جامعة بوليتكنك فلسطين الخليال فلسطين كلية الهندسة والتكنولوجيا دائرة الهندسة الميكانيكية اسم المشروع

Design and Building of a Pilot Plant For Production Biodiesel
From Animal Fats Sources By Using a Continues Gas-Liquid
Reactor

اسم الطالب احمد محمد إسماعيل نصار

بناء على نظام كلية الهندسة والتكنولوجيا وإشراف ومتابعة المشرف المباشر على المشروع وموافقة أعضاء اللجنة الممتحنة تم تقديم هذا المشروع إلى دائرة الهندسة الميكانيكية وذلك للوفاء بمتطلبات درجة البكالوريوس في الهندسة تخصص هندسة السيارات.

توقيع المشرف
توقيع اللجنة الممتحنة
توقيع رئيس الدائرة

Dedication

To future generations
To our dear parents and families
To whom who have added anything to the science
To whom who have taught us any letter, word or information
To our colleges and instructors
To whom we love

We dedicate this project

Ahmad Nassar

Acknowledgment

Here as I am finished my graduation project thesis, I stop for a moment to thank every body who has helped me to complete this work.

First I want to thank my supervisor Dr. Momen sughayyer who gave me a lot of this time and experience in order to complete the project thesis and gave me the opportunity to start scientific life and methodology in the real life ,Which is a possibility for me to working on new field in the world .

Second I am want to thank my teacher Dr. Yousf Alsewiti for this support that helped me to develop the work efficiency inside mechanical engineering department by using available facilities.

Special thanks to the Deanship of Scientific Research and Graduated Studies through the financial support for financing the building of the project prototype.

.

Abstract (English)

Design and Building of a Pilot Plant For Production Biodiesel
From Animal Fats Sources By Using a Continues Gas-Liquid
Reactor

BY

Ahmad Nasser

This project is directed towards supporting the local industry and development through the construction of an experiment prototype to convert animal fats into biodiesel as pave the way for investors to exploit fat destroyed and recycled in order to obtain fuel.

The project included several steps started in a statistical consideration of biomass resources that are available and used in the production of biodiesel in the district of Hebron. Where the study All offer sources of waste animal fats in the Hebron area and the possibility of collected for recycling for the production of biodiesel. After that, study the production process and economic and environmental implications of that. In the final stage was the built as a prototype to convert animal fat into biodiesel funding from deanship of Scientific Research. Been working at different stages of the marketing of the idea of local plants.

Abstract (Arabic)

هذا المشروع موجه نحو دعم الصناعة المحلية وتطويرها من خلال بناء نموذج تجريبي لتحويل الدهون الحيوانية إلى وقود حيوي حيث سيفتح المجال للمستثمرين باستغلال الدهون المتلفة وإعادة تصنيعها بهدف الحصول على الوقود.

المشروع اشتمل على عدة مرحل بدات بدراسة احصائية للموارد الحيوية المتوفرة والتي تستخدم في انتاج الوقود الحيوي في محافظة الخليل. حيث تم دراسة المصادر التوفرة للمخلفات الحيوية من الدهون الحيوانية في منطقة الخليل وامكانية تجميعها لاعادة تصنيعها بغرض انتاج الوقود الحيوي. ثم تم تحديد الكميات الممكن تجميعها وتقييم التكلفة لعملية التجميع. بعد ذلك تم دراسة عملية الانتاج والانعكاسات الاقتصادية والبيئية لذلك. في المرحلة النهائية تم بناء نموذج تجريبي لتحويل الدهون الحيوانية الى وقود حيوي بتمويل من عمادة البحث. وتم العمل في المراحل المختلفة على تسويق الفكرة المصانع المحلية.

Table of Contents

Title	e Page	I
Ded	ication	II
Ack	nowledgmentsII	II
Abst	tractIV	r
Tabl	le of ContentsV	I
List	of TablesVII	II
List	of Figures	X
	Chapter One: Introduction	1
1.1	General outlook.	2
1.2	Objectives of the project	3
1.3	Connections between the Project and Benefited Parties	3
1.4	Literature Review	4
1.5	Project Schedule	6
1.6	Project Budget	8
1.7	Report Content	10

	Chapter Two: Biodiesel and It is potential In Palestine	11
2.1	Introduction	12
2.2	Historical Perspective.	13
2.3	What is Biodiesel.	13
2.4	Advantages of Biodiesel.	14
2.5	Biodiesel disadvantages	18
2.6	Overcoming Disadvantages of Biodiesel Blends	19
2.7	Emissions of Biodiesel.	20
2.8	Environmental Impacts of Biodiesel.	26
2.9	Statistical and Survey Analysis	26
Ch	apter Three: Biomass Sources for Biodiesel Production	28
3.1	Introduction	29
3.2	Available methods to produce biodiesel from animal fats	29
3.3	Operation principle process of liquid – gas reactor	32
3.4	Reaction influencing factors	35
3.5	Identify Operation Mode of Temperature limitation	37
3.6	Material and Equipment.	37

(Chapter Four: Process component and Design	38
4.1	Flow sheet to process interaction	40
4.2	Quantity of methanol	41
4.3	Heated methanol H3	42
4.4	Condensate methanol C1	45
4.5	Electrical heater into convert fat to oil H1	48
4.6	Electrical heater for increase temperature oil H2	48
4.7	Design the pumps	49
4.8	Design of reactor	55
4.9	Design of tanks	65
	Chapter Five : Conclusions and Recommendations	68
5.1	Chapter Five : Conclusions and Recommendations Conclusions	
	-	. 69
5.1 5.2	Conclusions	. 69
	Conclusions	. 69
	Conclusions	. 69
5.2	Conclusions	. 69 . 69
5.2	Conclusions Recommendations List of Tables	. 69 . 69 6
5.2 Tabl	Conclusions Recommendations List of Tables le1.1 Project time-schedule for first semester.	. 69 . 69 6
Tabl Tabl Tabl	Conclusions Recommendations List of Tables le1.1 Project time-schedule for first semester. le1.2 Project time-schedule for second semester.	. 69 . 69 6 7
Tabl Tabl Tabl	Conclusions Recommendations List of Tables le1.1 Project time-schedule for first semester. le1.2 Project time-schedule for second semester. le1.3 Project budget.	69 6 7 9 gines 17

Table 2.3	Statistically fat extracted annually in the Hebron Governorate	26
Table 4.1	Standard (Nozzle orifices diameter) versus Time when the droplet transferred in reactor max distance (1.5 m)	58
Table 4.2	Ratio between (ln (Hole length) /dn (Hole diameter))versus Angle	
1 able 4.2		60
	of spray jet	60
	List of Figures	
Figure 2.1	Cetane number of fuels made from pure fatty acids	17
Figure 2.2	Cetane number of fatty acid methyl esters, petroleum diesel and	18
	various biodiesel fuels	10
Figure 2.3	Average emission impacts of biodiesel fuels in CI engines	23
Figure 3.1	Chemistry Transesterification Reaction	29
Figure 3.2	Flow sheet for process Biodiesel production.	34
Figure4.1	Flow sheet to process interaction	40
Figure4.2	Methanol evaporator	44
Figure4.3	Methanol condenser	47
Figure4.4	Gear pump and electrical motor	53
Figure4.5	Dimension of the Gear pump in millimeter	54
Figure4.6	Geometry of the jet1	61
Figure4.7	Geometry of the jet2	61
Figure4.8	Schematic of spray defining its major parameters	62
Figure4.9	Design reactor based on geometry of the spray	62
Figure4.10	Dimensions of the reactor	63
Figure4.11	Dimensions of injector and Dimensions of pipe inside reactor	64
Figure4.12	Final Shape of reactor.	65
Figure 4.13	Projections of settling tank	66
Figure4.14	Projections of washing tank	67

Chapter One

Introduction

Content:

- 1.1 General Outlook
- 1.2 Objectives of the Project
- 1.3 Connections between the Project and Benefited Parties
- **1.4 Literature Review**
- 1.5 Project Schedule
- 1.6 Project Budged
- 1.7 Report Content

Chapter One

Introduction

1.1 General Outlook

The need for energy is increasing continuously because of the increase in industrialization and population. The basic sources of this energy that we use in Hebron district is petroleum products and natural gas in addition to electricity. All that energy sources are imported at high cost for our economy, which slows our economy growth. There for basing on this problem their is another alternative source of energy in Hebron which can be extracted from organic material such as waste vegetable oil and animal fats in order to produce renewable source of energy called biodiesel.

Waste cooking oil and animal fats can affect human beings health and pollute the environment. The quantity of this waste fats generated per year in Hebron district is very significant. For the matter of fact, the disposal of waste fats is problematic, because the disposal methods contaminate the environment and pose risk to local public health.

The production of biodiesel from waste fats is one of the best ways to utilize it efficiently and economically. The data on the requirements of diesel fuel and availability of waste biomass sources in Hebron indicates that the obtained biodiesel may not replace diesel fuel completely. But, a substantial amount of diesel fuel can be obtained from waste animal fats, which would partly reduce the dependence on petroleum-based fuel.

Biomass is one of the important renewable sources of energy. Fuels from renewable biomass have the potential to reduce the amount of green house gases and particulate matter. This is because the carbon contained in biomass derived fuel is biogenic and renewable. In addition to the other important factor such as reduction of pollution risk and potential economical field. Therefore, petroleum based fuels can be complemented by fuels obtained from renewable sources.

1.2 Objectives of this Project

This project is the second phase of work done in PPU in this field. In phase one afield study for the quantities available have been done and a design for plant to transform cooking oil to biodiesel at low have been done temperature and prototype have been tested, in addition to product testing on ICE.

Phase two, A process will be designed to transform animal fats to biodiesel. This process the subject of this project will work at higher temperature with respect to phase one, because animal fat, some how solid and reaction is not possible between solid phase (fats) and liquid phase (methanol), their fore it will be an important development to previous phase.

The importance of this Project can be summarized in the following point:

- 1- The design and construction of a prototype for the purpose of production of Biodiesel from animal fats.
- 2- The production of Biodiesel from animal fats locally.
- 3- Supporting the contribution with local industry.
- 4- Spread the cultural protection and saving in the local society.

1.3 Connections between the Project and Benefited Parties

This project is oriented basically towards local official and private sector concerned in energy industry, which gives information about the ability of production of biodiesel from animal fats. This project supports local economy and especially industry from these sides:

- 1- Financial benefits from recycling of fats from biological resources resulted from the process of fats production instead of disposability which is expensive economically and environmentally.
- 2- Provide industrial investments chances in the field of collection and recycling of biological animal fat locally.
- 3- The help of public institution to develop policies required for health and environment protection in addition to encouragement and support local industry.

1.4 Literature Review

Biodiesel production and all related issue are well studied internationally. some literature review like [1], [2], [3], provide some studies about producing the alternative fuel (biodiesel) from biomass like animal fats with a limit study about the quantity of animal fats in small regions, a financial study to produce it.

1. Biodiesel Production in PPU [1]

This project was consisted of many stages; it begins with a statistical study for the biological resources available which are used for the production of biodiesel. the research was studied for the biomase wastes available from animal fats and vegetable oil in Hebron district with the possibility to be collected and recycled again in order to produce biodiesel fuel. Then possible amounts that should be collected are was determined, that evaluation of the whole cost due to the process of collection and storage will follow. Then after, the production process should be studied taking into account economical and environmental reflections of this process. In the last stage, there was a production of a trial amount was produced using a small plant Specially built this process occur during low temperature.

2. Biodiesel Production in UK [2]

This research was done by Department of Chemical & Materials Engineering University of Auckland, in UK. It was done to produce biodiesel from animal fat, production design and built to produce sufficient biodiesel. Research investigating the

transesterification of fats and oil with methanol was performed to improve the economic viability of the production process for biodiesel from oil and fats. The key feature of the new process developed in this work is its ability to operate continuously with a high reaction rate, potentially requiring less post reaction cleaning and product/reactant separation than currently established processes.. The overall conversion based on a single cycle of this process has been between 60 to 96% of the feed stock materials.

3. Biodiesel production in 1ndia [3]

At Tamil Nadu Agricultural University, the BioEnergy Department of Agricultural Engineering College and Research Institute has invested efforts in this energy challenge proposed by the government to the Indian scientists' community. This unit serves as a model for some industries in the university area. In addition, the TNAU Forest Institute, located outside the main campus, is looking at the optimal biomass source for the production of non-edible oil dedicated to be transformed into biodiesel. The research investing is to improve efficiency and performance of biodiesel production by shifting from a batch production to a continuous production. The designed unit will also allow for methanol recovery, the students was aimed to achieve the reaction within 10minutes and to use a lower methanol to oil molar ratio of about 4 to 1. Furthermore, the design was highly effective to recover methanol. The unit was design to be very versatile: every component can be analyzed and understood separately. The feasibility of using such a system for continuous flow production can be assessed and consequent scale-up may occur The design is a scale up of the experimental set-up of a team from Idaho University, Moscow Idaho. Its principle relies on the use of a reactive distillation reactor which allows for faster and more efficient biodiesel production. The lab-scale unit was worked under gravity only, which therefore allows for very small flows at a minimum cost.

1.5 Project Schedule

 Table 1.1 Project time-schedule for first semester

	Week														
Process	1	2	3		5	6	7	8	9	10	11	12	13	14	15
Collecting Data and Literature															
Analyzing of data															
Design experimental prototype															
Statistical and Survey															
process design and calculations															
Writing The documentation															

 Table 1.2 Project time-schedule for second semester

	Week														
Process	1	2	3		5	6	7	8	9	10	11	12	13	14	15
Design															
experimental prototype															
Building the experimental prototype															
Process design and calculations															
Biodiesel Production and results and analysis															
Writing Documentation															

The work Stages

- 1. literature review during were the first two weeks, which started early and passed within eight weeks.
- 2. Choosing best method to production biodesil until reach economical method.
- 3. For the second part of this project works on designing and building a plant for biodiesel production.
- 4. Visit department agriculture in Hebron district to obtain on percentage animal fats in Hebron district with the possibility to be collected and recycled again in order to produce biodiesel fuel.
- 5. Finally, writing the documentation research was started after finishing the previous steps.

1.6 Project Budget

The apparatus requirements are chemical materials (methanol, sodium hydroxide...), laboratory instrument, tanks, injector, condenser, piping and fittings, heater, valves, pumps, blender.....).

The budget of the project also includes printing costs and local study and survey. The following table shows the estimated cost of each one.

 Table 1.3 Project budget

Element	Description	Availability	Students	DSR Grant
	Valves and fitting			250
	Mixer			300
	Piping			350
	Electric heater (1)			100
	Electric heater(2)			200
	condenser			150
	Electric centrifugal pump1			100
	Electric centrifugal pump2			100
	Electric gear pump1			1000
	Injector			170
	Reactor			1000
	Machining (Lathe and welding)	available		
	Methanol and NaOH			850
	Chemistry Lab tools	Chemistry lab in PPU		
Experimentation	Printing and preparing documentation			
	Visits to companies, shops		20	
Transportation			130	
Total cost (NIS)				4720

1.7 Report content

This chapter presents the general idea of the project and its importance, in addition the field of application and specialization also, in addition conduct the literature reviews of the previous studies about this project, this chapter also includes the time plan for all over the project, and the tools, equipments, materials that are used in the project, and finally the total cost.

Chapter two presents an introduction about biodiesel, historical perspective, the definition of biodiesel with the advantages of it, and also the disadvantage, then it describes how to overcome the disadvantages, in addition of that the emission of biodiesel and finally the impact of biodiesel on environment and health.

Chapter three discuss the process of biodiesel production including prototype design, and discussed its component in details, and biodiesel is analyzed in detail and calculation of each component.

Chapter four shows design and calculation for all components of project.

Chapter five presents recommendation for the project.

الحاجة إلى الطاقة في تزايد مستمر بسبب الزيادة في التصنيع والسكان. المصادر الأساسية لهذه الطاقة التي نستخدمها في محافظة الخليل والمنتجات البترولية والغاز الطبيعي ، بالإضافة إلى الكهرباء. كل ذلك يتم استيراد مصادر الطاقة بتكلفة عالية لاقتصادنا ، والذي يؤدي إلى إبطاء نمو . ودعا هناك لانه استند على هذه مشكلتهم هو مصدر آخر للطاقة البديلة في الخليل التي يمكن استخلاصها من المواد العضوية مثل الزيوت النباتية والدهون الحيوانية النفايات من أجل الدين الميزل الحيوي.

يمكن نفايات الزيت والدهون الحيوانية التي تصيب البشر الصحة وتلوث البيئة. كمية الدهون هذه النفايات المتولدة سنويا في منطقة الخليل هي كبيرة جدا. لواقع الأمر ، والتخلص من الدهون النفايات إشكالية ، لأن طرق التخلص تلوث البيئة وتشكل خطرا على الصحة العامة والمحلية.

إنتاج وقود الديزل الحيوي من الدهون النفايات هي واحدة من أفضل الطرق للاستفادة بكفاءة واقتصاديا. البيانات بشأن الاحتياجات من وقود الديزل وتوافر مصادر الكتلة الحيوية من النفايات في مدينة الخليل يشير إلى أن الحصول على وقود الديزل الحيوي قد لا تحل محل وقود الديزل . ولكن ، يمكن الحصول على كمية كبيرة من وقود الديزل من الدهون الحيوانية .

النفايات ، والتي من شأنها أن تقلل جزئيا من الاعتماد على الوقود المشتق من البترول. الكتلة الحيوية هي واحدة من المصادر الهامة للطاقة المتجددة. الكتلة الحربون الواردة في لديها القدرة على خفض كمية غازات البيت الأخضر والجسيمات. وهذا لأن الكربون الواردة في الكتلة الحيوية المستمدة الوقود الأحيائية والمتجددة. بالإضافة إلى العوامل الهامة الأخرى مثل الحد . لذلك ، يمكن أن تستكمل المحروقات البترولية القائمة

على الوقود التي تم الحصول عليها من مصادر الطاقة المتجددة.

أهداف هذا المشروع

هذا المشروع هو المرحلة الثانية من العمل الذي أنجز في جامعة بوليتكنك فلسطين في هذا المجال. في المرحلة أجريت دراسة واحدة خارجها للكميات المتاحة وتصميم لمحطة لتحويل زيت الطعام إلى وقود الديزل الحيوي في انخفاض درجة الحرارة قد تم القيام به والنموذج قد تم اختبارها ، بالإضافة إلى اختبار المنتج على الجليد.

المرحلة الثانية ، سيتم تصميم عملية لتحويل الدهون الحيوانية إلى وقود الديزل الحيوي. هذه العملية تخضع لهذا المشروع سوف يعمل على ارتفاع درجات الحرارة فيما يتعلق مرحلة واحدة ، وذلك لأن الدهون الحيوانية ، وبعض ردود الفعل كيف الصلبة وليس من الممكن بين المرحلة (الدهون) (الميثانول) ، الصدارة على أنها ستكون هامة التنمية إلى المرحلة

ولخص أهمية هذا المشروع يمكن أن يكون في النقطة التالية:

- -- تصميم وبناء نموذج أولى لغرض انتاج وقود الديزل الحيوي من الدهون الحيوانية.
 - -- إنتاج وقود الديزل الحيوي من الدهون الحيوانية محليا.
 - -- دعم مساهمة مع الصناعة المحلية.
 - -- نشر وتوفير الحماية الثقافية في المجتمع المحلى.

اتصالات بين المشروع والأطراف استفادت

توجه نحو هذا المشروع أساساً الرسمية المحلية المعنية والقطاع الخاص في قطاع الطاقة ، الذي يعطي معلومات حول قدرة إنتاج وقود الديزل الحيوي من الدهون الحيوانية. ويدعم هذا المشروع المحلى وخاصة الصناعة من هذه الجوانب:

أدى الفوائد المالية من إعادة تدوير الدهون من الموارد البيولوجية من عملية إنتاج الدهون بدلا من disposability

- -- توفير فرص الاستثمارات الصناعية في مجال جمع وإعادة تدوير للدهون الحيوانية البيولوجي محليا.
- -- وبمساعدة من مؤسسة عامة لتطوير السياسات اللازمة لحماية الصحة والبيئة ، بالإضافة إلى تشجيع ودعم الصناعة المحلية.

ومدروسة وقود الديزل الحيوي الإنتاج وجميع المسائل ذات الصلة على الصعيد الدولي. [] [] ، وتقديم بعض الدراسات عن انتاج الوقود البديل (الديزل) من الكتلة الحيوية مثل الدهون الحيوانية مع دراسة حول الحد من كمية الدهون الحيوانية في المناطق الصغيرة ، والدراسة المالية إلى إنتاجه.

. وقود الديزل الحيوي في إنتاج جامعة بوليتكنك فلسطين []

ويتألف هذا المشروع من عدة مراحل ، تبدأ مع دراسة إحصائية للموارد البيولوجية المتاحة والتي تستخدم لإنتاج وقود الديزل الحيوي. ودرس البحث عن النفايات biomase المتاحة من الدهون الحيوانية والزيوت النباتية في محافظة الخليل مع إمكانية جمعها وإعادة تدويرها مرة أخرى من أجل انتاج وقود الديزل الحيوي. وكان تحدد المبالغ ممكن ثم أنه ينبغي جمعها ، أن تقييم تكلفة كله بسبب عملية جمع وتخزين ومتابعة. ثم بعد ، وينبغي دراسة عملية الإنتاج مع الأخذ في الاعتبار الانعكاسات الاقتصادية والبيئية لهذه العملية. في المرحلة الأخيرة ، كان هناك انتاج كمية المحاكمة المنتجة باستخدام محطة صغيرة بنيت خصيصا لهذه العملية تحدث أثناء درجات الحرارة

. وقود الديزل الحيوي في إنتاج المملكة المتحدة [] وقد تم ذلك بواسطة دائرة البحوث الكيميائية ومواد الهندسة جامعة

. وكان ذلك لإنتاج وقود الديزل الجيوي من الدهون الحيوانية ،

وتصميم الإنتاج والبناء لانتاج وقود الديزل الحيوي كافية. وقد أجريت بحوث التحقيق في توزيع الجزيئيات التبادلي من الدهون والزيوت مع الميثانول لتحسين الجدوى الاقتصادية لعملية الإ

من أجل وقود الديزل الحيوي من الزيوت والدهون. الميزة الرئيسية للعملية الجديدة التي طورت في هذا العمل هو قدرتها على العمل بشكل مستمر مع ارتفاع معدل التفاعل ، الأمر الذي يتطلب رد فعل يحتمل أن تكون أقل تنظيف آخر والمنتج / فصل متفاعل من العمليات القائمة حاليا.. تم تحويل الشاملة على أساس دورة واحدة من هذه العملية بين

. وقود الديزل الحيوي في إنتاج ndia []

في جامعة ولاية تاميل الزراعية التاميل ، وقد استثمرت وزارة الطاقة الحيوية من كلية الهندسة الزراعية ومعهد بحوث الجهود المبذولة في هذا التحدي الطاقة التي اقترحتها الحكومة للمجتمع العلماء الهنود. هذه الوحدة هي بمثابة نموذج لبعض الصناعات في منطقة الجامعة.

TNAU المعهد ، وتقع خار ج الحرم الجامعي الرئيسي ، هو يبحث في الكتلة الحيوية نتاج النفط غير الصالحة للأكل مخصص لتتحول الى وقود الديزل الحيوي. وتستثمر البحوث هو تحسين الكفاءة والأداء لإنتاج وقود الديزل الحيوي من خلال تحويل دفعة من . وسوف تسمح أيضا وحدة مصممة لتحقيق الانتعاش الميثانول. وكان الهدف

من الطلاب لتحقيق minutes واستخدام الميثانول إلى انخفاض نسبة النفط - . وعلاوة على ذلك ، كان تصميم فعالة للغاية لاستعادة الميثانول.

وحدة التصميم ليكون تنوعا جدا: كل عنصر يمكن تحليلها وفهمها بصورة منفصلة. ويمكن تقييم جدوى استخدام هذا النظام لإنتاج التدفق المستمر وما يترتب على ذلك النطاق قد تحدث في التصميم هو توسيع نطاق تجريبي لانشاء فريق من جامعة أيداهو ، موسكو ، ايداهو. يعتمد على استخدام مفاعل التقطير رد الفعل الذي يسمح لإنتاج وقود الديزل الحيوي بشكل أسرع ت وحدة مختبر النطاق تحت الجاذبية فقط ، مما يسمح بالتالي للتدفقات

صغيرة جدا بتكلفة أدني.

- . تم استعراض الأدب خلال الأسبوعين الأولين ، الذي بدأ في وقت مبكر ومرر في غضون ثمانية أسابيع.
 - . اختيار أفضل طريقة لbiodesil الإنتاج حتى الوصول إلى طريقة اقتصادية.
- . بالنسبة للجزء الثاني من هذا المشروع يعمل على تصميم وبناء مصنع لإنتاج وقود الديزل الحيوي.
- . زيارة وزارة الزراعة في محافظة الخليل للحصول على نسبة الدهون الحيوانية في محافظة الخليل مع إمكانية جمعها وإعادة تدوير ها مرة أخرى من أجل انتاج وقود الديزل الحيوي. .Finally ، وكتابة البحوث والتوثيق فقط بعد الانتهاء من الخطوات السابقة.

مشروع الميزانية

متطلبات الأجهزة والمواد الكيميائية (الميثانول، وهيدروكسيد الصوديوم صك مختبر...) والدبابات ومحقن ، المكثف ، والأنابيب والتجهيزات ، وسخان ، والصم ميز انية المشروع يتضمن أيضا تكاليف الطباعة والمسح ودراسة محلية. ويبين الجدول التالي التكاليف المقدرة لكل واحد.

تقرير المحتوى

هذا الفصل يقدم فكرة عامة عن المشروع وأهميته ، بالإضافة إلى مجال التطبيق والتخصص أيضا إلى إجراء استعراض أدبيات الدراسات السابقة حول هذا المشروع ، ويتضمن هذا الفصل أيضا الخطة الزمنية لجميع أنحاء المشروع ، والأدوات والمعدات والمواد التي تستخدم في المشروع ، وأخيرا التكلفة الإجمالية.

الفصل الثاني يقدم مقدمة حول المنظور ، وقود الديزل الحيوي التاريخية ، وتعريف وقود الديزل الحيوي مع مزايا منه ، وكذلك الحرمان ، ثم فهو يصف كيفية التغلب على العيوب ، وبالإضافة إلى ذلك من أن الانبعاثات من وقود الديزل الحيوي ، وأخيرا أثر على وقود الديزل الحيوي البيئة

الفصل الثالث مناقشة عملية إنتاج وقود الديزل الحيوي بما في ذلك تصميم النموذج ، ونوقشت عنصرها في التفاصيل ، ويتم تحليل وقود الديزل الحيوي في التفاصيل وحساب كل مكون. تصميم ويبين الفصل أربعة وحساب لجميع عناصر المشروع. ويعرض الفصل الخامس توصية لهذا المشروع.

Chapter Two

Biodiesel and its potential in Palestine

Content:

- 2.1 Introduction
- 2.2 Historical Perspective
- 2.3What is Biodiesel?
- 2.4 Advantages of Biodiesel
- 2.5 Biodiesel Disadvantages
- 2.6 Overcoming Disadvantages of Biodiesel Blends
- 2.7 Emissions of Biodiesel
- 2.8 Environmental Impacts of Biodiesel
- 2.9 Statistical and Survey Analysis

Chapter Two

Biodiesel and its potential in Palestine

2.1 Introduction

The industrial revolution in the recent years and the increase in population increases the demand for energy in a continuous manner, and as it is known, the main source of used energy nowadays in all aspects of daily life is restricted at most within petroleum, natural gas, coal, hydro and nuclear energy.

Petroleum diesel continues to be a major fuel world wide. The most of this is utilized in the transportation sector. The major disadvantage of using petroleum-based fuels is that, day by day, the fossil fuel reserves are decreasing. Another disadvantage is atmospheric pollution created by the use of petroleum diesel. Petroleum diesel combustion is a major source of greenhouse gas. Then many industrial countries began to search about alternatives of petroleum based fuel. They suggest using solar, wind, water, and biomass energy, as a result of several researches it was discovered that the vegetable oil can be used as fuel after converted to alkyl esters compounds by reacting with suitable alcohol mainly methanol and the final product was called Biodiesel.

2.2 Historical Perspective

In 1900, Rudolf Diesel demonstrated his compression ignition engine at the World's Exhibition in Paris. In that prototype engine he used peanut oil, the first biodiesel. Vegetable oils were used until the 1920's when an alteration was made to the engine enabling it to use a residue of petroleum diesel. Although the diesel engine gained worldwide acceptance, biodiesel did not. With superior price, availability, and government subsidies, petroleum diesel quickly became the fuel of choice for the diesel engine.

In the mid 1970s, fuel shortages revived interest in developing biodiesel as an alternative to petroleum diesel. However, as the petroleum market was increasingly subsidized, biodiesel was again relegated to a minority "alternative" status. This political and economic struggle continues to limit the impact of the biodiesel industry today.

Now, increasing concerns about the potential of global climate change, declining air and water quality, and serious human health concerns are inspiring the development of biodiesel, as a renewable, cleaner burning diesel alternative. Biodiesel is made from recycled animal fat and various feedstocks (biomass sources). As part of an active carbon cycle biodiesel feedstock production reduces the buildup of greenhouse gases, and in turn, global warming. [4]

2.3 What is Biodiesel?

Biodiesel is defined as the mono-alkyl esters of fatty acids derived from vegetable oils or animal fats. In simple terms, biodiesel is the product obtained when a vegetable oil or animal fat is chemically reacted with an alcohol to produce fatty acid

alkyl esters. A catalyst such as sodium or potassium hydroxide is required. Glycerol is produced as a co product.

The simple reaction are

Glycerin which is the main byproduct has a numerous uses, including many applications as an ingredient or processing aid in cosmetics, toiletries, personal care, drugs, and food products [4].

Biodiesel can also be made from other feedstocks:

- 1. Other vegetable oils such as corn oil, canola (an edible variety of rapeseed) oil, cottonseed oil, mustard oil, palm oil, etc.
- 2. Restaurant waste oils such as frying oils
- 3. Animal fats such as beef tallow or lard
- 4. Trap grease (from restaurant grease traps), float grease (from waste water treatment Plants), etc.

2.4 Advantages of Biodiesel

Biodiesel can be used in several different ways. one can use 1% to 2% biodiesel as a lubricity additive, which could be especially important for Ultra Low Sulfur Diesel

fuels (ULSD, less than 15 ppm sulfur), which may have poor lubricating properties. It can blend by 20% Biodiesel with 80% diesel fuel (B20) for use in most applications that use diesel fuel. Also it can be even use in its pure form (B100) if proper precautions are taken. The word biodiesel in this thesis refers to the pure fuel (B100) that meets the specific biodiesel definition and standards approved by ASTM International. The number following the "B" indicates the percentage of biodiesel in the volume fuel.

Today, B20 is the most common biodiesel blend in the world because it balances property differences with conventional diesel, performance, emission benefits, and costs. Higher blend levels, such as B50 or B100, require special handling and fuel management and may require equipment modifications such as the use of heaters or changing seals and gaskets that come in contact with the fuel to those compatible with high blends of biodiesel. The level of special care needed largely depends on the engine and vehicle manufacturer.

Biodiesel-fueled vehicles are called non-dedicated flexible fuel vehicles because biodiesel use does not require any significant modifications to the engine, so that the engine does not have to be dedicated for biodiesel use only. It is completely soluble in commercial petroleum-based diesel fuel, so biodiesel can be used as a blend and one fuel tank can be used for storage of both fuels. This makes the vehicle flexible. This is a unique advantage compared with most other alternative fuels, because this will give users the opportunity to use the alternative fuel where and when it is available without paying any extra money for engine modifications.

Given the fact that, Biodiesel is a renewable fuel manufactured from vegetable oils, animal fats, and recycled cooking oils. Biodiesel offers many advantages:

- 1. It is renewable.
- 2. It is energy efficient equivalent to petroleum diesel.
- 3. It potentially replaces petroleum derived diesel fuel.

- 4. It can be used in most diesel equipment with no or only minor modifications.
- 5. It can reduce global warming gas emissions because of the plant life cycle.
- 6. It can reduce tailpipe emissions, including air toxics.
- 7. It is nontoxic, biodegradable, and suitable for sensitive environment
- 8. Reduction in emissions of:
 - a. Sulfur dioxide by 100%
 - b. Soot emissions by 40-60%
 - c. Carbon monoxide by 10-50%
 - d. Hydrocarbons by 10-50%
 - e. Nitrous oxide by 5-10%, depending on engine tuning and the age of the engine. Nitrous oxide emissions may increase in some instances.
- 9. Readily mixes with petroleum diesel fuel in any ratio
- 10. It has a higher flash point than petroleum diesel and thus helps prevent damaging fires. [5]
- 11. Biodiesel (B100) contains 11% oxygen by weight. The presence of fuel oxygen allows the fuel to burn more completely so fewer unburned fuel emissions result. [5] 12. Biodiesel has a higher cetane number than diesel fuel, which is provided easier starting, and quieter operation, better ignition quality, shorter ignition delay.

Most of the B100 made today that meets D6751 has a cetane number higher than 47. This is compared to the minimum of 40 for highway diesel fuel, whose national average is between 42 and 44. Therefore, biodiesel has a higher cetane number than most U.S. diesel fuel, which is believed to provide easier starting and quieter operation. Highly saturated B100, such as animal fats and used cooking oils, can have a cetane number of 70 or higher. Common polyunsaturated fuels that contain high levels of C18:2 and C18:3 fatty acids include soy, sunflower, corn, and canola (rapeseed) oils. These will be at the lower end of the scale, at 47 or slightly higher.

Figure 2.1 shows the cetane number of various biodiesel samples. [5]

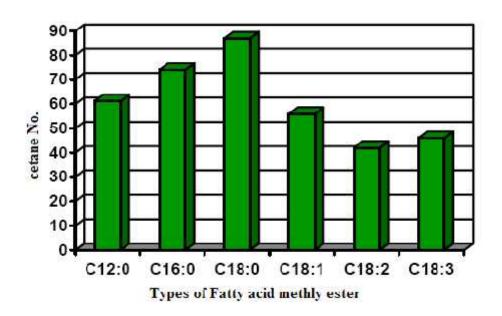
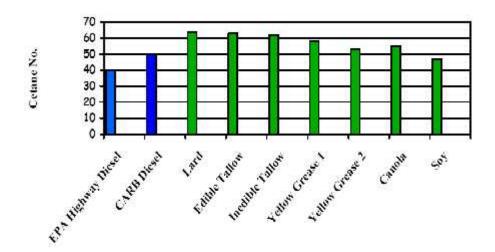



Figure 2.1 Cetane number of fuels made from pure fatty acids

Table2.1 Fuel properties as a function of fuel composition in diesel engines

	Saturated	Monounsaturated	Polyunsaturated
Fatty acid	12:0,16:0 18:0,20:0, 22:0	16:1, 18:1, 20:1, 22:1	18:2, 18:3
Cetane Number	High	Medium	Low

Figure 2.2 Cetane number of fatty acid methyl esters, petroleum diesel and various biodiesel fuels

2.5 Biodiesel Disadvantages:

- 1. Biodiesel is a solvent that can be incompatible with the rubber seals and gaskets in the fuel systems of some types of diesel vehicles. If users have not taken measures to properly adapt their engines to run on biodiesel, dissolution of dirt and rubber can result in clogged engine and fuel lines. As such, pure B100 cannot be safely used as a stand-alone fuel in conventional vehicles.
- 2. The energy content of biodiesel is lower than that of petroleum diesel. As a result, vehicles running on any blend of biodiesel will experience a small reduction in fuel economy (miles per gallon). [6]
- 3. The use of biodiesel in cold weather presents certain challenges. All diesel fuel "clouds" at low temperatures. Clouding indicates the formation of wax crystals, which can inhibit proper flow of fuel to the engine and clog fuel lines or filters. Conventional petrodiesel begins to cloud at approximately 0° F, while B100 has a

clouding point of about 30° F. The higher clouding temperature is an important consideration for the use of biodiesel during cold winters. [6]

4. Nitrogen oxide emissions are increased for biodiesel combustion versus petrodiesel combustion.

2.6 Overcoming Disadvantages of Biodiesel Blends

Many of the disadvantages associated with neat biodiesel can be overcome by using Biodiesel blends, which consist of petrodiesel mixed with a specified quantity of biodiesel. Biodiesel blends are labeled BX, where X is a number that indicates the percentage of biodiesel in the blend. For example, B20 is a mixture of 80 percent petrodiesel and 20 percent biodiesel. Common blends include: B2, B5, B10, and B20. Biodiesel blends can overcome the inherent disadvantages of B100 in the following ways:

- 1. Blends up to a B20 (or even B35 in some cases) can be used with no alterations to a standard diesel engine.
- 2. The use of certain additives can prevent cold-weather clogging issues associated with biodiesel use in the winter months.
- 3. The addition of varying amounts of kerosene (depending on which biodiesel blend is used) has the ability to reduce nitrogen oxide emission.

2.7 Emissions of Biodiesel

Diesel engines always operate well on the lean side of stoichiometric, which means that CO emissions will be low, and regulations will easily be met. When one considers the chemistry of biodiesel, the CO emissions will be even lower. Because biodiesel is approximately 11% oxygen by weight, there will be extra oxygen to react with during the combustion process, allowing for more complete burning. In addition to reducing the amount of unburned hydrocarbons, this should reduce the emission of CO.

Furthermore, biodiesel has a lower carbon-to-hydrogen ratio than conventional petro diesel. It was found that biodiesel blends with the lowest carbon content formed the least CO, and all biodiesel emitted less CO than petroleum diesel. This makes intuitive sense, because, with less carbon in the fuel, there is a better chance that each carbon atom will find two oxygen atoms to bind. The decrease in CO emissions that was noticed with an increase in loading can also be simply explained. When the load on the engine is higher, the gas inside the cylinder will naturally be at a higher temperature. This speeds up the conversion rate of CO to CO₂, completing the combustion process and lowering CO emissions.

The oxygen content by weight of the biodiesel as a reason why NOx emissions increase. They reason that because the fuel itself contains oxygen, there will be more oxygen available to react with the nitrogen in the air. However, the increase in NOx is unexpected based on some of the biodiesel fuel properties, since a higher cetane number and lower energy content are usually associated with lower NOx.

Hydrocarbons are also a contributing factor in the creation of smog and ozone. Hydrocarbon emission, also called volatile organic compound (VOC) in atmospheric chemistry, is the main ingredient to the creation of photochemical smog. The oxidation reaction of the VOCs leads to the creation of ozone and aldehydes. The

product ozone is also toxic. Ozone has poor solubility properties which, when taken into the lungs, can cause inflammation due to oxidization of lung tissue.

The consequences of local ozone formation also include detrimental effects on crop yields and the faster wearing of tires. When hydrocarbons are combined with NOx emissions, more volatile reactions resulting in ozone formation are possible. NOx emissions are an important emission of automobile exhaust. The reduction of hydrocarbons effectively means a reduction of many harmful consequences of hydrocarbon release into the environment.

The overall ozone (smog) forming potential of Biodiesel is less than Diesel fuel. The ozone forming potential of the speciated hydrocarbon emissions was nearly 50 percent less than that measured for Diesel fuel. Sulphur emissions are essentially eliminated with pure Biodiesel. The exhaust emissions of sulphur oxides and sulfates (major components of acid rain) from Biodiesel were essentially eliminated compared to sulphur oxides and sulphates from Diesel. [5]

Table 2.3 provides the percentage changes in various emissions (relative to those from conventional petrodiesel) for various biodiesel blends. Generally, as the percentage of biodiesel blended with diesel increases, there is a concomitant reduction in harmful emissions. A notable exception is NOx emissions, which increase slightly with biodiesel use. [5]

Overall, however, biodiesel has the potential to reduce harmful emissions from current levels by up to 80 percent. This is equivalent to removing roughly.

Table 2.2 Percentage changes in emissions from various blends of Biodiesel relative to petro diesel.

% Biodiesel	PM	НС	СО	NOx	SOx	CO ₂
1	-0.64	-1.11	-0.65	0.10	-1.00	-0.78
5	-3.14	-5.44	-3.23	0.49	-5.00	-3.92
10	-6.18	-10.59	-6.35	0.98	-10.00	-7.85
20	-11.99	-20.06	-12.30	1.98	-20.00	-15.69
30	-17.43	-28.53	-17.87	2.98	-30.00	-23.54
50	-27.33	-42.86	-27.97	5.02	-50.00	-39.23
80	-39.99	-59.16	-40.84	8.15	-80.00	-62.96
100	-47.19	-67.36	-48.11	10.29	-100.00	-78.45

These data are graphically illustrated in Figure 2.3

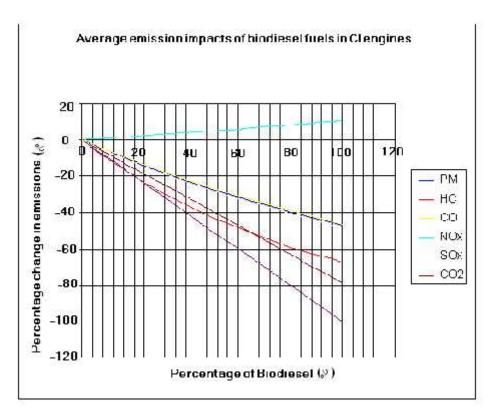


Figure 2.3 Average emission impacts of biodiesel fuels in CI engines

According to the previous figure carbon dioxide is one of the main greenhouse gases contributing to global warming. Neat Biodiesel (100% Biodiesel) reduces carbon dioxide emissions by more than 75% over petroleum Diesel. But using a blend of 20% Biodiesel reduces carbon dioxide emissions by 15%. Biodiesel also produces fewer particulate matter, carbon monoxide, and sulphur dioxide emissions.

The use of Biodiesel has significant benefit when it comes to supporting the environment. Biodiesel is the first and only alternative fuel to have a complete evaluation of emission results and potential health effects.

According to figure 2.4 it can make a comparison of emission between diesel and Biodiesel.

- 1. Carbon Monoxide: The exhaust emissions of carbon monoxide (a poisonous gas) from Biodiesel were 50 percent lower than carbon monoxide emissions from Diesel.
- 2. Particulate Matter: Breathing particulate has been shown to be a human health hazard. The exhaust emissions of particulate matter from Biodiesel were 30 percent lower than overall particulate matter emissions from Diesel.
- 3. Hydrocarbons: The exhaust emissions of total hydrocarbons (a contributing factor in the localized formation of smog and ozone) were 93 percent lower for Biodiesel than Diesel fuel.
- 3. Sulphur oxides: Sulphur emissions are essentially eliminated with pure Biodiesel. The exhaust emissions of sulphur oxides and sulfates (major components of acid rain) from Biodiesel were essentially eliminated compared to sulphur oxides and sulphates from Diesel.
- 4. Nitrogen Oxides: NOx emissions from (100%) Biodiesel increased in this by 13 percent. However, Biodiesel's lack of sulphur allows the use of NOx control technologies that cannot be used with conventional Diesel. So, Biodiesel NOx emissions can be effectively managed and efficiently eliminated as a concern of the fuel's use.

2.7.1 How to solve the problem of NOx

The high level of NOx emissions is the major obstacle standing in the way of broad support for biodiesel, and much research has been devoted to its reduction, particularly in light of stringent exhaust emission regulations being imposed on diesel engines over the next few years. One popular method of reducing NOx emissions is exhaust gas recirculation (EGR). EGR reduces engine temperature by pumping a portion (10-25%) of exhaust gas back into the intake. Because the exhaust gas is nearly inert, it will not react in the combustion chamber and acts only as a heat sink. A small power loss is associated with EGR systems, but NOx emissions are decreased by up to 80%.

Another option to reduce NOx emissions is to install a catalytic converter. However, they work best at the stoichiometric ratio, so it will not be as effective on a diesel engine. They are also expensive and work better at high temperatures, while diesel exhaust is generally lower than gasoline exhaust. Selective noncatalytic reduction, diesel oxidation catalysts, water-fuel emulsions, and NOx and particulate traps have also been used to reduce NOx emissions on biodiesel engines. All of these methods, however, are only solving the problem of biodiesel NOx emissions indirectly, by removing the NOx after it are created.

Many studies of biodiesel combustion have found that the start of injection timing is advanced. This should result in a higher peak temperature inside the cylinder due to more premixed combustion, which will increase the rate of NOx production. This will also result in a longer residence time, allowing NOx production to continue for more time. In fact, It was found that a linear relationship between NOx emission and injection timing. The retard (delay) of injection timing lowered the NOx emission for all the biodiesel fuel blends. It has been pointed out that there was a NOx emission reduction of 35% to 43% for all biodiesel fuel blends at 3° retarded injection timing relative to the 3° advanced injection timing for the same fuel at the same load and speed condition.

2.8 Environmental Impacts of Biodiesel

The production and use of biodiesel creates 78% less carbon dioxide emissions than conventional diesel fuel. Carbon dioxide is a greenhouse gas that contributes to global warming by preventing some of the sun's radiation from escaping the Earth. Burning biodiesel fuel also effectively eliminates sulfur oxide and sulfate emissions, which are major contributors to acid rain. That's because, unlike petroleum-based diesel fuel, biodiesel is free of sulfur impurities. Combustion of biodiesel additionally provides a 56% reduction in hydrocarbon emissions and yields significant reductions in carbon monoxide and soot particles compared to petroleum based diesel fuel. Also, biodiesel can reduce the carcinogenic properties of diesel fuel by 94%. [7]

2.9 Statistical and Survey Analysis [1]

Another field visits had targeted meats and chicken shops, and also the concentrated on larger shops such as meats and chicken slaughterhouses to collect the amounts of animals fats and grease that can be obtained from Hebron district.

After the field visited department agriculture in Hebron district had been finished completely, there were main concluded information and data that had been studied carefully and analyzed with certain required calculations to attain the final shape of required data available. That is clearly shown in the following the amount of animal fats is 911 Ton's annually

Table 2.3: Statistically fat extracted annually in the Hebron Governorate

Statistically fat extracted annually in the Hebron Governorate							
Type of fat	Number	loss quantity gr	Quantity in kg				
Sheep	120000	1500	180000				
Calves	37000	3000	111000				
Camel	10000	2000	20000				
White meat	3000000	200	600000				
Total			911000				

Must be indicated to the numbers inside table in continuously increasing.

Waste fats can be efficiently converted to biodiesel using a continues process. The estimated annual quantities of waste animal fat produced in Hebron district could produce around 0.93 million liter of Biodiesel from animal fats.

A Biodiesel blend provides a cleaner burning, more environmentally friendly substitute to ordinary diesel. No vehicle modifications are necessary.

Collecting waste oil and animal fats could create many jobs in Hebron district. The number of jobs could be increased by increasing of waste oil and animal fats. In addition, it will support Palestinian economy and increase national income.

Biodiesel is one of the most promising of the alternative fuels. It is produced from vegetable oil or animal fats using fairly simple chemistry. It is non-toxic and rapidly biodegrades. It can be produced from animal fats and offers good performance together with a number of environmental benefits compared to ordinary petroleum diesel. If all the estimated quantity of waste vegetable oil and animal fats were collected and converted to biodiesel up to 1.01 % of the total 94 million liter of petro diesel consumed in Hebron district annually could be replaced using the petro diesel fuel. This is a good and promising stand for reducing petroleum diesel usage.

وقود الديزل الحيوي وإمكاناته في فلسطين

منظور تاريخي

هو وقود الديزل الحيوي؟ What .

مزايا وقود الديزل الحيوي

مساوئ وقود الديزل الحيوي

التغلب على عيوب من وقود الديزل الحيوي يمزج

وقود الديزل الحيوي

التأثيرات البيئية من وقود الديزل الحيوي

التحليل الإحصائي والمساحة

وقود الديزل الحيوي وإمكاناته في فلسطين

الثورة الصناعية في السنوات الأخيرة ، والزيادة في عدد السكان يزيد الطلب على الطاقة بطريقة مستمرة ، وكما هو معروف ، يقتصر المصدر الرئيسي للطاقة المستخدمة في الوقت الحاضر في جميع جوانب الحياة اليومية في معظم الغاز الطبيعي داخل البترول ، والفحم والطاقة المائية والطاقة النووية.

النفط وقود الديزل لا يزال عالم الوقود الرئيسية واسعة. ويستخدم معظم هذا في قطاع النقل. أما العيب الرئيسي لاستخدام الوقود المشتق من البترول هو أنه ، يوما بعد يوم ، واحتياطي الوقود الأحفوري آخذة في . وثمة عيب آخر هو التلوث الجوى الناجم عن استخدام الديزل البترول. احتراق الديزل والبترول . بدأ كثير من البلدان الصناعية ثم إلى البحث عن بدائل وقود مصدرا رئيسيا لغازات الا . فهي توحي باستخدام الطاقة الشمسية والرياح والمياه وطاقة الكتلة الحيوية ، ونتيجة لذلك من العديد من الأبحاث أن تبين أنه يمكن استخدام الزيت النباتي كوقود بعد تحويلها إلى مركبات استرات الألكيل نتيجة

للتفاعل مع الكحول مناسبة الميثانول أساسا والمنتج النهائي الذي كان يسمى وقود الديزل الحيوي.

منظور تاريخي

، أظهر رودولف ديزل محرك سيارته الاشتعال ضغط في المعرض الدولي في باريس. هذا النموذج محرك انه استخدم زيت الفول السوداني ، وقود الديزل الحيوي الأول. وقد استخدمت الزيوت عندما تم إجراء تغيير في المحرك مما مكنها من استخدام بقايا من وقود الديزل النباتية حتى عام . على الرغم من أن محرك الديزل لاقت قبولا في جميع أنحاء العالم ، ولم لا وقود الديزل الحيوي. عر متفوقة ، وتوافر ، والإعانات الحكومية ، وسرعان ما أصبحت وقود الديزل للبترول الوقود المفضل

لمحركات الديزل.

، ونقص الوقود أحيت مصلحة في تطوير وقود الديزل الحيوي كبديل للبترول وقود S الديزل الحيوي مرة أخرى الديزل. ومع ذلك ، كما كان مدعومة على نحو متزايد في سوق النفط ، و هبط وقود الديزل الحيوي مرة أخرى إلى أقلية مركز "بديل". هذا النضال السياسي والاقتصادي لا تزال تحد من تأثير صناعة الوقود الحيوي اليوم.

الآن ، وزيادة القلق بشأن احتمال حدوث تغير المناخ العالمي ، والهواء وتدهور نوعية المياه ، ومخاوف خطيرة على صحة الإنسان هي ملهمة تطوير وقود الديزل الحيوي ، وقابلة للتجديد نظافة بديلة ، حرق وقود الديزل. يرصد وقود الديزل الحيوي من المواد الأولية المعاد تدوير ها الحيوانية والدهون المختلفة (الكتلة الحيوية). كجزء من دورة الكربون أحدث إنتاج المواد الأولية وقود الديزل الحيوي يقلل من تراكم . []

ما هو وقود الديزل الحيوي؟

يتم تعريف وقود الديزل الحيوي كما استرات أحادية الألكيل - من الأحماض الدهنية المشتقة من الزيوت النباتية أو الدهون الحيوانية. بعبارات بسيطة ، وقود الديزل الحيوي هو نتاج حصلت عندما كان رد فعل كيميائيا والزيوت النباتية أو الدهون الحيوانية مع الكحول لانتاج حامض الدهنية استرات الألكيل. المحفز مثل الصوديوم أو هيدروكسيد البوتاسيوم. ويتم إنتاج الجلسرين كمنتج المشترك.

رد فعل بسيطة

الجلسرين الذي هو نتيجة ثانوية الرئيسي لديه العديد من الاستخدامات ، بما في ذلك العديد من التطبيقات كعنصر أو مساعدات التجهيز في مستحضرات التجميل ومواد التجميل ، العناية الشخصية ، العقاقير ، والمنتجات الغذائية [].

وقود الديزل الحيوي ويمكن أيضا أن تكون مصنوعة من المواد الأولية الأخرى:

. الزيوت النباتية الأخرى مثل زيت الذرة والكانولا (وزيت النجيل ، الخ. وزيت بذرة القطن وزيت الخردل وزيت النخيل ، الخ. الزيوت المستعملة مطعم مثل زيوت القلي . الدهون الحيوانية مثل الشحم الحيواني أو شحم الخنزير لحوم البقر . مصيدة الشحوم (من محطات معالجة مياه الصرف) والشحوم تعويم (من محطات معالجة مياه الصرف)

مزايا وقود الديزل الحيوي

التي هي وقود الديزل الحيوي مزيج الأكثر شيوعا في العالم لأنه أرصدة الخلافات الملكية مع B20اليوم ، B50 الديزل التقليدية ، والأداء ، واستحقاقات الانبعاثات ، والتكاليف. ارتفاع مزيج المستويات ، مثل ، تتطلب معالجة خاصة وإدارة الوقود والمعدات قد تتطلب تعديلات مثل استخدام سخانات أو تغيير B100 الاختام وحشيات التي تأتي في اتصال مع وقود لتلك متوافق مع يمزج عالية من وقود الديزل الحيوي. مستوى الرعاية الخاصة يعتمد إلى حد كبير على مورد ومحرك السيارة.

تسمى المركبات التي تعمل بالوقود وقود الديزل الحيوي غير مخصصة مرنة مركبات الوقود بسبب استخدام وقود الديزل الحيوي لا يتطلب أي تعديلات كبيرة في المحرك ، والمحرك بحيث لا يجب أن تكون لاستخدام وقود الديزل الحيوي فقط. أنه قابل للذوبان في الوقود تماما التجارية ديزل المستخرج من النفط ، يمكن استخدام وقود الديزل الحيوي وذلك مزيج ويمكن استخدام خزان وقود واحد لتخزين الوقود على حد يمكن استخدام وهذا يجعل السيارة مرنة. وهذه ميزة فريدة من نوعها مقارنة مع أنواع الوقود البديلة الأخرى الأكثر ،

لأن هذا سيعطي الفرصة للمستخدمين لاستخدام الوقود البديل أين ومتى كان ذلك متوفرا دون دفع أي أموال إضافية لإدخال تعديلات على المحرك.

ونظرا لحقيقة أن وقود الديزل الحيوي هو وقود المتجددة المصنعة من الزيوت النباتية والدهون الحيوانية والزيوت المعاد تدويرها. وقود الديزل الحيوي توفر العديد من المزايا:

. .

- . وهو ما يعادل استهلاك الطاقة وقود الديزل للبترول.
- . وهي تحل محل البترول يحتمل المشتقة وقود الديزل.
- . ويمكن استخدامه في معظم معدات الديزل مع تعديلات طفيفة فقط أو لا.
- . ويمكن الحد من انبعاثات غازات الاحتباس الحراري بسبب دورة حياة النبات.
 - . ويمكن الحد من انبعاثات عوادم ، بما في ذلك سموم الهواء.
 - . فمن غير سامة ، قابلة للتحلل ، ومناسبة للبيئة حساسة

.

- . ثاني أكسيد الكبريت بنسبة
- .
- . أول أكسيد الكربون من -
 - . الهيدروكربونات من -
 - . أكسيد النيتروز بنسبة

النيتروز في بعض الحالات.

. يمزج بسهولة مع وقود الديزل للنفط ف

. انها نقطة أعلى فلاش من الديزل البترول وبالتالي يساعد على منع حرائق مدمرة. []

) يحتوي على الأكسجين ٪ من وزنها. وجود الأكسجين وقود تسمح B100 . وقود الديزل الحيوي (للحرق مزيد من الوقود إلى أقل من ذلك تماما نتيجة انبعاثات الوقود غير المحتر . [] . وقود الديزل من وقود الديزل ، والتي يتم توفير ها سهولة الانطلاق ، والتشغيل الهادئ ، واحد الديزل ، وأقصر تأخير الاشتعال .

. قد زيادة انبعاثات أكسيد

. هذا بالمقارنة مع الحد الأ D6751 cetane اليوم ان يلتقي عددا B100 من وقود الديزل الطرق السريعة ، التي ينتمي إليها المواطن العادي ما بين . لذلك ، وقود الديزل معظم الولايات المتحدة وقود الديزل ، التي يعتقد وذلك لتسهيل cetaneالحيوي لديها أعلى عدد من الوقود المشبعة عالية ، مثل الدهون الحيوانية والزيوت المستخدمة ، ويمكن أن B100بدء وتشغيل أكثر هدوءا.

. غير مشبع المشتركة الوقود التي تحتوي على مستويات عالية من cetaneيكون لها عدد

الأحماض الدهنية وتشمل فول الصويا وعباد الشمس والذرة والكانولا () 18:2 C18:2 تبين عدد من عينات الزيوت. وستكون هذه في الطرف الأد

. [] cetaneوقود الديزل الحيوي

مساوئ وقود الديزل الحيوي:

. وقود الديزل الحيوي هو المذيبات التي يمكن أن تكون غير متوافقة مع أختام مطاطية وحشيات في أنظمة مركبات التي تعمل بالديزل. إذا كان لدى المستخدمين لم تتخذ تدابير للتكيف بشكل صحيح محركاتها لتعمل على وقود الديزل الحيوي ، ويمكن حل من التراب والمطاط نتيجة انسداد في المحرك نقية يمكن استخدامها بصورة آمنة كوقود قائمة بذاتها في B100 . وكما لا من هذا القبيل ، السيارات التقليدية.

. محتوى الطاقة من وقود الديزل الحيوي هو أقل من ذلك من وقود الديزل للبترول. ونتيجة لذلك ، والمركبات التي تعمل على أي مزيج من وقود الديزل الحيوي سوف تشهد انخفاض طفيف في الاقتصاد في استهلاك الوقود (ميلا للغالون الواحد). []

. استخدام وقود الديزل الحيوي في الطقس البارد تحديات معينة. كل وقود الديزل "الغيوم"

. تعكر يشير إلى تكوين بلورات الشمع ، والتي يمكن أن تحول دون تدفق مناسب من الوقود تقليدية تبدأ سحابة في درجة فهرنهايت تقريبا petrodiesel

لديه نقطة تغيم فهرنهايت حوالي ، والتي تلقي بظلالها على درجة حرارة أعلى من B100 ، في حين الاعتبارات الهامة لاستخدام وقود الديزل الحيوي خلال فصل الشتاء الباردة. []

. petrodiesel . وازدادت انبعاثات أكسيد النتروجين للاحتراق وقود الديزل الحيوي مقابل

التغلب على عيوب من وقود الديزل الحيوي يمزج

ويمكن التغلب على كثير من العيوب المرتبطة الديزل الحيوي متقنة من وقود الديزل الحيوي يمزج به ، والتي مختلطة مع الكمية المحددة من وقود الديزل الحيوي. صفت وقود الديزل الحيوي petrodiesel يمزج عاشرا ، حيث العاشر هو الرقم الذي يشير إلى نسبة مئوية من وقود الديزل الحيوي في مزيج.

والديزل . يمزج المشتركة petrodiesel التي هي خليط من B20سبيل المثال ، يمكن أن تمزج الديزل الحيوي التغلب على العيوب المتأصلة في B20 B5 B10 B20ما يلي : في المطرق التالية : B100

) مع أي تعديلات على محرك B35 (B20 . ويمكن استخدام يمزج ما يصل الى الديزل القياسية.

. يمكن استخدام بعض الإضافات قضايا منع انسداد الطقس البارد المرتبطة باستخدام وقود الديزل الحيوي في أشهر الشتاء.

. إضافة كميات مختلفة من الكيروسين (اعتمادا على مزيج التي تستخدم وقود الديزل الحيوي) لديه القدرة على خفض انبعاثات أكسيد النتروجين.

الانبعاثات من وقود الديزل الحيوي

محركات الديزل تعمل بشكل جيد دائما على الجانب الهزيل من القياس المتكافئ ، مما يعني أن انبعاثات ثاني أكسيد الكربون سوف تكون منخفضة ، وسوف يتم بسهولة اللوائح. عندما ينظر المرء إلى الكيمياء وقود الديزل الحيوي ، فإن انبعاثات ثاني أكسيد الكربون ستكون أقل من ذلك. لأن وقود الديزل الحيوي ما يقرب من الأوكسجين ٪ وزنا ، وسيكون هناك الاكسجين الاضافي لتتفاعل مع خلال عملية الاحتراق ، مما يسمح . بالإضافة إلى تقليل كمية الهيدروكربونات غير المحترقة ، وهذا ينبغي تقليل الانبعاثات من

وعلاوة على ذلك ، وقود الديزل الحيوي لديها أقل نسبة الكربون إلى الهيدروجين من وقود الديزل النفطية التقليدية. لقد وجد أن تمزج الديزل الحيوي مع محتوى الكربون شكلت أدنى لا يقل عن ثاني أكسيد الكربون ، وجميع وقود الديزل الحيوي من ثاني أكسيد الكربون المنبعث أقل الديزل البترول. وهذا أمر منطقي بديهية ، لأنه ، مع أقل الكربون في الوقود ، وهناك فرصة أفضل من أن كل ذرة كربون سوف تجد اثنين من ذرات

الاوكسجين الربط. ويمكن أيضا أن الانخفاض في انبعاثات ثاني أكسيد الكربون الذي لوحظ مع زيادة في التحميل يمكن تفسير ها ببساطة. عندما الحمل على المحرك هو أعلى من ذلك ، فإن الغاز داخل الاسطوانة CO2 طبيعي أن يكون في درجة حرارة أعلى. هذا يسرع معدل التحويل من ثاني أكسيد الكربون إلى والانتهاء من عملية الاحتراق وتخفيض انبعاثات ثاني أكسيد الكربون.

محتوى الاكسجين وزنا من وقود الديزل الحيوي هو السبب زيادة انبعاثات أكاسيد النيتروجين. انهم السبب لأن وقود نفسه يحتوي على الأكسجين ، وسيكون هناك المزيد من الأكسجين المتاحة لتتفاعل مع النيتروجين في الهواء. ومع ذلك ، فإن الزيادة في أكاسيد النيتروجين ويستند غير متوقع على بعض خصائص وقود الديزل فاض أكاسيد النيتروجين. cetane الحيوي ، منذ ترتبط عادة أعلى عدد

الهيدروكربونات هي أيضا من العوامل التي تسهم في خلق والسخام ، والأوزون. الانبعاثات الهيدروكربونية ، وتسمى أيضا المركبات العضوية المتطايرة) في كيمياء الغلاف الجوي ، هو العنصر الرئيسي في خلق ضباب الدخاني الكيميائي الضوئي. المركبات العضوية المتطايرة يؤدي إلى خلق طبقة الأوزون ، والألدهيدات. الأوزون المنتج هو أيضا السامة. الأوزون له خصائص الذوبان الفقراء ، إذا ما اتخذت في الرئتين ، ويمكن أن يسبب التهاب بسبب أكسدة أنسجة الرئة.

النتائج المترتبة على تشكيل الأوزون المحلية تشمل أيضا آثار ضارة على المحاصيل الزراعية وأسرع ارتداء . عندما يتم الجمع بين النفط والغاز مع انبعاثات أكاسيد النيتروجين ، وردود الفعل أكثر تقلبا مما أدى

إلى تشكيل طبقة الأوزون ممكنة. انبعاثات أكاسيد النيتروجين هي الانبعاثات من عوادم السيارات مهمة.

المواد الهيدروكربونية وسيلة فعالة للحد من الأثار الضارة الافراج عن العديد من المواد الهيدروكربونية في البيئة.

() إمكانية تشكيل وقود الديزل الحيوي هو أقل من وقود الديزل. وكان تشكيل ما يقرب من في المئة أقل من أن يقاس على speciated الأوزون المحتملة لانبعاثات الهيدروكربون وقود الديزل. يتم التخلص من انبعاثات الكبريت أساسا مع وقود الديزل الحيوي النقي.

أكاسيد الكبريت والكبريتات (المكونات الرئيسية للالأمطار الحمضية) من وقود الديزل الحيوي كانت أساسا

كاسيد الكبريت من الديزل والكبريتات. []

التقليدية) ليمزج petrodiesel يوفر التغييرات في نسبة الانبعاثات المختلفة (petrodiesel يوفر التغييرات في نسبة الانبعاثات المختلف وقود الديزل الحيوي مخلوطة مع زيادات الديزل ، وهناك ما يصاحب ذلك تخفيض في الانبعاثات الضارة بالبيئة. والاستثناء الملحوظ هو انبعاثات أكاسيد النيتروجين ، التي تزيد قليلا مع استعمال وقود الديزل الحيوي. []

وعموما ، ومع ذلك ، وقود الديزل الحيوي لديه القدرة على تقليل الانبعاثات الضارة من المستويات الحالية

. وهذا يعادل تقريبا إزالة.

وفقا لثاني أكسيد الكربون الرقم السابق هو واحد من غازات الدفيئة الرئيسية التي تسهم في ظاهرة الاحتباس
. أنيق وقود الديزل الحيوي (٪ وقود الديزل الحيوي) يقلل من انبعاثات ثاني أكسيد الكربون
ديزل النفطية. ولكن باستخدام مزيج من وقود الديزل الحيوي ٪ يقلل من
انبعاثات ثاني أكسيد الكربون بنسبة . كما تنتج وقود الديزل الحيوي أقل الجسيمات ، وأول أكسيد
الكربون ، وانبعاثات ثاني أكسيد الكبريت.

استخدام وقود الديزل الحيوي له فوائد كبيرة عندما يتعلق الأمر لدعم البيئة. وقود الديزل الحيوي هو وقود بديل الأول والوحيد الذي لديه تقييم كامل لنتائج الانبعاثات والآثار المحتملة على الصحة.

فإنه يمكن إجراء مقارنة بين الانبعاثات من وقود الديزل وقود الديزل الحيوي. figure2.4

. أول أكسيد الكربون: عاثات العادم من أول أكسيد الكربون () من وقود الديزل الحيوي كانت في المئة من انبعاثات اول اكسيد الكربون من الديزل.

. الجسيمات: الجسيمات التنفس وقد تبين أن يكون خطرا على صحة الإنسان. انبعاثات العادم من الجسيمات من وقود الديزل الحيوي كانت المئة من إجمالي انبعاثات الجسيمات المسألة من الديزل.

. الهيدروكربونات : وانبعاثات العادم من مجموع الهيدروكربونات (من العوامل التي تسهم في تكوين في المئة عن وقود الديزل الحيوي من وقود الديزل.

. أكاسيد الكبريت: يتم القضاء على انبعاثات الكبريت أساسا مع وقود الديزل الحيوي النقي. من أكاسيد الكبريت والكبريتات (المكونات الرئيسية للالأمطار الحمضية) من وقود الديزل الحيوي كانت أساسا القضاء مقارنة أكاسيد الكبريت من الديزل والكبريتات.

. اثات أكاسيد النيتروجين من () وقود الديزل الحيوي في هذا بنسبة : أكاسيد النيتروجين. ومع ذلك ، ونقص وقود الديزل الحيوي من الكبريت يسمح استخدام تقنيات التحكم في

أكاسيد النيتروجين التي لا يمكن استخدامها مع الديزل التقليدية. بذلك ، يمكن أن تدار وقود الديزل الحيوي من انبعاثات أكاسيد النيتروجين بفعالية وكفاءة القضاء كمنشأة من استخدام الوقود و.

. . كيفية حل المشكلة من أكاسيد النيتروجين

ارتفاع مستوى انبعاثات أكاسيد النيتروجين هو يقف عقبة رئيسية في طريق تأييد واسع لانتاج الديزل الحيوي الكثير من البحوث في الحد ، لا سيما في ضوء لوائح صارمة للانبعاثات العادم التي يجري فرضها على محركات الديزل على مدى السنوات القليلة المقبلة. أسلوب واحد شعبية للحد من انبعاثات أكاسيد النيتروجين وغاز العادم تدوير (التمثيل الجغرافي العادل). التمثيل الجغرافي العادل يقلل من درجة حرارة (-)

فإنه لن تستجيب في غرفة الاحتراق وأعمال فقط كبالوعة حرارة. ويرتبط فقدان الطاقة الصغيرة مع أنظمة التمثيل الجغرافي العادل ، ولكنها انخفضت انبعاثات أكاسيد النيتروجين بنسبة تصل إلى .

وثمة خيار آخر للحد من انبعاثات أكاسيد النيتروجين هو تثبيت المحول الحفاز. ومع ذلك ، فإنها تعمل على أفضل وجه في نسبة القياس المتكافئ ، لذلك لن يكون فعالا كما في محرك الديزل. وهي أيضا مكلفة وتعمل رجات حرارة عالية ، في حين أن عادم الديزل هو أقل عموما من البنزين العادم.

الانتقائية ، ومحفزات أكسدة الديزل ، مستحلبات المياه والوقود ، وأكاسيد noncatalytic النيتروجين والجسيمات الفخاخ استخدامها للحد من انبعاثات أكاسيد النيتروجين في محركات الدي . هذه الأساليب ، ومع ذلك ، يتم حل المشكلة فقط من انبعاثات أكاسيد النيتروجين وقود الديزل الحيوي غير مباشر ، عن طريق إزالة أكاسيد النيتروجين بعد إنشائه.

وقد وجدت العديد من الدراسات للاحتراق وقود الديزل الحيوي التي يتم المتقدمة بداية توقيت الحقن. ويذ لهذه النتيجة في درجة حرارة أعلى ذروة داخل اسطوانة الاحتراق إلى نتيجة أكثر الممزوج مسبقا ، والتي ستزيد من معدل إنتاج أكاسيد النيتروجين. وسيؤدي هذا أيضا في الإقامة وقتا أطول ، مما يسمح للإنتاج أكاسيد النيتروجين أن يستمر لمزيد من الوقت. في الواقع ، وتبين أن وجود علاقة خطية بين انبعاثات أكاسيد النيتروجين وتوقيت الحقن. (تأخير) توقيت حقن انبعاثات أكاسيد النيتروجين لجميع يمزج وقود

الديزل الحيوي. وقد أشير إلى أنه كان هناك انخفاض انبعاث أكاسيد النيتروجين من ٪ لجميع يمزج وقود الديزل الحيوي درجات المتخلفين توقيت الحقن بالنسبة لتوقيت حقن متقدمة للوقود نفسه

التأثيرات البيئية من وقود الديزل الحيوي

إنتاج واستخدام وقود الديزل الحيوي بإنشاء ٪ أقل من انبعاثات ثاني أكسيد الكربون من وقود الديزل التقليدية. ثاني أكسيد الكربون هو غاز الدفيئة التي تساهم في ظاهرة الاحتباس الحراري عن طريق منع بعض . حرق وقود الديزل الحيوي أيضا يزيل بفعالية أكسيد الكبريت

والانبعاثات الكبريتية ، والتي هي من المساهمين الرئيسيين في الأمطار الحمضية.

الديزل المشتق من البترول ، وقود الديزل الحيوي خالية من الشوائب الكبريت. احتراق وقود الديزل الحيوي بالإضافة إلى ذلك يوفر تخفيض ٪ في انبعاثات الهيدروكربون وغلة تخفيضات كبيرة في أول أكسيد الكربون وجزيئات السخام بالمقارنة مع الديزل وقود الد

الحيوي خصائص مسرطنة من وقود الديزل بنسبة . []

التحليل الإحصائي والمساحة []

وكان آخر زيارات ميدانية تستهدف محلات اللحوم والدجاج ، وكذلك ركز على المتاجر الكبيرة مثل اللحوم والدجاج المسالخ لتحصيل المبالغ من الدهون والشحوم الحيوانات التي يمكن الحصول عليها من منطقة الخليل.

بعد الحقل زار وزارة الزراعة في محافظة الخليل قد انتهت تماما ، كانت هناك معلومات الرئيسية وخلص والبيانات التي تم دراستها وتحليلها بعناية مع حسابات معينة مطلوبة لتحقيق الشكل النهائي البيانات المطلوبة

. هذا ما أظهرته بوضوح في الكميات التالية من الدهون الحيوانية هي طن سنويا في

وينبغي الإشارة إلى أن الأرقام داخل الجدول في تزايد مستمر.

ويمكن تحويل النفايات الدهون بكفاءة إلى وقود الديزل الحيوي باستخدام تزال العملية. ويمكن أن الكميات السنوية التقديرية للدهون الحيوانية النفايات المنتجة في منطقة الخليل تنتج نحو

الديزل الحيوي من الدهون الحيوانية.

وقود الديزل الحيوي مزيج يوفر نظافة الحرق ، وبديلا أكثر ملاءمة للبيئة وقود الديزل العادية. أي تعديلات ضرورية مركبة.

مع نفايات الزيوت والدهون الحيوانية يمكن أن يخلق العديد من فرص العمل في منطقة الخليل. ويمكن زيادة عدد الوظائف عن طريق زيادة من النفط النفايات والدهون الحيوانية. وبالإضافة إلى ذلك ، فإنه

Chapter Three

Biodiesel Production Process Design

Content:

- 3.1 Introduction
- 3.2 Available methods to produce biodiesel from animal fats
- 3.3 Operation principle process of liquid gas reactor
- 3.4 Reaction influencing factors
- 3.5 Identify Operation Mode of Temperature limitation
- 3.6 Material and Equipment

3.1 Introduction

Biodiesel is a fuel derived from the transesterification of fats and oils (refer to Fig.3.1). This fuel has similar properties to that of diesel produced from crude oil and can be used directly to run existing diesel engines or as a mixture with crude oil diesel.. Biodiesel is generally manufactured using batch reactors. However, this trend is changing and more continuous processes have been examined and used either in a laboratory or industrial scale due to the increase in biodiesel demand.

Figure 3.1 Chemistry Transesterification Reaction

3.2 Available methods to produce biodiesel from animal fats

1. Non-Catalyzed Systems – Supercritical Process

When a fluid or gas is subjected to temperatures and pressures in excess of its critical point, there are a number of unusual properties exhibited. There no longer is a distinct liquid and vapor phase, but a single, fluid phase present. Solvents containing a hydroxyl (OH) group, such as water or primary alcohols, take on the properties of super-acids. A non-catalytic approach is the use of a high (42:1) alcohol to oil ratio. Under supercritical conditions (350 to 400 °C and > 80 atm or 1200 psi) the reaction is complete in about four minutes[8]. Capital and operating costs can be more expensive, and energy consumption higher. An intriguing example of this process

has been demonstrated in Japan, where oils in a very large excess of methanol have been subjected to very high temperatures and pressures for a short period of time.

The result is a very fast (3 to 5 minute) reaction to form esters and glycerol. The reaction must be quenched very rapidly so that the products do not decompose. The efficiency in this process equal 96%. [8]

This method is very expensive and not available equipment locally

2. Enzymatic Conversion

There is interest in using lipases for enzymatic catalysis of oils for biodiesel production. The enzymes can be used in solution or immobilized onto a support material, which allows the use of fixed-bed reactors. The reaction can be performed at

35 to 45 degrees Celsius. However, the reaction is very slow, requiring from four to 40 hours. Because of the high cost of the enzymes, this process is not economically feasible for biodiesel production at this time. [9]

This method is not available due to the monopoly of the enzyme for the industrialized countries

3. Using sulfuric acid Catalysis

This technique uses a strong acid. Soap formation is not a problem because there are no alkali metals in the reaction medium. Acid catalysts can be used for transesterification of the triglycerides, but the reaction might take several days to complete. This is too slow for industrial processing. Acid catalysis requires a high alcohol to free fatty acid ratio (20:1 or 40:1 mole ratio) and large amount of catalyst (5-25 percent). Sulfuric acid and phosphoric acid are the most common acid catalysts. The feedstock is sometimes dried to 0.4 percent water and filtered before the reaction.

Then, an acid and methanol mixture is added to the feedstock. Once the conversion of the fatty acids to methyl esters has reached equilibrium, the methanol, water and acid mixture is removed by settling or centrifugation. Fresh methanol and base catalyst are added into the remaining oil for transesterification. The rest of the

process is the same as base catalysis. Reaction times of 10 minutes to 2 hours have been reported. [8]

This method is not available due to the prevention of article by Israel

4. Ultrasonic wave

By provide the fats with frequency equal natural frequency for fats causes resonance destroy the fat, then allow the sodium methoxid to react with destroy fats to produce biodiesel. This method needs to high accuracy and materials expensive and not available

5. Liquid - gas reaction

This method investigating the transesterification of fats and oil with methanol was performed to improve the economic viability of the production process for biodiesel from oil and fats. The key feature of the new process developed in this work is its ability to operate continuously with a high reaction rate, potentially requiring less post reaction cleaning and product/reactant separation than currently established processes. This was achieved by atomizing the heated oil/fat and then spraying it into a reaction chamber filled with methanol vapor in a counter current flow arrangement. Therefore, this particular process has a primary advantage over conventional processes, in that it can produce biodiesel more efficiently with a potential saving of both time and capital. The overall conversion based on a single cycle of this process has been between 60 to 96% of the feed stock materials. Maximum conversion of 96% was achieved while operating with 5-7g of sodium methoxide/kg of methanol at methanol flow rate of 17.2 kg/hr and oil flow rate of 10 kg/hr. Additional variations in the reactant stoichiometry (i.e. reactant flow rates), catalyst type/concentration, Injection pressure, and reaction temperature on the are obtainable using economically available overall product conversion components. In this project the use of a gas-liquid reactor to produce biodiesel was adopted. The hot oil was sprayed as fine droplets into an atmosphere of vapor methanol

in a counter current flow arrangement. The effect of operating temperature, catalyst and the methanol concentrations were studied in literature [2]

This method is available and can be applied and all items can be purchased Applied there for this method is adopted in this project.

3.3 Operation principle process of liquid – gas reactor

Animal fat and methanol will be used in this project as the feedstock while sodium methoxide or sodium hydroxide was used as catalysts. Technical grade methanol that is available will be use as the alcohol source in the project. The methanol was premixed with sodium hydroxide (NaOH) in the range of 0-10 g NaOH/kg methanol before being pumped into the reactor. Pre-mixing the sodium hydroxide with methanol allows the formation of sodium methoxide needed to catalyses the reaction. Higher pressure pump would be a suitable unit for generating small micro sized droplets of high surface area. The surface area generated in this process is an order of magnitude higher than the contact area in any standard mixing processes currently employed in biodiesel processes based on liquid-liquid reaction. This simplified the geometry of the unit and allowed the reaction to be carried out in a spray like reactor unit. Methanol circulation as illustrated in Figure 3.2 was also a key design parameter.

The reaction will be carried out in a 1.66 m high x 0.344m diameter stainless steel tank as shown in Figure 3.2 The oil atomization is carried out using a high pressure diesel injection pump while methanol is pumped using a centrifugal pump. The process operates by injecting oil and fat through a high pressure nozzle into a reactor filled with methanol vapor carrying the catalyst and moving in counter current flow direction. This allows direct contact between the two phases with large contact area thereby promoting more heat and mass transfer. The high pressure nozzles in the system atomize the liquefied animal fats into small droplets in the range of 100 to 200µm diameter, thus significantly increasing the contact surface area of the methanol/fats. The desired reaction temperature is achieved by heating the reactor using a steam jacket and preheating the reactants before being fed to the reactor. Since the process operates at temperatures well above the alcohol boiling point, a higher rate of reaction was achieved. This process can operate at any temperature below the degradation

temperature of fat and oil (i.e. 200 °C). To increase the reaction rate, a high methanol to oil ratio was used as in any other transesterifcation process. In this reactor, the methanol is condensed, mixed with fresh liquid methanol and recycled to the reactor. However, this is unnecessary in the industrial scale reactor as the methanol vapor could be recycled in the vapor phase. To improve reaction rate the reactants will be pre-heated using a combination of steam and electrical heating. The oil will be injected into the reactor at 100 - 120 °C because obtain best atomizing for oil while methanol will be injected, at 85 - 95 °C because avoid reach dissociation degree for sodium methoxide. This reactor will be not designed as a pressure vessel and hence was heated using saturated steam of 1 bar. This limited the operating temperature to a maximum of 100 °C. Based on this technology and with suitable method of heating, industrial reactors may operate at any temperature below the degradation temperature of oil.

Once the reaction is complete, two major products exist: Glycerin and Biodiesel. The reacted mixture is sometimes neutralized at this step if needed. The Glycerin phase is much denser than Biodiesel phase and the two can be gravity separated with Glycerin simply drawn off the bottom of the settling vessel. In some cases, a centrifuge is used to separate the two materials faster.

Once separated from the Glycerin, the Biodiesel is sometimes purified by washing gently with worm water to remove residual catalyst or soaps, dried and sent to storage. In some processes this step is unnecessary. This is normally the end of the production process resulting in a clear amber-yellow liquid with a viscosity similar to petro diesel. In some systems the Biodiesel is distilled in an additional step to remove small amounts of color bodies to produce a colorless Biodiesel.

3.4 Reaction influencing factors

3.4.1. Catalyst Concentration and Methanol Flow Rate

The conversion of triglyceride is dependent on both the catalyst concentration and methanol flow rate. At a high methanol to oil ratio a much higher conversion was achieved, were the highest conversion was achieved at an oil flow rate of 0.094 kg/min and methanol flow rate of 0.188 kg / min. These flow rates equate to a mol ratio of 1:2 (oil: methanol). The reduction in methanol flow rate reduced the overall conversion by 10%. Similar to conventional processes, sodium methoxide will be used as the catalyst of choice. This has been in the form of anhydrous sodium methoxide or sodium hydroxide dissolved in methanol prior to the start of the reaction. However, the reaction of sodium hydroxide with methanol forms water, which is undesirable and enhances the saponification reaction, which ascertained the minimum amount of catalyst required to initiate the reaction a catalyst concentration of 5 to 9 g NaOH/kg of methanol will be the highest overall conversion. The overall conversion decreased as the catalyst concentration increased above 9g catalyst/kg of methanol. This is assumed to have been caused by the formation of sodium soaps. The sodium hydroxide as a catalyst, high yield losses are experienced due to triglyceride saponification and methyl ester dissolution in the glycerol phase. The formation of sodium soaps increases with catalyst concentration. The suggest that a catalyst concentration of 5 to 7 g sodium hydroxide/kg of methanol is optimal for high yields of biodiesel. The using 5 to 7 g sodium hydroxide or sodium methoxide/kg of methanol, at various oil and methanol flow rates.

NaOH + CH3OH (CH3O+ Na-) + H2O

Equation Sodium methoxide formation

To minimize the affect of saponification and biodiesel solubility in the glycerol phase, pure sodium methoxide was used as the catalyst. When using oil flow rate of 0.094 kg/min and a methanol flow rate of 0.188 kg/min, at a catalyst concentration of 5 to 7 g sodium methoxide/kg of methanol. As these are control experiments for optimization, to minimize the formation of soap due to FFA and water. In general vegetable oils have longer shelf life and contain less FFA and moisture than animal fats. It should be noted

that this change had no effect on the overall reaction mechanism. As expected the conversion of biodiesel had increased with the introduction of this catalyst Based on analysists, subsequent experiments were then performed using 5 to 7 g sodium methoxide /kg of methanol, at various methanol flow rates.

Change in methanol concentration had a significant effect on biodiesel conversion. Therefore, additional experiments were conducted at oil flow rate of 0.094 kg/min, methanol flow rate of 0.188 kg / min, and catalyst concentration of 5 to 7 g sodium methoxide/kg of methanol. a significant increase in the conversion to methyl ester when methanol flow rate was increased. As discussed earlier the increase in methanol concentration allows the reaction equilibrium to be pushed forward. [2]

3.4.2 Expected Product distribution inside the reactor

The conversion could be higher at central part of the reactor compared to locations near the wall. This is caused by the coalescence of the droplets into a liquid film on the reactor wall. Formation of this film decreases the contact surface area between the two reactants. It also reduces the heat and mass transfer that is vital for a rapid reaction. This effect could be reduced through the use of a larger diameter reactor or a smaller injection angle. The conversion of methyl ester could be found to increase as the droplets moved further away from the injection point. [2]

3.4.3 Effect of injection temperature

To increase the reaction rate and the overall conversion of methyl ester the effect of higher injection temperature could be best. For using oil flow rate of 0.094 kg/min and methanol flow rate of 0.188 kg /min, at a catalyst concentration of 0 to 5 g sodium methoxide/kg of methanol and injection temperatures of 90 and 120 °C. The oil injection temperature increased from 90 to 120 °C the overall conversion also increased. The highest conversion was achieved at a catalyst concentration of 5g/kg methanol and an injection temperature of 120 °C. The reactor temperature had a

slight increase as the injection temperature increased. However, this increase was not significant enough be conclusive. Alternatively this change in conversion could be due to the significant decrease in the droplet diameter with increase in injection temperature. At 90 °C the average oil droplet size was 170 µm while at 120 °C the average oil droplet size was 120 µm. This leads to significant increase in contact surface area. Transesterification reaction is mass transfer limited and conventionally aggressive mixing is employed to homogenize the two reactants and to increase the contact surface area by smashing the methanol phase into small droplets within the oil phase. Therefore, one reason for higher reaction conversion is due to the significant increase in contact surface area of the two reactants[2].

3.5 Identify Operation Mode of Temperature limitation

- 1. Not exceed flash point for sodium methoxide formation = 29°C. [10]
- 2. Not exceed dissection degree for evaporator sodium methoxide formation = 127°C. [10]

3.6 Material and Equipment

- 1. Beef tallow.
- 2. Methanol.
- 3. Sodium hydroxide (NaOH).
- 4. Reactor (1.66 m high x 0.344m diameter stainless steel tank).
- 5. High pressure injection pump.
- 6. Evaporator.
- 7. Condenser.
- 8. Electric heater.
- 9. Centrifugal pump.
- 10. Pipes.

وقود الديزل الحيوي تصميم عملية الإنتاج

:

وقود الديزل الحيوي هو وقود مشتق من الجزيئيات التبادلي من الدهون والزيوت (يرجى الرجوع إلى). هذا الوقود لها خصائص مماثلة لتلك التي من وقود الديزل المنتج من النفط الخام، ويمكن Fig.3.1 استخدامها مباشرة لتشغيل محركات الديزل الحالية أو على شكل مزيج مع الديزل النفط الخام.. وقود الديزل الحيوي عموما تصنيعها باستخدام مفاعلات دفعة واحدة. ومع ذلك ، فإن هذا الاتجاه آخذ في التغير المستمر والعمليات أكثر وقد تم فحص واستخدامها سواء في المختبر أو نطاق صناعي بسبب الزيو وقود

الرقم توزيع الجزيئيات التبادلي الكيمياء

الطرق المتاحة لانتاج وقود الديزل الحيوي من الدهون الحيوانية

. غير كحافز لأنظمة -- عملية انشطاري عندما يتعرض السائل أو الغاز إلى درجات حرارة وضغوط تزيد من نقطة حرجة ، وهناك عدد من خصائص غير عادية معارضها. ولم يعد هناك هو سائل متميزة ومرحلة البخار ، ولكن واحدة والحاضر مرحلة السوائل. المذيبات التي تحتوي على الهيدروكسيل (أوهايو) مجموعة ، مثل المياه أو الكحول الأولية ، تأخذ على خصائص الأحماض العظميين. نهج غير الحفاز هو استخدام الكحول (:)

(د فعل غير) رد فعل غير

[]. يمكن لرأس المال وتكاليف التشغيل تكون أكثر تكلفة ، وارتفاع استهلاك الطاقة.

قد تبين مثال للفضول من هذه العملية في اليابان ، حيث الزيوت في زيادة كبيرة جدا من مادة الميثانول قد تعرضوا لدرجات حرارة عالية جدا والضغوط لفترة قصيرة من الزمن. والنتيجة هي رد فعل سريع جدا () على شكل استرات والجلسرين. يجب أن تطفأ رد فعل سريع جدا بحيث لا تتحلل المنتجات. كفاءة في هذه العملية على قدم المساواة . [] هذا الأسلوب مكلف جدا ومعدات غير متوفرة محليا . . الأنزيمية التحويل

- من الزيوت لإنتاج وقود الديزل الحيوي. talysisوهناك اهتمام في استخدام الليباز الأنزيمية كاليفورنيا ويمكن استخدام الانزيمات في حل أو يجمد في الصعود إلى الدعم المادي ، الذي يسمح للاستخدام المفاعلات

الفعل في أن يمكن Y السرير. الثابتة ر د يؤديها درجة مئوية. التكلفة العالية للالانزيمات ، وهذه العملية ليست مجدية اقتصاديا لانتاج وقود الديزل الحيوي في هذا الوقت. [] للانزيم احتكار متوفر غير الأسلوب هذا الصناعية البلدان الكبر يتيك الحفز باستخدام حمض هذا الأسلوب يستخدم حمض قوي. الصابون تشكيل ليست مشكلة لأنه لا توجد الفلزات القلوية في وسط

هذا الأسلوب يستخدم حمض قوي. الصابون تشكيل ليست مشكلة لأنه لا توجد الفلزات القلوية في وسط . ويمكن استخدام المواد الحفازة حمض لتوزيع الجزيئيات التبادلي من الدهون الثلاثية ، ولكن رد الفعل الصناعية يتطلب الكحول processing. Acidقود يستغرق عدة أيام لاستكمال. هذا هو بطيء جدا لتحفيز عالية لنسبة الأحماض الدهنية الحرة (: :) وكمية كبيرة من المواد الحفازة (-). حامض الكبريتيك وحامض الفوسفوريك وحامض العوامل الحفازة الأكثر شيوعا. هو المجففة أحيانا كمادة وسيطة في المئة إلى المياه وتصفيتها يكون رد الفعل - . . ثم ، يضاف مزيج الحامض والميثانول إلى وسيطة. حويل الأحماض الدهنية إلى استرات الميثيل وصلت التوازن ، والميثانول المياه ، وخليط حمض تحذف من قبل تسوية أو الطرد المركزي. الطازجة الميثانول ومحفز قاعدة في الزيت المتبقي لتوزيع الجزيئيات التبادلي. بقية العملية هو نفس قاعدة الطازجة الميثانول ومحفز قاعدة في الزيت المتبقي لتوزيع الجزيئيات التبادلي. بقية العملية هو نفس قاعدة . []

--- عبر متوفر بسبب منع إسرائيل من المادة . هذا الأسلوب غير متوفر بسبب منع إسرائيل من المادة

. بالموجات فوق الصوتية موجة التي توفر الدهون مع الترددات الطبيعية على قدم المساواة لأسباب الدهون صدى تدمير الدهون ، ثم السماح لتتفاعل مع تدمير الدهون لإنتاج وقود الديزل الحيوي. هذا الأسلوب يحتاج إلى دقة methoxidالصوديوم عالية والمواد باهظة الثمن وغير متوفر

-- .

تم تنفيذ هذه الطريقة تحقق في توزيع الجزيئيات التبادلي من الدهون والزيوت مع الميثانول لتحسين الجدوى الاقتصادية للعملية إنتاج وقود الديزل الحيوي من الزيوت والدهون. الميزة الرئيسية للعملية الجديدة التي طورت في هذا العمل هو قدرتها على العمل بشكل مستمر مع ارتفاع معدل التفاعل ، الأمر الذي يتطلب رد فعل يحتمل أن تكون أقل تنظيف آخر والمنتج / فصل متفاعل من العمليات القائمة حاليا. ويتحقق ذلك من خلال

تناهية الصغر في الزيت الساخن / الدهون ثم رش عليه في دائرة رد الفعل مليئة بخار الميثانول في ترتيب تدفق التيار المضاد. ولذلك ، فإن هذه العملية لديها ميزة خاصة على العمليات الأولية التقليدية ، لأنه يمكن ان تنتج وقود الديزل الحيوي بكفاءة أكبر مع توفير إمكانات . وقد تم تحويل الشاملة على

أساس دورة واحدة من هذه العملية بين

من ميثوكسيد الصوديوم / كغ من مادة الميثانول في معدل 5 - التحويل ٪ في حين حققت التشغيل مع تدفق الميثانول من / اختلافات إضافية في العناصر / ركيز وضغط الحقن ، ودرجة حرارة التفاعل / تركيز وضغط الحقن ، ودرجة حرارة التفاعل

على تحويل المنتج الشاملة التي يمكن الحصول عليها باستخدام مكونات اقتصاديا المتاحة. في هذا اعتمد استخدام مفاعل الغاز السائل لإنتاج وقود الديزل الحيوي. تم رش الزيت الحار والجزيئات الدقيقة في جو من بخار الميثانول في ترتيب تدفق التيار المضاد. تمت دراسة تأثير درجة حرارة التشغيل ، حافزا وتركيزات الأدب المبثانو ل في الأسلوب شراء ويمكن تطبيقه ، متاح المو اد و يمكن هذا المشروع. الأسلوب لهذا هناك هذا في تطبيق المعتمد

عملية مبدأ عملية السائل --

وسوف تستخدم الشحوم الحيوانية والميثانول في هذا المشروع كمادة خام في حين كان يستخدم ميثوكسيد الصوديوم أو هيدروكسيد الصوديوم و . سوف التقنية الميثانول الصف ما هو متاح من استخدامه

. وإعادة خلط الميثانول مع هيدروكسيد الصوديوم (هيدروكسيد الصوديوم)

- ز هيدروكسيد الصوديوم / كغ الميثانول قبل ضخه المفاعل. ما قبل خلط هيدروكسيد الصوديوم مع الميثانول يسمح بتشكيل ميثوكسيد الصوديوم اللازمة ليحفز رد الفعل.

مضخة أن تكون وحدة مناسبة لتوليد صغيرة الحجم قطرات صغيرة من مساحة سطح عالية.

ولدت في هذه العملية هو أمر من حجم أعلى من منطقة الاتصال في أي عمليات خلط القياسية المستخدمة حاليا في عمليات وقود الديزل الحيوي على أساس رد فعل السائل السائل. هذا تبسيط هندسة وحدة السماح ليتم التفاعل في رذاذ مثل وحدة المفاعل. كما تداول الميثانول ويتضح في الشكل . أيضا معلمة التصميم الرئيسية. دبابات قطر الفولاذ المقاوم للصدأ كما هو موضح mوسيتم رد الفعل المبين في ارتفاع .

. والانحلال النفط نفذت باستخدام الديزل ارتفاع ضغط مضخة حقن في حين يتم ضخ الميثانول

. تعمل هذه العملية عن طريق ضخ النفط والدهون من خلال فوهة عالية

الضغط في مفاعل مليئة بخار الميثانول تحمل حافزا وتتحرك في اتجاه مواجهة التدفق الحالي. وهذا يتيح الاتصال المباشر بين مرحلتي مع مساحة واسعة للاتصال وبالتالي تشجيع المزيد من الحرارة ونقل الشامل.

الفتحات ارتفاع الضغط في نظام تقتيت الدهون الحيوانية المسال إلى قطرات صغيرة في مجموعة من القطر ، مما أدى إلى زيادة كبيرة في مساحة سطح التلامس في الميثانول / الدهون. μm درجة حرارة التفاعل المطلوب عن طريق تسخين المفاعل باستخدام سترة البخار والتسخين قبل أن المواد المتفاعلة لتغذية المفاعل. منذ عملية تعمل في درجات حرارة أعلى بكثير من الكحول نقطة الغليان ، وتحقق . هذه العملية يمكن ان تعمل على أي درجة حرارة أقل من درجة حرارة تدهور

درجة مئوية). لزيادة معدل التفاعل ، والميثانول نسبة عالية لكان سعر النفط الدهون والزيوت (

. في هذا المفاعل ، ويتم تكثيف الميثانول ، ويخلط مع transesterifcation في أي عملية الميثانول السائل الطازج وإعادة تدويرها إلى المفاعل. ومع ذلك ، هذا غير ضروري في المفاعل نطاق صناعي كما يمكن إعادة تدويرها بخار الميثانول في المرحلة بخار لتحسين معدل تفاعل المواد المتفاعلة سيتم قبل تدفئة باستخدام مزيج من البخار والتدفئة الكهربائية. وسيتم حقن النفط في المفاعل في

مئوية بسبب الحصول على أفضل متناهية الصغر على النفط في حين سيتم ضخ الميثانول ، في درجة مئوية لتجنب الوصول إلى درجة التفكك لميثوكسيد الصوديوم. سيكون هذا المفاعل لا صممت لتكون أوعية الضغط، وبالتالي كانت ساخنة باستخدام البخار المشبع من . هذا يحد من درجة حرارة التشغيل درجة مئوية. واستنادا إلى هذه التكنولوجيا ومع طريقة مناسبة للتسخين ، قد

اعية تعمل على أي درجة حرارة أقل من درجة حرارة تدهور النفط. وبمجرد أن رد الفعل هو الكامل ، واثنين من المنتجات الرئيسية موجودة : الجلسرين والديزل الحيوي. هو تحبيد أحيانا الخليط رد فعل على هذه الخطوة اذا لزم الامر. المرحلة الجلسرين أكثر كثافة بكثير من مرحلة وقود الديزل الحيوي واثنين يمكن فصل الجاذبية مع الغليسرين رسمها ببساطة قبالة الجزء السفلي من السفينة تسوية. في بعض الحالات ، يتم استخدام أجهزة الطرد المركزي لفصل المواد اثنين من أسرع. فصل مرة واحدة من الغليسرين ، هو تنقية وقود الديزل الحيوي في بعض الأحيان عن طريق الغسيل بالماء بلطف لإزالة دودة حافزا المتبقية أو الصابون وتجفيفها وإرسالها إلى التخزين. في بعض العمليات هذه الخطوة غير ضرورية. هذا هو عادة في نهاية عملية الإنتاج مما أدى إلى السائل واضحة العنبر الأصفر مع اللزوجة نظم المقطر وقود الديزل الحيوي في خطوة إضافية لإزالة كميات يماثل وقود الديزل النفطية.

صغيرة من الهيئات اللون لإنتاج وقود الديزل الحيوي عديم اللون.

. . . محفز تركيز والميثانول معدل التدفق

تحويل الدهون الثلاثية يعتمد على تركيز كل من الحافز والميثانول معدل التدفق. في الميثانول إلى ارتفاع نسبة النفط تم التوصل إلى تحويل أعلى من ذلك بكثير ، وكان حقق أعلى للنفط في تحويل معدل تدفق دقيقة والميثانول معدل تدفق للهيثانول معدل تدفق للهيثانول معدل التدفق في الميثانول التحويل الشاملة التي على غرار العمليات الميثانول). تخفيض الحد من معدل التدفق في الميثانول التحويل الشاملة التي على غرار العمليات التقليدية ، سيتم استخدام ميثوكسيد الصوديوم بمثابة محفز للاختيار. وقد كان هذا في شكل ميثوكسيد الصوديوم اللامائية أو هيدروكسيد الصوديوم الذائب في الميثا

هيدروكسيد الصوديوم مع الماء أشكال الميثانول ، وهو غير مرغوب فيه ويعزز من رد فعل التصبين ، والتي تأكدت من الحد الأدنى المطلوب حافزا للشروع في رد فعل على تركيز حافزا من هيدروكسيد الصوديوم ز / يثانول سيكون أعلى عموما التحويل. وانخفض تحويل الشاملة باعتباره حافزا حافزا لكل كيلوغرام من مادة الميثانول. ويفترض هذا أن يكون ناجما عن تشكيل في زيادة تركيز أعلاه الصابون الصوديوم. هيدروكسيد الصوديوم كعامل محفز ، وهما من ذوي الخبرة خسائر عالية الغلة بسبب دهون الثلاثية التصبين واستر الميثيل حل في المرحلة الجلسرين. تشكيل الصابون يزيد تركيز الصوديوم مع . وتشير إلى أن تركيز محفز لل - ز هيدروكسيد الصوديوم / كغ من مادة الميثانول هو الأمثل لعوائد

عالية من وقود الديزل الحيوي. وباستخدام الصوديوم ز - هيدروكسيد الصوديوم أو ميثوكسيد / الميثانول ، في مختلف النفط ومعدلات تدفق الميثانول.

+ الصوديوم + CH3OH) CH3O + (+ H2O معادلة تشكيل ميثوكسيد الصوديوم

للحد من تأثير من التصبين والذوبان في وقود الديزل الحيوي في المرحلة الجلسرين ، كان يستخدم ميثوكسيد الصوديوم النقي باعتبارها حافزا.

/ دقيقة ، في تركيز محفز للميثوكسيد الصوديوم - / الميثانول. لأن هذه هي تجارب لمراقبة التحسين ، للتقليل من تشكيل الصابون بسبب فا والمياه. في الزيوت النباتية العام يعد لدينا الصلاحية وتحتوي على أقل فا والرطوبة من الدهون الحيوانية. وتجدر الإشارة إلى أن هذا التغيير لم يكن له تأثير على آلية رد الفعل العام. ما هو متوقع قد زاد تحويل وقود الديزل الحيوي مع إدخال هذا حافزا استنادا - ز ميثوكسيد الصوديوم / كغ من مادة الميثانول ، في analsisys

مختلف معدلات تدفق المیثانول. تغییر فی ترکیز المیثانول کان لها تأثیر کبیر علی تحویل وقود الدیزل الحیوی. ولذلك ، أجریت تجارب إضافية في معدل تدفق النفط من / دقيقة ، والميثانول معدل تدفق / دقيقة ، ومحفز للتركيز - ز ميثوكسيد الصوديوم / كغ من مادة الميثانول. زيادة كبيرة في التحويل إلى استر الميثيل عندما تمت زيادة معدل تدفق الميثانول. كما ناقش في وقت سابق من زيادة تركيز الميثانول يسمح دفع توازن رد .

. . توزيع المنتجات المتوقعة داخل المفاعل

ويمكن أن تكون أعلى في تحويل جزء مركزي من المفاعل مقارنة مواقع بالقرب من الجدار. ويتسبب هذا من السائل إلى أفلام سينمائية على جدار المفاعل. تشكيل هذا الفيلم يقلل من مساحة الاتصال بين اثنين من المواد المتفاعلة. كما أنه يقلل من انتقال الحرارة والكتلة التي تعتبر حيوية للرد السريع. ويمكن خفض هذا التأثير من خلال استخدام مفاعل قطرها أكبر أو أصغر زاوية الحق . ويمكن الاطلاع على تحويل استر الميثيل لزيادة كما قطرات ابتعدت مزيد من نقطة الحقن. []

. . تأثير درجة الحرارة حقن

ويمكن لزيادة سرعة التفاعل وتحويل الشامل للاستر الميثيل تأثير درجة الحرارة أعلى حقن يكون أفضل.

/ دقيقة والميثانول معدل تدفق / دقيقة ، في تركيز محفز

- ز ميثوكسيد الصوديوم / كغ من الميثانول درجات الحرارة وحقن درجة مئوية. درجة مئوية التحويل عموما زادت أيضا. وقد حققت أعلى في تحويل

درجة مئوية. درجة مئوية. درجة مئوية.

زيادة طفيفة في درجة الحرارة زيادة الحقن. ومع ذلك ، كانت هذه الزيادة ليست كبيرة بما فيه الكفاية تكون . وبدلا من ذلك هذا التغيير في تحويل يكون راجعا إلى انخفاض كبير في قطر قطيرة مع زيادة في

. درجة مئوية في متوسط ميكرومتر في حين أن

درجة مئوية الحبرية متوسط ميكرومتر. وهذا يؤدي إلى زيادة كبيرة في المساحة السطحية للإتصال به. توزيع الجزيئيات التبادلي رد فعل هو نقل الجماعي الاختلاط هو عمل محدود والعدوانية التقليدية إلى التجانس المواد المتفاعلة اثنين وزيادة مساحة الاتصال عن طريق تحطيم المرحلة الميثانول إلى قطرات صغيرة ضمن المرحلة النفط. ولذلك ، سبب واحد لتحويل أعلى رد فعل ويرجع ذلك إلى زيادة كبيرة في مساحة راسل المواد المتفاعلة اثنين [].

تحديد عملية وضع الحد من درجة الحرارة

Chapter Four

Process component and Design

Content:

- 4.1 Flow sheet to process interaction
- 4.2 Quantity of methanol
- 4.3 Heated methanol H3
- **4.4 Condensate methanol C1**
- 4.5 Electrical heater into convert fat to oil H1
- 4.6 Electrical heater for increase temperature oil H2
- 4.7 Design the pumps
- 4.8 Design of reactor
- 4.9 Design of tanks

Prototype for production biodiesel from animal fats sources

4.2 Methanol quantity

Choosing quantity of methanol based on power of electricity available in laboratory at ppu.

```
Power = I * V
         Where
I current (A)
V volte (V)
Power = I * V
       = 16 A * 240 V
       = 3840 watt
       = 3840 watt * 60 s
       = 230.4 \text{ kJ}
When
hfg = 1101.8 \text{ kJ/kg} ( latent heat for methanol at 0.9 bar and 61.5°C )
m mass (kg)
Cp liquid methanol = 2.55 \text{ kJ/kg.} °C [1]
Cp vapor methanol = 1.86 \text{ kJ/kg.} °C [3]
\rho density of methanol ( 786.75~kg / m^3 ) at 25 ^{\circ}C
Q Total heat transfer (kJ)
ΔT temperature difference
T time (s)
Methanol will be heated from 25°C to 80°C in the process and the rest will depend on this
quantity.
Q = Q_{liquid\ phase} + Q_{phase\ change} + Q_{vapor\ phase}
230.4 kj = [m \text{ methanol}/min^* \text{ Cp liquid methanol}^* (\Delta T)] liquid phase
            + [ m/min*( hfg )]change phase
           + [m \text{ methanol/min* Cp vapor methanol* } (\Delta T)] vapor phase
```

```
Q = m kg/min * 2.55 kJ/kg * (61.5 – 25) °C

+ m kg/min * 1101.8 kJ/kg

+ m kg/min * 1.86 kJ/kg. °C * (80-61.5) °C

= 230.4 kJ

m/min = 0.188 kg/min

m kg = \rho kg / m³ * V m³ \rho kg / m³ = m kg / V m³

= 0.188 kg / 786.75 kg / m³

= 0.000244 m³

= 0.244 L

m/min = 0.244 L/min

= 244 mL / min( 0.188 kg / min )
```

When more power available it can be increasing the quantity of methanol the system capacity.

4.3 Heating methanol H3

In order to heat the methanol heat in system is designed in which the liquid methanol it passed through pipe submersed in hot oil, and used temperature sensor type(WY 138-11s 0804) to adopted the temperature of oil at 138°C,The temperature sensor connected with heater.

The length of pipe to obtain vapor methanol based equation:

$$Qconduction = \frac{2*\pi*k\frac{w}{m} \cdot c^**L \ m* \ Tc^*}{\ln(ro/ri)} \quad [13]$$

Where

K thermal conductivity (copper = 120 w/m. $^{\circ}$ C)

L length of pipe (m)

ro outer radius of pipe (m)

ri inner radius of pipe (m)

$$\Delta T$$
= 1 °C

Q conduction = 3840 watt

The available pipe diameter (1/4 inch, 1/2 inch, 1 inch)

When

ro = 1/4 inch = 0.00635 m

ri = 1/4 inch = 0.00535 m

ln(ro/ri) = 0.171

$$From \dots Qconduction = \frac{2*\pi*k\frac{w}{m}c^**L\ m*\ Tc^*}{\ln(ro/ri)}$$

$$3840 \text{ w} = 2 * 3.14 * 120 \text{ w/m}. ^{\circ}\text{C} * \text{L m} * 1 ^{\circ}\text{C} / 0.171$$

$$L = 0.88 \, \text{m} = 88 \, \text{cm}$$

When

$$ro = 1/2$$
 inch = 0.0127 m

$$ri = 1/2$$
 inch = 0.0117 m

$$ln(ro/ri) = 0.082$$

From ... Qconduction =
$$\frac{2*\pi*k\frac{w}{m}c^**L\ m*\ Tc^*}{\ln(ro/ri)}$$

$$3840 \text{ w} = 2 * 3.14 * 120 \text{ w/m}. ^{\circ}\text{C} * \text{L m} * 1 ^{\circ}\text{C} / 0.082$$

$$L = 0.42 \text{ m} = 42 \text{ cm}$$

When

ro = 1inch = 0.0254 m

ri = 1inch = 0.0244 m

ln(ro/ri) = 0.04

From ... Qconduction =
$$\frac{2*\pi*k\frac{w}{m}c^**L\ m*\ Tc^*}{\ln(ro/ri)}$$

$$3840\ w = 2*3.14*120\ w/m.\ ^{\circ}C*L\ m*\ 1^{\circ}C\ /\ 0.04$$

$$L = 0.20\ m = 20\ cm$$

The best is 1/4 inch (more efficient) which ensure the total evaporator of methanol .

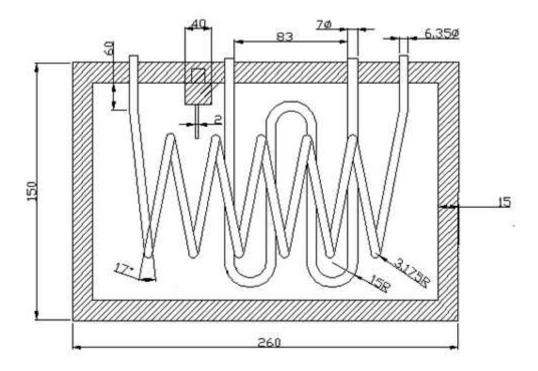


Figure 4.2 Methanol evaporator(All dimensions in millimeter)

$$Vpipe = \frac{\pi*d^2}{4}*L$$

$$= 3.14*0.002675^2\text{m}^2/4*1.2 \text{ m}$$

$$= 0.00000671 \text{ m}^3$$

$$Vheater = \frac{\pi*d^2}{4}*L$$

$$= 3.14*0.007^2\text{m}^2/4*0.6 \text{ m}$$

$$= 0.000023 \text{ m}^3$$

$$Vcylinder = \frac{\pi*d^2}{4}*L$$

$$= 3.14*0.23^2\text{m}^2/4*0.12 \text{ m}$$

$$= 0.00498 \text{ m}^3$$

$$V \ oil = V_{cylinder} - V_{heater} - V_{pipe}$$

$$= 0.00498 \ m^3 - 0.000023 \ m^3 - 0.00000671 \ m^3$$

$$= 4.95 \ L$$

$$moil \ kg = \rho \ kg \ / \ m^3 \ * V \ m^3$$

$$= 850 kg \ / \ m^3 \ * 0.00495 \ m^3$$

$$= 4.2 \ kg$$

4.4 Condensating returned methanol C1

I assume the efficiency of reactor 60 % such that assumed the quantity of returned methanol equal (0.4 * 0.188 kg).

Calculate the length of pipe to obtain liquid methanol based equation:

$$Qconduction = \frac{2*\pi*k\frac{w}{m}.c^**L\ m*\ Tc^*}{\ln(ro/ri)}$$
[13]

Where

K thermal conductivity (copper = $120 \text{ w/m}. ^{\circ}\text{C}$)

L length of pipe (m)

ro outer radius of pipe (m)

ri inner radius of pipe (m)

$$\Delta T = 1 \, ^{\circ}C$$

Q conduction = 1525.84 watt.

When

$$ro = 1/4$$
 inch = 0.00635 m

$$ri = 1/4$$
 inch = 0.00535 m

$$ln(ro/ri) = 0.171$$

From ... Qconduction =
$$\frac{2*\pi*k\frac{w}{m}c^**L\ m*\ Tc^*}{\ln(ro/ri)}$$

$$1525.84 \text{ w} = 2 * 3.14 * 120 \text{ w/m}. {}^{\circ}\text{C} * \text{L m} * 1 {}^{\circ}\text{C} / 0.171$$

$$L = 0.35 \text{ m} = 35 \text{ cm}$$

When

$$ro = 1/2$$
 inch = 0.0127 m

$$ri = 1/2$$
 inch = 0.0117 m

$$ln(ro/ri) = 0.082$$

From ... Qconduction =
$$\frac{2*\pi*k\frac{w}{m}c^**L\ m*\ Tc^*}{\ln(ro/ri)}$$

$$1525.84 \text{ w} = 2 * 3.14 * 120 \text{ w/m}. {}^{\circ}\text{C} * \text{Lm} * 1 {}^{\circ}\text{C} / 0.082$$

$$L = 0.17 \text{ m} = 17 \text{ cm}$$

When

ro = 1inch = 0.0254 m

ri = 1inch = 0.0244 m

ln(ro/ri) = 0.04

From ... Qconduction =
$$\frac{2*\pi*k\frac{w}{m}c^**L\ m*\ Tc^*}{\ln(ro/ri)}$$

 $L = 0.08 \, \text{m} = 8 \, \text{cm}$

The best is 1/4 inch (more efficient) which ensure the total methanol returned was condensate.

the length of pipe to condensate returned methanol L = 0.35 m = 35 cm

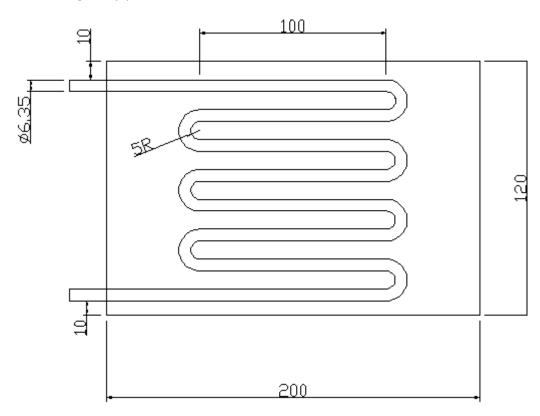


Figure 4.3 Methanol condenser(All dimensions in millimeter)

4.5 Electrical heater into convert fat to oil H1

The fat convert into oil at temperature 50 $^{\circ}$ C.

Q = $[m fat^* Cp fat^* (\Delta T)] + [m fat^* latent heat]$

Q = 0.094 kg/min * 2.11 kJ/kg. °C * (50-25) °C + [0.094 kg/min * 883.8 kJ/kg]

Q = 88.03 kJ/min

Q = 1467.17 watt

4.6 Electrical heater for increase temperature oil H2

At a high methanol to oil ratio a much higher conversion was achieved, were the highest conversion was achieved at an oil flow rate of 0.094 kg /min and methanol flow rate of 0.188 kg(0.244 L/min) to investigated ratio of 1:2 (oil: methanol).

 $Q = [m \circ il^* Cp \circ il^* (\Delta T)]$

Q = 0.094 kg/min * 1.67 kJ/kg. °C *(120-50) °C

= 10.99 kJ/min

= 183.17 watt

4.7 Design the pumps

We Will use two pumps in the system ,the first pump is a gear pump because the liquefied

fats is high viscosity and have needed high pressure to atomized liquefied fats will became

oil, The second pump is a centrifugal pump for pumping methanol into reactor after heated.

So that is needed to calculated main parameters of the pumps to choose the appropriate

pump Such parameters are as follows:

Flow rate

Total head

Power required

We need in experimental prototype methanol quantity double oil quantity until reach

obtain high efficiency, we assume that quantity:

1. 0.094 kgoil / min.

2. 0.188 kg methanol / min.

There is a simple calculation for computing the total head and the flow rate in order

to select the suitable pump for this purpose.

1. Head

Total head = Head loss due to friction + static head

f = 64 / Re for laminar flow.

Where:

f: Friction factor for laminar flow.

Re: Reynolds number.

 $V_{oil} = m / \rho$

 $= (0.094 \text{ kg/min}) / (801 \text{kg/m}^3)$

 $= 0.00012 \text{ m}^3/\text{min}$

49

```
V = m / \rho
 = (0.188 \text{ kg/min}) / (768.75 \text{ kg/m}^3)
 = 0.00024 \text{ m}^3/\text{min}
Where:
m mass flow rat (kg/min)
\rho density of fluid ( kg / m<sup>3</sup> )
The velocity oil = Q / A.
                        = (0.00012 \text{ m}^3/\text{min}) / (\pi D^2 / 4)
                        = (0.00012 \text{ m}^3/\text{min}) / (\pi 0.00535^2/4)
                        = 5.34 m/min
The velocity methanol = Q / A.
                        = (0.00024 \text{ m}^3/\text{min}) / (\pi D^2 / 4)
                        = (0.00024 \text{ m}^3/\text{min}) / (\pi 0.00535^2/4)
                        = 10.7 m/min
Where:
Q: Flow (m^3/s).
A: Pipe area (m<sup>2</sup>).
Re methanol = (V * * D) / \mu
                  = (10.7/60)*786.75 *0.00535 / 0.000544
                                                   Re < 2000 laminar
                   =1379.8
Re oil = (V * * D) / \mu
                  = (5.34/60)*801*0.00535/0.0346
```

= 10.7

Re < 2000 laminar

Where:

V: Fluid velocity (m/s).

D: Pipe diameter (m).

μ: dynamic viscosity of fluid(mm²/s or pa.s))

: density of fluid (kg/m³)

f = 64 / Re

 $f_{methanol} = 64 / 1379.8 = 0.047$

foil = 64 / 10.7 = 5.98

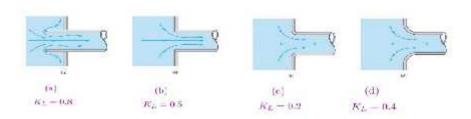
Where:

f: Friction factor for laminar flow.

Re: Reynolds number.

Le =
$$(KL * D) / f$$

Le $_{oil}$ = 0.8 * 0.00535 / 5.98 = 0.0007 neglected


Le methanol = 0.8 * 0.00535 / 0.047 = 0.09 neglected

Where:

D: Pipe diameter (m).

Le The equivelent length

$$H1 = \{ (f * (L/D) * (V^2/2g) \} + \{ KL * (V^2/2g) \}$$


```
 \begin{aligned} & \text{H1oil} = \{5.98* (2.5 \ / \ 0.00535) * (0.089^{\ 2} \ / \ 2*9.81) \ + (0.8* (0.089^{\ 2} \ / \ 2*9.81)) \} \\ & = 1.13 m \\ & \text{H1 methanol} = \{0.047* (2.5 \ / \ 0.00535) * (0.18^2 \ / \ 2*9.81) \ + (0.8* (0.18^2 \ / \ 2*9.81)) \} \\ & = 0.038 \ m \\ & \text{Where:} \\ & \text{KL: Factor of fitting.} \\ & \text{H}_1: \text{Kinematics' head (m).} \\ & \text{( Total head} = \text{Head loss due to friction} + \text{static head})_{\text{oil}} \\ & = 1.13 \ + 2 \\ & = 3.13 \ m \\ & \text{( Total head} = \text{Head loss due to friction} + \text{static head})_{\text{methanol}} \end{aligned}
```

2. Power

$$P = Q \cdot \rho \cdot H \cdot 9.81_{\text{oil}}$$

= 0.094 kg/min * 801kg/m³ *3.13m * 9.81

= 0.038 + 0.5

= 0.538 m

= 2311.9 watt

$$P = Q \cdot \rho \cdot H \cdot 9.81$$
 methanol

= 0.188 kg/min * 786.75 kg/m³ *0.538 m * 9.81

= 780.7 watt

Where:

P = Power transmitted to the fluid by the pump in Watt.

Q = Flow in kg/min.

p = Density of the fluid in kg/m³

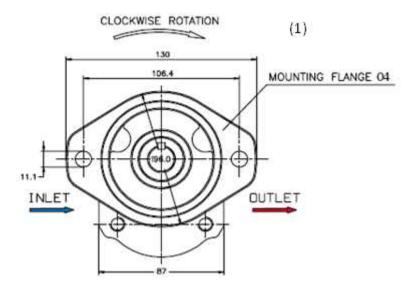
H = height in meter.

9.81 = gravity

A pump is required, having the following characteristics:

For pump P2

H methanol =0.538 m, Q methanol =0.188kg /min, Power methanol = 780.7watt and using pressure equal 1bar (pressure of reactor).


For pump P1

H oil = 3.6 m, Qoil = 0.094 kg /min. Power oil = 2660.4 watt

and using pressure 70 bar -100 bar (high pressure to atomized liquefied fats) Basely previous specification I will be choose pumps type (W9A1- 04) Typical levels at 200 bar and 2300 rpm using mineral oil with viscosity of 40 mm2/s and at temperature of 60° C.

Figure 4.4 Gear pump and electrical motor

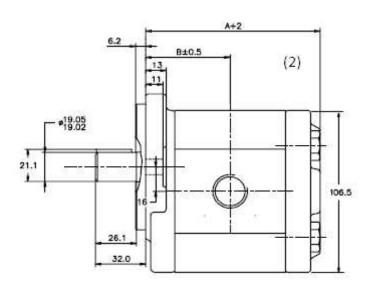


Figure 4.5 (1) and (2) Dimension of the Gear pump in millimeter, A=90mm,B=1 43mm.

4.8 Design the Reactor

Design the reactor dependent of geometry of spray of injector.

4.8.1 Design nozzle hole diameter of the injector

Basally equation and data that described the spray tip penetration can be choose the nozzle hole diameter of injector (dn) based on the time of transferred droplet in reactor by using equation (1) and equation (2)

```
S = 0.39 \times (p/1) \frac{1}{2} \times t \dots (1) before break up the oil [17]
When (0 < t < t \text{ break up})
S = 2.95 \times (p/m) \frac{1}{4} \times (dn \times t) \frac{1}{2} \dots (2) After break up the oil [17]
When (t t break up)
 tb = (29 \times 1 \times dn) / (m \times p) \frac{1}{2} .....(3) [17]
        Where
S spray penetration ( m )
 p pressure drop through the nozzle hole (Pascal)
\rho I density of oil (kg/m<sup>3</sup>)
\rho m density of methanol (kg/m<sup>3</sup>)
t time transfer the droplet through the reactor (second )
dn nozzle hole diameter of injector ( mm )
tb break up the oil (second)
\rho density of MeOH vapor( kg/m<sup>3</sup>) = 4 kg/m<sup>3</sup>
\rho density of oil( kg/m<sup>3</sup>) =801kg/m<sup>3</sup>
Injection pressure (kPa) 10000
Maximum distance before break up and after break up the oil through reactor
equal S = 1.5 m [19] (Eighth International Conference on Liquid Atomization and Spray System Pasadena
CA.USA.July2000)
```

When you are in the resulting from atomized exposed to contact with methanol vapor which carries a catalyst for reaction depends on the nozzle hole diameter of injector (dn), The more time that the droplet is exposed to the possibility of interaction increased biodiesel production more and accordingly we will choose the appropriate injector.

When dn = 0.254 mm
tb =
$$(29 \times 1 \times dn) / (m \times p) \frac{1}{2}$$

= $(29 \times 801 \text{kg/m}^3 \times 0.254 \text{ mm}) / (4 \text{ kg/m}^3 \times 10000 \text{ kPa})$
= 0.00092164 s
From equation(1)
S = 0.39 x (p/1) $\frac{1}{2}$ x t
= 0.39 x (10000 kPa / 801 kg/m³) $\frac{1}{2}$ x 0.00092164 s
= 0.0402m
The value sub equation(2) = 1.5 m - 0.0402m
= 1.4598 m
The (1.4598 m) sub equation(2)
t = 0.6097 s
t total = t + t break up
= 0.6097 s + 0.00092164 s

= $0.61062164 \, s$ this total time when the droplet transferred in reactor maximum distance to 1.5 m when used injector with nozzle hole diameter dn = $0.254 \, \text{mm}$

When dn = 0.343 mmtb = $(29 \times 1 \times dn) / (m \times p) \frac{1}{2}$ = $(29 \times 801 \text{kg/m}^3 \times 0.343 \text{ mm}) / (4 \text{kg/m}^3 \times 10000 \text{kPa})$ = 0.0012 sFrom equation (1) $S = 0.39 \times (p/1) \frac{1}{2} \times t$ = $0.39 \times (10000 \text{kPa} / 801 \text{kg/m}^3) \frac{1}{2} \times 0.0012 \text{ s}$ = 0.0523 mThe value sub equation(2) = 1.5 m - 0.0523 m= 1.4477mThe (1.4477m) sub equation(2) t = 0.4441st total = t + t break up= 0.4441s + 0.0012 s= 0.4453 s this total time when the droplet transferred in reactor maximum distance to 1.5 m when used injector with nozzle hole diameter dn = 0.343 mm When dn = 0.61 mm

tb =
$$(29 \times 1 \times dn) / (m \times p) \frac{1}{2}$$

= $(29 \times 801 \text{kg/m}^3 \times 0.61 \text{ mm}) / (4 \text{kg/m}^3 \times 10000 \text{ kPa})$
= 0.0022 s

From equation (1)

$$S = 0.39 x (p/1) \frac{1}{2} x t$$

= $0.39 \text{ x} (10000 \text{ kPa} / 801 \text{kg/m}^3) \frac{1}{2} \text{ x} 0.0061 \text{s}$

 $= 0.0959 \, \mathrm{m}$

The value sub equation(2) = 1.5 m - 0.0959 m

= 1.4041m

The (1.4041m) sub equation(2)

t = 0.2349s

t total = t + t break up

= 0.2349s + 0.0022 s

= 0.2371 s this total time when the droplet transferred in reactor maximum distance to 1.5 m when used injector with nozzle hole diameter dn = 0.61 mm

Table 4.1 Standard (Nozzle orifices diameter) versus Time when the droplet transferred in reactor max distance (1.5 m)

dn standard (Nozzle orifices diameter)	Time when the droplet transferred in reactor
(John .B Heywood)	max distance (1.5 m)
0.254 mm	0.61062164 s
0.343 mm	0.4453 s
0.61 mm	0.2371 s

Choosing dn = 0.254 mm because this longest time (0.61062164 s) occurred had the droplet exposed for interaction with methanol to produce biodiesel.

4.8.2 Design the diameter of the reactor

Basally equation (4) and equation (5) and data that describe the angle of spray inside reactor can be calculated the diameter of reactor

A = 3 + (0.28 x (ln/dn))......(4) [17]

$$tan(/2) = (1/A) \times 4 \times \prod x (\rho m/\rho l) \frac{1}{2} x (\overline{3} x 6) \dots (5)$$
 [17]

where

In (Hole length) mm

dn (Hole diameter)) mm

when ratio
$$l_n/d_n = 4$$
 [17]

$$A = 3 + (0.28 \times (4))$$

$$A = 4.12$$

Sub (A) in equation(5)

$$\tan (/2) = (1/A) \times 4 \times \prod \times (\rho m / \rho I) \% \times (\overline{3} \times 6)$$

$$= (1/4.12) \times 4 \times 3.14 \times (4 \text{ kg/m}^3 / 801 \text{kg/m}^3) \% \times (\overline{3} \times 6)$$

$$/2 = 3.56$$

when ratio $I_n/d_n = 2.1$ [17]

$$A = 3 + (0.28 \times (2.1))$$

A = 3.588

Sub (A) in equation(5)

tan (/2) = (1/A) x 4 x
$$\prod$$
 x (ρ m / ρ l) ½ x ($\overline{3}$ x 6)
= (1/3.588) x 4 x 3.14 x (4 kg/m³/801kg/m³)½ x ($\overline{3}$ x 6)

$$/2 = 4.09$$

when ratio $l_n/d_n = 0.5$ [17]

$$A = 3 + (0.28 \times (0.5))$$

$$A = 3.14$$

tan (/2) = (1/A) x 4 x
$$\prod$$
 x (ρ m / ρ l) ½ x ($\overline{3}$ x 6)
= (1/3.14) x 4 x 3.14 x (4 kg/m³/801kg/m³)½ x ($\overline{3}$ x 6)
/2 = 4.67

Table 4.2 Ratio between (In (Hole length) /dn (Hole diameter)) versus Angle of spray jet

Ratio (ln / dn) standard value[11]	Angle of spray jet /2
4	3.56
2.1	4.09
0.5	4.67

Design the diameter of reactor while occur maximum angle spray When minimum ratio between (l_n (Hole length) $/d_n$ (Hole diameter)), Choosing ratio $l_n/d_n = 0.5$

Maximum distance before break up and after break up the liquefied fats droplet through reactor equal S=1.5 m [19]

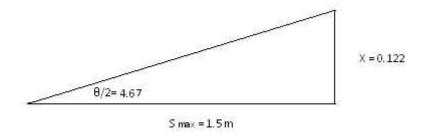


Figure 4.6 Geometry of the jet 1

width of the jet = $2 \times 0.122 \text{ m} = 24.4 \text{ cm}$

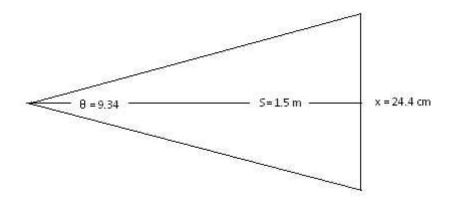


Figure 4.7 Geometry of the jet 2

Design of diameter = 24.4 cm + 10 cm safety = 34.4 cm

The length of reactor maximum distance through reactor equal

L = 1.5 m + 0.16 m safety = 1.66 m

Design the reactor dependent of geometry of spray

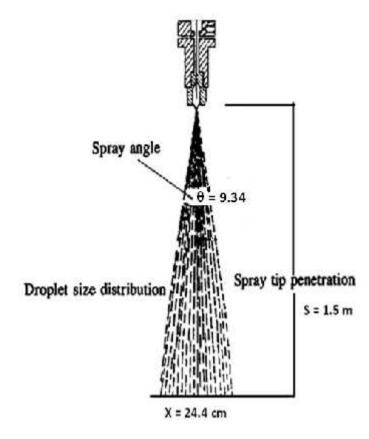


Figure 4.8 Schematic of spray defining its major parameters

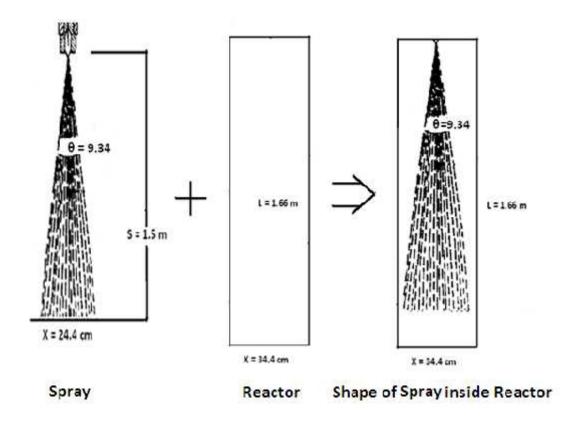


Figure 4.9 Design reactor based on geometry of the spray

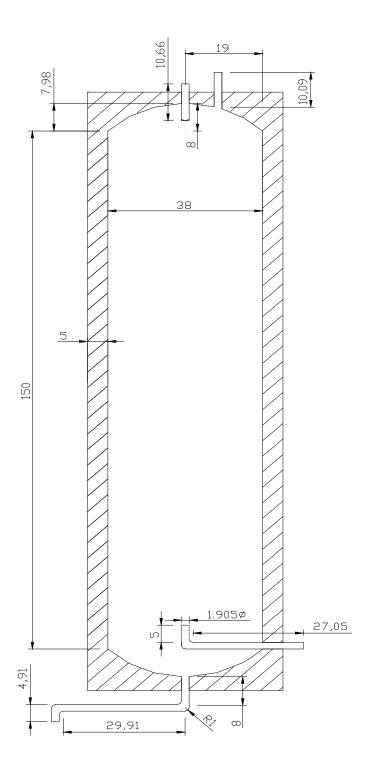


Figure 4.10 Dimensions of the reactor (in millimeter)

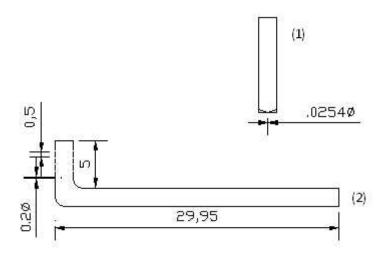


Figure 4.11 (1) Dimensions of injector (in millimeter) (2) Dimensions of pipe inside reactor to get out vapor methanol (in millimeter)

Figure 4.12 Final Shape of reactor

4.9 Design of tanks [1]

4.9.1 Settling Tank Design

As before, it's made of a galvanized steel material, this tank is used for separating biodiesel from glycerin. The tank is conic shaped from the bottom side. For ideal process, it is recommended that the time of settling operation is to be between 8 and 12 hours.

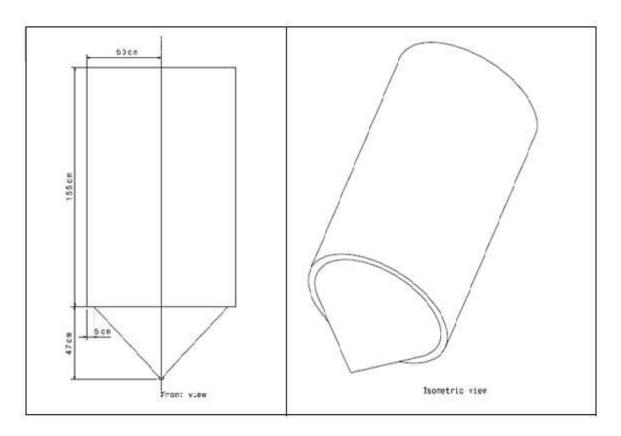


Figure 4.13 Projections of settling tank

The bottom of this tank is provided with a valve for the removal operation of glycerin, also there is another valve located at the top of the conic part of the same tank, which is used for the absorption of biodiesel towards the washing tank.

4.9.2 Washing Tank

Its design has the same designing dimensions of the settling tank, there is a metal pipe which is concentric within the tank, and it is connected to a pump for absorbing water and biodiesel from the opened top of the same pipe.

For ideal process, it is recommended that the time of washing operation is to be between 1 and 1.5 hours, and then, the settling process is to be between 8 and 10 hours.

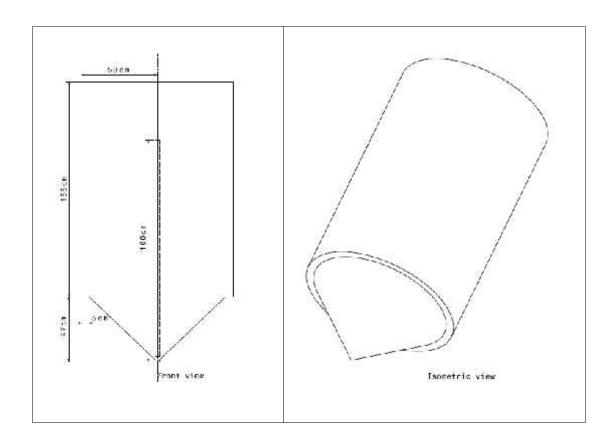


Figure 4.14 Projections of washing tank

The water is added to the tank after the tank is fulfilled with biodiesel. The bottom of this tank is provided with a valve for the removal operation of water, also there is another valve located at the top of the conic part of the same tank, which is used for the absorption of biodiesel towards the storage tank.

The washing process implies absorption of biodiesel and water, and then they will return back to the same tank, it is connected after the top valve. Air can be used for the decomposition of bonds and soap. This process lasts until it is assured that the entire amount is mixed very well completely.

Chapter Five

Conclusions and Recommendations

Content:

- **5.1 Conclusions**
- **5.2 Recommendations**

5.1 Conclusion

- 1. The dimension of the reactor based geometry of the spray ,the diameter of the reactor equal thirty four centimeter and the length of the reactor equal one and half meter .
- 2. Maximum time of the reaction occurred while used smallest nozzle orifices diameter of injector possible.
- 3. Can be increase the reaction by create wider umbrella from droplets downward which allowed better mix between droplets oil and vapor methanol which can be achieved by choose minimum ratio between hole length of injector and hole diameter injector.
- 4. The use of higher reaction temperatures. This process can operate at any temperature below the degradation temperature of fat and oil (i.e. $200 \,^{\circ}$ C) and is not limited to the boiling point of the methanol, which is $61.5 \,^{\circ}$ C.
- 5. The use of atomized oil/fat. The atomization process increases the oil/methanol contact area by producing small sized droplets and therefore increasing the heat and mass transfer that is vital for a rapid reaction.
- 6. The process allows the use of excess methanol vapor can be recycled back to the reactor without the need for expensive separation processes.

5.2 Recommendations

- 1. The NaOH could be deposited and accordingly recommend using sodium as a catalyst sodium methoxide
- 2. Accounts for and a description of the dynamics of interaction within the reactor
- 3. Study how to increase the proportion of interaction

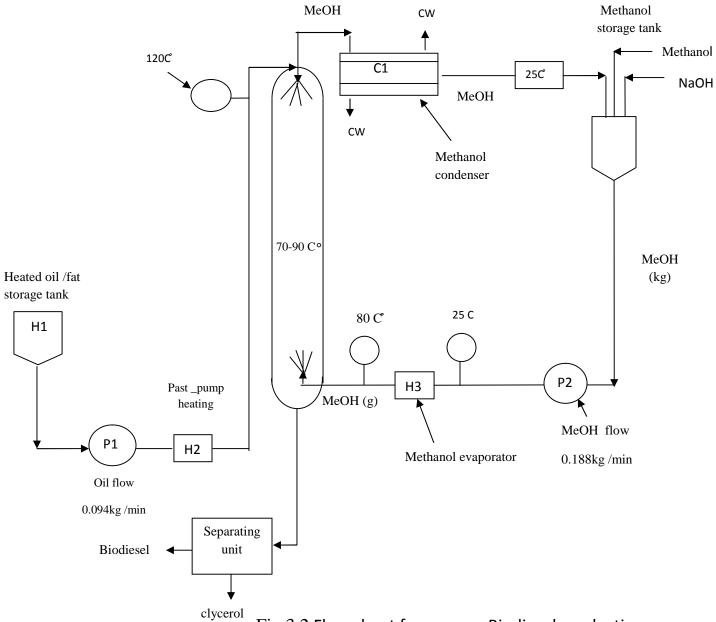


Fig.3.2 Flow sheet for process Biodiesel production

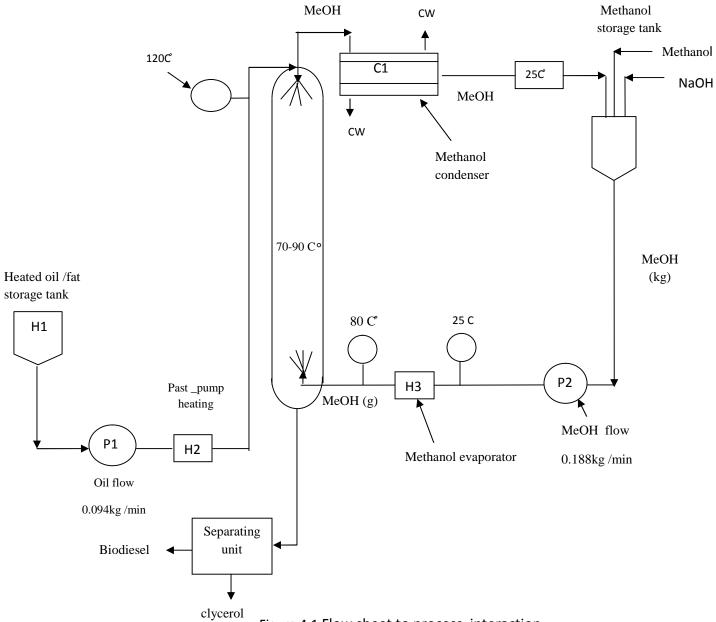


Figure 4.1 Flow sheet to process interaction

REFERANCES

References:

- [1] MahranShweik andMoawia Awawi ,production of biodiesel from waste cooking oil, Palestine Polytechnic UniversityCollege of Engineering and Technology Mechanical Engineering Department-2008.
- [2] Production of Biodiesel Using a Continuous Gas-Liquid ReactorSam.Behzadi*, Mohammed. M. Farid Department of Chemical & Materials Engineering University of Auckland, Private Bag 92019, Auckland NEW ZEALAND.
- [3] Design of a continuous flow biodieselproduction research unit in India Collaboration project between McGill University Bioresource Engineering Department Tamil Nadu Agriculture University McGill University, Macdonald Campus, Bioresource Engineering Department.
- [4] Biodiesel A Realistic Fuel Alternative for Diesel Engines.
- [5] IMPLEMENTATION AND EMISSIONS ANALYSIS OF BIOFUELS IN A COMBUSTION. Garan Geist. Hirotaka Ellis. Advised by Professor Alessandro Gomez. Yale Department of Mechanical Engineering. New Haven, CT 06511. May 1, 2006.
- [6] Cvengros, J.; Cvengrosova, Z. Used Frying Oils and Fats and their Utilization in the Production of Methyl Esters of Higher Fatty Acids.Biomass Bioenergy 2004, 27, 173-181.
- [7] Biodiesel production from waste cooking oil: process design and technology assessment, Y.Zhang,M.A.Dube,D.D.Mclean,M.Kates, Department of chemical engineering, university of Ottawa, received 18 march 2002.
- [8] Biodiesel ProductionTechnologyAugust 2002–January 2004.
- [9] Biodiesel A Realistic Fuel Alternative for Diesel Engines.

- [10] Engineers EDGE solution by design.
- [11]Biodiesel Handling and Use Guidelines", DOE/GO-102006-2358, Third Edition,. September 2006, US Dept. of Energy, Energy Efficiency and Renewable Energ.
- [12]Fluid power, fifth edition, Anthony Esposito, Department of Manufacturing engineering, Miami University, Oxford, Ohio.
- [13] Heat transfer (J.P.HOLMAN) tenth edition.
- [14] Introduction to thermodynamics and heat transfer, Yunus A. Cengel, McGraw-Hill Science/Engineering/Math; 1 edition (November 1, 1996)
- [15] The engineering ToolBox.
- [16] Technical information and safe Handling Guide for methanol.
- [17] Internal Combustion Engine Fundamental (John .B Heywood).
- [18] MahranShweik andMoawia Awawi ,production of biodiesel from waste cooking oil, Palestine Polytechnic UniversityCollege of Engineering and Technology Mechanical Engineering Department-2008.
- [19] (Eighth International Conference on Liquid Atomization and Spray System Pasadena CA.USA.July2000) Department of mechanical engineering Stanford university (Stanford,CA 94305 USA).
- [20]Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York 13244, and Chemical Engineering School, Universidad delValle, Cali 25360, Colombia Received July 23, 2009. Revised Manuscript Received October 2, 2009.