive the robot 

when dealing just with a kinematic model. The dynamic model of the DDMR is essential for 

simulation, analysis of robot motion, and for the design of motion control algorithm. 

A non-holonomic DDMR with n generalized coordinates (q1, q2, … , qn) and subject to m 

constraints can be described by the following equation of motion: 

 ( ) ( ) ( )T
vB q q+C(q,q)q+F q+g q = τ -M q h   (A.31) 

 τ =T(q)v   (A.32) 

Where, 

B(q) an n ⨯ n symmetric positive definite inertia matrix, 

C(q, q̇) is the centripetal and Coriolis matrix, 

g(q) is the gravitational vector,  

T(q) is the input matrix,  

v is the input vector,   

MT(q) is the matrix associated with the kinematic constraints,   

h is the Lagrange multipliers vector,   

vF denotes the (n×n) diagonal matrix of viscous friction coefficient, 

and τ  is the actuation torques. 

 

There are two methods to derive the dynamic model for the DDMR. Newton-Euler method that 

describes the system in terms of all the forces and momentum acting on the system based of 

direct interpretations of Newton’s Second Law of Motion. And the other one Lagrange method 
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that derive the equations of motion by considering the kinetic and potential energies of the given 

system. Lagrange method is chosen to derive the system model. 

 

 Lagrange dynamic approach 

The Lagrangian L of the mechanical system as the difference between its kinetic and 

potential energy as follows: 

 L T V= −   (A.33) 
 

Where, L is the Lagrange function, T, and V are kinetic and potential energies 

respectively. 

The Lagrange equation can be written in the following form: 

 ( )T

i i

d L L
F M q h

dt q q

 

 

 
 
 
 

+ = −    (A.34) 

Where, 

qi is the generalized coordinates, 

F is the generalized force vector,  

M is  the  constraints matrix,  

and h is the vector of Lagrange multipliers associated with the constraints. 

 

The first step in deriving the dynamic model using the Lagrange approach is to find the 

kinetic and potential energies, since the differential drive mobile robot is moving in the 

X-Y plane, the potential energy is considered to be zero. 

We chose to make the dynamic model of DDMR along with the two motors: 

 

x

y



 
 
 
 
 

=q   (A.35) 

 

             q  is the vector of generalized variables (linear, angular) 

   

Let  be the mass of  DDMR, mrm , 
ml

m  be the masses of the motors mrI , 
ml

I  be the 

moments of inertia with respect to the axes of the two motors and Let mr ml
m m=  and 

mr ml
I I= . 

With the chosen coordinate frames which are shown in Figure A.2 , computation of the 

Jacobians in kinematic model: 
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For the motors: 

Linear and translational velocity: 
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Angular velocity: 
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  (A.37) 

   

Where 
R

K  is the gear ratio of Motor. 
R

K is the same for right and left motor. 

For the DDMR: 

Linear and translational velocity: 
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Angular velocity: 
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=

−

  (A.39) 

 

We can get the inertia matrix using the equation: 
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Which leads to the following:   
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This implies C(q)=0, i.e. there are no contributions of centrifugal and Coriolis forces. 

g(q)=0, since the differential drive mobile robot is moving in the X-Y plane. 

The viscous friction coefficients for each motor
 mrD , respectively, so the matrix of 

viscous friction coefficient is: 
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=   (A.42) 

For the equation of motion: 

 ( ) vB q q +F q = τ   (A.43) 

Solving for  τ  we get: 
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From kinematic model: 
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Taking the derivative for both sides, we get: 
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Which implies: 
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And: 
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 Actuator dynamics 

The DC motors are generally used to drive the wheels of the robot. Since the wheels 

motor are symmetrical, it is considered to derive the model for one of them. There are 

two classes of DC motors control which are a filed-current controlled and armature-

voltage controlled. 

An armature-controlled dc motor shown in Figure A.4Figure A.4 which is the case for our 

robot system, the armature voltage Va is used as the control input while keeping the 

conditions in the field circuit constant. For a permanent-magnet dc motor, we have the 

following equations for the armature circuit: 

 

Figure A.4 Circuit equivalent of a DC motor 

 

Based on circuit model provided in Figure (A.4), and considering the back-EMF voltage 

(vb), induced by the rotation of armature winding, the voltage relation on the armature 

will be: 

 a L Rb
v v v v= + +   (A.52) 

Where, 
Rv , Lv  are voltages across  Ra , La  respectively. 

Back-EMF has a linear relation to the motor angular speed ( mw ) through back EMF 

constant as follow: 

 mb b
v k w=   (A.53) 

By substitute equation (A.53) in equation (A.52) and taking the Laplace transform, the 

following equation is achieved: 

 
a

a
a a a mb

di
v R i L K w

dt
= + +   (A.54) 
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We assume aL
 
equals 0 H. 

In an armature-voltage controlled structure, the motor torque is linearly dependent on the 

armature current by: 

 m m ak i =   (A.55) 

Where, 

m  is the torque of the motor and km is the motor torque constant. 

Then: 
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But these torques of motors without look at the gear ratio, because of that: 

 Rl l
K =

   (A.59) 
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   (A.60) 

And the same thing for the rotation speed of motors: 
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Will be: 
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And: 
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Will be: 
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Where v d= and w = . 

These is the value of constants C1, C2, C3 and C4: 
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Table A.1 shows the system parameters. 

Table A.1 System parameters 

Parameter Description Nominal Value 

 
Armature 

Inductance 
1.5506   ohm 

 Wheel Radius 0.038   m 

 DDWR mass 10   Kg 

 
Motor mass 0.2         Kg 

 DDWR inertia 2   Kg.m2 

 
Motor inertia 0.002     Kg.m2 

 
Half of distance 

between wheels 
0.112  m 

 
Back emf Constant 0.0012    V/rpm 

 
Torque Constant 

0.005     N. 

m/Amp 

 
Armature 

Inductance 
0        H 

 
Gear Ratio 40 

 
viscous friction 

coefficients 
0.12*10-6 

  

aR

r

m

mm

I

mI

a

b
k

mk

aL

R
K

mD
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 Robot Operating System (ROS) 
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B.1 What is ROS? 

ROS is an open-source, meta-operating system for your robot. It provides the services you would 

expect from an operating system, including hardware abstraction, low-level device control, 

implementation of commonly-used functionality, message-passing between processes, and 

package management. It also provides tools and libraries for obtaining, building, writing, and 

running code across multiple computers. ROS is similar in some aspects to “robot frameworks”, 

such as Player, YARP, Orocos, CARMEN, Orca, MOOS, and Microsoft Robotics Studio.[36] 

The ROS runtime "graph" is a peer-to-peer network of processes (potentially distributed across 

machines) that are loosely coupled using the ROS communication infrastructure. ROS 

implements several different styles of communication, including synchronous RPC-style 

communication over services, asynchronous streaming of data over topics, and storage of data on 

a Parameter Server.[36] 

ROS is not a realtime framework, though it is possible to integrate ROS with realtime code. The 

Willow Garage PR2 robot uses a system called pr2_etherCAT, which transports ROS messages 

in and out of a realtime process. ROS also has seamless integration with the Orocos Real-time 

Toolkit.[36] 

 

B.2 How does ROS work? 

According to the ROS wiki page [36], ROS has three levels of concepts: the Filesystem level, the 

Computation Graph level, and the Community level. These levels and concepts are summarized 

below.  

 ROS Filesystem Level 

The filesystem level concepts mainly cover ROS resources that you encounter on disk, 

such as: 

• Packages: Packages are the main unit for organizing software in ROS. A package 

may contain ROS runtime processes (nodes), a ROS-dependent library, datasets, 

configuration files, or anything else that is usefully organized together. Packages 

are the most atomic build item and release item in ROS. Meaning that the most 

granular thing you can build and release is a package. 

• Metapackages: Metapackages are specialized Packages which only serve to 

represent a group of related other packages. Most commonly metapackages are 

used as a backwards compatible place holder for converted (rosbuild Stacks). 

• Package Manifests: Manifests (package.xml) provide metadata about a package, 

including its name, version, description, license information, dependencies, and 

other meta information like exported packages. 

• Repositories: A collection of packages which share a common VCS7 system. 

Packages which share a VCS share the same version and can be released together 

using the catkin release automation tool (bloom). Often these repositories will map 

to converted (rosbuild Stacks). Repositories can also contain only one package. 

 
7 VCS: Version control system 
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• Message (msg) types: Message descriptions, stored in 

(my_package/msg/MyMessageType.msg), define the data structures for messages 

sent in ROS. 

• Service (srv) types: Service descriptions, stored in 

(my_package/srv/MyServiceType.srv), define the request and response data 

structures for services in ROS. 

 

 ROS Computation Graph Level 

The Computation Graph is the peer-to-peer network of ROS processes that are processing 

data together. The basic Computation Graph concepts of ROS are nodes, Master, 

Parameter Server, messages, services, topics, and bags, all of which provide data to the 

Graph in different ways.[36] 

• Nodes: Nodes are processes that perform computation. ROS is designed to be 

modular at a fine-grained scale; a robot control system usually comprises many 

nodes. For example, one node controls a laser range-finder, one node controls the 

wheel motors, one node performs localization, one node performs path planning, 

another one provides a graphical view of the system, and so on. A ROS node is 

written with the use of a ROS client library, such as (roscpp) or (rospy). 

• Master: The ROS Master provides name registration and lookup to the rest of the 

Computation Graph. Without the Master, nodes would not be able to find each 

other, exchange messages, or invoke services. 

• Parameter Server: The Parameter Server allows data to be stored by key in a 

central location. It is currently part of the Master. 

• Messages: Nodes communicate with each other by passing messages. A message is 

simply a data structure, comprising typed fields. Standard primitive types (integer, 

floating point, boolean, etc.) are supported, as are arrays of primitive types. 

Messages can include arbitrarily nested structures and arrays (much like C structs). 

• Topics: Messages are routed via a transport system with publish / subscribe 

semantics. A node sends out a message by publishing it to a given topic. The topic 

is a name that is used to identify the content of the message. A node that is 

interested in a certain kind of data will subscribe to the appropriate topic. There 

may be multiple concurrent publishers and subscribers for a single topic, and a 

single node may publish and/or subscribe to multiple topics. In general, publishers 

and subscribers are not aware of each other’s existence. The idea is to decouple the 

production of information from its consumption. Logically, one can think of a topic 

as a strongly typed message bus. Each bus has a name, and anyone can connect to 

the bus to send or receive messages as long as they are the right type. Figure B.1 

shows how data is exchanged between publishers and subscribers through topics. 

• Services: The publish / subscribe model is a very flexible communication 

paradigm, but its many-to-many, one-way transport is not appropriate for request / 

reply interactions, which are often required in a distributed system. Request / reply 

is done via services, which are defined by a pair of message structures: one for the 

request and one for the reply. A providing node offers a service under a name and a 
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client uses the service by sending the request message and awaiting the reply. ROS 

client libraries generally present this interaction to the programmer as if it were a 

remote procedure call. 

• Bags: Bags are a format for saving and playing back ROS message data. Bags are 

an important mechanism for storing data, such as sensor data, that can be difficult 

to collect but is necessary for developing and testing algorithms. 

 

 

Figure B.1 Data Exchange with ROS Publishers and Subscribers 

 

 ROS Community Level 

The ROS Community Level concepts are ROS resources that enable separate 

communities to exchange software and knowledge. These resources include: 

• Distributions: ROS Distributions are collections of versioned stacks that you can 

install. Distributions play a similar role to Linux distributions: they make it easier 

to install a collection of software, and they also maintain consistent versions across 

a set of software. 

• Repositories: ROS relies on a federated network of code repositories, where 

different institutions can develop and release their own robot software components. 

• The ROS Wiki: The ROS community Wiki is the main forum for documenting 

information about ROS. Anyone can sign up for an account and contribute their 

own documentation, provide corrections or updates, write tutorials, and more. 

• Mailing Lists: The ros-users mailing list is the primary communication channel 

about new updates to ROS, as well as a forum to ask questions about ROS 

software. 

• ROS Answers: A Q&A site for answering your ROS-related questions. 

• Blog: The (ros.org) Blog provides regular updates, including photos and videos. 

[36] 
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B.3 ROS Capabilities 

Although ROS requires a computer’s operating system to run, it can perform many functions of 

an operating system, because of that, ROS is sometimes called a meta operating system. One of 

the main purposes of ROS is to provide communication between the user, the computer’s 

operating system, and equipment external to the computer including robots and sensors.[37] 

Hardware abstraction is one of the best benefits of ROS, because it gives the user the ability to 

control robots without the need of knowing all the details about them. For example, one can 

control the movement of a robot’s arm by issuing a ROS command, or using some scripts written 

by the designers of the robot.[37] 

ROS also provides some simulation options to give the ability to design and simulate your own 

robot, like Rviz and Gazebo.[37] 

 

 Robots using ROS 

The huge advantages and capabilities of ROS have driven so many companies to develop 

and manufacture ROS-enabled robots. Here is a list of some of them: 

• ABB, Adept, Fanuc, Motoman, and Universal Robots are supported by ROS-

Industrial. 

• Baxter at Rethink Robotics, Inc. 

• HERB developed at Carnegie Mellon University in Intel's personal robotics 

program. 

• Husky A200 robot developed (and integrated into ROS) by Clearpath Robotics. 

• PR1 personal robot developed in Ken Salisbury's lab at Stanford. 

• PR2 personal robot being developed at Willow Garage. 

• Raven II Surgical Robotic Research Platform. 

• Shadow Robot Hand, A fully dexterous humanoid hand. 

• STAIR I and II robots developed in Andrew Ng's lab at Stanford. 

• SummitXL: Mobile robot developed by Robotnik, an engineering company 

specialized in mobile robots, robotic arms, and industrial solutions with ROS 

architecture. 

• Nao humanoid: University of Freiburg's Humanoid Robots Lab developed a ROS 

integration for the Nao humanoid based on an initial port by Brown University. 

• UBR1 developed by Unbounded Robotics, a spin-off of Willow Garage. 

• ROSbot: autonomous robot platform by Husarion. 

• Webots: robot simulator integrating a complete ROS programming interface.[38] 

For more information on robots using ros, you can refer to [39]. 
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B.3.1.1 TurtleBot 2 

The TurtleBot 2 is one of the non-holonomic robots. Holonomic refers to the 

relationship between controllable and total degrees of freedom of a robot. If the 

controllable degree of freedom is equal to total degrees of freedom, then the robot is 

said to be Holonomic, and if the controllable degree of freedom is less than the total 

degrees of freedom, then it is known as non-holonomic drive.[40]  

TurtleBot 2 is differential mobile robot, this means it has two active wheels, and two 

passive wheel works as a support. 

This mobile robot officially proposed by Willow Garage to develop in the operating 

system dedicated to robotics: ROS. It is equipped with a Kinect sensor, a Netbook, 

trays for the installation of these two components and a Kobuki base as shown in 

Figure B.2.[41] 

 

 

Figure B.2 TurtleBot 2 
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Figure B.3 shows the anatomy of Kobuki base. 

 

a) 

 

b) 

 

 

Figure B.3 Anatomy of Kabuki. a) Top view. b) Bottom view. 
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Figure B.4 shows the main components of Kobuki base. 

 

 

Figure B.4 Kobuki base components 

 

 

 

Specifications 

• Max. mass of payload, mL = 5 Kg. 

• Total mass of robot, m = 5  Kg. 

• Dimensions 354 x 354 x 420 mm 

• Radius of wheel, r = 0.038  m. 

• Maximum translational velocity, V: 65 cm/s 

• Maximum rotational velocity, W:180 deg/s 

• Threshold Climbing: climbs thresholds of 12 mm or lower  

• Rug Climbing: climbs rugs of 12 mm or lower 

• Ground clearance: 1.5cm. 

• Bumpers: left, center, right 
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Sensors 

1) Cliff Sensor 

TurtleBot2 uses 3 Cliff sensors:  left, center, right.[42] 

A Cliff Sensor is important to have on certain robotic systems to avoid excessive 

drops that otherwise might damage the robot.  TurtleBot2 come with a cliff sensor 

to help them avoid driving over stairwells or ledges.[43] 

A cliff sensor can be mechanical, optical, or even ultrasonic - however they all 

accomplish the same purpose. The TurtleBot2 uses an optical cliff sensor - which 

shines an LED onto the ground at an angle that is picked up from a sensor. When 

the TurtleBot2 comes across a large drop off, the reflected light from the LED is no 

longer detected into the receiver, and the TurtleBot2 registers the drop off.[43] 

Cliff: will not drive off a cliff with a depth greater than 5cm.[42] 

 

2) Wheel drop sensor 

TurtleBot2 mobile robot include a wheel drop behavior for detecting floor 

transitions and drops, as well as gradually sloping obstacles or objects which might 

not otherwise be detected by bumpers or other obstacle detection sensors.  

For example, if the front of the robot rides up on a shallow transition in the floor, or 

when the front of the robot is lifted by a gradual rise or object on the cleaning 

surface that does not alert the robot to its presence by triggering a bumper or other 

sensor, the front wheels of the robot may drop down and thus lose contact with the 

surface. 

 

3) Encoders: 25700 cps (11.5 ticks/mm)[42] 

Encoders are sensors attached to a rotating object (eg. wheels or motors) to measure 

rotation. By measuring the rotation, the displacement, speed and acceleration of the 

robot can be determined. These encoders allow location by odometry. The 

odometry is based on the individual measurement of wheels movements to 

reconstruct the overall movement of the robot. Starting from a known initial 

position and integrating the measured displacements, it is then possible to calculate 

at each instant the current position of the mobile robot.[41] 

 

4) Motor Overload Detection 

Disables power on detecting high current (>3A), this is a safety feature in 

TurtleBot2.[41] 

 

5) gyro sensor 

Gyro sensors, also known as angular rate sensors or angular velocity sensors, are 

devices that sense angular velocity. Gyro sensors sense angular velocity from the 

Coriolis force applied to a vibrating element. For this reason, the accuracy with 
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which angular velocity is measured differs significantly depending on element 

material and structural differences. Here, we briefly describe the main types of 

elements used in vibration gyro sensors.[44]  

Gyroscopic sensors used in controlling system allows to monitor exact position of 

robot. These information can be applied for robot controlling, its autonomous 

control or its tracking. Inertial navigation is completely autonomous and 

independent from surroundings, i.e. the system is resistant from external influences 

as magnetic disturbances, electronically disturbance, signal deformation, etc. For 

mobile robots to be successful, they have to move safely in environments populated 

and dynamic. While recent research has led to a variety of localization methods that 

can track robots well in static environments, we still lack methods that can robustly 

localize mobile robots in dynamic environments.[45] 

Specifications[42] 

• 3-Axis Digital Gyroscope. 

• Manufacturer : STMicroelectronics. 

• Part Name : L3G4200D  

• Measurement Range: ±250 deg/s. 

• Yaw axis is factory calibrated within the range of ±20 deg/s to ±100 deg/s 

 

6) Kinect sensor 

Figure B.5 show the main Kinect components. We focus on the following:  

a) RGB (Red Green Blue) camera that stores data in three channels with a 

resolution of 1280x960 pixels. It allows the capture of a color image.[22] 

b) Infrared transmitter / receiver (IR) and IR depth sensor. The transmitter emits 

beams of IR light and the depth sensor reads the IR beams reflected by the 

obstacles encountered. The reflected beams are converted into depth information 

thus measuring the distance between the obstacle and the sensor. This 

technology allows the capture of a depth image.[22]  

 

 

Figure B.5 Kinect components 
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Table B.1 Some specifications of Kinect 

Kinect Specifications 

Viewing angle 
Field of View (FoV): 43° vertical x 57° 

horizontal 

Vertical tilt range ±27° 

Frame rate (depth and color stream) 30 frames per second (FPS) 

 

The data come from Kinect will send to the laptop by a USB cable which will 

contain the detection of the object and its location. 

 

7) 2D Laser range finder: model number is URG-04LX-UG01, made by 

HOKUYO company.  

Laser proximity sensors constitute a special case of optical sensors that have a 

range from centimeters to meters. They are commonly called laser radars (or 

LIDARs = light direction and ranging sensors). Energy is emitted at impulses. The 

distance is computed from the time-of-flight. They can also be employed as laser 

altimeters for obstacle avoidance or for vehicle detection in highways. 

The URG-04LX-UG01 scanning laser rangefinder is a low power, small, accurate, 

high-speed device for obstacle detection. Using the USB interface for power and 

communication, this unit can obtain measurement data in a 240° field of view up to 

a distance of 5.6 meters.[46] 

We use this LIDAR to make a map for the environment, and after that we will use it 

for Localization. Figure B.6 shows the LIDAR sensor. 

Specification[46] 

• Light source: Semiconductor laser diode 

• Scanning range: 0.02 - 5.6m, 240°. 

• Measuring accuracy: ±30mm (0.02 - 1m) , ±3% of measurement (1 - 5.6m) 

• Angular resolution: 0.352° (360°/1,024 steps) 

• Scanning frequency:  10Hz (600rpm). 

• Power source:  USB bus power 

• Power consumption: 0.5A or less 

• Weight: 160g  

• Size (W X D X H): 50 x 50 x 70 mm. 

• 5V operating voltage 
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• Resolution 1 mm. 

 

Figure B.6 LIDAR sensor 

 

Battery and Power System 

As we explained before, the TurtleBot2 consists of two motors, Cliff sensors, wheel 

drop sensor, encoders, gyro sensor, bump sensor and Kinect sensor. All these 

components will be powered by 2200 mAh Li-Ion battery. 

All connectors in the Control Panel are powered by lithium battery to use them in 

some tasks. 

 

Control Panel [42] 

Figure B.7 shows the control panel of Kobuki base. 

 

 

Figure B.7 Control panel for Kobuki 

 

• 19V/2A: Laptop power supply, we can recharge the laptop from this connector 

(only enabled when robot is recharging).  

• 12V/5A: Arm power supply.  

• 12V/1.5A: Xbox Kinect power supply. 

• 5V/1A: General power supply 
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The 2D Laser range finder has a different case, which is powered by the laptop 

through the USB wire. 

 

Power Adapter [42] 

Table B.2 shows the input/output specifications of the power adapter. 

 

Table B.2 I/O specifications of power adapter 

Input 

Voltage: 100-240V 

Frequency: 50/60Hz 

Ampere: 1.5A Max 

Output 

Voltage: 19V 

Ampere: 3.16A 
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 ROS Adjustable Parameters 
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C.1 AMCL Adjustable Parameters 

<launch> 

<node pkg="amcl" type="amcl" name="amcl" output="screen"> 

<!-- Publish scans from best pose at a max of 10 Hz --> 

<param name="odom_model_type" value="diff" /> 

<param name="odom_alpha5" value="0.1" /> 

<param name="transform_tolerance" value="0.2" /> 

<param name="gui_publish_rate" value="10.0" /> 

<param name="laser_max_beams" value="30" /> 

<param name="min_particles" value="500" /> 

<param name="max_particles" value="5000" /> 

<param name="kld_err" value="0.05" /> 

<param name="kld_z" value="0.99" /> 

<param name="odom_alpha1" value="0.2" /> 

<param name="odom_alpha2" value="0.2" /> 

<!-- translation std dev, m --> 

<param name="odom_alpha3" value="0.8" /> 

<param name="odom_alpha4" value="0.2" /> 

<param name="laser_z_hit" value="0.5" /> 

<param name="laser_z_short" value="0.05" /> 

<param name="laser_z_max" value="0.05" /> 

<param name="laser_z_rand" value="0.5" /> 

<param name="laser_sigma_hit" value="0.2" /> 

<param name="laser_lambda_short" value="0.1" /> 

<param name="laser_lambda_short" value="0.1" /> 

<param name="laser_model_type" value="likelihood_field" /> 

<!--<param name="laser_model_type" value="beam"/> --> 

<param name="laser_likelihood_max_dist" value="2.0" /> 

<param name="update_min_d" value="0.2" /> 

<param name="update_min_a" value="0.5" /> 

<param name="odom_frame_id" value="odom" /> 
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<param name="resample_interval" value="1" /> 

<param name="transform_tolerance" value="0.1" /> 

<param name="recovery_alpha_slow" value="0.0" /> 

<param name="recovery_alpha_fast" value="0.0" /> 

</node> 

</launch> 

 

C.2 gMapping Adjustable Parameters 

<launch> 

  <arg name="scan_topic" default="scan" /> 

  <node pkg="gmapping" type="slam_gmapping" name="slam_gmapping" output="screen"> 

    <param name="base_frame" value="base_footprint"/> 

    <param name="odom_frame" value="odom"/> 

    <param name="map_update_interval" value="5.0"/> 

    <param name="maxUrange" value="6.0"/> 

    <param name="maxRange" value="8.0"/> 

    <param name="sigma" value="0.05"/> 

    <param name="kernelSize" value="1"/> 

    <param name="lstep" value="0.05"/> 

    <param name="astep" value="0.05"/> 

    <param name="iterations" value="5"/> 

    <param name="lsigma" value="0.075"/> 

    <param name="ogain" value="3.0"/> 

    <param name="lskip" value="0"/> 

    <param name="srr" value="0.01"/> 

    <param name="srt" value="0.02"/> 

    <param name="str" value="0.01"/> 

    <param name="stt" value="0.02"/> 

    <param name="linearUpdate" value="0.5"/> 

    <param name="angularUpdate" value="0.436"/> 

    <param name="temporalUpdate" value="-1.0"/> 

    <param name="resampleThreshold" value="0.5"/> 
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    <param name="particles" value="80"/> 

    <param name="xmin" value="-50.0"/> 

    <param name="ymin" value="-50.0"/> 

    <param name="xmax" value="50.0"/> 

    <param name="ymax" value="50.0"/> 

    <param name="delta" value="0.01"/> 

    <param name="llsamplerange" value="0.01"/> 

    <param name="llsamplestep" value="0.01"/> 

    <param name="lasamplerange" value="0.005"/> 

    <param name="lasamplestep" value="0.005"/> 

    <remap from="scan" to="$(arg scan_topic)"/> 

  </node> 

</launch> 
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 YOLO Algorithm 
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D.1 You Only Look Once (YOLO) 

You Only Look Once (YOLO) is a deep neural network that evolutionarily reframed object 

detection and recognition from RGB images to be a single regression problem directly from the 

image to object’s bounding boxes and class probabilities. YOLO neural network is proved to be 

very fast, where its base network reaches a processing speed of 45 fps on an Nvidia Titan X 

GPU. A faster version of the network, which has lower number of layers, reaches a processing 

speed of 150 fps on the same GPU. 

The architecture of YOLO network is inspired by GoogLeNet [47], network that is used for 

image classification. YOLO network contains 24 convolutional layers, 4 max pooling layers, and 

2 fully connected layers, which are architected as shown in these, 30 totally, layers are used in a 

simple task, which is to detect the objects in a RGB image and recognize their types. YOLO 

works in a simple way, as shown in Figure D.1, where the input images to the network are 

resized to 480 x 480, apply the convolutional neural network algorithm on the resized image, and 

apply a clipping threshold on the output detections’ confidence from the network.  

The main difference between YOLO and the other approaches for object detection and 

recognition (i.e. R-CNN) is that YOLO evaluates the whole image in one shot direct to the 

bounding boxes and class probabilities[48]. 

 

 

Figure D.1 YOLO Architecture 

D.2 How YOLO Works 

Here are the fundamental concepts of how YOLO object detection is able to detect an object. 

The YOLO detector can predict the class of object, its bounding box, and the probability of the 

class of object in the bounding box. Each bounding box is having the following parameters: 
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• The center position of the bounding box in the image (bx, by) 

• The width of the box ( bw ) 

• The height of the box ( bh ) 

• The class of object ( c ) 

As shown in Figure D.2. 

 

Figure D.2 Parameters of bounding box 

Each bounding box is associated with a probability value (pc), it is the probability of a class of 

object in that bounding box. The YOLO is splitting the image into several cells typically using a 

19×19 grid. Each cell is responsible for predicting 5 bounding boxes (there can be one or more 

objects in a cell). If it does that, it will finally end up in 1805 bounding boxes for one image as 

shown in Figure D.3. 

 

Figure D.3 Splitting the Image by a 19×19 grid 
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Most of the bounding boxes in the cell may not have an object. The filtration of these bounding 

boxes is done based on the probability of object class pc. The non-max suppression processes 

will eliminate the unwanted bounding boxes and only the highest probability bounding boxes 

will remain As shown in the Figure D.4, it will be used when the image is displayed and the 

object is recognized[49]. 

 

Figure D.4 The Effect of non-max suppression 
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