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  الإهداء

ي زمن الظلم والظلمات ...  رسول الله صلى الله عليه وسلم 
 
 إلى الرحمة المهداة ف

 إلى ورثة الأنبياء بعلمهم ...علماؤنا الأجلاء 

 إلى من عبدت لىي بحبها طريق الجنان ... نبع الحنان أمي الحبيبة

الندى مجتهدا ليوفر لىي الحياة الكريمة ...والدي الحبيبإلى الذي تناثرت قطرات العرق على جبينه كقطر   

ي 
ي وأخوان 

ي معمعان الحياة ... إخوان 
 
 إلى الذين كانوا لىي أنسا ف

 إلى الذين رفعوا لواء العشق الأبدي عبورا نحو جنان الرحمن شهداؤنا الأماجد 

اتنا وأسرانا البواسل ي سماء العزة والإباء ... أسير
 
 إلى البيارق الخفاقة ف

وَ القلوب وإلى كل ذرة من أرض الرباط فلسطير  بأهلها وطهرها وقفارها.. 
ْ
 إلى أقصانا ومسرانا مَه

ي شت  ربوع الوطن شمالها وجنوب  ها ... 
 
ات العودة ف  إلى مسير

وع، بتشجيعهم ودعائهم المتواصل، والذين كان لهم   ي هذا المسرر
 
إلى كل الإخوة والأخوات الذين ساهموا وعملوا ف

ي تنفيذه. صدق 
 
 مؤازرتنا ف

ء الطریق أمامي  ي
 أصبح سنا برقه یض 

ً
ي حرفا

فنا الدكتور غادي زكارنة ثم إلى كل من علمت  ي النجاح ... مسرر
 إلى من علمت 

" وقل اعملوا فسيرى الله عملكم ورسوله والمؤمنون، وستردون إلى عالم الغيب والشهادة فينبئكم بما كنتم تعملون"   

عمل ليكم جميعا نهدي هذا الإ  
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ABSTRACT 

 

Global \ Local Geoid Models Accuracy Assessment in Palestine 

 

Prepared by: 

Mohammad Yaqoub Assfor                                   Mohannad Mohammad Turman 

Wafa Ali Zamareh 

 

Supervisor: 

Dr. Ghadi Younis - Zakarneh  

     This project aims to apply field tests and accuracy assessment of the global geoid models 

and the locally used geoid models in Palestine, by means of statistical analysis using the 

network benchmarks in Palestine. 

     To evaluate the accuracy of the different geoid models, a group of precise leveling 

benchmarks was measured by classical GNSS methods (RTK). The ellipsoidal height (h) by 

GNSS and the orthometric height (H) by precise leveling provide a local geoid separation at 

the point (N). Geoid separation was calculated from the original global models and local 

models typically uploaded to the GNSS receivers. The differences were statistically analyzed 

to provide general descriptions. Also, local geoid fitting approaches were tested to enhance 

the accuracy of the global models. 

     Finally; description and accuracy analysis of the different geoid models were provided. 

The recommendation of the best field procedure that can be applied in the field was prepared, 

and the best result of accuracy came from (XGM2019e_2159) model.  
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 الملخص

ي فلسطير   
 تقييم دقة انظمة الجيوئيد المحلية والعالمية ف 

 مجموعة العمل: 

 طرمان  محمد  مهند                                                 عصفور يعقوب محمد 

زماعره  عل   وفاء   

 

ف:   المسرر

زكارنه  يونس الدكتور غادي  

وع إلى تطبيق اختبارات ميدانية، وعمل تقييم لدقة نماذج الجيوئيد العالمية،       يهدف هذا المشر

ن عن طريق    فلسطي 
 فن
ً
   رصد والنماذج المستخدمة محليا

نقاط الارتفاع المرجعية الموجودة فن

 . ن  فلسطي 

وع رصد مجموعة من نقاط الارتفاع          هذا المشر
لتقييم دقة نماذج الجيوئيد المختلفة، تم فن

المرجعية باستخدام طرق الرصد المتعارف عليها و ه  أنظمة الملاحة العالمية بالأقمار 

( باستخدام أنظمة  hتم قياس الارتفاع عن سطح الإليبسويد) و الصناعية)طريقة الرصد المتحرك(، 

  عن سطح الجيوئيد ) الملاحة ا
( باستخدام Hلعالمية بالأقمار الصناعية، وقياس الارتفاع الحقيق 

تم حساب ارتفاع الجيوئيد و معرفة ارتفاع الجيوئيد عن هذه النقطة،  بهدف التسوية الدقيقة وذلك

  يتم تحميلها الى مستقبلات أنظمة  
عن طريق النماذج العالمية، والنماذج المحلية للجيوئيد الت 

ن أنظمة الجيوئيد العالمية وأنظمة الجيوئيد ا لملاحة العالمية بالأقمار الصناعية. الاختلافات بي 

 لإعطاء وصف عام عن هذا الاختلاف. وتم عمل اختبار دقة  لمحليةا
ً
سوف تم تحليلها إحصائيا

 لملائمة نماذج الجيوئيد المحلية مع نماذج الجيوئيد العالمية. 

       
  نماذج الجيوئيد، وتم إعداد وفن

النهاية؛ تم إعطاء وصف عام وتحليل دقيق عن الاختلافات فن

  هذا المجال للحصول عل الدقة العالية
  يمكن تطبيقه فن

، وأفضل نتيجة  توصية لأفضل إجراء ميدانن

 .(XGM2019e_2159)من الدقة تم الحصول عليها من نموذج الجيوئيد المسمى 
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Introduction 

1.1 Background 

     Geodesy is a branch of applied mathematics which determines by observation and 

measurement the exact positions of points and areas of large portions of the earth's surface, 

the shape and size of the earth, and the variations of terrestrial gravity. The points positions 

are measured and identified by two components (Positions), Horizontal Positions and Vertical 

Positions. [1] 

     Horizontal Positions are the location of a point relative to two axes, the equator and the 

prime meridian on the globe, or x and y axes in a plane coordinate system, and the point 

position is defined in polar coordinates (λ, ϕ) or by Cartesian coordinates (geocentric 

coordinates) (X, Y), it can possible to convert between these coordinate systems by a set of 

equations and parameters, and also convert from these coordinate systems to Easting and 

Northing projected coordinates by using map projections. [7] 

     Vertical Positions are the height of a point relative to some reference surface, such as 

mean sea level, a geoid, or an ellipsoid, and there are several different ways to measure 

heights.  [7] 

     The geoid is a level, or equipotential surface, where the gravity potential is a constant 

value. The gravity force vector acts perpendicular to this surface. A good example of a level 

surface would be a large body of water where the force of gravity acts on the water such that 

a constant surface is formed, see figure (1.1). [1] 

 

Figure (1.1): Geoid of the earth 
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     The orthometric (geoid) height of a point of the Earth Surface is the distance (H) from 

the point to the geoid, and we can measure it by precise leveling. [7] 

     The Global Navigation Satellite Systems (GNSS) are systems of satellites that 

continuously provide positioning possibilities with global coverage. They allow 

small electronic receivers to determine their location (longitude, latitude, and altitude) to high 

precision (within a few meters to sub-centimeter) using time radio signals transmitted along 

a line of sight by satellites. The signals also allow the electronic receivers to calculate the 

current local time to high precision. [2] 

     The global geocentric reference frame and coordinates system is known as the World 

Geodetic System 1984 (WGS84) has been developed continuously since its creation in the 

mid-1980s. The WGS84 continues to provide a single, common, accessible     3-dimensional 

coordinate system for global data collected from different sources. Some of these geospatial 

data require a high degree of accuracy and require a global reference frame that is free of any 

significant distortions or biases. For this reason, a series of improvements to WGS84 were 

developed in the past years, which served to refine the original version. The data collected by 

the GNSS according to the WGS84 reference system can easily be transformed into any local 

coordinates system. [2] 

     Real-Time Kinematic (RTK) is one of the most common poisoning methods in GNSS. It 

is a Kinematic method of the GNSS survey carried out in real-time. The Reference Station 

has a radio (link/ internet connection) attached and rebroadcasts the data and correction it 

receives from the satellites to the rover station. The virtual reference station (VRS) concept of 

RTK can help to satisfy this requirement using a network of reference stations, to cover a 

wide area and high positioning accuracy using continuously operation network of reference 

stations and internet connections to the users. [2] 

     The ellipsoidal height of a point of the Earth Surface is the distance (h) from the point to 

the ellipsoid, and we can measure it by GNSS. [7] 

     The geoid height above the ellipsoid (N) is the difference between the ellipsoidal 

height and orthometric (geoid) height. [7] 

http://en.wikipedia.org/wiki/Electronics
http://en.wikipedia.org/wiki/Longitude
http://en.wikipedia.org/wiki/Latitude
http://en.wikipedia.org/wiki/Altitude
http://en.wikipedia.org/wiki/Time_signal
http://en.wikipedia.org/wiki/Line-of-sight_propagation
http://en.wikipedia.org/wiki/Satellite
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Figure (1.2): Geoid Height& Ellipsoidal Height& Orthometric Height 

 

1.2 Problem Statement        

     The global navigation system gives (1) centimeter accuracy of measurement in both 

horizontal and vertical coordinates in Geodetic systems like; WGS84, but The global 

navigation system does not reach (1) centimeter accuracy in local vertical measure much 

worse accuracy up to many centimeters; due to the difference in geoid systems, and satellite 

geometry, these errors make it impossible to make precise leveling using GNSS, therefore 

users are forced to use additional instrument (like level) and more working staffs, so to solve 

the problem, it is important to use a proper precise geoid model to define heights by GNSS in 

Palestine, here; an evaluation of the common models is applied to help to decide the most 

proper one. 

1.3 Objective 

These project aims are: 

• Apply field tests and accuracy assessment of the global geoid models and the locally used 

geoid models in Palestine, by means of statistical analysis using the network benchmarks 

in Palestine. 

• Provide description and accuracy analysis of the different geoid models. 

• Prepared recommendation of best field procedure that can be applied in the field. 

• Know the appropriate geoid system in Palestine to obtain the required accuracy. 
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1.4 Methodology 

     The Methodology of work in this project will be achieved by observing a group of 

benchmarks using the RTK (Real-Time Kinematic) GNSS (The Global Navigation Satellite 

Systems) surveying for fixed period time (2 minutes), and by precise leveling, then 

evaluating the accuracy of the different geoid models, and find the appropriate geoid system 

in Palestine. Finally, the different geoid models will compare to decide the best fitting geoid 

for Palestine. 

1.5 Project Scope 

This project consists of the following chapters: 

     The first chapter is "Introduction", it describes an introduction about geodesy, and GNSS, 

the problem statement of the project, the objective of the project, the methodology of the 

project, and project scope. 

     The second chapter is "Geodetic and Gravimetric Networks", this chapter mainly 

discusses geodetic networks, types of geodetic networks (vertical, horizontal, and three 

dimensional) and gravimetric networks, the methods and the principles.  

     The third chapter is "Global and local gravity field modeling", it describes the general 

methods for global and local potential modeling using Spherical Harmonics, the Stokes 

formula, least-squares collocation, and the Finite elements methods are introduced. The 

principle of Integrated Geodesy is also introduced, and a general overview of the state-of-the-

art of the latest global and local gravity and geoid models is provided.  

     The fourth chapter is "Data and Analysis", it describes the Global and Local evaluation of 

the Geoid models, and it explains and shows the main result of this project. 

     The fifth chapter is "Conclusion and Recommendation", it provides the description and 

accuracy analysis of the different geoid models, and it prepares the recommendation of the 

best field procedure that can be applied in the field. 
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Chapter Two: 

Geodetic and Gravimetric Networks 

2.1 Introduction 

2.2 Horizontal Control Networks 

2.3 Vertical Control Networks 

2.4 The Three-Dimensional Networks 

2.5 Gravimetric Networks 
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Geodetic and Gravimetric Networks 

2.1 Introduction 

      Geodetic and gravimetric networks consist of monumented control points that provide the 

reference frames for positioning and gravity-field determination. In the sequel, we 

concentrate on regional networks that are established nation- or continent-wide. They serve 

as the basis for all kinds of surveying and navigation, as well as for geoinformation systems 

including topographic and thematic map series, and for the investigation of recent 

geodynamics. Regional networks are increasingly derived from or integrated into global 

reference frames established and maintained by international conventions. Local networks are 

established, e.g., for engineering and exploration projects, real estate surveys and crustal 

movement investigations. They generally follow similar rules as regional networks at design, 

measurement, and evaluation adapted to the specific demands and peculiarities of the 

respective problem. [3]  

     Until recently, horizontal and vertical control networks have been established separately, 

following the classical treatment of (horizontal) positioning and heightening. These networks 

still are the basis of national geodetic reference systems, and they even have been partly 

combined with continent-wide systems. For some decades, geodetic space methods allow the 

establishment of three-dimensional (3D) networks orientated with respect to a geocentric 

reference system. Today, these methods are characterized by very efficient procedures and 

homogeneous results of high accuracy, and consequently, they are superseding the classical 

control networks. Strong endeavors are made now to integrate these networks into the 3D 

frame which also requires the inclusion of a geoid model. Gravity networks serve the 

different needs of geodesy and geophysics, with the reference provided either by a global 

gravity standardization net or by absolute gravimetry; they are now also tied to the 3D 

geodetic reference frame. [3] 

This chapter mainly discusses Geodetic and Gravimetric Networks, the methods, principles. 

2.2 Horizontal Control Networks 

     National horizontal control networks were established from the eighteenth century until 

the 1980s, where the networks’ design, observation, and computation methods changed with 

the available techniques. Computations were carried out on a conventional reference ellipsoid 

fitted to the survey area. Since the 1960s, spatial geodetic methods have allowed orientation 
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of the classical networks with respect to the global geocentric reference system and control of 

scale and systematic distortions. In the following, we describe the design of these networks, 

the measurement and computation techniques applied, the accuracy achieved, and the 

orientation with respect to the Earth’s body (geodetic datum). Having served (and serving) as 

a basis for many applications in surveying and mapping, they are still of relevance and now 

in a state of transition to the global 3D reference frame. [3] 

     Horizontal control networks have been realized by trigonometric (triangulation) points, 

which in principle should be distributed evenly over the country. One distinguishes between 

different orders of trigonometric points, from first-order or primary (station separation 30 to 

60 km) to second-order (about 10 km) to fourth- or even fifth-order (down to 1 to 2 km) 

stations, where the state of the networks’ coverage strongly depends on the development of 

the respective region or country. The maximum distance between first-order points was 

determined by terrestrial measurement methods, which required intervisibility between the 

network stations. Consequently, first- and partly also second-order stations were established 

on the top of hills and mountains; observation towers (wooden or steel constructions with 

heights of 30 m and more) were erected especially in flat areas. The stations have been 

permanently marked by underground and surface monuments (stone plates, stone or concrete 

pillars, bolts in hard bedrock). Eccentric marks have been set up in order to aid in the 

recovery and verification of the center mark. [3] 

     Classical horizontal control networks have been observed by the methods of triangulation, 

trilateration, and traversing, see figure (2.1). 

 

Figure (2.1): Triangulation & Trilateration & Traverse 
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2.2.1 Methods of Establishing a Horizontal Control Network 

     Triangulation, all angles of the triangles formed by the trigonometric points are observed 

with a theodolite figure (2.2). The instrument is set up on the observation pillar or tower; at 

large distances, the targets are made visible by light signals. Either direction (successive 

observation of all target points) or angles (the separate measurement of the two directions 

comprising one angle) are observed in several sets (i.e., in both positions of the telescope), 

distributed over the horizontal circle of the theodolite. The scale of a triangulation network is 

obtained from the length of at least one triangulation side, either derived from a short baseline 

through a baseline extension net or measured directly by a distance meter. Astronomic 

observations provide the orientation of the network, where an astronomic azimuth (Laplace 

azimuth) is needed for the horizontal orientation. [5] 

 

Figure (2.2): Triangulation with baseline extension net and Laplace azimuth 

(principle). [5] 

     Trilateration employs electromagnetic distance meters in order to measure the lengths of 

all triangle sides of a network, including diagonals figure (2.3). Again, at least one Laplace 

azimuth is needed for the orientation of the net. Electromagnetic distance measurements put 

fewer demands on the stability of observation towers as compared to angular measurements, 

and the use of microwaves makes the method more independent from weather conditions. [5] 

 

Figure (2.3): Trilateration with Laplace azimuth (principle). [5] 
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     Traverses combine distance and angular measurements, where the traverse stations are 

arranged along a profile between already existing control points. The traverse stations may be 

either transformed into the national reference system by means of the control points or 

immediately calculated in that system if astronomic (Laplace azimuth) or terrestrial 

orientation is available, figure (2.4) gives some examples. Traversing represents a very 

effective and flexible method for establishing horizontal control, with no more need to 

establish stations on hilltops. It has been employed primarily for the densification of higher-

order networks. [3] 

 

Figure (2.4): Traverse connecting two control points (principle): a) without additional 

orientation, b) with an orientation by Laplace azimuths, c) with an orientation by 

directions to control points. [3] 

     Horizontal control networks have also be formed by combining the methods of 

triangulation, trilateration, and traversing. Such networks are very stable in design, and allow 

the establishment of first- and second-order control simultaneously. Optimization methods 

have been developed for the design and survey of trigonometric networks. Starting from the 

demands on accuracy and reliability, these methods provide information on the optimum 

point configuration and the distribution of the measurements in the network given the 

limitations of available equipment and the maximum allowable cost of the survey. [3] 

2.2.2 Reference Ellipsoids of the Horizontal Control Networks     

     First- and some second-order horizontal control networks have been calculated on a 

reference ellipsoid within the system of ellipsoidal coordinates. Lower-order networks are 

primarily calculated in planar Cartesian coordinates, after conformal mapping of the ellipsoid 
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onto the plane. The network calculation started with the reduction of the observed horizontal 

angles/directions and spatial distances to the ellipsoid, where the gravity-field-related 

reductions (deflections of the vertical, geoid height) were not considered during earlier 

surveys. The adjustment was carried out either by the method of conditions or by variation of 

the coordinates, with redundancy resulting from triangle misclosures, diagonals in 

trilateration quadrilaterals, and additional baselines and Laplace azimuths. The coordinates’ 

transfer from an initial point (see below) was based on the solutions of the direct resp. inverse 

problem on the ellipsoid. Among the deficiencies of this classical “development method” are 

the neglecting of the deflections of the vertical, the inadequate reduction of distances on the 

ellipsoid, and especially the step by step calculation of larger networks, with junction 

constraints when connecting a new network section to an existing one. This led to long-

wavelength network distortions of a different type, with regionally varying errors in scale 

(1 0−5 and more) and orientation. Coordinate errors with respect to the initial point increased 

from a few decimeters over about 100 km to about 1 m over several 100 km and reached 10 

m and more at the edges of extended continent-wide networks. [3] 

     The geodetic datum of a horizontal control network comprises the parameters of the 

reference ellipsoid and of the network’s orientation with respect to the Earth’s body. 

Conventional ellipsoids, as computed by the adjustment of several arc measurements, were 

introduced during earlier geodetic surveys. Some horizontal networks refer to locally best-

fitting ellipsoids, as derived from a minimum condition on the observed vertical deflections. 

          ∑ (𝜉2 + 𝜂2)  =  𝑚𝑖𝑛                                                                                  (2-1) 

     The orientation of the ellipsoid was realized by defining the ellipsoidal coordinates of a 

fundamental (initial) point, also called network origin, and by conditions for the parallelism 

of the axes of the ellipsoidal and the global geocentric system. 

     In earlier surveys, the coordinates of the fundamental point were fixed by postulating 

equality between observed astronomic latitude, longitude, and orthometric height and the 

corresponding ellipsoidal quantities. This is identical to setting the deflection of the vertical 

and the geoid height of the fundamental point to zero: 

          𝜉𝑓  =  0, 𝜂𝑓  =  0, 𝑁𝑓  =  0                                                                                  (2-2) 
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Table (2.1) gives the parameters of some reference ellipsoids that have been used for national 

geodetic surveys: 

Table (2.1): Parameters of reference ellipsoids (rounded values) [4] 

Name, Year Semi-major axis a (m) Reciprocal flattening 1/f 

Airy, 1830 6 377 563.3964 299.32496459 

Bessel, 1841 6 377 397.155 299.15281285 

Clarke, 1866 6 378 206.4 294.9786982 

Clarke, 1880 Palestine 6 378 300.79 293.466307656 

Everest 1830 6 377 276.3458 300.80117 

Fischer 1960 Modified 6 378 155 298.3 

GRS80 6 378 137 298.257221008827 

Helmert 1906 6 378 200 298.3 

Krassovsky 1940 6 378 245 298.3 

WGS84 6 378 137 298.257223563 

 

     This strategy provides a good approximation of the ellipsoid to the geoid close to the 

origin but may lead to larger deviations at more remote areas figure (2.5). If a sufficient 

number of vertical deflection points were available and well distributed over the area of 

calculation, the minimum condition was used. It permits the determination of the deflection 

of the vertical in the fundamental point and at extended networks also the parameters of a 

best-fitting ellipsoid. This procedure led to an optimum fitting over the whole area and kept 

the deflections of the vertical small. In many cases, the geoid height of the origin point was 

defined indirectly by reducing the baselines onto the geoid and treating them as ellipsoidal 

quantities figure (2.6). The minimum condition for the geoid heights was seldom applied 

using relative geoid heights calculated from astronomic leveling. [3] 

          ∑ 𝑁2 =  𝑚𝑖𝑛                                                                                                              (2-3) 
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     The parallelism of the axes of the ellipsoidal and the geocentric system was achieved 

by the Laplace equation. In extended networks, several baselines and Laplace stations often 

were established at distances of a few 100 km in order to control the error propagation 

through the network with respect to scale and orientation (effects of lateral refraction). More 

recently, the ellipsoid parameters of a geodetic reference system have been introduced, and 

the ellipsoid has been optimally fitted to the geoid, figure (2.8). Table (2.2) lists the ellipsoids 

and the origin points used for some geodetic datums. [3] 

 

Figure (2.5): Locally best fitting “conventional” ellipsoid. [3] 

 

 
 

Figure (2.6): Regionally best fitting ellipsoid. [3] 
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Figure (2.7): Mean Earth ellipsoid. [3] 

Table (2.2): Reference ellipsoids and origin points of some geodetic datums [3] 

Geodetic datum 
Reference 

ellipsoid 
Name of origin 

Origin 

Latitude Longitude 

Australian Geodetic 1984 (AGD84) GRS67 Johnston −25°57’ 133°13’ 

Deutsches Hauptdreiecksnetz 

(DHDN), Germany 

Bessel 1841 Rauenberg/Berlin 52°27’ 13°22’ 

European Datum 1950 (ED50) Intern.Ellipsoid 

1924 

Potsdam, 

Helmertturm 

52°23’ 13°04’ 

Indian Everest 1830 Kalianpur 24°07’ 77°39’ 

North American 1927 (NAD27) Clarke 1866 Meades Ranch, 

Kansas 

39°13’ 261°27’ 

North American 1983 (NAD83) GRS80 Geocentric   

Ordnance Survey of Great  

Britain 1936 (OSG36) 

Airy 1830 Herstmonceux 50°52’ 0°21’ 

Pulkovo 1942, former Soviet 

Union 

Krassovski 

1940 

Pulkovo 59°46’ 30°20’ 

South American 1969 (SAD69)  GRS67 Chua, Brazil −19°46’ 311°54’ 
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Figure (2.8): Horizontal control network of the U.S.A. (NAD83), with first- 

and second-order, triangulation, and traverses. [5] 

 

 

 

 

 

Figure (2.9): Primary triangulation net of Germany (DHDN90). [5] 
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2.2.3 Conversion Between Polar Coordinate and Cartesian Coordinate 

• Spherical Coordinates 

     Considering the earth as a sphere with radius R, the point position is defined in polar 

coordinates (λ, ϕ, h) or by cartesian coordinate (geocentric coordinate) (X, Y, Z). An 

approximate radius of the earth R≈6371 km. [4] 

 

 

 

 

Figure (2.10): Spherical Coordinates. [4] 

The conversion from polar coordinate to cartesian coordinate can be calculated as follows: 

          𝑋 = (𝑁 + ℎ) cos𝜙 cos 𝜆                                                                                            (2-4) 

          𝑌 = (𝑁 + ℎ) cos𝜙 sin 𝜆                                                                                             (2-5) 

          𝑍 = ((1 − 𝑒2)𝑁 + ℎ) sin𝜙                                                                                       (2-6) 

Where: 

          𝑒2 =
𝑎2−𝑏2

𝑎2   =  𝑓(2 − 𝑓)                                                                                             (2-7)  

          𝑏 = 𝑎(1 − 𝑓)                                                                                                              (2-8) 

          𝑁 =
𝑎

√1−𝑒2 sin2 𝜙
                                                                                                          (2-9)     
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The conversion from cartesian coordinate to polar coordinate can be calculated as follows: 

• Iterative solution (Torge Method) 

          𝜆 = tan−1 𝑌

𝑋
        (Does not need iteration)                                                               (2-10) 

          ℎ =
√𝑋2+𝑌2

cos𝜙
− 𝑁                                                                                                        (2-11) 

          𝜙 = tan−1 (
𝑍

√𝑋2+𝑌2
(1 − 𝑒2 𝑁

𝑁+ℎ
)
−1

)                                                                       (2-12) 

The initial value to start the iterative solution: 

          𝜙 = tan−1 𝑍

√𝑋2+𝑌2
(1 − 𝑒2)−1                                                                                  (2-13) 

• Non-Iterative solution (Bowring Method) 

          𝜆 = tan−1 𝑌

𝑋
                                                                                                               (2-14) 

          𝜙 = tan−1 [
𝑍+𝑒′2𝑏 sin3 𝑢

𝑃−𝑒2𝑎 cos3 𝑢
]                                                                                           (2-15) 

          ℎ = 𝑃 cos𝜙 + 𝑍 sin𝜙 − 𝑎√1 − 𝑒2 sin2 𝜙                                                              (2-16) 

Where: 

          𝑢 = tan−1 [
𝑎𝑍

𝑏𝑃
]                                                                                                          (2-17) 

          𝑃 = √𝑋2 + 𝑌2                                                                                                          (2-18) 

          𝑒′2 =
𝑎2−𝑏2

𝑏2   =  
𝑒2

(1−𝑓)2
                                                                                                (2-19) 

           𝑓 =
𝑎−𝑏

𝑎
  =  1 − (1 − 𝑒2)1/2                                                                                   (2-20) 

2.3 Vertical Control Networks 

     Traditionally, national vertical control networks have been established separately from 

horizontal control nets. This is due to the demand that heights have to be defined with respect 

to the gravity field and a corresponding reference surface (e.g., geoid, quasigeoid) rather than 

to the ellipsoidal system used for horizontal positioning. 



 
 

 
18 

 

     Vertical control networks are surveyed by geometric (also spirit or differential) leveling 

and occasionally also by hydrostatic leveling, the control points being designated as 

benchmarks. According to the leveling procedure and the accuracy achieved, national 

geodetic surveys distinguish between different orders of leveling. First-order leveling is 

carried out in closed loops (loop circumferences of some 100 km) following the rules for 

precise leveling. An accuracy of 0.5 …  1 𝑚𝑚 √𝑠 (𝑘𝑚) is achieved at double-run leveling (s 

is the length of the leveled line), but systematic effects may lead to error accumulation over 

long distances. The loops are composed of leveling lines connecting the nodal points of the 

network figure (2.7). The lines, in turn, are formed by leveling runs that connect neighboring 

benchmarks (average spacing 0.5 to 2 km and more). The first-order leveling network 

generally is densified by second to fourth-order leveling, with diminishing demands on 

accuracy. [5] 

 

Figure (2.11): Leveling network (principle). [5] 

     Leveling lines generally follow main roads, railway lines, and waterways. The 

benchmarks consist of bolts in buildings, bedrock, or on concrete posts. Long pipes have 

been set up in alluvial regions. Underground monuments are established in geologically 

stable areas in order to control the network stability with respect to variations with time. 

First-order networks should be reobserved at time intervals of some 10 years, as regional and 

local height changes can reach one mm/year and more, especially in areas that experience 

vertical crustal movements of tectonic, isostatic or man-made origin. [5] 
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     Prior to the adjustment of a leveling network, the observed raw height differences have to 

be transformed either to geopotential differences or to differences of normal or orthometric 

heights by taking surface gravity into account. The adjustment then utilizes the loop 

misclosure condition of zero and is carried out either by the method of condition equations or, 

preferably, by the method of parameter variation. [5] 

     The vertical datum of a national height system generally is defined by mean sea level 

(MSL) as derived from tide gauge records. The zero height surface running through the 

defining MSL depends on the choice of the height system and is either a level surface close to 

the geoid (orthometric heights) or the quasigeoid (normal heights). In future, high-resolution 

geoid or quasigeoid models may also serve for the definition of the vertical datum, again 

being realized through the heights of fundamental benchmarks. If based on MSL from 

different tide gauges, national height systems may differ by some dm to one m and more, 

between each other and from the geoid as a global reference surface. This is due to the effect 

of sea surface topography, which additionally causes network distortions if the vertical datum 

is constrained to MSL of more than one tide gauge. [5] 

     Mean sea level (MSL) (often shortened to sea level) is an average level of the surface of 

one or more of  Earth's oceans from which heights such as elevation may be measured. MSL 

is a type of vertical datum – a standardized geodetic datum – that is used, for example, as 

a chart datum in cartography and marine navigation, or, in aviation, as the standard sea level 

at which atmospheric pressure is measured to calibrate altitude and, consequently, 

aircraft flight levels. A common and relatively straightforward mean sea-level standard is the 

midpoint between a mean low and mean high tide at a particular location. [5] 

 

https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Earth
https://en.wikipedia.org/wiki/Ocean
https://en.wikipedia.org/wiki/Elevation
https://en.wikipedia.org/wiki/Geodetic_datum#Vertical_datum
https://en.wikipedia.org/wiki/Geodetic_datum
https://en.wikipedia.org/wiki/Chart_datum
https://en.wikipedia.org/wiki/Cartography
https://en.wikipedia.org/wiki/Navigation
https://en.wikipedia.org/wiki/Standard_sea_level
https://en.wikipedia.org/wiki/Atmospheric_pressure
https://en.wikipedia.org/wiki/Calibration
https://en.wikipedia.org/wiki/Flight_level
https://en.wikipedia.org/wiki/Tide
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Figure (2.12): North American Vertical Datum of 1988 leveling network [3] 

 

 

Figure (2.13): United European Leveling Net (2008) [3] 
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     Leveling networks are characterized by high accuracy, but systematic errors may 

accumulate over large distances. A severe handicap of classical leveling networks is the 

significant loss of benchmarks with time due to human activities, and the manifold height 

changes occurring at local and regional scales. Due to the timeconsuming measurement 

procedure, repetition or restoration surveys are feasible only after longer time intervals, 

which leads to a rapid network decay. A more rapid establishment of vertical control 

networks has been achieved occasionally by trigonometric leveling, and a drastic change is 

now taking place by GNSS heightening in connection with high-resolution geoid or 

quasigeoid models, In this way, vertical control networks are integrated into and gradually 

substituted by 3D reference systems. The time-consuming spirit leveling required for the 

establishment and maintenance of the classical vertical control networks may become mostly 

superfluous. On the other hand, geometric leveling will maintain its importance over shorter 

distances, and especially in areas of recent crustal movements, such as regions of land 

subsidence and zones of Earthquake or volcanic activity. [3] 

 

 

Figure (2.14): Primary leveling network of Germany [3] 
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2.4 The Three-Dimensional Networks 

     Starting at the end of the 1980s, GNSS techniques have more and more entered into 

geodesy and are now primarily used at all scales for positioning and navigation. This has led 

to a drastic change at the establishment and maintenance of geodetic control networks which 

are now definitely 3D and based on satellites as system carriers. [3] 

     Nowadays, the global geodetic reference is well established and provided by the 

International Terrestrial Reference Frame (ITRF) being the realization of the International 

Terrestrial Reference System. The ITRF stations are given with their 3D geocentric 

coordinates (cm-accuracy) for a certain reference epoch, and with corresponding horizontal 

velocities. The International GNSS Service (IGS) provides a powerful contribution to the 

ITRF and serves for densifying this global reference frame. A multitude of GNSS surveys has 

already densified or will in future densify this global reference frame, superseding the 

classical control networks. This process happens at local, regional or continent-wide 

dimensions, and has triggered a new definition and realization of national and supra-national 

geodetic reference systems, and strategies for integrating the existing control nets. [5] 

     Immediately following the development of geodetic GPS and other GNSS methods, 

continent-wide (supra-national) and national 3D networks were established. Although a more 

or less homogeneous station-coverage is generally the goal, the distances between the 

observation sites, in reality, vary considerably. The station distribution depends, among 

others, on topography and on the state of economic development, and station distances 

consequently range from a few ten to some 100 km and more. At least three stations per 

country have been often selected as a reference for further densification and for the 

transformation of existing control networks. The station sites are selected according to the 

requirements of GNSS observations (no visibility obstructions between 5° to 15° and 90° 

elevation, absence of multipath effects, no radio wave interference). Generally, the stations 

are monumented by concrete pillars, providing a forced centering for the GNSS antenna and 

a height reference mark. Eccentric marks are established in order to locally control horizontal 

position and height, and underground monuments are beneficial for the long-term 

preservation of the network. Existing first- and second-order control points may be used if 

they fulfill the GNSS requirements, otherwise, the GNSS stations should be connected to the 

existing control networks by local surveys. [3] 
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     Although the strategies for establishing and maintaining these GNSS based reference 

networks differ, the following directions clearly can be identified: 

• establishment of a large-scale (continent-wide, national) fundamental three- 

dimensional network by GNSS campaigns, with proper system definition and 

connection to the International Terrestrial Reference Frame. 

• installation of a network of permanent GNSS stations. 

• densification of the fundamental network by GNSS methods, 

• the transformation of existing classical horizontal control network into the three- 

dimensional system, 

• connection of the 3D-reference system to the vertical control and gravity reference 

systems. 

     Dedicated GNSS campaigns are carried out for the determination of the 3D-coordinates of 

the network stations, employing relative positioning. This strategy requires the inclusion of at 

least one reference station with coordinates given in the ITRF, but generally, all ITRF and 

IGS stations (or control stations of a continent-wide reference system) in the survey region 

are introduced as reference (“fiducial”) stations. Depending on the number of stations and 

available GNSS receivers (two-frequency geodetic type), either all stations are observed 

simultaneously or the network is divided into blocks that are observed sequentially, figure 

(2.14). All observations made simultaneously during a given time interval are called a 

“session”. The duration of one session is between 8 and 24 h, which permits determination of 

the ambiguity unknowns and a simultaneous solution for the station coordinates and 

tropospheric correction parameters (“multi-station” adjustment). The results of one session 

are highly correlated. Consequently, two or more sessions are generally carried out, leading 

to a total observation time of some days to one week. A “multi-session” adjustment then 

combines the results of several sessions. Optimization methods have been developed and may 

be employed for network planning and survey. [3] 
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Figure (2.15): GNSS network constructed from individual blocks (principle). [5] 

     Following the ITRF strategy, reference epochs are defined for the final station coordinates 

of the fundamental networks, which may differ from the epoch of the ITRF stations 

introduced and from the time of the observation campaign. Consequently, reductions have to 

be applied which take the station velocities between the different epochs into account. [3] 

     Permanent GNSS networks have increasingly been established since the 1990s at regional 

and local scales. They consist of “active” GNSS stations, equipped with geodetic GNSS 

receivers that continuously track all visible GNSS satellites with a high data rate (e.g., 1 s). 

Station distances vary considerably, ranging from about 100 km to a few 100 km at 

continent-wide networks, and 30 to 100 km and more at national systems. Undisturbed 

visibility to the satellites is achieved by installing the antennas several m to 10 m above the 

ground on concrete pillars, steel grid masts, etc., or on the top of buildings. Permanent 

networks represent a continuous realization of the underlying supra-national or national 

geodetic reference system, thus serving for maintenance and for control of variations with 

time due to recent crustal movements. They represent a reference for all types of GNSS 

surveys carried out within the permanent network area, by making available the raw GNSS 

tracking data (code and carrier phase measurements) for the “reference” station of a 

“baseline”, figure (2.15). More sophisticated “Satellite Positioning Services” exploit the 

known geometry of the stations’ array to determine the ambiguities and to calculate baseline 

corrections for ionospheric, tropospheric, and orbit effects. Together with the station 

coordinates, this allows the application of differential GNSS methods with a single receiver. 

Real-time positioning with “baselines” is possible with cm-accuracy, and post-processing 

with long observation series may achieve a few mm precision. [5] 
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Figure (2.16): GNSS network constructed from baselines to permanent GNSS 

stations. [3] 

     After the establishment of a national 3D geodetic reference frame, relative GNSS 

positioning can be employed also for network densification. While the fundamental network 

may be constructed with station distances of several 10 km (corresponding to the first-order 

trigonometric points), densification nets with distances down to 10 km (former second-order 

triangulation) may be useful for larger countries. The relative mode again requires two or 

more receivers and the connection to reference stations. If a network of permanent GNSS 

stations as the realization of the national reference frame is available (telemetry data transfer 

to the users), differential GNSS methods can be applied. For short (few to 10 km) baselines, a 

relative cm-accuracy can be achieved in quasi-real-time after proper ambiguity solution. For 

longer baselines, the results are degraded by the distance-dependent errors of GNSS and have 

to be improved by the corrections provided by the permanent network’s positioning service. 

[3] 

     With Precise Point Positioning (PPP), an alternative to the relative method of DGNSS has 

been developed and could also be used for the establishment of geodetic 3D control 

networks. This absolute method evaluates the undifferenced dual-frequency pseudo-range 

and carrier phase observations obtained with only one receiver, along with IGS precise orbits 

and satellite clock corrections in one mathematical model, for estimating station coordinates, 

tropospheric zenith path delays, receiver clock corrections, and ambiguities. Network 

adjustments (post-processing) of extended observation series (up to 24 h) deliver cm-

accuracy for the position and clock corrections at the 0.1 ns level. The method can be 

extended by taking current corrections into account derived from a regional or local RTK 
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(real-time kinematic) network. This strategy allows an immediate determination of carrier-

phase ambiguities and delivers quasi-real-time cm-accuracy. [5] 

     By connecting the 3D GNSS network to first- and second-order trigonometric points, the 

existing classical horizontal control networks can be transformed into the three-dimensional 

reference frame. A minimum of three identical points with coordinates given in both systems 

is required for a 7-parameter transformation, which may suffice for homogeneous networks 

of high precision. Additional GNSS control points are needed if the classical networks 

contain larger distortions; the selection of these points depends on the network peculiarities, 

and usually, more sophisticated transformation models will be necessary, including 

polynomial, least-squares, or spline approximation. In this way, the local cm-accuracy of 

classical networks can be kept, and the effect of the network distortions can be reduced to the 

order of a few cms to dm over distances of some 10 to 100 km. After the completion of the 

transformation to a 3D reference frame, the classical horizontal networks of lower-order 

generally will no longer be maintained. [4] 

     Space-geodetic and especially GNSS methods also give the reason for a change with 

respect to the definition and realization of vertical reference systems. This is due to the fact 

that space-based techniques allow the determination of ellipsoidal heights with an accuracy 

comparable with the accuracy of spirit leveling, at least at distances larger than a few ten 

kilometers. By combining with high-resolution global or local geoid/quasigeoid models, 

another method for determining gravity-field related heights thus is available. This forces the 

incorporation of the classical vertical control networks into the 3D reference frame. By 

including first-order leveling benchmarks and tide gauges in the 3D network, the differences 

between the ellipsoidal heights and the heights of the national height system can be 

determined at selected points, i.e., the geoid or quasigeoid heights. These GNSS/leveling 

control points allow the national height system to be fitted to a regional geoid or quasigeoid 

model, and they can be used to derive gravity-field related heights (orthometric heights, 

normal heights) for all threedimensional reference stations. The vertical datum maybe even 

defined by a global or regional geoid/quasigeoid model, with corresponding reductions of the 

heights given in the classical height system. The vertical control points now are an integrated 

part of the 3D reference frame, evenly distributed over the respective continent or nation and 

not restricted to the leveling lines. With the increasing accuracy of the geoid-resp. quasigeoid 
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"reduction" of GNSS heights, the application of geometric leveling will be reduced to more 

local problems where mm-accuracy is required. 

      Finally, there is a tendency to also measure absolute gravity on the primary stations of a 

3D reference frame. This will lead to fundamental geodetic control networks, providing 3D 

geodetic coordinates, gravity potential (and related height) and gravity for a certain epoch, 

and (as far as possible) corresponding long-term variations with time. [3] 

2.5 Gravimetric Networks 

     Gravity networks provide the frame for gravimetric surveys on global, regional, or local 

scales. They consist of gravity stations where gravity has been determined by absolute or 

relative methods. On a global scale, the gravity standard has been realized by the 

International Gravity Standardization Net 1971 (IGSN71), but absolute gravimeters now 

allow an independent realization. [3] 

     National gravimetric surveys are based on a primary or base network, which in most cases 

is densified by lower-order nets. The gravity base network stations should be evenly 

distributed over the area, with station distances varying between a few 10 km to a few 100 

km depending on the size of the country. The station sites should be (as far as possible) stable 

with respect to geological, hydrological, and microseismic conditions. They should be 

permanently marked, and co-location with geodetic base-stations is advisable. Eccenter sites 

may serve for securing the central station and for controlling local height and mass changes. 

Horizontal position and height of the gravity stations should be determined with m- and mm- 

to cm-accuracy, respectively. Subsequent gravimetric densification networks generally are 

co-located with horizontal and vertical control nets. [3] 

     Absolute gravimeters, figure (2.17) generally are employed nowadays for the 

establishment of gravity base networks, partly in combination with relative gravity meters. 

Densification networks are observed primarily with relative instruments. Relative 

gravimeters, figure (2.18)  need to be calibrated, and repeated measurements are necessary in 

order to determine the instrumental drift. The use of several instruments reduces residual 

systematic effects. Relative gravimetry requires at least one absolute station in order to derive 

the gravity “datum”, and a calibration line for the control and improvement of the calibration 

factor. The establishment of gravity networks for geophysical and geodynamic investigations 
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follows the same rules, but the distribution of the gravity stations is then determined by the 

geological structures or the geodynamic processes to be investigated.  [5] 

 

Figure (2.17): Absolute gravimeters. 

 

Figure (2.18): Relative gravimeter. 
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     The accuracy of primary gravity networks, established by absolute gravimeters or by a 

combination of absolute and relative gravimetry, is about 0.05 μm  s2  to 0.1  μm s2; 

densification networks may be accurate to 0.1… 0.5 μm s2. 

     Gravity measurements on the national scale started in the second half of the nineteenth 

century, triggered by growing demands from geodesy and geophysics. In the twentieth 

century, exploration geophysics and physical geodesy (geoid determination) became strong 

drivers for denser gravity field surveying, based on accurate and reliable gravity reference 

networks. These demands led in many countries to the establishment of gravity base 

networks, which continuously improved through progress in technology. [5] 

 

 

 

 

Figure (2.19): Primary gravity net (red circles) of Germany. [3] 
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Chapter Three: 

Global and local gravity Geoid modeling 

3.1 Introduction 

3.2 The gravity field of the Earth 

3.3 The local potential modeling 

3.4 Integrated Geodesy 

3.5 State of the art in the gravity field modeling 
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Global and local gravity Geoid modeling 

3.1 Introduction 

     This chapter presents the potential of the Earth and its applications based on Newton's 

Law of Attraction and explains the relationship between the potential and the force of 

attraction. This chapter explains the Laplace equation solution using the Spherical Harmonics 

(SH) model, which is applied to the gravity field modeling of the earth. It also explains the 

relationship between the actual gravitational field and the natural gravitational field of the 

earth is, where an abnormal gravitational field is introduced . [8] 

     The common way to represent the potential of the Earth is by Spherical Harmonics, but 

the related methods require global modeling. There is always a need to model the potential by 

other methods with local support for national and regional needs. Here, some of the common 

methods for local modeling of the potential of the Earth are discussed. Such suitable methods 

are the Stokes integral for gravimetric geoid modeling, the least-squares collocation and the 

Digital Finite Elements Height Reference Surface (DFHRF) developed at the Karlsruhe 

University of Applied Sciences. [8] 

     The so-called Integrated Geodesy principle, where a combination of different data types of 

observations l= l (𝑥⃑, W (𝑥⃑, p)) are modeled in the gravity and geometry space, are also briefly 

discussed. In addition, the state-of-the-art of the latest global and local geoid and gravity 

models is presented. [8] 

3.2 The gravity field of the Earth 

     Depending on Newton's law of attraction, the force of attraction between two mass m1 and 

m2 (kg) separated by a specific distance l(m) is calculated. The attraction force F reads: 

          𝐹⃑ = 𝐺
𝑚1𝑚2

𝑙2
                                                                                                               (3-1) 

     To study how a mass m attracts other masses, assume that the attracted masses to be a unit 

mass (m1 = 1). The force attracting the unit mass at point P(X, Y, Z) by the mass m at P0      

(X0, Y0, Z0) separated by a distance l is: 

          𝐹 = 𝐺
𝑚

𝑙2
                                                                                                                    (3-2) 
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     The force 𝑭⃑⃑⃑ is represented by a vector from P0 to P. The vector of the gravitational force 𝑭⃑⃑⃑ 

can be defined by its magnitude 𝐹⃑ and 3D components of the unit vector F is given by: 

          𝐹⃑ = [
𝐹𝑋

𝐹𝑌

𝐹𝑍

] = −𝐹 [

(𝑋 − 𝑋0)/𝑙
(𝑌 − 𝑌0)/𝑙
(𝑍 − 𝑍0)/𝑙

] = −
𝐺𝑀

𝑙2
[

(𝑋 − 𝑋0) 𝑙⁄

(𝑌 − 𝑌0) 𝑙⁄

(𝑍 − 𝑍0) 𝑙⁄
]                                              (3-3) 

     The gravitational potential is a conservative, which satisfies the Laplace differential 

equation outside the Earth. A scalar force-generating potential exists. This function is called 

the gravitational potential V (X, Y, Z), where V reads: 

          𝑉(𝑋, 𝑌, 𝑍) =  
𝐺𝑀

𝑙
                                                                                        (3-4) 

     The unit mass related force vector 𝑭⃑⃑⃑ in equation (3-3) can be rewritten in terms of V as 

follows:

𝐹⃑ = 𝑔𝑟𝑎𝑑(𝑉)                                                                                           (3-5a) 

          𝐹⃑ = [
𝐹𝑋

𝐹𝑌

𝐹𝑍

] =

[
 
 
 
 
𝜕𝑉

𝜕𝑋
𝜕𝑉

𝜕𝑌
𝜕𝑉

𝜕𝑍]
 
 
 
 

                                                                                                   (3-5b) 

     Assuming a system of point masses 𝑚1, 𝑚2, . . . , 𝑚𝑛  are attracting the point P, and 

separated from the point P by distances 𝑙1 , 𝑙2 , . . , 𝑙𝑛, then the gravitational potential V is the 

summation of all single potentials. The total gravitational potential is:                            

          𝑉(𝑋, 𝑌, 𝑍) = ∑ 𝑉𝑖 = ∑
𝐺𝑀𝑖

𝑙𝑖

𝑛
𝑖=1

𝑛
𝑖=1                                                                   (3-6) 

     If the point P is influenced by a solid body with a volume v and a density of  (X, Y, Z), 

then the potential V is calculated by a superimposing infinite number of point masses dm. 

The point mass can be calculated by the volume of point mass dv and the density ρ, reading: 

          dm = dv                                                                                                  (3-7) 

     The total gravitational potential by the solid body is calculated by the integration over the 

whole volume of the solid body. V is given by: 

𝑉 = ∫𝑑𝑉 = 𝐺 ∭
𝜌(𝑋,𝑌,𝑍)𝑑𝑣

𝑙𝑉
                                                                              (3-8) 
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3.2.1 Laplace differential equation and Spherical Harmonics (SH) 

     For a function V(X, Y, Z), the Laplace equation for this function is the Laplace operator 

Δ(.)=0 and reads: 

          ∆(𝑉) ≡
𝜕2𝑉

𝜕𝑋2 +
𝜕2𝑉

𝜕𝑌2 +
𝜕2𝑉

𝜕𝑍2 = 0                                                                        (3-9) 

     Using spherical coordinates (r, ,) as defined in figure (3.1), Laplace’s equation can be 

transformed to: 

          𝑟2 𝜕2𝑉

𝜕𝑟2
+ 2𝑟

𝜕𝑉

𝜕𝑟
+

𝜕2𝑉

𝜕𝜙
2 − tan𝜙

𝜕𝑉

𝜕𝜙
+

𝜕2𝑉

𝑐𝑜𝑠2𝜙𝜕𝜆2
                                                  (3-10) 

 

Figure (3.1): Geographic coordinates (λ,ϕ, h )and the spherical coordinates(r, λ, ϕ). [8] 

 

     Assuming that the density 𝜌 is constant (𝜌) is given the value of the average density of the 

Earth) and dv is the same for all elements, then only l is changing for each element. The 

Laplace operator for the gravitational potential in equation (3-8) is given by: 

          ∆(𝑉) = ∆(𝐺 ∭ 𝜌𝑑𝑣
𝑣

) = 𝐺 ∭ ∆(
1

𝑙
) 𝜌𝑑𝑣

𝑣
= 0                                                     (3-11) 

     As ∆ (
1

𝑙
) = 0, V is a harmonic function. The solution of Laplace’s equation is found by 

separating the variables (r, λ and 𝜙) using the substitution in equation (3-12), reading: 

          𝑉(𝑟, 𝜙, 𝜆) = 𝑓1(𝑟)𝑓2(𝜙)𝑓3(𝜆)                                                                              (3-12a) 
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          𝑓1(𝑟) =
1

𝑟𝑛+1                                n=0,1,2,...                                                           (3-12b) 

         𝑓2(𝜙) = 𝑃𝑛𝑚 sin(𝜙)                 n=0,1,2,…  and  m=0,1,2,…,n-1,n                     (3-12c) 

        𝑓3(𝜆) = cos𝑚𝜆   𝑜𝑟  sin𝑚𝜆        m=0,1,2,…n-1,n                                                (3-12d) 

     In equation (3-12), 𝑃𝑛𝑚 = (sin𝜙) are the Legendre functions of degree n and order m. 

Assuming sin𝜙 = 𝑡, the Legendre function is generally defined by the differential formula in 

equation (3-13): 

          𝑃𝑛𝑚(𝑡) =
1

2𝑛𝑛!
(1 − 𝑡)𝑚 2⁄ 𝑑𝑚𝑃𝑛(𝑡)

𝑑𝑡𝑚
(𝑡2 − 1)𝑛                                                  (3-13)                            

     As the differential equation (3-10) is linear, for each integer n there is a solution. The summation 

of all solutions is also a solution for Laplace’s equation  ∆𝑉 = 0 . The potential V can be written in 

terms of surface Spherical Harmonics (SH) in equation (3-15). 

          𝑉(𝑟, 𝜙, 𝜆) = ∑
1

𝑟𝑛+1
∞
𝑛=0 ∑ 𝐴𝑛𝑚𝑌𝑛𝑚(𝜙, 𝜆)𝑛

𝑚=−𝑛                                                        (3-14) 

          Ynm(ϕ, λ) = {
cosmλPn|m| (sinϕ)     ,m ≤ 0

sinmλPnm (sinϕ)          , m > 0
                                            (3-15a) 

          𝐴𝑛𝑚 = {
𝑎𝑛𝑚     , 𝑚 ≤ 0
𝑏𝑛𝑚     , 𝑚 > 0

                                                                            (3-15b) 

Equation (3-14) can be reformulated as double summation. In this case V reads: 

          V(r, ϕ, λ) = ∑
1

rn+1
∞
n=0 ∑ (anm cosmλ + bnm sinmλ)Pnm sin(ϕ)n

m=0                       (3-16) 

3.2.2 The normalized SH 

     As shown above, the gravitational potential V satisfies the Laplace equation. In equation 

(3-14), V was modeled to solve the Laplace equation in terms of SH. When higher degrees 

and orders Legendre functions 𝑃𝑛𝑚(𝑡)  are calculated, instability problems appear in the 

calculations. To avoid these issues, a normalized form of equation (3-14) is introduced in 

equation (3-17) using the normalized Legendre functions 𝑃𝑛𝑚(𝑡). [8] 

          𝑉(𝑟, 𝜙, 𝜆) = ∑
1

𝑟𝑛+1
∞
𝑛=0 ∑ 𝐴𝑛𝑚𝑌𝑛𝑚(𝜙, 𝜆)𝑛

𝑚=−𝑛                                                     (3-17a) 
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          𝑌𝑛𝑚(𝜙, 𝜆) = 𝑓𝑛𝑚𝑌𝑛𝑚(𝜙, 𝜆)                                                                                 (3-17b) 

          𝑃𝑛𝑚(𝑡) = 𝑓𝑛𝑚𝑃𝑛𝑚(𝑡)                                                                                           (3-17c) 

         𝐴𝑛𝑚 =
𝐴𝑛𝑚

𝑓𝑛𝑚
                                                                                                            (3-17d) 

Finally, the potential V reads: 

          𝑉(𝑟, 𝜙, 𝜆) = ∑
1

𝑟𝑛+1
∞
𝑛=0 ∑ (𝑎𝑛𝑚 cos𝑚𝜆 + 𝑏𝑛𝑚 sin𝑚𝜆)𝑃𝑛𝑚(sin𝜙)𝑛

𝑚=0                  (3-18) 

The normalizing function 𝑓𝑛𝑚 in equation (3-17) reads: 

          𝑓𝑛𝑚 = {
√2𝑛 + 1                      , 𝑚 = 0

2(2𝑛 + 1)
(𝑛−𝑚)!

(𝑛+𝑚)!
      , 𝑚 ≠ 0

                                                           (3-19) 

     The coefficients 𝑎𝑛𝑚  and 𝑏𝑛𝑚  are constants, which have to be determined. They are 

generally called the spherical harmonic coefficients. [8] 

3.2.3 The normalized Legendre functions 

     Substituting the normalizing function 𝑓𝑛𝑚 in equation (3-19) in the recursive formula of 

Legendre function 𝑃𝑛𝑚  in equation (3-13), the fully normalized Legendre function in 

equation (3-20) is realized. 𝑃𝑛𝑚(sin𝜙) is the fully normalized associated Legendre function. 

𝑃𝑛𝑚(sin𝜙) can be calculated by the recursive formulas (3-20), with the abbreviations 𝑡 =

cos𝜙 and 𝑢 = cos𝜙 as follows: 

          𝑃𝑛,𝑚 = 𝑎𝑛𝑚𝑡𝑃𝑛−1,𝑚 − 𝑏𝑛𝑚𝑃𝑛−2,𝑚                                                                      (3-20a) 

          𝑎𝑛𝑚 = √
(2𝑛−1)(2𝑛+1)

(𝑛−𝑚)(𝑛+𝑚)
                                                                               (3-20b) 

          𝑏𝑛𝑚 = √
(2𝑛+1)(𝑛+𝑚−1)(𝑛−𝑚−1)

(𝑛−𝑚)(𝑛+𝑚)(2𝑛−3)
                                                                  (3-20c) 

          𝑃0,0 = 1   ,   𝑃1,0 = √3𝑡   ,   𝑃1,1 = √3𝑢                                                               (3-20d) 

If n=m, then 𝑃𝑛,𝑚 reads: 
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          𝑃𝑚,𝑚 = 𝑢√
2𝑚+1

2𝑚
𝑃𝑚−1,𝑚−1                                                                                   (3-20e) 

     The first derivative of the fully normalized Legendre polynomial 
𝜕𝑃𝑛,𝑚

𝜕𝜙
 can be calculated 

using the calculated values of the recursive formulas in equations (3-20). There is no need for 

new recursive formulas to calculate the derivatives of the Legendre functions; the calculated 

value of the Legendre polynomial 𝑃𝑛𝑚 can be applied directly to calculate the derivatives of 

the Legendre polynomial, reading: [8] 

          
𝜕𝑃𝑛,𝑚

𝜕𝜙
=

1

𝑢
(𝑛 𝑡 𝑃𝑛,𝑚√

(𝑛2−𝑚2)(2𝑛+1)

2𝑛−1
𝑃𝑛−1,𝑚)         for n>m                            (3-21a) 

 

          
𝜕𝑃𝑛,𝑚

𝜕𝜙
=

1

𝑢
 𝑛 𝑡 𝑃𝑛,𝑚                                           for n = m                               (3-21b) 

3.2.4 Harmonic expansion of the Earth gravitational potential 

     Equations (3-17) and (3-18) are used to evaluate the gravitational potential V at a point 

P(r, 𝜙, 𝜆), attracted by the solid body of the Earth. Equations (3-20a) to (3-20e) are used to 

calculate the Legendre functions. The coefficients (anm, bnm) in equation (3-18) can be used to 

evaluate the gravitational potential V at the point P created by the mass of the Earth. 

Depending on the orthogonality conditions, the coefficients anm and bnm are given by [8] 

          𝑎𝑛𝑚 =
𝐺

2𝑛+1
∭ (𝑟′)𝑛 cos𝑚𝜆′ 𝑃𝑛𝑚 (sin𝜙′)

𝑣
𝜌 𝑑𝑣                                                (3-22a) 

          𝑏𝑛𝑚 =
𝐺

2𝑛+1
∭ (𝑟′)𝑛 sin𝑚𝜆′ 𝑃𝑛𝑚 (sin 𝜙′)

𝑣
𝜌 𝑑𝑣                                                 (3-22b) 

 

By substituting m=0 and n=0, we find 𝑏00 = 0, and 𝑎00 = 0 is given by: 

          𝑎00 = 𝐺 ∭ 𝑝 𝑑𝑣
𝑣

= 𝐺𝑀                                                                                         (3-23) 

Substituting 𝑎00 in equation (3-18) results in: 

          𝑉00 =
𝐺𝑀

𝑟
                                                                                                                (3-24) 

To find 𝑎10, 𝑎11 ,and 𝑏11 , we have: 
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          𝑎10 =
𝐺

3
∭ 𝑟′√3 sin𝜙′ 𝑑𝑚

𝑣
                                                                                  (3-25a) 

          𝑎11 =
𝐺

3
∭ 𝑟′ cos 𝜆′ √3 cos𝜙′ 𝑑𝑚

𝑣
                                                                      (3-25b) 

          𝑏11 =
𝐺

3
∭ 𝑟′ cos 𝜆′ √3 cos𝜙′ 𝑑𝑚

𝑣
                                                                      (3-25c) 

     Geographic coordinates of the point element can be transformed into the Cartesian 

coordinates using equations (3-26a) to (3-26c). 

          𝑟′ sin𝜙′ = 𝑧′                                                                                          (3-26a) 

          𝑟′ cos 𝜙′ cos 𝜆′ = 𝑥′                                                                                              (3-26b) 

          𝑟′ cos 𝜙′ sin 𝜆′ = 𝑦′                                                                                              (3-26c) 

Then 𝑎10, 𝑎11, and 𝑏11  read: 

          𝑎10 =
𝐺

√3
∭𝑧′ 𝑑𝑚                                                                                                (3-27a) 

          𝑎11 =
𝐺

√3
∭𝑥′𝑑𝑚                                                                                                 (3-27b) 

          𝑏11 =
𝐺

√3
∭𝑦′𝑑𝑚                                                                                                (3-27c) 

In mechanics, the coordinates of the center of mass of a rigid body are: 

          𝑥0 =
1

𝑀
∭ 𝑥′𝑑𝑚

𝑣
                                                                                                   (3-28a) 

          𝑦0 =
1

𝑀
∭ 𝑦′𝑑𝑚

𝑣
                                                                                                 (3-28b) 

          𝑧0 =
1

𝑀
∭ 𝑧′ 𝑑𝑚

𝑣
                                                                                                   (3-28c) 

Inserting equations (3-28a) to (3-29c) in equations (3-27a) to (3-28c) results in: 

          𝑎10 =
𝐺𝑀

√3
𝑧0                                                                                                          (3-29a) 

          𝑎11 =
𝐺𝑀

√3
𝑥0                                                                                                          (3-29b) 

          𝑏11 =
𝐺𝑚

√3
𝑦0                                                                                                           (3-29c) 
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     For a properly chosen reference frame, the origin of the coordinate system coincides with 

the center of mass of the Earth. Therefore, x0, y0, and z0 are equal to zero, meaning that the 

related coefficients are zero as well. [8] 

          𝑎10 = 𝑎11 = 𝑏10 = 𝑏11 = 0                                                                                 (3-30) 

Inserting equation (3-24) and (3-30) in equation (3-25) results in: 

           𝑉(𝑟, 𝜙, 𝜆) =
𝐺𝑀

𝑟
+ ∑

1

𝑟𝑛+1
∞
𝑛=2 ∑ (𝑎𝑛𝑚 cos𝑚𝜆 + 𝑏𝑛𝑚 sin𝑚𝜆)𝑃𝑛𝑚(sin𝜙)𝑛

𝑚=0         (3-31) 

     The spherical harmonic coefficients 𝑎𝑛𝑚 and 𝑏𝑛𝑚 in equation (3-31) can be normalized 

using the gravitational constant GM and the semimajor axis of the reference ellipsoid a as 

shown in equations (3-32a) and (3-32b) to get new normalized coefficients 𝐶𝑛𝑚 and 𝑆𝑛𝑚. 

          𝐶𝑛𝑚 =
1

𝑎𝑛𝐺𝑀
𝑎𝑛𝑚                                                                                                  (3-32a) 

          𝑆𝑛𝑚 =
1

𝑎𝑛𝐺𝑀
𝑏𝑛𝑚                                                                                                  (3-32b) 

Inserting (3-32) in equation (3-31) results in equation (3-33a) or equivalently (3-33b). 

          𝑉(𝑟, 𝜙, 𝜆) =
𝐺𝑀

𝑟
+

𝐺𝑀

𝑎
∑ (

𝑎

𝑟
)
𝑛+1

∞
𝑛=2 ∑ (𝐶𝑛𝑚 cos𝑚𝜆 + 𝑆𝑛𝑚 sin𝑚𝜆)𝑃𝑛𝑚(sin𝜙)𝑛

𝑚=0          

                                                                                                                                                              (3-33a) 

          𝑉(𝑟, 𝜙, 𝜆) =
𝐺𝑀

𝑟
+

𝐺𝑀

𝑟
∑ (

𝑎

𝑟
)
𝑛

∞
𝑛=2 ∑ (𝐶𝑛𝑚 cos𝑚𝜆 + 𝑆𝑛𝑚 sin𝑚𝜆)𝑃𝑛𝑚(sin𝜙)𝑛

𝑚=0               

                                                                                                                                          (3-33b) 

3.2.5 Derivatives of the potential of the Earth 

     A point P on the Earth’s surface is subjected to two types of acceleration. The first type is 

the gravitational acceleration part g⃑⃑1 due to the Earth’s mass M. The second type 𝔃⃑⃑⃑ is the 

centrifugal acceleration due to the Earth’s rotation. The total acceleration g⃑⃑ is the vector 

summation of both gravitational and centrifugal accelerations, which represent the actual 

gravity vector: 

          g⃑⃑ = g⃑⃑1 + 𝓏                                                                                                              (3-34) 

     The relationship between the accelerations in equation (3-34) and their related potential is 

given in equation (3-35). The total gravity potential W, created by the total acceleration,g⃑⃑, is 
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the summation of the gravitational potential V and the centrifugal potential Ω. This total 

gravity potential is given by:  

          𝑊 = 𝑉 + 𝛺                                                                                                             (3-35) 

 

Figure (3.2): The gravitational and centrifugal accelerations of the Earth. [8] 

     The centrifugal potential is caused by rotation of the Earth around its minor axis. The 

centrifugal acceleration vector will, therefore, have only two components in the X and Y 

directions. As the angular velocity ω of the Earth around its minor axis is 0.7292115 ×

10−4𝑠−1 as defined by the GRS80, the centrifugal potential reads: 

          𝛺 = 0.5𝜔2𝑟2 cos 𝜙 =
1

2
𝜔2(𝑋2 + 𝑌2)                                                                   (3-36) 

Its related centrifugal acceleration vector and magnitude are: 

          𝓏 = g𝑟𝑎𝑑(𝛺) = [
𝜔2𝑋
𝜔2𝑌
0

] = [
𝜔2𝑟 cos𝜙 cos 𝜆

𝜔2𝑟 cos𝜙 sin 𝜆
0

]                                                      (3-37a) 

          𝑧 = |𝓏 | = √(
𝜕𝛺

𝜕𝑋
)
2

+ (
𝜕𝛺

𝜕𝑌
)
2

+ (
𝜕𝛺

𝜕𝑍
)
2

= 𝜔2√𝑋2 + 𝑌2 = 𝜔2𝑟 cos𝜙                   (3-37b)                                                                                          

     The total gravity vector is the gradient of the gravity potential W (g⃑⃑ = g𝑟𝑎𝑑 𝑊). This can 

be formulated in equation (3-38) in 3D-cartesian coordinates. 

          g⃑⃑ = [
𝜕𝑊

𝜕𝑋

𝜕𝑊

𝜕𝑌

𝜕𝑊

𝜕𝑍
]                                                                                                (3-38) 

In spherical coordinates, equation (3-38) reads: 
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          g⃑⃑ = [
𝜕𝑊

𝜕𝑟

𝜕𝑊

𝑟 cos𝜙𝜕𝜆

𝜕𝑊

𝑟𝜕𝜙
]                                                                                       (3-39) 

Substituting equation (3-35) in equation (3-39) results in: 

          g⃑⃑ = [
𝜕(𝑉+𝛺)

𝜕𝑟

𝜕(𝑉+𝛺)

𝑟 cos𝜙𝜕𝜆

𝜕(𝑉+𝛺)

𝑟𝜕𝜙
]                                                                             (3-40) 

The derivatives of the gravitational potential V in equation (3-40) are given by: 

          
𝜕𝑉

𝜕𝑟
=

𝐺𝑀

𝑟2 −
𝐺𝑀

𝑟2
∑ (

a

r
)
n
(n + 1)max _n

n=2 ∑ (𝐶𝑛,𝑚 cos(𝑚𝜆) + 𝑆𝑛,𝑚 sin(𝑚𝜆))𝑃𝑛,𝑚(sin𝜙)𝑛
𝑚=0  

                                                                                                                                            (3-41a) 

         
𝜕𝑉

𝜕𝜆
=

𝐺𝑀

𝑟
∑ (

𝑎

𝑟
)
𝑛

max _𝑛
𝑛=2 ∑ 𝑚. (𝑆𝑛,𝑚 cos(𝑚𝜆) − 𝐶𝑛,𝑚 sin(𝑚𝜆))𝑃𝑛,𝑚(sin𝜙)𝑛

𝑚=0        (3-41b) 

        
𝜕𝑉

𝜕𝜆
=

𝐺𝑀

𝑟
∑ (

𝑎

𝑟
)
𝑛

max _𝑛
𝑛=2 ∑ 𝑚. (𝐶𝑛,𝑚 cos(𝑚𝜆) + 𝑆𝑛,𝑚 sin(𝑚𝜆))

𝜕𝑃𝑛,𝑚

𝜕𝜙

𝑛
𝑚=0                   (3-41c)                                                                                                                         

The derivatives of the centrifugal potential read: 

          
𝜕𝛺

𝜕𝑟
= 𝜔2 cos2 𝜙                                                                                                      (3-42a) 

          
𝜕𝛺

𝜕𝜆
= 0                                                                                                                    (3-42b) 

         
𝜕𝛺

𝜕𝜙
= 𝜔2𝑟2 cos𝜙 sin𝜙                                                                              (3-42c) 

The magnitude of gravity reads: 

          g = |g⃑⃑| = √(
𝜕(𝑉+𝛺)

𝜕𝑟
)
2

+ (
𝜕(𝑉+𝛺)

𝑟 cos𝜙𝜕𝜆
)
2

+ (
𝜕(𝑉+𝛺)

𝑟𝜕𝜙
)
2

                                                (3-43)  

     By using the SH formulas, it is easy to derive any other functional quantities related to the 

potential. The most referred functional quantities in equation (3-44) are the gravity vector 

g⃑⃑𝐿𝐺𝑉_𝑆𝑝ℎ𝑒𝑟𝑒  in spherical-LGV,  g⃑⃑𝐿𝐺𝑉  in LGV, quasigeoid heights (height anomalies) ζ, the 

geoid height N, and deflections of the vertical in the east and north directions ( η,ζ ). [8] 

          g𝐿𝐺𝑉_𝑆𝑝ℎ𝑒𝑟𝑒 = [
𝜕𝑊

𝜕𝑟

𝜕𝑊

𝑟 cos𝜑𝜕𝜆

𝜕𝑊

𝑟𝜕𝜑
] and g𝐿𝐺𝑉_𝐸𝑙𝑙𝑖𝑝𝑠𝑜𝑖𝑑 = 𝑅(𝜆, 𝜑)𝑒

𝑛. [

𝑊𝑥

𝑊𝑦

𝑊𝑧

]            (3-44a) 

 

     Where the absolute value g at a position P(x,y,z) is both the same. The following 

quantities (3-44b) to (3-44e) are referring to the ellipsoid, a modern ellipsoidal 

georeferencing, and the respective reference gravity field (at present GRS80): 
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          𝜁 =
𝑇

𝛾𝑄
                                                                                                                   (3-44b) 

          𝑁 =
𝑇

𝛾𝑄
+

g−𝛾

𝛾
𝐻𝑝 = 𝜁 +

g−𝛾

𝛾
𝐻𝑝                                                                            (3-44c) 

          𝜉 =
𝜕𝑁

𝜕𝑠𝑁𝑜𝑟𝑡ℎ
= −

1

𝛾𝑄(𝑀+ℎ)

𝜕𝑇

𝜕𝜙
                                                                                  (3-44d) 

          𝜂 =
𝜕𝑁

𝜕𝑠𝐸𝑎𝑠𝑡
= −

1

𝛾𝑄(𝑁+ℎ) cos𝜙

𝜕𝑇

𝜕𝜆
                                                                             (3-44e) 

 

     With 𝛾 and g the integrated quantities of the reference and the true gravity field (3-44a), 

respectively, along the plumb line (practically and without loss of validity computed along 

the ellipsoidal normal), are introduced. T is a disturbing potential. 
𝑄

 is the ellipsoidal normal 

gravity for a point Q on the so-called telluride with the same latitude and longitude as the 

calculation point and an ellipsoidal height of ℎ𝑄 = 𝐻∗
𝑝 = ℎ𝑝 − 𝜁. The telluride is defined as 

the surface whose normal potential 𝑈𝑄 is equal to the actual potential at point 𝑊𝑃 see figure 

(3.3). The telluride is not an equipotential surface. 𝑠𝑁𝑜𝑟𝑡ℎ  and 𝑠𝐸𝑎𝑠𝑡  are the differential 

distance elements towards North and East, respectively. M and N are the ellipsoidal radii of 

curvature in the directions of longitude and latitude, respectively. The geoid (N) coincides 

with the mean sea level and was earlier used height reference surface by measuring the tide 

gauges at the coast of a country. [8] 

 

 

Figure (3.3): Height anomaly  vs. geoid height N. [8] 
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3.2.6 The spherical harmonic expansion of the Earth’s gravity field 

     The common way of representing the gravitational potential V in a global model is to use 

the SH. Presently, there are many global gravity potential field models available from various 

sources and with different spatial resolutions. The International Center for Global Gravity 

Models (ICGEM) provides access to the various satellite-only or combined models on behalf 

of the International Association of Geodesy. Examples of these models are shown in table 

(3.1). [8] 

Table (3.1): Some of the common global gravity models with their data sources [8] 

Model Year Degree Data 

EIGEN06c 2011 1420 S(GOCE,GRACE,LAGEOS),G,A 

EIGEN051c 2010 359 S(GRACE, CHAMP),G,A 

EIGEN05c 2008 360 S(GRACE,LAGEOS),G,A 

EGM2008 2008 2190 S(GRACE),G,A 

EIGEN-GL04c 2006 360 S(GRACE,LAGEOS),G,A 

GGM02c 2004 200 S(GRACE),G,A 

EIGEN-CG01c 2004 360 S(CHAMP,GRACE),G,A 

PGM2000A 2000 360 S,G,A 

EGM96 1996 360 S,G,A 

Data: S=Satellite gravity data, G = Gravity data, A = Altimetry data 

     The calculation of the SH coefficients can only be solved by means of global data 

coverage. This could only be achieved after the first geodetic satellite missions (like the 

LAGEOS, GRACE, GOCE and CHAMP missions). The satellite missions are utilizing 

different types of measurement principles. The LAGEOS satellites apply the principle of 

Satellite Laser Ranging (SLR), while the CHAMP mission uses the principle of Satellite-to-

Satellite tracking in highlow mode, where the residual gravity accelerations are additionally 

measured by means of an accelerometer. The GRACE Satellite mission uses the principle of 

Satellite-to-Satellite tracking in low-low mode, where the gravity differences between two 

satellites separated by hundreds of kilometers are observed. The most modern GOCE mission 

uses the principle of gravity gradiometry using a group of accelerometers fixed on the three 

axes of the satellite. The combination of satellite observations with terrestrial measurements 

led to the combined gravity models (e.g. EGM98A, EGM96, EIGEN06c, and EGM2008). 
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The SH can be calculated by two methods: the first is the integration method that keeps the 

orthogonality conditions of the SH, and the second is the least-squares estimation. [8] 

     The integration methods have several problems. One is that the data have to be downward 

continued to the zero levels (geoid) resulting in the so-called surface SH; the other is that the 

weighting of observations of different sources is not possible. The integration formulas to 

calculate the spherical harmonic coefficients using the gravity anomalies g and the geoid 

heights N are given by: 

          {
𝐶𝑛𝑚

𝑆𝑛𝑚

} =
1

4𝜋𝐺𝑀
∬ 𝑟𝛾 (

𝑟

𝑎
)
𝑛

𝑁𝑃𝑛𝑚 {
cos𝑚𝜆
sin𝑚𝜆

} 𝑑𝜎
𝜎

                                                   (3-45a) 

          {
𝐶𝑛𝑚

𝑆𝑛𝑚

} =
1

4𝜋𝐺𝑀
∬

𝑟2

𝑛−1
(

𝑟

𝑎
)
𝑛

∆𝑔𝑃𝑛𝑚 {
cos𝑚
sin𝑚

}𝑑𝜎
𝜎

                                           (3-45b) 

 

     In the least-squares solution, the introduction of the variance and covariance matrices is 

possible for each group of data or for any single observation. 

     The solutions have always been applied in two modes: the satellite-only models and the 

combined models. The advantage of satellite-only methods is that they use direct gravity or a 

potential function as input without the need for any reductions or corrections. On the other 

hand, there is always mixing related to the terrestrial gravity data in the combined methods. 

Sometimes the terrestrial gravity data are free-air gravity and sometimes Bouguer anomalies. 

The geoid/quasigeoid heights at the height fitting points may also be related to different 

vertical datums. They can also be in different types of heights like the orthometric, normal or 

dynamic heights. For these reasons, it is more desirable to have the satellite-only models 

alone without the combination of terrestrial data. [8] 

     The satellite-only models use data measured over long time periods. This provides 

information about time-dependent changes of the Earth-like plate tectonics, ocean circulation, 

ice mass variations, tides, etc. Each of these time-dependent effects will affect the measured 

gravity values. For these reasons, they are suitable to be used in defining the global physical 

reference surface. [8] 

     The satellite-only methods have a limited resolution which leads to lower degree and order 

of the SH model. In addition, there are always some gaps in the data, especially near the 

poles, but the representation of the quasigeoid requires high degrees and orders with global 
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coverage of data. For these reasons, terrestrial data are required to achieve higher accuracy in 

the combined models. [8] 

3.3 The local potential modeling 

     Here, different principles of local potential and gravity modeling are introduced. The 

methods discussed in this chapter are the Stokes formula including the remove-restore 

method, GNSS/Leveling, the Finite Elements Methods, and the Least Squares Collocation. 

There are many other principles available, like the astrogeodetic methods,…, etc. [8] 

 

3.3.1 Stokes formula and remove-restore method 

     The Stokes formula (Stokes Integral), derived by Stokes (1849), is one of the most 

commonly used methods for the computation of highly accurate geoid models by means of a 

grid of surface gravity anomalies ∆g. Here, ∆g is the difference between the real gravity on 

the geoid surface observation and the g𝑝ellipsoidal normal gravity on the ellipsoid surface 𝛾𝑄. 

The gravity anomaly ∆g reduced to geoid level to get ∆g0 to calculate the geoid using free 

correction and terrain corrections. Where ∆g and ∆g0 read: [8] 

          Δg = g𝑝 − 𝛾𝑄                                                                                                        (3-46a) 

          Δg = g𝑝0 − 𝛾𝑄0                                                                                                    (3-46b) 

The point P, P0, Q, and Q0are explained in figure (3.3). The Stokes formula reads: 

          𝑁 =
𝑎

4𝜋𝛾𝑚
∬ 𝑆(𝜓)Δg

𝜎
𝑑𝜎                                                                                        (3-47) 

Here, a is the semimajor axis of the reference ellipsoid, The Stokes function S() is given by: 

          S(ψ) = ∑
2n+1

n−1
Pn(ψ)∞

n=2                                                                                         (3-48) 

     In equation (3-47),  is the spherical distance between the point of interest and a grid 

point with given gravity anomaly Δg. 𝑃𝑛(𝜓) is the zero-order Legendre function related to . 

For the implementation of Stokes integral, the scattered gravity anomalies gravity points have  

to be gridded over the complete Earth’s surface to enable calculation of the geoid heights. [8] 

     As the Stokes formula has to be applied globally in principle, an enhancement to this 

formula has commonly been used to model the geoid height locally using the long-
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wavelength effect, which is introduced by the available global gravity models. In addition, 

the combination of the global models with dense gravity data and high-resolution Digital 

Terrain Models (DTM) leads to the so-called remove-restore technique. [8] 

      In the remove-restore technique, the gravity anomaly grid points Δg are reduced by the 

gravity anomalies computed from a global gravity model Δgglobal. The effect of the terrain 

then has to be reduced ΔgDTM . The resultant gravity anomalies (residual anomalies) 

Δgresidual are applied in the Stokes formula to obtain the residual geoid heights ΔNresidual. 

The final geoid height is given by:    

          N = Nglobal + ΔNresidual + ΔNDTM                                                             (3-49)   

     The use of the remove-restore method enables the application of Stokes formulas over 

smaller areas. This makes it possible to work with planar approximations, enabling the 

application of the FFT. The use of the Stokes formula is not possible by the combination of 

different data types with different accuracy measures. Furthermore, a grid of gravity 

anomalies must always be used. In this way, the single gravity observations cannot be 

statistically weighted and tested according to the measurement accuracy. [8] 

3.3.2 GNSS/Leveling 

     The GNSS/GPS leveling can be directly used in the defining the eight reference surface 

(HRS) by measuring the ellipsoidal heights (h) of points with known orthometric height (H) 

or normal height (H*). The ellipsoidal heights are measured directly by means of GPS/GNSS. 

The height anomaly (ζ=h-H*) or the geoid height (N=h-H) at a given point is directly 

determined. [8] 

3.3.3 Digital finite elements height reference surface (DFHRS) 

     The finite-element method has been used for modeling the height reference surface (HRS) 

in the Digital Finite Element Height Reference Surface (DFHRS) project. The DFHRS 

research project at IAF of the Hochschule Karlsruhe - University of Applied Sciences aims to 

implement parametric modeling and computation of height reference surfaces for the 

geometric and the physical observation components in a hybrid adjustment approach 

(DFHRS). [8] 
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     Access to the parametric HRS model is enabled by DFHRS databases (DFHRS-DB), 

which allow the direct conversion of GNSS-heights (h) into physical heights (H). DFHRS 

databases are used for online GNSS-height measurements in DGNSS-networks (SAPOS, 

AXIONET, etc.) and in the Geographic Information Systems (GIS). The DFHRS-DB has 

been computed for different states in Germany as well as several nations and regions in 

Europe, Africa, and the USA. The accuracy of the obtained results varies from 0.01-0.1 

meter. 

     The direct conversion of the ellipsoidal GNSS height h (Ellipsoidal height), determined at 

the Earth surface, into the physical Earth gravity field-based physical height H, is necessary 

for GNSS-based height measurements in modern GNSS-positioning services. The basic 

relation between the GNSS-based height h and the standard height (orthometric height H) in 

figure (3.4) reads: [8] 

          𝐻 = ℎ − 𝑁                                                                                              (3-50) 

 

Figure (3.4): The relation between orthometric height H, ellipsoidal heights h and geoid 

undulation N. [8] 

3.3.3.1 Principles of DFHRS 

     The geoid is represented by its height above the Ellipsoid or the so-called geoid 

undulation (N). In DFHRS, N is represented by the Finite Element Method (FEM) with 

polynomial parameters p. These describe a finite element HRS called NFEM (p| λ,ϕ,h). If a 

scale difference ∆𝑚 is considered for old reference systems, then the HRS is represented by 

NFEM (p, Δ𝑚 | λ,ϕ,h). Equation (3-50) can, therefore, be written as: 
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          𝐻 = ℎ − 𝐷𝐹𝐻𝑅𝑆(𝑝, 𝛥𝑚 | 𝜆, 𝜙, ℎ)                                                                 (3-51) 

Or equivalently: 

          𝐻 = ℎ − 𝑁𝐹𝐸𝑀(𝑝, 𝛥𝑚 | 𝜆, 𝜙, ℎ)                                                                 (3-52) 

     The finite element representation NFEM(p|x,y) is carried out by bivariate polynomials of 

degree n, which are set up in regular or irregular meshes.  If we describe with 𝑝𝑖  the 

polynomial coefficients (𝑎00, 𝑎10, 𝑎01, 𝑎20, 𝑎11, 𝑎02, . ..) of the i-th mesh of n meshes in total, 

the height NFEM(𝑝𝑖 |x,y) of the HRS over the ellipsoid is: 

          NFEM(pi|x, y) = f(x, y)Tpi                                                                        (3-53) 

          𝑝𝑖 = [𝑝𝑗𝑘
𝑖]

𝑇
; 𝑗 = 0, 𝑛; 𝑘 = 0, 𝑛 𝑎𝑛𝑑 𝑓(𝑥, 𝑦)𝑇 = (1, 𝑥, 𝑦, 𝑥2, 𝑥𝑦, 𝑦2, … )                 (3-54) 

     The principle of the DFHRS is to divide an area or region of a continuous HRS into a 

number of patches, with each patch further divided into a number of meshes as shown in 

figure (3.5). Each patch has a datum and associated transformation parameters (d) and each 

mesh has HRS parameters (p). Continuity conditions must also be considered. The NFEM for 

a point in the boundary between two meshes should be the same depending on the two 

meshes (the so-called C0- continuity), as should the slope at the boundary for both meshes 

(so-called C1-continuity) so that the meshes represent the whole area. The DFHRS 

parameters (p) and the mesh information are stored in the DFHRS-DB. [8] 

     The DFHRS geometrical observations include points with ellipsoidal (h) and normal or 

orthometric heights(H) as identical points, geoid heights form global or regional geoid 

models, astronomical deflections of the vertical ( ξ,η ) from geoid models and the points with 

observed ellipsoidal heights(h) or orthometric heights (H). [8] 

     The parameters stored in the DFHRS-DB are (p, Δ𝑚) and are related to the projected 

coordinates (x,y). The polynomial representation of the DFHRS is written in terms of design 

matrix f and parameters vector p: 

          𝑁𝐹𝐸𝑀(𝑝|𝑥, 𝑦) = 𝑓(𝑥, 𝑦)𝑇𝑝                                                                       (3-55) 

The observation equation for an ellipsoidal normal height in the i-th mesh with covariance 

matrix Ch  has the following observation equation: 
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          ℎ + 𝑣 = 𝐻 + ℎΔ𝑚 + 𝑓(𝑥, 𝑦)𝑇𝑝𝑖                                                               (3-56a) 

The observation equation of a global potential model (GPM) geoid height in the i-th mesh 

and the j-th patch is: 

          𝑁𝐺𝑃𝑀 + 𝑣 = 𝑓(𝑥, 𝑦)𝑇𝑝𝑖 + 𝜕𝑁(𝑑𝑗)                                                            (3-56b) 

The deflections of the vertical in the i-th mesh and j-th patch observation equations are: 

          𝜉 + 𝑣 =
−𝑓𝜙

𝑇

𝑀(𝜙)+ℎ
𝑝𝑖 + 𝜕𝜉 (𝑑𝜂.𝜉

𝑗
)                                                                  (3-56c) 

          𝜂 + 𝑣 =
−𝑓𝐿

𝑇

𝑁(𝜙)𝑐𝑜𝑠(𝜙)+ℎ
𝑝𝑖 + 𝜕𝜂 (𝑑𝜂,𝜉

𝑗
)                                                                   (3-56d) 

The observation equation for the physical (orthometric or normal) heights reads: 

          𝐻 + 𝑣 = 𝐻                                                                                             (3-56e) 

The continuity conditions between different neighbor meshes are considered as additional 

observation equations: 

          𝐶 + 𝑣 = 𝐶(𝑝)                                                                                         (3-56f) 

 

Figure (3.5): DFHRS patches and meshes, where thick lines represent the patch boundary 

and thin lines represent the meshes. [8] 

 

     In the equations (3-56a) to (3-56f), 𝜕𝑁(𝑑) is the datum parameterization of the GPM 

quasigeoid or geoid grid heights in the patch. 𝜕𝜉(𝑑) and 𝜕𝜂(𝑑) are datum parameterizations 
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of the deflections of the vertical. 𝑓𝜙  is the partial derivative of f(x,y) with respect to the 

latitude. And finally, 𝑓𝑳 is the partial derivative of f(x,y) with respect to longitude. [8] 

     To reduce the effect of medium- or long-wavelength systematic shape deflections, 

specifically the natural and stochastic “weak shapes”, in the observations N and (ξ,η) from 

geoid or GPM models, these observations are subdivided into a number of patches; see the 

thick blue in figure(3.5). [8] 

3.3.3.2 Extension of DFHRS to physical observations 

     The DFHRS physical observations include terrestrial, airborne and spaceborne gravity 

measurements. In addition, physical observations from a global or regional geopotential 

model (GPM) of the Earth gravitational potential V for limited size cap area and cap pole, 

represented by the so-called SCH ( Snm ', Cnm ' ). [8] 

     The advantage of SCH is that the number of parameters for the local cap area is 

significantly less than that needed in an ordinary global SH model. 

          𝑇(𝑟, 𝛼, 𝜃) = ∑ (
𝑅

𝑟
)
𝑛(𝑘)+1

𝑘 𝑚𝑎𝑥
𝑘=0 ∑ (𝐶′

𝑛(𝑘),𝑚 cos𝑚𝛼 + 𝑆′
𝑛(𝑘),𝑚 sin𝑚𝛼)𝑘

𝑚=0  𝑃𝑛(𝑘),,𝑚(cos𝜃)                        

                                                                                                                                                                (3-57)  
                                                                                                                                                                                                               

     The DFHRS model can be used in SCH as a condition so that NFEM=N(SCH). 

          𝑣Δ𝑁 = 𝑁(𝐶′𝑛(𝑘),𝑚, 𝑆′𝑛(𝑘),𝑚) − 𝑓𝑇𝑝                                                             (3-58) 

     The gravity observation 𝐠𝐩 at the Earth's surface, taken with a gravity meter, refers to the 

local astronomical vertical system (LAV). The respective observed three-dimensional gravity 

vector in total is given by: 

          gLAV = [0,0, −gp]
T
                                                                                 (3-59a) 

     The related gravity anomaly is g = gP −
Q
 . The gravity vector can be rotated using the 

deflections of the vertical (,) or equivalently by the astronomical latitude and longitude 

(  = +,  =  + / cos() ) to the Earth-centered Earth-fixed system (ECEF) using (,), 

Following this rotation, the centrifugal parts are removed, and the original observation in 

equation (3-59a) is strictly reduced with respect to deflections of the vertical and the 



 
 

 
50 

 

centrifugal acceleration. After a further rotation to the local geodetic vertical system (LGV) 

related to the cap sphere, the reduced observation (3-59a) is: [8] 

          Δgred
LGV = [ΔgN, ΔgE, Δgr]

T                                                                        (3-59b) 

Transformation Equations from LAV to LGV: 

           =  +                                                                                                (3-T1) 

           =  + 
 

cos()
                                                                                           (3-T2) 

          g⃑ LGV = [

g

gλ

gr

] = RLAV
LGV   g⃑ LAV                                                                        (3-T3) 

 

          𝐑𝐋𝐀𝐕
𝐋𝐆𝐕 =

          [

sin  sin  cos( − ) + cos  cos  sin  sin( − ) cos  sin − sin  cos  cos( − )

− sin  sin( − ) cos( − ) cos  sin( − )

sin  cos − cos  sin  cos( − ) − cos  sin( − ) cos  cos  cos( − ) + sin  sin 

] 

                                                                                                                       (3-T4) 

          g⃑ e = [

gX

gY

gZ

] = RLGV
e  g⃑ LGV                                                                            (3-T5) 

          RLGV
e = [

−sin  cos  −sin  cos  cos 

−sin  sin  cos  cos  sin 

cos  0 sin 

]                                              (3-T6) 

          𝓏 = ω2P⃑⃑ = [
ω2X
ω2Y
0

]                                                                                    (3-T7) 

          g⃑ e
′
= [

g′X
g′Y
g′Z

] = [

gX

gY

gZ

] = [
ω2X
ω2Y
0

]                                                                      (3-T8) 

In the SCH frame (3-59b) using the transformation equations (3-T1) to (3-T8) is written as: 

          Δggrav
SCH = [

1

r

∂T

∂θ
,

1

r sinθ

∂T

∂α
,
∂T

∂r
]
T

                                                                    (3-59c)  

The harmonic expansion of the radial component of equation (3-59c) is: 
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          ∆ggrav
SCH = ∑ (

R

r
)

n(k)+1
∞
k=0  

(n(k)+1)

r
(∑ (C′n(k),m cosmα + S′n(k),m sin mα)Pn(k),m(cos θ)k

m=0 ) + dg(dg) 

                                                                                                                      (3-59d) 

     The SCH has an integer order m and a real degree 𝑛𝑘. The real degree 𝑛𝑘 satisfies the 

property of orthogonality of the function in the cap area. These represent the roots of 

Legendre function and its derivatives according to the following conditions: 

          Pnk(m)(cos(θ)) = 0                 for   k-m = odd                                                  (3-60a) 

          
dPnk(m)(cos(θ))

dθ
= 0                    for   k-m = even                                        (3-60b) 

     This principle has disadvantages, because of the need to search for the real degrees 𝑛𝑘 

according to the conditions in equations (3-60a) and (3-60b). The different algorithms for 

calculating the roots of Legendre functions introduce additional errors because they are 

mostly iterative with certain approximations or complicated algorithms. Furthermore, the 

computation of the real degree 𝑛𝑘is time-consuming. The calculations of Legendre functions 

and their derivatives with non-integer degrees, where no recursive formulas are given in the 

literature, is also a time-consuming process making use of approximations. [8] 

3.3.4 Least Squares Collocation 

     The basic principle of the Least Squares Collocation (LSC) is that the disturbing potential 

T satisfies Laplace’s equation. It is represented a by a group of suitable harmonic base 

functions φk at given positions with their related coefficients. In this case, the disturbing 

potential reads: 

          T(P) = f(P) = ∑ bkφk
q
k=1                                                                          (3-61) 

     The measurements are assumed to be linear functionals L(T) of the disturbing potential T. 

The linear operators of deflections of the vertical, gravity anomalies and gravity disturbances 

related to the disturbing potential are given in table (3.2). [8] 
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Table (3.2): The potential related observations and their linear operators L(T) [8] 

Variable Relation to the potential L(T) 

Deflection of vertical east-west −
1

𝛾𝑄(𝑁 + ℎ) cos𝜙

𝜕𝑇

𝜕𝜆
 −

1

𝛾𝑄(𝑁 + ℎ) cos𝜙

𝜕

𝜕𝜆
 

Deflection of vertical north-south 

 
−

1

𝛾𝑄(𝑀 + ℎ)

𝜕𝑇

𝜕𝜙
 −

1

𝛾𝑄(𝑀 + ℎ)

𝜕

𝜕𝜙
 

Gravity anomalies 

 
−

𝜕𝑇

𝜕𝑧
−

2

𝑅
𝑇 −

𝜕

𝜕𝑍
−

2

𝑅
 

Gravity disturbance −
𝜕𝑇

𝜕𝑧
 −

𝜕

𝜕𝑧
 

For a given observation I, we have: 

          ∑ BikbK
q
i=1 = li                                                                                        (3-62) 

For a given observation I, we have: 

          Bik = Li(φk)                                                                                           (3-63) 

     In equation (3-62), we can solve for q coefficients by using q observations. This method is 

called collocation. If we consider a harmonic covariance propagation function (K) that is 

symmetric with respect the point P and the reference point Q, the base function φk related to 

the observation type of Q is: 

          φK = LK
QK(P, Q) = CPK                                                                             (3-64) 

Substituting (3-64) in (3-63) results in: 

          Bik = Li
P LK

QK(P, Q) = Cik                                                                          (3-65) 

Solving (3-62) for and substituting in (3-61) results in: 

          f(P) = [CP1 CP2 ⋯ CPq] [

C11 C12

C21 C22

⋯
⋯

C1q

⋮
⋮ ⋮ ⋱ ⋮

Cq1 Cq2 ⋯ Cqq

]

−1

[

l1
l2
⋮
lq

]                            (3-66) 

The covariance propagation function K as given by reads: 



 
 

 
53 

 

          K(P, Q) = ∑ σn
2 (

R2

rPrQ
)

n+!

Pn(ψPQ)∞
n=2                                                          (3-67) 

     In equation (3-67), σn
2  is the n-th degree variance that can be theoretically calculated by 

the Tscherning & Rapp method or from the global gravity models. ψPQ  is the spherical 

distance between the points P and Q. 

     The greatest advantage of LSC is the flexibility in estimating any kind of the potential 

related quantities using a combination of all available geodetic physical and geometrical 

observations, in addition to its proper use for local and global implementation. The primary 

problem, however, is that for huge areas a large amount of data would be required. This 

requires extended computation time of the new points. [8] 

3.4 Integrated Geodesy 

     High-speed computers allowed the processing of large amounts of data of different types 

to solve a large system of equations. The integrated data processing for a unified model for 

three-dimensional geodesy is called “Integrated Geodesy”. In the classical geodesy, only one 

type of observation is used for gravity field modeling. An example of the classical geodesy is 

the Stokes formula for geoid modeling, where only the gravity anomalies are used to compute 

the disturbing potential T. [8] 

     The principle of Integrated Geodesy is that any time independent observation l can be 

expressed as a function with parameters vector p depending on the position (Geometry)     

𝑥⃑ = (𝑋, 𝑌, 𝑍) and the Earth's potential W. 

          𝑙 = 𝑙(𝑥⃑,𝑊(𝑥⃑, 𝑝))                                                                                     (3-68) 

     In most cases, the position (geometry) is assumed to be fixed. The parameterization is to 

model the potential and its related quantities. The quantities introduced in a chapter (3.2.5) 

are all functions of the potential that apply to equation (3-68). The DFHRS described in a 

chapter (3.3.2) also qualifies as Integrated Geodesy. [8] 

3.5 State of the art in the gravity field modeling 

     There currently exist many published global, regional and local geoids. In the global 

models, they are mostly modeled by means of SH as described in the chapter (3.2). 
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EGM2008 is the global combined gravity model with the highest degree and order presently 

available, with a maximum degree and order of 2190. The EGM2008 would satisfy a 5cm 

geoid height accuracy, in case it would be free of “weak shapes”. Other combined global 

gravity models were calculated and introduced by GFZ-Potsdam (EIGEN models). The most 

recent of these is the EIGEN06c, which has a maximum degree and order of 1420. In the 

geoid heights, the accuracy of the EIGEN06c is comparable to the EGM2008. Other 

combined models with less degree and order (EIGEN01-05c) are up to degree and order of 

360. [8] 

     The estimation of high degree and order models like EGM2008 and EIGEN06c have 

introduced new calculation methods. In these methods, the parameters are calculated using a 

combination of integrals and least squares. Figure (3.6) shows the use of different data types, 

and how they contribute to finding the harmonic coefficients of the EIGEN06c model. 

 

Figure (3.6): The principle of harmonic coefficients calculation in the EIGEN06c model. [8] 

     For modeling the satellite-only gravity data, which are free of datum and zero level, 

satellite-only models are always introduced. One of the most common applications is the 

satellite orbit determination. These models, however, suffer from problems associated with 

ground geoid determination. This is because of low degrees and orders due to the loss of data, 

especially in pole areas. Table (3.3) shows selected combined and satellite-only models and 

their related maximum degree and order with the accuracy of the model. [8] 
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Table (3.3): Examples of satellite-only and combined global geoid models. [8] 

Model 
Publishing 

date 
N-max Data 

Geoid accuracy 

in Europe (m) 

EGM2008 2008 2190 S(GRACE),G,A 0.208 m 

EIGEN06c 2011 1420 S(GOCE,GRACE,LAGEOS),G ,A 0.214 m 

EIGEN06s 2011 240 S(GOCE,GRACE,LAGEOS) 0.449 m 

GGM03c 2009 360 S(GRACE),G,A 0.515 m 

GGM03s 2008 150 S(GRACE) 1.416 m 

Data: S=Satellite data, G = Terrestrial gravity, A = height fitting points 

     The EGG07, computed by IfE-Hannover, is one of the latest regional gravity models in 

Europe and has supplanted the European quasigeoid EGG97. The EGG07 was calculated by 

the remove-restore method with updated terrestrial gravity, marine gravity, and airborne 

gravity data. When compared to GPS/leveling heights the EGG07 has an RMSE of 0.01- 0.06 

m. The worst results were in high mountains in Austria and France. Another regional geoid 

model was calculated by the DFHRS software for the Baltic countries (Latvia, Estonia, and 

Lithuania). The achieved accuracy of the Baltic geoid was 1-3cm. For Europe, a geoid model 

using DFHRS software was calculated in 2004 with an accuracy of better than 10 cm. [8] 

     In terms of local geoid models, the USGG09 and GEOID09 were introduced in 2010 for 

the United States of America by the NGS (National Geodetic Survey). The USGG09 is an 

absolute gravimetric geoid model using the remove-restore method using millions of land and 

ocean gravity data points with EGM96 support for longwave geoid heights. The combined 

geoid model (GEOID09) is applied by combining the USGG09 with nearly 20000 

GPS/leveling points using Multi-Matrix Least Squares collocation (MMLSC). In the 

GEOID09 six LSC matrices were applied to achieve 2km geoid resolution with RMSE of 

1.5cm. [8] 

     In Germany, the German Combined Quasi geoid 2011(GCG2011) was introduced by the 

Bundesamt für Kartographie und Geodäsie (BKG) and IfE-Hannover. The GCG2011 was 

calculated by the remove-restore method combined with point mass method using terrestrial 

gravity, GOCE gravity, and GPS/leveling points. The GCG2011 accuracy is 1-2 cm in flat 

and hilly areas but is reduced to approximately 3-4 cm in the high mountains. In ocean areas, 

the accuracy of the GCG2011 geoid is in the range of 4-10cm. [8] 
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     In 2010, the DFHRS software was used to calculate the Height Reference Surface 

(Quasigeoid) for the State of Moldova. The solution was applied using a mesh design of 

5x5km. In Moldova, there are two height systems in use. One system is for urban areas, while 

the other is for rural areas. For this reason, the solution was done twice by preparing two 

DFHRS-DBs. Field tests have shown an average accuracy of 1-2 cm over the entire country. 

[8] 
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Chapter Four: 

Data and Analysis 

4.1 Introduction. 

4.2 Global Evaluation of the Geoid Models. 

4.3 Local Evaluation of the Geoid Models. 
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Data and Analysis 

4.1 Introduction 

     The International Centre for Global Earth Models (ICGEM) is one of five services 

coordinated by the International Gravity Field Service (IGFS) of the International 

Association of Geodesy (IAG). The primary task of the ICGEM is making all global gravity 

field models of the Earth available to the public. The models can be downloaded on the 

ICGEM website in a standardized self-explanatory format as spherical harmonic coefficients. 

ICGEM provides not only the most recent, but also historical models, and provides a Digital 

Object Identifier (DOI) services for gravitational models since 2015. Gravity field 

differences, their time variation, and different gravity field model functionals are available 

via a dedicated gravity function calculation service and visualization tool provided on the 

ICGEM website. In addition, the web site offers tutorials on spherical harmonics and the 

underlying theory of the calculation service. [9] 

     The ICGEM service which was established in 2003 as a new service of International 

Gravity Field Service (IGFS) continues to make the global gravity field models available to 

the public. The service does not only provide the model coefficients publicly available but 

also presents an interactive platform for the interested users to calculate and visualize the 

global gravity field functionals and also a discussion forum for users to raise their questions 

or convey their messages and feedback. Since the beginning of the service, the user profile 

has changed and widely expanded. Now, users practicing other disciplines (e.g., planetary 

science, geology) or users working in the industry, mapping companies, and agencies are also 

interested in ICGEM products and they communicate the ICGEM team closely for further 

information and analyses. [9] 

     In order for users to benefit the current ICGEM products and coming GRACE-FO mission 

products more efficiently, ICGEM has launched the new ICGEM service which is designed 

to improve the users' experience with the service outcomes. Also, the new service is more 

flexible from the point of administration and promises continuous improvement. The new 

ICGEM website is designed to encourage the researchers to use the latest model products for 

education and research purposes. [9] 
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The Calculation Service 

     An improved user-friendly web-interface to calculate gravity functionals from the 

spherical harmonic models on freely selectable grids, with respect to a reference system of 

the user’s choice, is provided. The following functionals are available for gravity field model 

computations: 

• pseudo height anomaly on the ellipsoid (or at arbitrary height over the ellipsoid). 

• height anomaly (on the Earth’s surface as defined). 

• geoid height (height anomaly plus spherical shell approximation of the topography). 

• gravity disturbance. 

• gravity disturbance in spherical approximation (at arbitrary height over the ellipsoid). 

• gravity anomaly (classical and modern definition). 

• gravity anomaly (in spherical approximation, at arbitrary height over the ellipsoid). 

• simple Bouguer gravity anomaly. 

• gravity on the Earth’s surface (including the centrifugal acceleration). 

• gravity on the ellipsoid (or at arbitrary height over the ellipsoid, including the 

centrifugal acceleration). 

• gravitation on the ellipsoid (or at arbitrary height over the ellipsoid, without centrifugal 

acceleration) 

• potential on the ellipsoid (or at arbitrary height over the ellipsoid, without centrifugal 

potential). 

• second derivative in a spherical radius direction of the potential (at arbitrary height over 

the ellipsoid). 

• equivalent water height (water column). 

 

     Filtering is possible by selecting the maximum degree of the used coefficients or the filter 

length of a Gaussian averaging filter. The models from dedicated time periods (e.g. 

coefficients of monthly solutions from GRACE) are also available after non-isotropic 

smoothing (decorrelation). [10] 
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Figure (4.1): ICGEM Site. [11] 

 

Root-Mean-Square Error (RMSE) 

     The root-mean-square error (RMSE) (or sometimes root-mean-squared error) is a 

frequently used measure of the differences between values (sample or population values) 

predicted by a model or an estimator and the values observed. The RMSE represents the 

square root of the second sample moment of the differences between predicted values and 

observed values or the quadratic mean of these differences. These deviations are 

called residuals when the calculations are performed over the data sample that was used for 

estimation and are called errors (or prediction errors) when computed out-of-sample. The 

RMSE serves to aggregate the magnitudes of the errors in predictions for various times into a 

single measure of predictive power. RMSE is a measure of accuracy, to compare forecasting 

errors of different models for a particular dataset and not between datasets, as it is scale-

dependent. 

     RMSE is always non-negative, and a value of 0 (almost never achieved in practice) would 

indicate a perfect fit to the data. In general, a lower RMSE is better than a higher one. 

However, comparisons across different types of data would be invalid because the measure is 

dependent on the scale of the numbers used. 

     RMSE is the square root of the average of squared errors. The effect of each error on 

RMSE is proportional to the size of the squared error; thus, larger errors have a 

disproportionately large effect on RMSE. Consequently, RMSE is sensitive to outliers. 

 

4.2 Global Evaluation of the Geoid Models. 

     The following table (4.1) shows a comparison of quasigeoid heights derived from the 

models with GPS / leveling derived geoid values from the USA, Europe, and Global. 

https://en.wikipedia.org/wiki/Estimator
https://en.wikipedia.org/wiki/Sample_moment
https://en.wikipedia.org/wiki/Quadratic_mean
https://en.wikipedia.org/wiki/Statistical_deviation
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
https://en.wikipedia.org/wiki/Accuracy_and_precision
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Table (4.1): Global Evaluation of the Geoid Models. 

Model Year N max  
Europe  USA Global 

(1047 Points) (6169 Points) (12036 Points) 

EGM96 1996 360 0.493 0.379 0.4267 

EGM2008 2008 2190 0.125 0.248 0.2397 

EIGEN-5C 2008 360 0.266 0.341 0.3422 

EIGEN6C4 2014 2190 0.121 0.247 0.2361 

XGM2019e-2159 2019 2190 0.127 0.248 0.2361 

 

4.3 Local Evaluation of the Geoid Models. 

4.3.1 Local Evaluation Steps 

     To evaluate the accuracy of the different geoid models, a group of precise leveling 

benchmarks was measured by classical GNSS methods (RTK). The ellipsoidal height (h) by 

GNSS and the orthometric height (H) by precise leveling provide a local geoid separation at 

the point (N). Geoid separation was calculated from the original global models and local 

models typically uploaded to the GNSS receivers. The differences were statistically analyzed 

to provide general descriptions. Also, local geoid fitting approaches were tested to enhance 

the accuracy of the global models, table (4.2) shows the ellipsoidal height (h), orthometric 

height (H) and Geoid height (N) of the group of precise leveling benchmarks that were 

measured, and the figure (4.2) shows the distribution of precise leveling benchmarks that 

were measured in Palestine.  

Table (4.2): Ellipsoidal height (h), Orthometric height (H) and Geoid height (N) of the group 

of precise leveling benchmarks in Palestine. 

Point Number H h h-H (N) 

1 894.017 912.945 18.928 

2 752.222 771.443 19.221 

3 946.798 966.502 19.704 

4 -277.637 -259.815 17.822 

5 -18.151 -0.253 17.898 

6 -225.014 -206.304 18.71 

7 -242.845 -223.522 19.323 

8 -273.399 -253.984 19.415 

9 -250.618 -230.884 19.734 
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Figure (4.2): The distribution of the group of precise leveling benchmarks in Palestine. 

4.3.2 EGM96 Evaluation 

     EGM96 (Earth Gravitational Model 1996) is a geopotential model of the Earth consisting 

of spherical harmonic coefficients complete to degree and order 360. 

     EGM96 is a composite solution, consisting of, a combination solution to degree and order 

70, a block diagonal solution from degree 71 to 359, and the quadrature solution at degree 

360, figure (4.3) show the Palestine Geoid Model (EGM96).  [12].  

 

Figure (4.3): Palestine Geoid Model (EGM96). [11] 
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      The results obtained from the EGM96 geoid model system can be summarized in table 

(4.3). 

Table (4.3): Result of the Geoid Height from (EGM96). 

Point Number h-H (N Field N (EGM96) ∆N 

1 18.928 18.626 -0.302 

2 19.221 18.389 -0.832 

3 19.704 19.010 -0.694 

4 17.822 19.942 2.120 

5 17.898 18.982 1.084 

6 18.710 19.985 1.275 

7 19.323 20.610 1.287 

8 19.415 20.667 1.252 

9 19.734 20.973 1.239 

    

 Minimum Value -0.832  

 Maximum Value 2.120  

 RMSE 1.290  

     In the (EGM96) Geoid model, after inserting points to the ICGEM site and obtaining the 

results, it was found that the minimum value is equal to -0,832, and maximum value is equal 

to 2.120, this means that the height difference between Geoid height from EGM96 Geoid 

model and Geoid height from the field (GNSS and precise leveling) Does not give a fixed 

number, but ranging from the minimum value to the maximum value and this rang is large, 

also it was found that the root mean square error value is equal to 1.290 this value is 

relatively large, this means that the differences between Geoid height from EGM96 Geoid 

model and Geoid height from the field (GNSS and precise leveling) are large.  

4.3.3 EGM2008 Evaluation 

     EGM2008 is a spherical harmonic model of the Earth's gravitational potential, developed 

by a least-squares combination of the ITG‐GRACE03S gravitational model and its associated 

error covariance matrix, with the gravitational information obtained from a global set of 

area‐mean free‐air gravity anomalies defined on a 5 arc‐minute equiangular grid. This grid 

was formed by merging terrestrial, altimetry‐derived, and airborne gravity data. Over areas 

where only lower resolution gravity data were available, their spectral content was 

supplemented with gravitational information implied by the topography. EGM2008 is 

complete to degree and order 2159 and contains additional coefficients up to degree 2190 and 

order 2159. Over areas covered with high-quality gravity data, the discrepancies between 
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EGM2008 geoid undulations and independent GPS/Leveling values are on the order of ±5 to 

±10 cm, figure (4.4) shows the Palestine Geoid Model (EGM2008).  [13] 

 

Figure (4.4): Palestine Geoid Model (EGM2008). [11] 
 

      The results obtained from the EGM2008 geoid model system can be summarized in table 

(4.4). 

Table (4.4): Result of the Geoid Height from (EGM2008). 

Point Number h-H (N Field) N (EGM2008) ∆N 

1 18.928 18.740 -0.188 

2 19.221 18.568 -0.653 

3 19.704 19.035 -0.669 

4 17.822 17.662 -0.160 

5 17.898 17.692 -0.206 

6 18.710 18.605 -0.105 

7 19.323 19.236 -0.087 

8 19.415 19.318 -0.097 

9 19.734 19.938 0.204 

    

 Minimum Value -0.669  

 Maximum Value 0.204  

 RMSE 0.362  



 
 

 
65 

 

     In the (EGM2008) Geoid model, after inserting points to the ICGEM site and obtaining 

the results, it was found that the minimum value is equal to -0.669, and maximum value is 

equal to 0.204, this means that the height difference between Geoid height from EGM2008 

Geoid model and Geoid height from the field (GNSS and precise leveling) Does not give a 

fixed number, but ranging from the minimum value to the maximum value and this rang is 

small, also it was found that the root mean square error value is equal to 0.362 this value is 

relatively small, this means that the differences between Geoid height from EGM2008 Geoid 

model and Geoid height from the field (GNSS and precise leveling) are small. 

 

4.3.4 EIGIN-5C Evaluation 

     The combined gravity field model EIGEN-5C is an upgrade of EIGEN-GL04C. The 

model is a combination of GRACE and LAGEOS mission data plus 0.5 x 0.5 degrees 

gravimetry and altimetry surface data. The combination of the satellite and surface data has 

been done by the combination of normal equations, which are obtained from observation 

equations for the spherical harmonic coefficients, figure (4.5) shows the Palestine Geoid 

Model (EIGIN-5C) [14] 

 

Figure (4.5): Palestine Geoid Model (EIGIN-5C). [11] 

      The results obtained from the EIGEN-5C geoid model system can be summarized in table 

(4.5). 
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Table (4.5): Result of the Geoid Height from (EIGEN-5C). 

Point Number h-H (N Field) N (EIGEN-5C) ∆N 

1 18.928 17.748 -1.180 

2 19.221 17.567 -1.654 

3 19.704 18.049 -1.655 

4 17.822 18.075 0.253 

5 17.898 18.036 0.138 

6 18.710 19.246 0.536 

7 19.323 19.975 0.652 

8 19.415 20.041 0.626 

9 19.734 20.388 0.654 
    

 Minimum Value -1.655  

 Maximum Value 0.654  

 RMSE 1.030  

 

     In the (EIGEN-5C) Geoid model, after inserting points to the ICGEM site and obtaining 

the results, it was found that the minimum value is equal to -1.655, and maximum value is 

equal to 0.654, this means that the height difference between Geoid height from EIGEN-5C 

Geoid model and Geoid height from the field (GNSS and precise leveling) Does not give a 

fixed number, but ranging from the minimum value to the maximum value and this rang is 

large, also it was found that the root mean square error value is equal to 1.030 this value is 

relatively large, this means that the differences between Geoid height from EIGEN-5C Geoid 

model and Geoid height from the field (GNSS and precise leveling) are large. 

 

4.3.5 EIGIN-6C4 Evaluation 

     EIGEN-6C4 is a static global combined gravity field model up to degree and order 2190. 

It has been elaborated jointly by GFZ Potsdam and GRGS Toulouse. The combination of the 

different satellite and surface data sets has been done by a band-limited combination of 

normal equations (to max degree 370), which are generated from observation equations for 

the spherical harmonic coefficients. A brief description of the applied techniques for the 

generation of such a combined gravity field model is given in Shako et al. 2014. The resulted 

solution to degree/order 370 has been extended to degree/order 2190 by a block diagonal 

solution using the DTU10 global gravity anomaly data grid. [15] 

     EIGEN-6C4 is a high-resolution global gravity field model. It is one of the first EIGEN 

(European Improved Gravity model of the Earth by New techniques) combination model that 
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includes GOCE data. Its role is fundamental in geodesy and Earth sciences and ranges from 

practical purposes, like orbit determination, to scientific applications, like the investigation of 

the density structure of the Earth's interior. The new EIGEN released in 2014 is called 

EIGEN-6C4 and has been created from a combination of a multitude of data, figure (4.6) 

shows the Palestine Geoid Model (EIGIN-6C4) [15] 

 

Figure (4.6): Palestine Geoid Model (EIGEN-6C4). [11] 

      The results obtained from the EIGEN-6C4 geoid model system can be summarized in 

table (4.6). 
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Table (4.6): Result of the Geoid Height from (EIGEN-6C4). 

Point Number h-H (N Field) N (EIGEN-6C4) ∆N 

1 18.928 18.801 -0.127 

2 19.221 18.629 -0.592 

3 19.704 19.103 -0.601 

4 17.822 17.699 -0.123 

5 17.898 17.729 -0.169 

6 18.710 18.658 -0.052 

7 19.323 19.287 -0.036 

8 19.415 19.370 -0.045 

9 19.734 19.975 0.241 

    

 Minimum Value -0.601  

 Maximum Value 0.241  

 RMSE 0.323  
 

     In the (EIGEN-6C4) Geoid model, after inserting points to the ICGEM site and obtaining 

the results, it was found that the minimum value is equal to -0.601, and maximum value is 

equal to 0.241, this means that the height difference between Geoid height from EIGEN-6C4 

Geoid model and Geoid height from the field (GNSS and precise leveling) Does not give a 

fixed number, but ranging from the minimum value to the maximum value and this rang is 

small, also it was found that the root mean square error value is equal to 0.323 this value is 

relatively small, this means that the differences between Geoid height from EIGEN-6C4 

Geoid model and Geoid height from the field (GNSS and precise leveling) are small. 

 

4.3.6 XGM2019_2159 Evaluation 

     XGM2019e combined global gravity field model from the Technical University of 

Munich is available in three different expansions. The coefficients are precalculated in the 

spheroidal harmonic domain and then converted into spherical harmonics and available as 

"XGM2019e" up to spherical harmonic d/o 5540, "XGM2019e_2159" to 2190, and 

"XGM2019" up to d/o 760. For different practical reasons, the user can refer to any of the 

three files. The calculation service results are based on XGM2019e_2159, figure (4.7) shows 

the Palestine Geoid Model (EIGIN-6C4). [10] 
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Figure (4.7): Palestine Geoid Model (XGM2019e_2159). [11] 
 

The results obtained from the XGM2019e_2159 geoid model system can be summarized in 

table (4.7). 

Table (4.7): Result of the Geoid Height from (XGM2019e_2159). 

Point Number h-H (N Field) N (XGM2019e_2159) ∆N 

1 18.928 18.972 0.044 

2 19.221 18.718 -0.503 

3 19.704 19.197 -0.507 

4 17.822 17.875 0.053 

5 17.898 17.923 0.025 

6 18.710 18.678 -0.032 

7 19.323 19.264 -0.059 

8 19.415 19.372 -0.043 

9 19.734 19.894 0.160 

    

 Minimum Value -0.507  

 Maximum Value 0.160  

 RMSE 0.262  
 

     In the (XGM2019e_2159) Geoid model, after inserting points to the ICGEM site and 

obtaining the results, it was found that the minimum value is equal to -0.507, and maximum 
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value is equal to 0.160, this means that the height difference between Geoid height from 

XGM2019e_2159 Geoid model and Geoid height from the field (GNSS and precise leveling) 

Does not give a fixed number, but ranging from the minimum value to the maximum value 

and this rang is small, also it was found that the root mean square error value is equal to 

0.262 this value is relatively small, this means that the differences between Geoid height from 

XGM2019e_2159 Geoid model and Geoid height from the field (GNSS and precise leveling) 

are small. 
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Chapter Five: 

Conclusions and Recommendations 

5.1 Conclusions. 

5.2 Recommendations. 
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Conclusions and Recommendations 

5.1  Conclusions 

     The accuracy of the different geoid models was evaluated by measure a group of precise 

leveling benchmarks by the classical GNSS method (RTK). The ellipsoidal height (h) by 

GNSS and the orthometric height (H) by precise leveling provide a local geoid separation at 

the point (N). Geoid separation was calculated from the original global models and local 

models typically uploaded to the GNSS receivers. The differences were statistically analyzed 

to provide general descriptions. Also, local geoid fitting approaches were tested to enhance 

the accuracy of the global models. 

The final accuracy of the models is represented by the RMSE, the maximum value, and the 

minimum value in the table (5.1) 

Table (5.1): The accuracy of the models. 

Model RMSE Maximum Value Minimum Value 

EGM96 1.290 2.120 -0.832 

EGM2008 0.362 0.204 -0.669 

EIGEN-5C 1.030 0.654 -1.655 

EIGEN-6C4 0.323 0.241 -0.601 

XGM2019e_2159 0.262 0.160 -0.507 

     It is clear that the best result of accuracy came from (XGM2019e_2159) model, then 

(EIGEN-6C4) model, then (EGM2008) model and the worse result of accuracy came from 

(EGM96) model, then (EIGEN-5C) model. 

     In the (XGM2019e_2159) Geoid model, that the minimum value is equal to                       

-0.507, and maximum value is equal to 0.160, this means that the height difference between 

Geoid height from XGM2019e_2159 Geoid model and Geoid height from the field (GNSS 

and precise leveling) Does not give a fixed number, but ranging from the minimum value to 

the maximum value and this rang is small, also it was found that the root mean square error 

value is equal to 0.262 this value is relatively small, this means that the differences between 

Geoid height from XGM2019e_2159 Geoid model and Geoid height from the field (GNSS 

and precise leveling) are small, so the XGM2019e_2159 Geoid model gives the best result of 

the accuracy. 



 
 

 
73 

 

     In the (EGM96) Geoid model, the minimum value is equal to -0,832, and maximum value 

is equal to 2.120, this means that the height difference between Geoid height from EGM96 

Geoid model and Geoid height from the field (GNSS and precise leveling) Does not give a 

fixed number, but ranging from the minimum value to the maximum value and this rang is 

large, also it was found that the root mean square error value is equal to 1.290 this value is 

relatively large, this means that the differences between Geoid height from EGM96 Geoid 

model and Geoid height from the field (GNSS and precise leveling) are large, so the EGM96 

Geoid model gives the worse result of the accuracy. 

5.2  Recommendations 

Using the project results, introduce the following recommendation: 

• One Geoid Model should be selected as a reference surface to be used directly or after 

some modification to fit the local Benchmarks in Palestine. 

• The necessity of checking the heights obtained from GNSS. 

• The triangulation points should be studied according to their height accuracy and 

measurement methods (barometric leveling, triangulator leveling or precise leveling), 

recommended to find the location of the Benchmarks in Palestine, if not available, new 

Benchmarks should be located. 
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List of Acronyms  

 

DFHRF Digital Finite Elements Height Reference Surface  

DFHRS-DB DFHRS DataBase 

DGNSS Differential GNSS 

DTM Digital Terrain Models 

ECEF Earth-Centered Earth-Fixed system 

EGM Earth Gravitational Model  

EIGEN European Improved Gravity model of the Earth by New techniques 

FEM Finite Element Method 

FFT Fast Fourier Transform 

GIS Geographic Information Systems 

GPM Geopotential Model 

GNSS Global Navigation Satellite Systems 

GPS Global Positioning System 

HRS Height Reference Surface 

ICGEM International Center for Global Gravity Models 

IGS International GNSS Service 

IGSN71 International Gravity Standardization Net 1971  

ITRF International Terrestrial Reference Frame 

LAV Local Astronomical Vertical 

LGV Local Geodetic Vertical 

LSC Least Squares Collection 

MSL Mean Sea Level 

NGS National Geodetic Survey 

PPP Precise Point Positioning 

RTK Real Time Kinematic 

SH Spherical Harmonics. 

SLR Satellite Laser Ranging 

VRS Virtual Reference Station  

WGS84 

 

World Geodetic System 1984 
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List of Symbols 

 

a, b Semi-major and Semi-minor axis of the ellipsoid 

m Mass (kg) 

G Newton’s gravitational constant = 6.6742 × 10−11(𝑚3𝑘𝑔−2𝑠−2) 

l Distance 

F⃑⃑ Attraction force 

V Gravitational potential 

GM Gravitational constant of the Earth (Ellipsoid)= 3.986005 × 1014(𝑚3𝑠−2) 

𝜙, 𝜆 Geographic latitude and longitude 

𝜙, 𝜆 Spherical latitude and longitude 

g⃑⃑ Gravity vector 

𝑃𝑛𝑚 Legendre function of integer degree and integer order 

𝑃𝑛𝑘(𝑚) Legendre function of real degree and integer order 

𝑆𝑛𝑚, 𝐶𝑛𝑚 Normalized spherical harmonic coefficient 

𝑑𝑃𝑛𝑚 Derivative of the Legendre function of integer degree and integer order 

𝑑𝑃𝑛𝑘(𝑚) Derivative of the Legendre function of real degree and integer order 

W Gravity potential 

H Orthometric height 

h Ellipsoidal height 

x, y Local/projected coordinates 

X,Y, Z Geocentric cartesian coordinates 

Φ,Λ Astronomical latitude and longitude 

Ω Centrifugal potential of the Earth 

 Quasigeoid height (height Anomaly) 

 Normal gravity of the ellipsoid 

 Deflection of vertical in the east-west direction 

 Deflection of vertical in a north-south direction 

 The angular velocity of the Earth around its major axis 

 The Legendre parameter 
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