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Abstract

In this project the method of designing a Single Phase Permanent Magnet (SPPM)

Synchronous motor is presented.

This motor has special design of stator and rotor. It is commonly used in low-power

application.

The behavior of the motor as (starting, torque…) is described, and the starting behavior

that depends on the initial position of the rotor is also described.

The network method (equivalent circuit) is used to analyze the magnetic circuit, and to

perform the analytical solution of this project.

The  achievement reaches is to build a Single Phase AC Synchronous PM Motor with

specific dimensions.

A frequency converter is used as the control device to obtain suitable type of control for

this motor.

There are growing applications for this motor, especially, in low-power like: automobile

industry, central heating, and house appliances (washing machines, dishwasher).
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CHAPTER ONE 

INTRODUCTION 

 

1.1 General Outlook: 

Single-phase permanent-magnet (SPPM) synchronous motors of the type shown in 

Fig. 1.1 have found growing applications especially in low-power household 

appliances. This is because this motor is well suited to mass production purposes and 

has a simple construction, and therefore has a cost advantage. Also, they are known 

to be more efficient than rival motors. 

 

θ0= initial position of the rotor at standstill (rest position)  

Fig. 1.1:  Single-phase PM synchronous  motor  with  asymmetrical  stator magnetic  

circuit:  (a) smooth nonuniform  air  gap,  (b)  stepped  nonuniform air  gap 

 

A salient pole PM synchronous motor can be designed with nonuniform air gap as a 

self-starting motor.  With regard  to the  stator  magnetic  circuit, two types of  

construction  can  be  identified:  U-shaped,  two-pole  asymmetrical stator  magnetic  

circuit  (Fig.1.1) and two-pole symmetrical stator magnetic circuit (Fig.1.2). In both 

asymmetrical and symmetrical motors, the nonuniform  air  gap can  be  smooth  

(Figs 1.la  and 1.2a.) or  stepped  (Figs 1.lb  and  1.2b).  The leakage flux of a U-
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shaped stator is higher than that of a symmetrical stator. Nonuniform air gap, i.e., 

wider  at one  edge of  the pole shoe than  at  the  opposite  edge,  provides the  

starting  torque as  a result of  misalignments of  the  stator  and  rotor  field axes at 

zero current  state. 

The  rest  angle  θ0  of  the  rotor  is  the angle  between  the  center  axis  of the  

stator poles  and  the  axis of  the PM  rotor  flux.  These motors are only self-starting  

when,  with  the  armature  current  I,  = 0, the  angle  θ0  > 0.  

The largest starting torque is achieved when the rest angle θ0 = 90
0
.  The motor 

constructions shown in Fig. 1.1 limit the rest angle to θ0 ≤ 5......12
0
, which 

consequently results in a small starting torque.  The motors shown in Fig. 1.2 can 

theoretically achieve θ0 close to 90
0
. 

With  zero  current  in  the  stator  winding,  the  rest  angle  θ0  > 0 as the attractive  

forces between  PM  poles  and  the  stator  stack  align  the  rotor center  axis  with  

the  minimum  air gap (minimum  reluctance).  After  switching on  the  stator  

voltage  the  stator  magnetic  flux will  push  the  PM  rotor towards  the  center  axis  

of  the  stator  poles.  The rotor oscillates with its eigenfrequency. If  this 

eigenfrequency  is close enough  to the  stator winding supply  frequency,  the 

amplitude of mechanical oscillations will increase and the  motor  will  begin  to  

rotate  continuously.  The eigenfrequency  depends on  the moment  of  inertia  of  

the  rotor  and  mechanical  parameters.  Larger motors with lower eigenfrequency 

thus require lower supply frequencies.  It is  important  to  know  the  dynamic  

behavior  of  these  motors  at the design stage  to  ensure  the  desired  speed  

characteristics.  

The advantages of these motors  are  their  simple  mechanical  construction and  

relatively  high  efficiency at small  dimensions  and  rated power.  Owing to a  

simple  manufacturing  process,  it is easier to fabricate  the  asymmetrical stator  

than  the  symmetrical  stator.  The  symmetrical  design  can  achieve almost  the  

maximum  possible  starting  torque  (θ0 close  to 90
0
), while  the asymmetrical  
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design  has  a  relatively  small  starting  torque.  It should  be noted  that  the  

direction  of  rotation  in  both  designs  cannot  be  predetermined.  

The disadvantage is the limited size of the motor if it is to be utilized in its self-

starting mode.  Fig.  1.3 shows the oscillations of speed and current during start-up of 

a lightly loaded small motor. If the load increases, the oscillations of speed decrease 

more quickly than those in Fig.  1.3. 

 
Fig. 1.2:  Single-phase PM  synchronous  motor  with  symmetrical  stator magnetic  

circuit:  (a)  smooth nonuniform  air gap,  (b)  stepped  nonuniform air  gap. 

 

 

Fig. 1.3:  Speed  and  current  versus  time  in  self-starting  mode  for a  two-pole 

synchronous  motor  with  oscillatory  starting: 1  -  speed, 2 -  current  
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 Simulation tools have the capabilities of performing dynamic simulations of motor 

drives in a visual environment so as to facilitate the development of new systems. 

 

The use of PMs Motor in construction of electrical machines brings the following 

benefits: 

• No electrical energy is absorbed by the field excitation system and thus there 

is no excitation loss which means substantial increase in the efficiency. 

• Higher torque and / or output power per volume than when using 

electromagnetic excitation. 

• Better dynamic performance than motors with electromagnetic excitation 

(higher magnetic flux density in the air gap) 

• Simplification of the construction  and  maintenance 

• Reduction of prices for some types of machines. 

Of course, the use of very poor quality hard materials (steel or tungsten steel) soon 

discouraged their use in favor of electromagnetic excitation system; however, its 

application was limited to small and fractional horsepower DC commutator 

machines. Now they use ferrite magnets, and the ferrite PMs mounted on the stator 

will still be used in forseeable future in road vehicles, toys, and household 

equipments [1]. 

PM synchronous motors are widely used in low and mid power applications such as 

computer peripheral equipments, robotics, adjustable speed drives and electric 

vehicles. 
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1.2 Project Objectives: 

The aim of this project is to design and analyze a single-phase PM motor (SPPM) for 

educational purposes. The main goal of this project is to create a simple functional 

SPPM motor, rather than a highly complex and costly one.  

The efficiency of this design will be carefully examined while using various 

materials for the rotor (reaction plate), and single-phase winding in the stator.  

Many important parameters will be taken into account enable a relationship between 

the forces produced by these parameters. The experimental measured force is then 

compared to the calculated theoretical force. Any discrepancies between the values 

will be justified for. 

 

1.3 Advantages of PM Synchronous Motor: 

The advantages of PM synchronous motor is the higher accuracy to determine the 

desired position, higher efficiency with low power consumption, simple construction, 

and fast response with stability of performance, a PM motor can produce magnetic 

field in an air gap with no excitation winding.  

 

1.4 Disadvantages of PM Synchronous Motor: 

It can be overcome with a simple electronic aid and the motor may remain attractive 

for higher power levels. To be able to reach a sound decision on this issue, one needs 

to understand the factors (parameters) which control the performance of the motor. 

Based on this understanding, a design which satisfies the requirements may be 

reached. 
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1.5 Applications of  Permanent  Magnet Motors: 

PM motors are used in a broad power range from mWs to hundreds Ws.  There  are  

also attempts  to apply  PMs  to large  motors  rated  at minimum  Thus, PM  motors  

cover  a wide  variety  of  application  fields,  from stepping  motors  for  wrist  

watches,  through  industrial  drives  for  machine tools  to  large  PM  synchronous  

motors  for  ship propulsion  (navy  frigates, cruise  ships,  medium  size  cargo  

vessels and  ice  breakers).  The application of PM electric motors includes: 

• Industry: 

- Industrial  drives,  e.g.,  pumps,  fans,  blowers,  compressors,  

centrifuges, mills, hoists, handling  systems,  etc.  

- Machine tools.  

- Servo drives. 

- Automation processes. 

- Internal transportation systems. 

- Robots. 

 

• Public life: 

- Air  conditioning  systems  

- Catering  equipment  

- Coin  laundry  machines  

- Auto-bank machines  

- Automatic vending  machines  

- Money  changing  machines  

- Ticketing  machines  

- Bar-code  readers  at  supermarkets  

- Environmental  control  systems  

- Amusement  park  equipment  

- Clocks. 



	 

 

• Domestic  life: 

- Kitchen equipment (refrigerators, microwave ovens, mixers, 

dishwashers, etc.)  

- Bathroom  equipment  (shavers,  hair  dryers,  tooth  brushes,  

massage apparatus)  

- Washing machines  and  clothes  dryers  

- Heating  and  air  conditioning  systems  

- Vacuum  cleaners  

- Lawn mowers  

- Swimming pool  pumps  

- Toys  

- Vision and sound  equipment  

- Security  systems  (automatic  garage  doors,  automatic  gates) 

 

 

• Information  and  office equipment: 

- Computers 

- Printers  

- Plotters  

- Scanners  

- Facsimile machines  

- Photocopiers  

- Audiovisual  aids 

 

 

• Automobiles with combustion engines. 

 

 

 




 

 

• Transportation: 

- Elevators  and  escalators  

- People movers  

- Light  railways and  streetcars  (trams)  

- Electric  road  vehicles  

- Aircraft  flight control  surface  actuation  

- Electric  ships  

- Boats 

 

• Aerospace: 

- Rockets  

- Space shut 

- Satellites  

 

• Medical and  healthcare  equipment: 

- Dentist’s  drills  

- Electric wheelchairs  

- Air compressors  

- Trotters  

- Rehabilitation  equipment  

- Artificial  heart  motors  
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• Power  tools: 

- Drills  

- Hammers  

- Screwdrivers  

- Grinders  

- Polishers  

- Saws  

- Sanders  

- Sheep  shearing  hand pieces 

 

• Renewable  energy  systems  

 

• Research and exploration  equipment  

 
Fig 1.4: An industrial robot (M - electric motor)  
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Fig 1.5: PM motors installed in a car  

 

 

1.6 Previous Study: 

PM motor drives have been a topic of interest for the last twenty years. Different 

authors have carried out modeling and simulation of such drives. 

 

In 1986 Sebastian, T., Slemon, G. R. and Rahman, M. A. reviewed permanent 

magnet synchronous motor advancements and presented equivalent electric circuit 

models for such motors and compared computed parameters with measured 

parameters. Experimental results on laboratory motors were also given.[2] 

 

In 1997 Jang-Mok, K. and Seung-Ki, S, proposed a novel flux-weakening scheme for 

a Permanent Magnet Synchronous Motor (PMSM). It was implemented based on the 

output of the synchronous Proportional Integral (PI) current regulator reference 

voltage to Pulse Width Modulation (PWM) inverter. [6] 

 

The on-set of flux weakening and the level of the flux were adjusted inherently by 

the outer voltage regulation loop to prevent the saturation of the current regulator. 
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Attractive features of this flux weakening scheme included no dependency on the 

machine parameters, the guarantee of current regulation at any operating condition, 

and smooth and fast transition into and out of the flux weakening mode.  

Experimental results at various operating conditions including the case of detuned 

parameters were presented to verify the feasibility of the proposed control scheme. 

 

1.7 History of PM: 

The first PM excitation system was applied to electrical machine as early as the 19
th
 

century, e.g. J. Henry (1831), H. Pixii (1832), W. Ritchie (1833), F. Watkins (1835), 

T. Davenport (1837), M.H. Jacobi (1839).  

 

1.8 Table of Cost 

 

Table 1.1: Cost of the project 

Description Price (NIS) 
  Hi-Silicon sheets 150 

Lathing the stator 350  

Cutting Hi-Silicon sheets 150 

Copper windings  50 

Permanent Magnets & cutting them  100 

Lathe the rotor & body 200 

project printing The 100  

Others 200  

TOTAL 1300  
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1.9 Time Plan: 

Time of project is scheduled on 16 weeks Table 1.2 shows how the work is 

scheduled over these weeks. 

Table 1.2: Time plan of the project 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Weeks 

Tasks 

1  

2 

3 

4  

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

Getting materials         

Stator Construction         

Rotor Construction         

Testing and operation         

Documentation         
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2.1 Single-phase PM AC Motor 

2.1.1  Single-phase Synchronous Motors 

2.1.2 Single-phase Induction Motors 

2.2 Reluctance Motor 
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CHAPTER TWO 

AC MOTOR CLASSIFICATION 

 

2.1     Single-phase PM AC Motor: 

The single-phase permanent magnet AC motor, acting as conventional synchronous 

type motor, has found renewed interest in the last two decades. The recent 

development of high energy magnets has enhanced their application in wide range of 

areas. The built-in of permanent magnets in the rotor core of synchronous motors as 

an excitation, and in particular the use of samarium-cobalt or neodymium-boron-iron 

magnets has challenged innovations in the permanent magnet synchronous motor 

design and analysis [5]. 

 

2.1.1 Single-phase Synchronous Motors: 

There are two types of synchronous motors namely reluctance and hysteretic motors. 

They are simple in construction since they do not require DC field excitation, nor use 

permanent magnets. 

The single-phase synchronous reluctance motor is similar to the induction motor 

except that some saliency is introduced in the rotor structure by removing some rotor 

teeth at appropriate places to provide the required number of poles. The reluctance 

motor can start as an induction motor because the rotor has a squirrel-cage 

construction. The stator of the reluctance motor has a main winding and an auxiliary 

winding. This motor starts as an induction motor and at about 75% of synchronous 

speed the auxiliary winding is disconnected. The motor continues to speed up as a 

single-phase motor with the main winding connected. When the speed is close to 

synchronous speed the rotor tends to align itself with the synchronously rotating 
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forward air gap flux wave and then pulls into synchronism and continues rotating at 

synchronous speed. The advantages of such motors are that they are brushless and 

have no dc field winding and are low cost. However, this motor is relatively bulky.  

The hysteresis motor uses the hysteresis property of magnetic materials to produce 

torque. The stator windings are distributed windings that produce a sinusoidal space 

distribution of flux, while the rotor has a ring of special magnetic material mounted 

on a cylinder of nonmagnetic material. The stator winding is of the capacitor-run 

type that makes the stator a nearly balanced two-phase system and produces a 

rotating field at synchronous speed when excited with a single-phase supply. The 

revolving field induces eddy-currents in the rotor, and because of hysteresis, the 

magnetization of the rotor lags behind the induced rotating field [3]. 

The displaced angle between the stator and rotor fluxes is independent of rotor speed, 

but depends on the hysteresis loop. Consequently, a constant torque is developed up 

to synchronous speed. As the rotor reaches synchronous speed, the relative motion 

between rotor and stator’s field decreases, and the frequency of eddy currents 

decreases. At synchronous speed, the rotor materials become permanently 

magnetized in one direction. The hysteresis motor has a constant torque-speed 

characteristic. It is a quiet and smooth-running motor because of the smooth 

periphery of the rotor cylinder [1]. 

 

2.1.2 Single-phase Induction Motors: 

These motors are probably the simplest and most rugged of all electric motors. They 

consist of two basic electrical assemblies: the wound stator and the rotor assembly. 

The rotor consists of laminated, cylindrical iron cores with slots for receiving the 

conductors. On early motors, the conductors were copper bars with ends welded to 

copper rings known as end rings. Viewed from the end, the rotor assembly resembles 

a squirrel cage; hence the name squirrel- cage motor is used to refer to induction 
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motors. In modern induction motors, the most common type of rotor has cast-

aluminum conductors and short-circuiting end rings. The rotor turns when the 

moving magnetic field induces a current in the shorted conductors. The speed at 

which the magnetic field rotates is the synchronous speed of the motor: [2] 

�� � ��� � �	 
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Where: ns: synchronous speed 

f:  frequency 

p:  number of poles 

Synchronous speed is the absolute upper limit of motor speed. At synchronous speed, 

there is no difference between rotor speeds and rotating field speed, so no voltage is 

induced in the rotor bars, hence no torque is developed. Therefore, when running, the 

rotor must rotate slower than the magnetic field. The rotor speed is just slow enough 

to cause the proper amount of rotor current to flow, so that the resulting torque is 

sufficient to overcome windage and friction losses, and drive the load. This speed 

difference between the rotor and magnetic field, called slip, is normally referred to as 

a percentage of synchronous speed: [2] 
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Where: s= slip 

ns = synchronous speed 

n = actual speed 

 

2.2     Reluctance Motor: 

The variable reluctance motor is based on the principle that an unrestrained piece of 

iron will move to complete a magnetic flux path with minimum reluctance, the 

magnetic analog of electrical resistance.  
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If the rotating field of a large synchronous motor with salient poles is de-energized, it 

will still develop 10 or 15% of synchronous torque. This is due to variable reluctance 

throughout a rotor revolution. There is no practical application for a large 

synchronous reluctance motor. However, it is practical in small sizes.  

If slots are cut into the conductor less rotor of an induction motor, corresponding to 

the stator slots, a synchronous reluctance motor results. It starts like an induction 

motor but runs with a small amount of synchronous torque. The synchronous torque 

is due to changes in reluctance of the magnetic path from the stator through the rotor 

as the slots align. This motor is an inexpensive means of developing a moderate 

synchronous torque. Low power factor, low pull-out torque, and low efficiency are 

characteristics of the direct power line driven variable reluctance motor. Such was 

the status of the variable reluctance motor for a century before the development of 

semiconductor power control [3]. 
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analysis of the performance, in the form given in Fig. 3.1, along with the mechanical 

equations. In Fig.  3.1, the resistance Rfe is employed to the core losses [1]. 

Considering the electrical equivalent circuit in Fig. 3. 1, equations of the motor may 

be written as follows: 

�� � 
������ � 
�
 �� 
�� �
�� �
����� 

�� �
 �� �
��� 

��� �
 ����� 




























































����
 
Where:  Rfe: the resistance corresponding to core loses 

Vn: rated voltage 

Vs: the supply voltage with a frequency of w and phase angle ε at the 

      switching instant 

Rcu and L: resistance and inductance of the stator winding.  

And the mechanical equation: [1] 
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Where:  N: the number of turns of the stator winding  

  $rp: the peak rotor flux linked by stator winding 

θ: the position of the rotor (angle between rotor and stator axis) 

θ0: the initial position of the rotor 

J: the moment of inertia of the rotor and the load 

Trp: the peak reluctance torque 

Tl: the load torque 

 

In the Back EMF expression (e = θ˙NΦrp sin(θ − θ0))            (3.3)  

Note that in (3.1) and (3.2), rotor flux linked by stator winding and reluctance torque 

are assumed to be sinusoidal function of rotor position (θ). In practice, these 
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variables do not show such pure variations. It is need to express the electrical and 

mechanical parameters of the motor in terms of the dimensions of the motor. In terms 

of dimensions as well as the constraints introduced by requirements like rated torque, 

efficiency, and the starting performance [1]. 

 

3.2   Rotor Parameter: 

It is needed to consider the magnetic equivalent circuit of the motor with no stator 

excitation. In this case, the equivalent circuit is as shown in Fig. 3.2: 

 

Fig. 3.2: Magnetic equivalent circuit of the rotor of an SPPM motor 

In Fig. 3.2, ΛF (θ) is the stator magnetic circuit permeance and will be neglected here 

for the make of simplicity. Λr represents the rotor permeance as: [1] 
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Where   µp: defined as in Fig. 3.3 

   Am: the cross section of the rotor magnet 

   lm: represents the mean flux path length in the magnet 

 

Fr is the rotor MMF and is expressed as: 
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Where     Hc: defined as in Fig. 3.3 
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Fig. 3.3: Typical B-H characteristics of a permanent magnet 

The rotor MMF is taken to be constant and the variation of the air gap flux with θ is 

modeled by taking Λg to be a function of θ. [3] 
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Where   Λg (θ): the air gap permeance 

 

3.2.1 Differential Rotor MMF and Permeance: 

Consider a differential portion of rotor represented by a horizontal differential length 

dx as shown in Fig. 3.4. It is possible to express the flux path lm as: 
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Where    θs: defined with respect to the rotor axis 

In Fig. 3.4 and is independent of rotor position, θ; Therefore, from (3.5), rotor MMF 

for the section of the rotor becomes: [5] 
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Where   r: the radius of the rotor 
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Fig. 3.4: Differential analysis of rotor parameters 

To calculate the differential rotor permeance, consider again section of the rotor 

marked by dx in Fig. 3.4. [1]. 
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Fig. 3.5: Magnetic field solution results for several rotor positions 
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Where    Zg: the axial length of the rotor. 
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3.2.2 Differential Air-gap Permeance: 

Calculation of the variation of Λg(θ) is made particularly difficult due to the 

existence of the fringing field. At this stage, it is wise to consider the variation of the 

motor magnetic field with angle θs, to obtain an idea of how the fringing field 

changes with position. For this purpose, field solutions of the motor are obtained for 

different rotor positions. 

 

Fig. 3.6: Analysis of air gap permeance density distribution 

By studying this figure, it is decided to represent the fringing flux by flux tubes with 

constant cross section, defined in terms of the dimensions of the motor such as yg and 

x1 as displayed in Fig. 3.6. In defining the tubes, it is assumed their boundary is a 

fringing flux line defined by a circle. The permeance of the flux tubes on either side 

of the rotor can now be written in terms of the cross section of the tube (Ai) and their 

mean flux path length gri. Lengths of the outer flux lines seen in Fig. 3.6 can be 

calculated from (3.11)–(3.14). Length of fringing flux lines, gr is assumed to vary 

uniformly between the inner and outer gaps of the tubes: [1] 

J%: �
JK �
LM95 























































































�����
 
J%K �
J: �
LM95 �
N>: � M9� � >: ;<' !: � B:O L� 



























�����
 



�� 

 

J%P � J: � B: QL� � !K� � !:R































































 �����
 

J% � J%: � J%K � J%P� 












































































����5
 
Where: 
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It is now possible to draw θs. Therefore, for a motor with can be expressed as 

follows: 
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Where    θs: the differential air gap size with surface angle 

   Zg: differential air gap permeance 
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Where    rg: defined as mean air gap radius 

The variation of differential air gap permeance can be visualized in a simplified 

manner if it is normalized, for example, with respect to the permeance of the small 

air-gap section. In this case, the differential permeance is only a function of g1/gr. In 

Fig. 3.7 can be used which is the representation of (g1/gr) [1]. 
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Reluctance torque for any rotor position becomes: [1] 
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where �/Y%� is given by: 
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An important issue is the determination of the rest position. The rest position 

corresponds to the position of the rotor where rotor flux is maximum.  

When the peak-pole flux value is calculated from the previous equations. 

 

3.2.4 Calculation of Peak Rotor Flux: 

An approximate of air gap permeance in (3.20) is used for the calculation of peak 

rotor flux. Therefore, for this calculation the actual air-gap permeance variation 

needs to be considered. Since peak rotor flux is of interest here, the rest position of 

rotor where flux is maximum. The rotor flux linked by the stator winding is assumed 

to be sinusoidal function of rotor position (θ) as in (3.1) and (3.2) [1, 3]. 
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Fig. 3.9: Representation of the fringing field at the rest position 

As field lines of the test motor for the rest position in Fig. 3.5 is investigated it is 

observed that the fringing field is important only in the region adjacent to the smaller 

air gap. It is essential to take into account the effect of this fringing field to determine 

the peak flux with acceptable accuracy. The angle θf in Fig 3.9 can be represented as 

follows: [1] 
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The length of the outermost flux line gf can be calculated from: 
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where   g1: the length of small air gap 

To simplify the handling of the problem, the magnetic circuit around the rotor can be 

represented with an equivalent air gap region composed of two uniform air gaps with 

lengths g1 and g2. Such a representation is shown in Fig. 3.10. In this Fig., the 

transition region, represented with the angle θt in Fig. 3.9, is equally included in both 

uniform air gap regions of (g1) and (g2), and the fringing field effect is represented by 

extending the constant air gap region (g1), by an angle θfe. θfe is calculated from 
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(3.31), which is determined so as to give the same permeance as the actual fringing 

region (a linear variation is assumed between g1 and gf ) [1]. 
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Fig. 3.10: Equivalent rotor shape with uniform air-gaps 

Now the air gap has two sections as shown in Fig. 3.10 where rg� and rg� are the 

mean radiuses of the respective sections. The differential permeance of the sections 

are then calculated as follows, for Section 1: [1, 5] 
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Similarly, for Section 2: 
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Then determining the flux crossing the air gap. Considering the magnetic equivalent 

circuit given in Fig. 3.2, for the section of the rotor facing air-gap Section 1, the 

equivalent differential permeance becomes: [1, 3] 
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And for Section 2: 
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Total flux linking the stator coil is calculated from: 
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Therefore, considering Fig. 3.10, rotor flux linked by stator winding is calculated as 

follows: 
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Where:    θ: the position of the rotor and  

   Φrp: should be calculated for θ = θ0. In (3.37)  

 

The second and third components correspond to the contribution of the section of the 

rotor. Some values of Φrp calculated from (3.37) for several values of rotor position 

(θ) are shown: [1, 2]  

 

 

 

 



�� 

 

3.3   Rest Position of the Rotor (θ0): 

If there is no stator excitation, the rotor stills in a position where the permeance of 

the magnetic circuit is maximum. Knowing this position is important for redicting 

the starting behavior of the motor with acceptable accuracy. In calculating the initial 

(rest) position of the rotor, the position of the rotor at which there is minimum (zero) 

reluctance torque or maximum flux in the air gap. 

Although several approaches with varying degree of accuracy has been experimented 

with. In other words, it is assumed that the permeance of the air gap alone determines 

the rest position. 

 

Fig. 3.11: Equivalent rotor shape with uniform air-gaps for the rest position calculation 

Consider the equivalent rotor shape with two uniform air gaps given in Fig. 3.11, 

whose permeance expression derivation is explained in the previous section. The 

MMF on the surface of the rotor may be viewed as to be proportional to the mean 

flux path in the rotor magnet. For example, for the section of the rotor facing the 

small air gap region (g1) the mean flux path lr1 in Fig. 3.11 in the rotor can be 

calculated as: [3] 
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Then, the equivalent MMF on the rotor surface facing Section1 becomes: 
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Where    Hk: the average operating magnetic flux intensity of the rotor.  

The permeance of the air gap region (Section 1) in Fig 3.10, for a unit axial length of 

the rotor is: 
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Then, the flux crossing the air gap in the considered section is given by the following 

equation: 
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In the same way, with changing parameters, the air-gap flux of the uniform gap 

region (g2) is obtained as follows: 
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The total air-gap flux is: 

q9 � q9_ � q9g �
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The position at which the air-gap flux has its maximum value is the rest position of 

the rotor and can be found by solving (3.44) for θ: 
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From (3.42), the rest position of the rotor is calculated from: 
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3.4   Calculation of Stator Inductance: 

 

 

Fig. 3.12: Field distribution just for stator excitation 
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For the calculation of the inductance of the stator coil it is essential to consider the 

three-dimensional (3-D) field distribution. This is because the air gap, as seen by the 

stator coil, is very large (permanent magnet rotor has very low permeability) and the 

leakage and fringing flux becomes important. Fig. 3.12 is the magnetic equivalent 

circuit of the motor when only the stator is excited. [1] 

 
Fig. 3.13: Magnetic equivalent circuit for stator excitation 

In Fig. 3.13, ΛFe is the permeance of the stator core and is neglected since the flux 

densities in the core are very low. Λl parallel core section embracing the rotor, is the 

permeance of the air gap between the stator legs including the fringing flux between 

the stator legs. Λσ is the permeance of the leakage path outside the stator legs, flux 

bulging out between stator legs and will be neglected. Ni is the MMF of the stator 

excitation where i:  is the stator winding current. [5] 

 

3.4.1 Simplification of Stator Magnetic Circuit: 

Magnetic circuit of a SPPM motor is shown in Fig. 3.12. The variable dimensions of 

the air gap make the calculation of the permeance of the space between stator legs 

unnecessarily complicated. Since the distance between the legs is quite large, a 

simplification in the details is possible without losing accuracy. For this purpose, 

first the transition region between the sections with air gaps g1 and g2 is divided into 

two equal parts and the stepped air-gap geometry in Fig. 3.14 is obtained. [1] 
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Fig. 3.14: Magnetic circuit of the stator with a stepped-air gap 

 

Fig. 3.15: Stator magnetic circuit with simplified rotor gap 

 

Fig. 3.16: Simplified magnetic circuit of the stator 
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A further simplification is made by replacing the stepped air gap geometry with a 

equivalent geometry as in Fig. 3.16 so as to give the same permeability. For this 

purpose, the following actions are taken. First, the air gap is replaced with an 

equivalent unstepped geometry in Fig. 3.15 whose radius, Rs: 
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Where R1 and R2 are defined as in Fig. 3.14. The unstopped geometry is replaced 

with an equivalent rectangular geometry with air-gap length, yr in Fig. 3.15 where: 
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Finally, this rectangular geometry is replaced with another rectangular geometry in 

Fig. 3.16 with air gap length of yg, the actual length between the parallel sections of 

the stator legs in Fig. 3.14. Now, the resulting width, xg of the part of the stator core 

not bearing the excitation coil seen in Fig. 3.16 becomes: 
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3.4.2 Fringing Flux Calculation: 

Because of the very large distance between the stator legs, flux completing its path 

outside the magnetic core becomes important. Fig. 3.17(a) is the top view of the 

stator core showing the fringing regions. Flux paths on the side of the coils and the 

fringing flux in Fig. 3.12 adjacent to the end of the core is taken into account [1]. 
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              Fig. 3.17: (a) Top view of the stator core with fringing regions 

                         (b) Approximate model of stator core for fringing calculations 

In Fig. 3.17(a) zs is the actual axial length of the stator core and zsf is the corrected 

axial length of the core including the effect of the side fringing region. xs is the width 

of the stator legs of the simplified geometry and xsf is the extension of the stator core 

due to the front fringing region. zsf and xsf are determined by assuming similar 

imaginary structures as seen in Fig. 3.17(b) at a distance 2wf for front fringing and 

2ws for side fringing. In this approximate model, determination of the distances wf 

and ws are important. Fringing flux regions of the test motor are analyzed by 3-D 

field solutions. It is decided to take the values of wf and ws as the distances between 

the points where the fringing flux lines start and the point at which their density is 

reduced to 1% of the starting value. In this way, it is guaranteed that the imaginary 

structures has no any magnetic effect on the actual geometry. The distances are 

determined in terms of motor dimensions as follows: [1] 
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Fringing flux calculation is completed with the application of Carter’s method to 

determine the effective core lengths zsf and xsf follows: 
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Where, σ is Carter’s coefficient and is defined as 

t� � �L uvw)S: bs�M9c � M9�s� x) y� � bs�M9cKz{
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Where: σs: carter's coefficient of stator 

t� � �L uvw)S: bs�M9c � M9�s� x) y� � bs�M9cKz{
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Where: σf: carter's coefficient of fringing 

 

3.4.3 Stator-Inductance Expression: 

After the calculations above, the total permeance of the air gap of stator core is 

evaluated as follows: 
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In (3.56), the first component corresponds to the permeance of the stator core bearing 

the excitation coil, including side fringing, the second component corresponds to the 

permeance of the stator core beyond the excitation coil including the side fringing, 

and the third one covers the permeance of the front fringing region. In the first 

component, division by 3 comes from the fact that in the corresponding region, flux 

lines do not link the excitation coil completely [1].  
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5.3.2   Variable Frequency: 

As shown in Fig 5.5, that  shows the relation between the frequency and voltage, 

from the f1 to fn the value of V/f is constant (k), in this case the value of torque 

remains constant, and when the voltage remains constant until reach the max 

frequency, in this case the power is remains constant. [7]   

 

 
Fig 5.5: Relation between the voltage and frequency 

 

The  frequency  of  the  voltage  applied  to  the  motor  is  smoothly  changed from  

the  value  close  to  zero  to  the  rated  value.  The motor runs synchronously during 

the entire starting period.  Variable voltage variable frequency (VVVF) solid state 

inverters are commonly used. 

 

As frequency variable the speed is variable, according to Equation (2.1) 
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Conclusion: 

 

In this project, the method of a designing of Single Phase Permanent Magnet (SPPM) 

motor is presented, in terms of motor dimensions and material properties, which are 

utilized in the dynamic model of the motor. The intention of the project is to develop 

means of SPPM performance calculations. 

This motor has a special design of stator and rotor with non-uniform air-gaps, with 

U-shape design. 

The behavior of the motor as (starting, torque…) is described, and also the starting 

behavior is described when the value of frequency reach eigenfrequency then the 

motor starts to move continuously. 

The network method (equivalent circuit) is used to analyze magnetic circuit. It is 

usually used in the design of electric machines and transformers, and to perform the 

analytical solution of this project. 

A frequency converter is used as control device to obtain suitable type of control for 

this motor. 

There are growing applications of this motor, especially in low-power like 

automobile industry, central heating and house appliances (washing machines, 

dishwasher). 
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APPENDIX A 

Permanent Magnet Material 
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A.1   Permanent Magnet Material 

PM are applied on a great scale in small electrical mechanical devices. A small 

amount of high qualified PM-material can cause a relative high magnetic field.  

The PM is used for different kind of actuators like brushless motors, step-motors, 

linear motors and servo motors. Because no windings are necessary for developing a 

magnetic field is the efficiency higher than other motors. The thermal problems are 

better controllable. Permanent magnets make the construction lighter and compacter. 

[5] 

PM's are also called hard magnetic materials, which mean ferromagnetic materials 

with a wide hysteresis loop. [5] 

A (PM's) can produce magnetic flux in an air gap with no exciting winding and no 

dissipation of electric power. As any other ferromagnetic material, a PM can be 

described by its B-H hysteresis loop. 

The NdFeB is also susceptible to corrosion. NdFeB magnets have great potential for 

considerably improving the performance-to-cost ratio for many applications. For this 

reason they have a major impact on the development and application of PM 

apparatus. [1] 

There are two different types of rare-earth NdFeB PMs are classified into sintered 

PMs and bonded PMs. [1] 
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Table A.1 : Magnetic characteristics of sintered NdFeB PMs manufactured in China 

Grade 

Remanent 

magnetic flux 

density Br, T 

Coercivity 

Hc, 

 kA/m 

Intrinsic 

coercive 

force iHc 

kA/m 

Maximum energy 

product (BH)max, 

kJ/m³ 

N27 1.02...1.10 764...836 ≥  955 199...223 

N30 1.08...1.15 796...860 ≥  955 223...247 

N33 1.13...1.17 844...884 ≥  955 247...263 

N35 1.17...1.21 876...915 ≥955 263...286 

N38 1.20...1.28 899...971 ≥  955 286...302 

N27M 1.02...1.10 764...836 ≥  1194 199...223 

N30M 1.08...1.15 796...860 ≥  1194 223...247 

N33M 1.13...1.17 844...884 ≥  1194 247...263 

N35M 1.17...1.21 876...915 ≥  1194 263...286 

N27H 1.02...1.10 764...836 ≥  1353 199...223 

N30H 1.08...1.15 796...860 ≥  1353 223...247 

N33H 1.13...1.17 844...884 ≥  1353 247...263 

N35H 1.17...1.21 876...915 ≥  1353 263...286 

N27SH 1.02...1.10 764...836 ≥  1592 199...223 

N30SH 1.08...1.15 796...860 ≥  1592 223...247 

N33SH 1.13...1.17 844...884 ≥  1592 247...263 

N35SH 1.16...1.22 876...915 ≥  1592 263...279 

N25UH 0.97...1.05 748...812 ≥  1910 183...207 

N27UH 1.02...1.10 764...836 ≥  1910 199...223 
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Table A.2: Physical properties of sintered NdFeB PMs manufactured in China  

Grade 

 

Operating 

temperature oC  

 

Curie temp 
oC  

Specific mass 

density 
3/g cm  

Recoil permeability 

 

N27  ≤80 310 7.4...7.5 1.1 

N30 ≤80 310 7.4...7.5 1.1 

N33 ≤80 310 7.4...7.5 1.1 

N35 ≤80 310 7.4...7.5 1.1 

N38 ≤80 310 7.4...7.5 1.1 

N27M ≤100 320 7.4...7.5 1.1 

N30M ≤100 320 7.4...7.5 1.1 

N33M ≤100 320 7.4...7.5 1.1 

N35M ≤100 320 7.4...7.5 1.1 

N27H ≤120 340 7.4...7.5 1.1 

N30H ≤120 340 7.4...7.5 1.1 

N33H ≤120 340 7.4...7.5 1.1 

N35H ≤120 340 7.4...7.5 1.1 

N27SH ≤150 340 7.4...7.5 1.1 

N30SH ≤150 340 7.4...7.5 1.1 

N33SH ≤150 340 7.4...7.5 1.1 

N35SH ≤150 340 7.4...7.5 1.1 

N25UH ≤170 340 7.4...7.5 1.1 

N27UH ≤170 340 7.4...7.5 1.1 

 

 

 

Table A.3: Magnetic characteristics of bonded NdFeB PMs manufactured in China. 

Grade 

Remanent 

magnetic flux 

density Br, T 

Coercivity 

Hc, 

 kA/m 

Intrinsic 

coercive 

force iHc 

kA/m 

Maximum energy 

product (BH)max, 

kJ/m³ 

N36G ≥  0.70 ≥  170 ≥  210 32...40 

N44Z ≥  0.47 ≥  360 ≥  540 40...48 

N52Z ≥  0.55 ≥  360 ≥  500 48...56 

N60Z ≥  0.58 ≥  380 ≥  680 56...64 

N68G ≥  0.60 ≥  410 ≥  1120 64...72 

N76Z ≥  0.65 ≥  400 ≥  720 70...80 

N84Z ≥  0.70 ≥  450 ≥  850 80...88 
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Table A.4: Physical properties of bonded NdFeB PMs manufactured in China. 

Grade 

Maximum 

operation 

temperature 
0
C 

Temperature 

coefficient 

for Br   

%/
0
C 

Curie 

temp. 
0
C 

Specific 

mass 

density 

g/cm ³ 

N36G 70 ≤ -0.13 300 6.0 

N44Z 110 ≤ -0.13 350 6.0 

N52Z 120 ≤ -0.13 350 6.0 

N60Z 120 ≤ -0.13 350 6.0 

N68G 150 ≤ -0.13 305 6.0 

N76Z 150 ≤ -0.13 360 6.0 

N84Z 150 ≤ -0.13 360 6.0 
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Motor Parameter Calculation 
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B.1   Motor Parameter Calculation 

Table B.1: Motor parameters 

Symbol Value 

Am 7.088*10
-2 
mm 

lm 4.426 mm 

µp 1.2947 mm Tesla/A 

Λr 2.073*10
-5
 Ω.m 

Hc 950 A/m 

Fr 4.2047 A 

Λg1 8.95*10
-6
 Ω.m 

Λg(θ) 4.15*10
-6
 Ω.m @r 4.205 A 

x 1.7229 mm 

Λr(θs) 1.9725*10
-5
 Ω.m 

zg 25 mm 

gr1 12.71 mm 

gr2 33.3 mm 

gr3 2.8432 mm 

gr 16.2844 mm 

θ1 74.357
o
=1.2978 rad 

θ2 17.04
o 
=0.297 rad 

rg 5.875 mm 

Λg(θs) 7.12*10
-8
 Ω.m 

rg1 5.75 mm 

rg2 6 mm 

Torque 2.57 Ncm 

θf 34.47
o 
= 0.6016 rad 

gf 11.44 mm 

θfe 20.24
o 
= 0.353 rad 

Λg1(θs) 5.675*10
-7
 Ω.m 

Λg2(θs) 4.737*10
-7
 Ω.m 

lr1 4.246 mm @'� 4.0337 A 

Λg1”for unit axial length of rotor” 9.032*10
-8
 Ω.m ϕg1 1.8059*10
-5
 wb 
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ϕg2 8.4128*10
-6
 wb ϕg 2.64718*10
-5
 wb 

θO 6.0399
o 
= 0.1054 rad 

R1 13.5 mm 

R2 14.5 mm 

θs1 61
o 
= 1.06465 rad 

θs2 50
o 
= 0.87266 rad 

Rs 13.95 mm 

θs 21.267º
 
= 0.37 rad 

yr 13.63 mm 

xg 18.9 mm 

xr 11.54 mm 

x'g 18.366 mm 

ws 50 mm 

wf 70.2 mm 

σs 0.83 

σf 0.88 

zsf 33.5 mm 

xsf 8.424 mm 

Λs 1.246 * 10
-6
 Ω.m 

Number of turns (N) 1382 turns 

Rotor diameter 9.5 mm 

zs 25 mm 

g1 2 mm 

g2 2.5 mm 

xwt xg 54 mm 

yg 13 mm 

To find the value of D0 by using Taylor Theorem: [8]
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