بسم الله الرحمن الرحيم

Palestine PolytechnicUniversity

College of Engineering \& Technology
MechanicalEngineering Department

Graduation Project

Design of Mechanical system of residential villa Hebron city

Project Team
YasminBallout

Project Supervisor
 DrIshaq Seder

Hebron - Palestine
December 2013

جامعة بوليتكنك فلسطين
 Palestine Polytechnic University (PPU)
 Hebron-Palestine
 PROJECT NAME
 Design of Mechanical system of residential villa
 Hebron city

Project Team

YasminBallout

According to the project supervisor and according to the agreement of the Testing committee members, this project is submitted to the Department of Mechanical Engineering at college of ngineering and technology in partial fulfillment of therequirements of (B.SC) degree

Supervisor Signature
\qquad

Examine communitySignature

Department Head Signature

Dedication

I didicate this project to my family and my friends who beleived in me Special dedication to Diaa al qemare, Mahmoud manasra, Slame rzeqat, ghada tarayra, Abed almnem al amle and Ahmed Bardwil

Acknowledgment

My thanks go first to my supervisor dr.Ishaq Seder for his dedication and support , and being such great guide and amazing person Also I want to thank all my teachers specially mechanical ones.

Abstract

: Air conditioning water supply, drainage and sewage are the most important mechanical works that must be done during building construction. This can provide comfortable life for the customer and help him do his daily activities. Tha aim this project is to be familiar with the mechanical works done during any scheme and how to select the suitable mechanical system which have high economically and high performance.

Table of contents

Title I
Department head and supervisor signitur II
Dedication III
Acknowledgment IV
Abstract V
Table of contents VI
Table number VIII
REFERENCES IX
Chapter one introduction 1
Introduction 2
Budgets 3
Time planning. 3
CHAPTER TWODesign Conditions 4
History of HVAC 5
Purposes of HVAC 6
Human Comfort 7
General Principles of heat transfer 7
Indoor Design Conditions (Cooling\& Heating) 7
Outdoor Design Conditions (cooling) 8
Outdoor Design Conditions (Heating) 8
CHAPTER THREEThe designed building 9
Description and details of the bulding. 10
Descriptions of the wall and floor sections and
Related Overall heat transfer coefficient (U) 14
Cooling load calculation 19
Chapter Four Operating Systems 23
System selection inquiries 24
Air conditioning system (heating\& cooling) 25
Chapter fivePlumbing system 29
introduction 30
plumbing 30
Chapter six Swimming pool calculation 41
Swimming pool. 42
Level of alkalinity and acidity 42
swimming pool calculation 45
Quantity tables 47

Table Number	Description	Page
Table 1.1	budgets	3
Table 1.2	project times - schedule for the first semester	3
Table 3.1	The basement floor area description	11
Table 3.2	The ground floor area description	12
Table 3.3	The first floor area calculation	13
Table 3.4	The roof floor area calculation	14
Table 3.5	thermal resistance calculation for external wall	15
Table 3.6	thermal resistance calculation For internal wall	15
Table 3.7	thermalresistance calculation for ceiling	15
Table 3.8	thermal resistance calculation for floor	16
Table 3.9	Heating load calculations for space number 20	17
Table 3.10	Heating load calculation forBasement floor	17
Table 3.11	Heating load calculation for Ground floor	18
Table 3.12	Heating load calculation for First floor	18
Table 3.13	Heating load calculation forRoof floor	19
Table 3.14	Cooling load calculation for space \# 20	21
Table 3.15	heat gain through windows by transmission	21
Table 3.16	heat gain through windows by convection	22
Table 5.1	plumbing calculation for basement floor	31
Table 5.2	plumbing calculation for Ground floor	31
Table 5.3	plumbing calculation for First floor	31
Table 5.4	plumbing calculation for Roof	32

REFERENCES

1) ASTRALPOOL, Swimming pools and SPAS ,Catalogue 2004-2005
2) JOHN DAWES, Design and planning of swimming pools,CPI publishing , London, 1979.
3) Ashrae book
4) Fundamentals to HVAC systems (Robert mcdowall 2007)
5) Fluid mechanics (sie) (white)

Chapter one

Introduction

Chapter one

1-1 Introduction

This project contains a full mechanical design for a villa and swimming pool under construction as it would be shown in the coming chapters, mechanical work includes (Air conditioning, water supply, and drainage).

The architectural drawings have been taken from the engineering office of Areen, main objective in this project is to be familiar with the mechanical works and new technology in mechanical systems to be ready for working in this field after graduation. Also doing such project during study has many benefits specially being under teachers supervision.

This project has been divided into eight chapters: the first chapter is to make introduction to the project contents, chapter two is to make a little introduction to air conditioning and a small look to its history and mechanical system used in this project including HVAC and plumbing systems, chapter three made a complete description for the building its location, and thermal, heating and cooling loads.

The fourth chapter is about the design condition especially in Palestine, The fifth chapter is about operating system. The sixth chapter made an introduction to plumbing systems and, chapter seven is calculating the capacity for the swimming pool and finally the conclusion in chapter eight.

1-2 Budget

Table (1-1) budgets

Task	Cost (Nis)
Using internet	
Transportation and into the project	
Other Transportation	500
Printing papers	
Printing drawing	800
Total	

1-3 Time planning

The project plan follows the following time schedule, which includes the related tasks of study and system analysis.

Table (1-2):project times - schedule for the first semester

Task/week																
Collection information about the project																

CHAPTER TWO

Design Conditions

Chapter two

. 1 History of HVAC

An early method of cooling air as used in India was to put some quantity of wet grass over windows where they cooled incoming air by evaporation. Modern airconditioning had its beginnings in the 19th-century, in which atomized sprays of water were used for simultaneous humidification and cooling.

In the early 20th century, Willis Carrier, discovered the "dew point control," an air-conditioning unit based on the principle that cooled air reaches saturation and loses moisture through condensation. Carrier also discovered a system where in conditioned air was fed from the ceiling and exhausted at floor level. The first fully air-conditioned office building, the Milam Building in San Antonio, Texas, U.S., was constructed in the late 1920s.

In the early 1930s an important step was occurred, which is the development of highly-efficient refrigerant gases of low toxicity known as Freon's (carbon compounds containing fluorine and chlorine or bromine). By the middle of that decade American railways had installed small air-conditioning units on their trains, and by 1950 compact units had become practical for use in single rooms. Since the late 1950s air conditioning has become more common in the modern world.

. 2 Purposes of HVAC

The purpose of HVAC systems is to provide building occupants with thermal comfort, humidity control, ventilation and air filtration, however a poorly designed or constructed HVAC system may result in systems that are costly to operate, that cause discomfort, that are noisy, and that permit pollution to occur to the conditioned spaces.

. 3 Human Comfort

In order for the body to feel comfortable, the surrounding environment must be of suitable temperature and humidity to transfer this excess heat. If the temperature of the air surrounding the body is too high, the body feels uncomfortably warm. The body responds by increasing the rate of perspiration in order to increase the heat loss through evaporation of body moisture. Additionally, if the surrounding air is too humid, the air is nearly saturated and it is more difficult to evaporate body moisture.

The term "comfort" is often used to define a set of conditions than just temperature and humidity. Air movement, adequate fresh air, cleanliness of the air, noise levels in the space, adequate lighting, and proper furniture and work surfaces, are just a few of the other variables that contribute to making a space comfortable for its occupants.

Thermal comfort depends on creating an environment of dry-bulb temperature, humidity, and air motion that is appropriate for the activity level of the people in the space. This environment allows the body's rate of heat generation to balance with the body's rate of heat loss.

So, heating and air conditioning systems use the principles of heat transfer to maintain comfortable indoor conditions for people.

Fig. (1-1): The comfort zone defined by ASHRAE standard

. 4 General Principles of heat transfer

Heat energy is transferred from one substance to another by one of three basic processes which are conduction, convection, or radiation. Conduction is the process of transferring heat through a solid. Convection is the process of transferring heat as the result of the movement of a fluid. Convection often occurs as the result of the natural movement of air caused by temperature differences. Radiation is the process of transferring heat by means of electromagnetic waves, emitted due to the temperature difference between two objects. An interesting thing about radiated heat is that it does not heat the air between the source and the object it contacts; it only heats the object itself.

So all these criteria will be considered in this project in order to increase the reliability and efficiency of the systems will be used in order to reduce the leakages.

2.5 Indoor Design Conditions (Cooling \& Heating)

With a specific amount of air movement, thermal comfort can be produced with certain combinations of dry-bulb temperature and relative humidity. When plotted on a psychometric chart, these combinations form a range of conditions for delivering acceptable thermal comfort to the people in a space. Determining the desired condition of the space is the first step in estimating the cooling and heating loads for the space. We will choose $1.5 \mathrm{~m} / \mathrm{s}$ air velocity, $20^{\circ} \mathrm{C}$ dry-bulb temperature and 45% relative humidity. Air entering the space must be filtered regardless being fresh outdoor or recalculated.

2.6 Outdoor Design Conditions (Cooling)

For estimating the cooling load of a space we have to determine the highest, frequently-occurring outdoor air temperature. In the summer, for example, when the temperature outside is high, heat transfers from outdoors to indoors, thus contributing to the heat gain of the space. Obviously, HVAC systems would be greatly oversized if cooling load calculations were based on the most extreme outdoor temperature ever recorded for the location. The cooling outdoor design conditions for Hebron area, $35^{\circ} \mathrm{C}$ for 65% dry-bulb temperature.

2.7 Outdoor Design Conditions (Heating)

Similar to the cooling-design outdoor conditions, heating-design outdoor conditions in Hebron area since our heating routine is intermittent outdoor 45\% dry-bulb temperature is $3^{\circ} \mathrm{C}$.

CHAPTER THREE

The designed building

3.1 Description and details building

The building is a $696 \mathrm{~m}^{2}$ located in Hebron city at 1005. m above sea level. Our level reference in the building floors is to be 0.00 m on the

The four directions of the building (North, south ...) are shown on the layouts. The main entrance of the building is to the south.

The building is to be used for the residential purpose. It consists of the ground floor and one floor below the ground which is the basement in addition to the first floors above the ground and the roof floor.

The basement floor is 2.99 m height as one part shown in the layout and 2.73 m height at the other part because the slab is thickened, the floor area is $190 \mathrm{~m}^{2}$ to be used for service room, kitchen ,well , two bath rooms, besides to a large multi use area. It consists of fourteen outside double glass windows and four inside, outside doors detailed as follows.

Figure 3.1: The basement floor

Table 3.1: The basement floor area description

Place	Floor Area (m^{2})	Height (m)	External Wall Position	Wall's Section $\operatorname{area}\left(\mathrm{m}^{2}\right)$	Windows Section Area (m^{2})
$\begin{gathered} \text { Space \# } 00 \\ \text { (well) } \end{gathered}$	22.37	2.73	North	*	*
			East	*	*
Space \# 01 (hall +kitchen)	123.61	2.73	North	25.2	5.59
			South	20.994	5.76
			East	23.75	4.96
			West	23.75	4.96
Space \# 02 (service)	25.52	2.73	North	10.996	5.59
			East	3.6582	0
			West	9.639	0
$\begin{gathered} \text { Space \# } 03 \\ \text { (WC) } \end{gathered}$	1.84	2.73	West	3.1395	0
Space \# 04 (WC)	1.84	2.73	East	3.1395	0
Total floor area	191.94				

The ground floor is 3.78 m height as one part shown in the layout and 3.52 m height at the other part because the slab is thickened, the floor area is $190 \mathrm{~m}^{2}$ contains a kitchen, stairs, one bed room, one bath room, and a large hall to be used for two living rooms and two eating tables.
It consists of nineteen outside double glass windows and three inside and outside doors detailed as follows.

Figure 3.2: The ground floor area layout

Table 3.2: The ground floor area description

Place	Floor Area (m)	Height (m)	External Wall Position	Wall's Section $\operatorname{area}\left(\mathrm{m}^{2}\right)$	Windows Section Area (m^{2})
Space \#10 (kitchen)	24	3.52	North	20	3.2
			East	12.72	1.6
			West	4.7168	*
Space \#11 (bedroom)	18.41	3.52	North	11.776	3.6
			East	4.541	1.6
			West	13.184	*
Space \#12 (hall)	134.22	3.52	North	32.49	5.59
			South	27.07	6.08
			East	30.6227	4.96
			West	26.2227	4.96
Space \#13 (W.C)	5.11	3.52	North	5.1	1.6
			East	3.18	0
Space \#14 (W.C)	2	3.52	West	4.4	0
Total floor area	191.94				

The first floor is 3.15 m height as one part shown in the layout and 2.89 m height at the other part because the slab is thickened, the floor area is $151.83 \mathrm{~m}^{2}$ to be used for three bed rooms, three WC, living room, Director Room, server room, and library. It consists of thirty eight outside double glass windows and seventeen inside doors detailed as follows.

Figure 3.3: The first floor

Table 3.3: The first floor area calculation

Place	Height (m)	Floor Area (m^{2})	External Wall Position	Wall's Section $\operatorname{area}\left(\mathrm{m}^{2}\right)$	Windows Section Area (m^{2})
Space\#20 (bed room)	2.89	19.07	North	9.96	1.6
			East	10.538	1.6
			south	9.537	*
Space\#21 (Hall)	2.89	53.44	North	31	5.59
			East	8.173	*
			West	8.173	*
Space\#22 (bed room)	2.89	19.07	North	10.538	*
			West	10.538	1.6
			south	9.537	*
Space\#23 (bed room)	2.89	31.12	South	16.824	3.36
			West	8.773	1.92
Space\#24 (WC)	2.89	19.4	East	10.22	1.92
			south	11.23	1.44
Space\#25 (WC)	2.89	4.5	north	3.473	1.44
			East	3.18	0
Space\#26 (WC)	2.89	4.5	north	3.473	1.44
			West	3.18	0
Total floor area	151.1				

The roof floor is 3.15 m height as one part shown in the layout and 2.89 m height at the other part because the slab is thickened, the floor area is $69.62 \mathrm{~m}^{2}$ to be used for the boiler room, one WC, multi use area. It consists of ten outside double glass windows and four inside and inside doors detailed as follows

Figure 3.4 the roof floor

Table 3.4 : The roof floor area calculation

Place	Height (m)	Floor Area (m²)	External Wall Position	Wall's Section $\operatorname{area}\left(\mathrm{m}^{2}\right)$	Windows Section Area (m^{2})
$\begin{gathered} \text { Space \#30 } \\ \text { (WC) } \\ \hline \end{gathered}$	2.89	6.12	North	5.336	1.6
			East	5.76	1.6
Space \#31 (Hall)	2.89	55.92	North	31	26.325
			South	21.319	60.9
			East	8.173	
			West	8.173	
Space \#32 (Boiler room)	2.89	6.12	North	5.336	1.6
			West	5.76	1.6
Total floor area			68.16		

3.2 Descriptions of the wall and floor sections and related Overall heat transfer coefficient (U)

There is much type of walls and floor sections exist in the structure of the building. Overall heat transfer coefficient calculated according to the thermal resistance R to the wall components such that
$\mathrm{U}=1 /\left(\mathrm{R}_{\text {total }}\right)$
$\mathrm{R}=\mathrm{L} / \mathrm{K}$,Where
L: thickness of wall component.
K : thermal conductivity W/m.k
Table 3.5: thermal resistance calculation for external wall

Material Type	Thick. (m)	\mathbf{K} $(\mathbf{W} / \mathbf{m . k})$	Area $\left(\mathbf{m}^{\mathbf{2})}\right.$	\mathbf{R} $\left(\mathbf{m}^{2} \mathbf{k} / \mathbf{W}\right)$
Inside Air Film	$*$	$*$	1	0.13
Stone	0.05	2.3	1	0.021
Concrete	0.15	1.74	1	0.086
Thermal insulation	0.03	0.04	1	0.75
Brick	0.7	0.9	1	0.777
plaster	0.02	1.4	1	0.014
Outside Air film	$*$	$*$	1	0.04
Total Resistance	1.820009519			
Overall Heat Transfer Coefficient				

Table 3.6: thermal resistance calculation For internal wall

Material Type	Thick. (m)	\mathbf{K} $(\mathbf{W} / \mathbf{m} . \mathbf{k})$	Area $\left(\mathbf{m}^{2}\right)$	\mathbf{R} $\left(\mathbf{m}^{\mathbf{2} . \mathbf{k} / \mathbf{W})}\right.$
Inside Air Film	$*$	$*$	1	0.13
Concrete	0.2	1.74	1	0.114942529
plaster	0.02	1.4	1	0.014285714
plaster	0.02	1.4	1	0.014285714
Inside Air Film	$*$	$*$	1	0.13
Total Resistance	00.406174			
Overall Heat Transfer Coefficient	2.48			

Table 3.7: thermal resistance calculation for ceiling

Material Type	Thick. (m)	$\begin{gathered} \hline \mathbf{K} \\ (\mathbf{W} / \mathbf{m} \cdot \mathbf{k}) \end{gathered}$	Area (m)	$\begin{gathered} \mathbf{R} \\ \left(\mathbf{m}^{2} . \mathrm{k} / \mathrm{W}\right) \end{gathered}$
Inside Air Film	*	*	1	0.1
Tiles	0.03	1.3	1	0.023
mortar	0.03	1.4	1	0.021
Sand	0.07	0.6	1	0.116
insulation	0.01	0.15	1	0.066
Thermal resistance	0.03	0.04	1	0.75
concrete	0.08	0.9	1	0.088
brick	0.24	1.7	1	0.141
plaster	0.02	1.4	1	0.014
Outside Air film	*	*	1	0.04
R	1.3624			
Overall Heat Transfer Coefficient	$\mathrm{U}=0.734$			

Table 3.8 : thermal resistance calculation for floor

Material Type	Thick. (m)	\mathbf{K} $(\mathbf{W} / \mathbf{m . k})$	Area $\left(\mathbf{m}^{2}\right)$	\mathbf{R} $\left(\mathbf{m}^{2} . \mathbf{k} / \mathbf{W}\right)$
Inside Air Film	$*$	$*$	1	0.17
tiles	0.03	1.1	1	0.027
mortar	0.03	1.4	1	0.021
sand	0.07	0.6	1	1.17
concrete	0.08	0.9	1	0.088
Base course	0.2	1.2	1	0.166
R				
Overall Heat Transfer Coefficient	$\mathrm{U}=0.608177$			

For windows
Double glass, aluminum frame wind speed (0.5-5)
$\mathrm{U}=3.2 \mathrm{~W} / \mathrm{m}^{2} . \mathrm{K}$
For doors
External doors: steel without storm door Internal doors: 45mm-wood without storm door

Heating load calculations was done for space number20 as a sample as shown in table 3.9

Figure 3.5: space number 20

Table 3.9: Heating load calculations for space number 20
$\mathbf{Q}_{\text {loss }}=\mathbf{U}_{\text {ov. }} *$ Area $*\left(\mathbf{T}_{\mathbf{i}}-\mathbf{T}_{\mathbf{0}}\right)$
$\mathbf{Q}_{\text {Room }}=0.998 \mathrm{~kW}$
Heating load calculations for all the building are shown in tables(3.9), (3.10),(3.11)

Table 3.10: Heating load calculation for Basement floor

Surface	Space			
	Kitchen+ hall	Service	W.C	W.C
	$\mathrm{Q}(\mathrm{kW})$			
External wall
Internal wall	.	.		
External (well)	.	.		.
Ceiling				
Floor
Windows	.	.		
Doors	.	.		
Ventilation
Total	.	.	0.1286	0.1666
Total heating load for the floor		14.49 kW		

Table 3.11: Heating load calculation for Ground floor

Surface	Space				
	Kitchen	Bedroom	Hall	W.C	W.C
	Q(kW)				
External wall
Internal wall		.			
Ceiling					
Floor					
Windows	
Doors			.		
Ventilation
Total	0.412
Total heating load for the floor	15.16 kW				

Table 3.12: Heating load calculation for First floor

surface	Space							
	Bedroom	hall	Bedroom	bedroom	W.C	W.C	W.C	
	$\mathrm{Q}(\mathrm{kW})$							
External wall	
Internal wall	.-		.-		.	.	.	
Ceiling	0.522		.	0	0		0.476	
Floor								
Windows	
Doors	
Ventilation	
Total	
Total heating load for the floor		9.023 kW						

Table 3.13: Heating load calculation for Roof floor

Surface	Space		
	W.C	hall	boiler room
	$\mathrm{Q}(\mathrm{kW})$		
External wall	.	.	.
Internal wall		0.779	0.085
Ceiling	0.085		
Floor		.	.
Windows	.	.	
Doors		.	.
Ventilation	.	4.674	0.542
Total	0.745		5.961 kW
Total heating load for the floor			

water heater capacity
$\mathrm{Q}_{\mathrm{w}}=\mathrm{m} * \mathrm{cp} * \Delta \mathrm{~T}$, Where

$$
\begin{aligned}
& \mathrm{m}=((65 \mathrm{ltr} / \mathrm{day} / \text { person } * 1 * 1000) * 8) /(24 * 3600) \\
& \quad=6.1 \mathrm{~m}^{3} / \mathrm{sec} \\
& \mathrm{Q}_{\mathrm{w}}=6.1 * 4.19 * 60 \\
& \quad=1.5 \mathrm{~kW} . \\
& \quad \mathrm{Q}_{\text {total }}=46.134+10 \%=50.74 \mathrm{~kW}
\end{aligned}
$$

Heating system will be selected for this project is water heating system All systems components and details will be selected in next semester

3.3 Cooling load calculation

The Cooling load Consists of the following heat gains :
(1) heat gains that are transmitted through building structures such as walls, floors and ceilings that are adjacent to unconditioned spaces. The heat transmitted is caused by temperature difference that exists both sides of the structure.
(2) Heat gains due to solar effect which include:
(a) solar radiation transmitted through the glass and absorbed by inside space surfaces and furniture.
(b) Solar radiation absorbed by walls, glass windows, glass doors and roofs, that are exposed to solar radiation.
(3) Sensible and latent heat gains brought into the spaces as a result of infiltration of air through windows and doors.
(4) sensible heat produced in the space by lights, appliance, motors and other miscellaneous heat gains.
(5) Latent heat produced from cooking, hot baths. Or any other moisture producing equipment.
(6) sensible and latent heat produced by occupants.
Heat gain from solar effect depends heavily on tabular data for calculation the tables needed for the calculations are included.

3.4 Heat Gain Through Sunlit Walls And Roofs:

Direct and diffused solar radiation that is absorbed by walls and roofs result in raising the temperature of these surfaces. Amount of radiation absorbed by walls and roofs depends upon time of the day, building orientation, types of wall construction and presence of shading.

The calculation of this type of heat gain can be obtained by using the following for heat transmission through walls.
$\mathrm{Q}=\mathrm{UA}(\mathrm{CLTD})_{\text {corr }}$
$(\text { CLTD })_{\text {corr }}=($ CLTD +LM$) \mathrm{k}+\left(25.5-\mathrm{T}_{\mathrm{i}}\right)+\left(\mathrm{T}_{\mathrm{o}, \mathrm{m}}-29.4\right) \mathrm{f}$
Where:
LM is latitude correction factor, which can be obtained from table s

CLTD cooling load temperature differences can be obtained from table according to the wall orientation.
k : color adjustment factor such that $\mathrm{k}=0.65$ for permanent light colour walls.
f : attic or roof fan factor such that $\mathrm{f}=1.0$, if there is no attic or roof fan; $\mathrm{f}=0.75$, if there is an attic or roof fan.
(25.5- T_{i}) :correction value for indoor design temperature where T_{i} is the room design temperature C^{0}.
($\mathrm{T}_{\mathrm{o}, \mathrm{m}}-29.4$) correction factor for outdoor mean temperature $\mathrm{T}_{\mathrm{o}, \mathrm{m}}$. it is related to the outdoor design temperature T_{o}, according to the relation.

$$
\mathrm{T}_{\mathrm{o}, \mathrm{~m}}=\mathrm{T}_{\mathrm{o}}-\frac{\mathrm{DR}}{2}
$$

Where DR is the daily rang temperature which equals to the difference between the average maximum and average minimum temperature for the warmest month of the summer season.

Cooling load calculations for space \#20
1- heat gain through external walls
$\mathrm{Q}_{\text {cooling }}=$ area $* \mathrm{U}_{\mathrm{ov}} *$ CLTD $_{\text {corr }}$

Table 3.14: Cooling load calculation for space \# 20

surface	Area $\left(\mathrm{m}^{2}\right)$	U_{ov}	CLTD	CLTD $_{\text {corr }}$	LM	$\mathrm{Q}_{\text {cooling }}$
North wall	25.2	0.68	6	8.235	-1.1	55.77401
South wall	20.994	0.68	7	9.925	0.5	64.36521
East wall	23.75	0.68	13	13.5	0	96.73884
West wall	0	0.68	10	11.25	0	0
glass	20.59	3.2	7	11.9	${ }^{*}$	121.856
Total						

2- heat gain through windows
a. by transmission
$\mathrm{Q}_{\text {transmission }}=$ area * SHG * SC * CLF

Table 3.15: heat gain through windows by transmission

glass	SHG	SC	CLF	area	$\mathbf{Q}_{\mathbf{t r}}$
North		.	.	1.6	42.12
South		.	.	0	0
East		.	.	1.6	102.8208
West		.	.	0	0

b. by convection:

$\mathrm{Q}_{\text {convection }}=$ Area * $\mathrm{U}_{\text {ov }} *$ CLTD $_{\text {corr }}$

$$
\begin{aligned}
\text { CLTD }_{\text {corr }} & \text { CLTD }+\left(25.5-\mathrm{T}_{\mathrm{i}}\right)+\left(\mathrm{T}_{\mathrm{o}, \mathrm{~m}}-29.4\right) \\
& =7+5.5-.6 \\
& =11.9 \mathrm{C}^{\circ}
\end{aligned}
$$

$\mathrm{Q}_{\text {convection }}=19.07$ * 3.2 * 11.9

$$
=0.726 \mathrm{~kW}
$$

Table 3.16: heat gain through windows by convection

floor	$\mathrm{Q}_{\text {cooling }}$									
	Extern al wall	$\begin{gathered} \text { Internal } \\ \text { wall } \end{gathered}$		$\begin{gathered} \text { Occupant } \\ \text { s } \\ \text { (latent) } \end{gathered}$	$\begin{gathered} \text { Glass } \\ \text { (transmission) } \end{gathered}$	Glass (convecti on)	light	Equi pmen ts(se n)	Equip ment (lat)	ventilat ion
basement	$\begin{gathered} 2.907 \\ 2 \end{gathered}$	0.3943	61.62	0.078	1.05	0.27	4	4.4	1.4	16
ground	2.35	.			1.54	0.35				
first	3.54	0.1195			. 723	0.26	.			
roof	8.45	. 0996			1.5	1.1	1.6			
total	12.3				4.8	.	.			

Total sensible cooling load $=21.48 \mathrm{kw}$
Total latent cooling load $=17.48 \mathrm{kw}$
Total cooling load $=38.96 \mathrm{~kW}$
Central cooling system will be used in this project with 25% fresh air and 75%

Chapter Four

Operating Systems

Chapter Four

4.1 System selected

The designer have to recommend one system from various systems that will perform as desired. The designer and the owner have to decide with each other the criteria that may be considered as:

1- Performance requirements
2- Capacity requirements
3-Spatial requirements
4- First cost as:
a- System cost b- Cost to add zones c- Ability to increase capacity d-
Contribution to life safety needs e- Air quality control
5- Operating cost as:
a- Energy costs b- Gas c- Oil d- Electricity e- Water costs f- Chemical costs
g- Manpower costs
6- Reliability
7- Flexibility
8- Maintainability as: a- Labor costs b- Licensing for operators c- Material costs

4.1.1 System selection inquiries

1- If the system fit in the available space, or does it require some architectural modification.

2- If the system use more floor space than others considered, or require construction of additional space for mechanical rooms or shafts.

3- If the system deliver the desired uniform temperature under varying weather and solar conditions.

4- Cost of the system to own compared to others considered.
5- The recovery time of the initial investment, interest on investment system life, and the future cost of replacement equipment.

6- The operating costs-for energy, maintenance, labor, and supplies of this system compared to others.

7- The reliability can the owner expects compared to other systems.
8 - Component failures affect the entire building, or affect only limited areas.
9- The easiest of the system to be serviced.
10- The time can the system be restored to operation after various equipment failures.

11- The system flexibility to meet changes in the owner's needs.
12- Ability of the system to meet the increased capacity requirements of a space when equipment is added.

4.2 air conditioning system (heating \& cooling)

4.2.1 Operating system

Operating system used in this project the VRV system which has many criteria that make it suitable for the project
The VRV system is:

4.2.1.1 Stylish and compact Design

Indoor unit with such a sleek profile is an air conditioning unit.In standby mode, the discharge opening is closed, resulting in a compact depth of only 15 cm . When starting the unit up, the entire front panel slides smoothly open

4.2.1.2 Clean and comfortable air flow

For the first time in history, a titanium apatite photocatalyticair purification filter is integrated in an air conitioningunit. This to increase the active surface area for effective purification and deodorization, even when a high volume of air is required. Super quiet: The indoor/outdoor unit silent operation function brings us comfort by offering an industry top-level quiet operation of $22 \mathrm{~dB}(\mathrm{~A})$ for the indoor unit and $43 \mathrm{~dB}(\mathrm{~A})$ for the outdoor Unit.

Cooling mode

Heating mode

4.2.1.3 Sensational thinning technology

- High efficiency slit fin heat exchanger
- Miniature cross flow fan

The blade configuration has been optimized to achieve quiet operation and powerful air flow, while reducing the fan's diameter by 20% compared to conventional models.

4.2.1.4 Superb energy efficiency

the energy efficiency is improved. At the same time the substantial energy savings compared is realized to conventional models by achieving an industrial top class EER of 4.03 and COP of 4.15 . These top of the class values are achieved by the following 3 technologies:

- PAM Inverter control
- Reluctance DC motor + DC Fan motor
- Swing compressor

4.2.1.5 Comfort mode

a wide-angle distribution flap reassures draught free operation. During cooling operation the flap angle turns horizontally to prevent cold air blowing directly on the body, while during heating operation it turns downward vertically to send the warm air directly to the feet.

This function combines Vertical and Horizontal auto-swing to circulate a stream of cool/warm air right to the corners of even large spaces. Why VRV is suitable for this project 1 State of the art design: sleek, compact and stylish outlook 1 Available in 2 color variations: mat crystal white and mat crystal silver 1 Lightweight and compact 1 Easy to clean flat suction grille 1 Superb energy efficiency 1 Movement sensor saves power consumption in unoccupied rooms 1

Comfort mode reassures draught free operation thanks to the new wide angle distribution flap 1 The new titanium apatite photo catalytic air purification filter increases the active surface area for effective purification and deodorization 1 Horizontal and vertical auto-swing 3D-air flow ensure efficient air and temperature distribution. l Powerful mode can be selected for rapid cooling or heating 1 Indoor / outdoor unit silent operation

4.22 Air conditioning system design:

In order to determine the number of HVAC units many steps where done, first dividing the floors into zones, and determining the loads for each zone, the type of the indoor units using the charts and the catalogue of the company, after that connects the outdoor units with the indoor ones All the details are shown in the next figure

Air conditioning were done for the four floors, in each one the indoor units were either ducted or wall mounted which needs no ducts , the duct design for the ducted units were done by the following way:
Using velocity method
Determine the velocity and the volumetric flow rate for air supply:
Air velocity $=0.02 \mathrm{~m}^{3}$ (table -10-1)
By the eq
$\mathrm{V}=(\Pi / 4)^{*} \mathrm{~d}^{2} *$ velocity
$\mathrm{D}=0.2 / 1.96=.10 \mathrm{~m}$
The duct size is 10 cm circular cross section
Using the chart 10-5 the pressure drop per equivalent length $=1 \mathrm{pa} / \mathrm{m}$

Chapter five

Plumbing system

Chapter five

5-1 Introduction

One of the two basic functions of a building pluming system is the supple of water. (The other is drainage.) in the vast majority of building ,only potable water is supplied, regardless of its eventual use. The source of water is almost always a water utility pipeline in the street. (Artesian wells are used in remote isolated areas.) it is the plumbing technologist's responsibility to design the entire water service and distribution system for all uses, recognizing the pressure and flow limitations of the water supple.

5-2 Plumbing

The goal of modern plumbing design for buildings as it will be discussed in the book, is to safely and reliably provide domestic water, cooking gas and water for firefighting and to remove sanitary wastes. The word safely is emphasized because; although it would not appear so at first glance plumbing systems can be very dangerous if improperly designed. Dangers from coking/heating gas are obvious. Less obvious is the explosive potential of hot water system and pressurized cold water system.

The nauseating effect of improperly vented sanitary drainage system and the disease causing potential of inadequate sanitary drainage. System reliability is of primary importance to the beneficial occupancy of a building. Think for a minute about the disruption of normal building use that can be caused by loss of water supple or stoppage of the drainage system. The image is sufficient to confirm the importance of plumping system reliability. Moreover, reliability means not only long periods of trouble-free service but also a design that permits easy, rapid, economical and effective repairs to be made.

Table 5.1 : plumbing calculation for basement floor

Fixture unit	No. of Unit	WSFU from table (\quad)	Total no. WSFU for cold water	Total no. WSFU for hot water	Total no. WSFU for hot and cold water
Sink		$3 / 4^{*}$	\cdot		
W.C		$3 / 4^{*}$			
lavatory		$3 / 4^{*}$	\cdot	\cdot	
Total WSFU					
Total gal/min		\cdot			

The number $3 / 4$ is taken from table 9.3 which a factor for private use
Table 5.2: plumbing calculation for Ground floor

Fixture unit	No. of Unit	WSFU from table (\quad)	Total no. WSFU for cold water	Total no. WSFU for hot water	Total no. WSFU for hot and cold water
Sink	1	3/4*	.	.	
dishwasher	1	3/4*	.	.	.
Bathtupe		3/4*	.	.	
W.C		3/4*			
lavatory		3/4*	.		
Total WSFU			.	.	
Total gal/min			.		.

Table 5.3: plumbing calculation for First floor

Fixture unit	No. of Unit	WSFU from table $(~)$	Total no. WSFU for cold water	Total no. WSFU for hot water	Total no. WSFU for hot and cold water
Urinal	1	$3 / 4^{*}$	3.75		
Bath tube		$3 / 4^{*}$	\cdot	\cdot	
W.C		$3 / 4^{*}$	\cdot		
lavatory	$3 / 4^{*}$			$*$	
Total WSFU					\cdot
Total gal/min					\cdot

Table 5.4: plumbing calculation for Roof

Fixture unit	No. of Unit	WSFU from table $(~)$	Total no. WSFU for cold water	Total no. WSFU for hot water	Total no. WSFU for hot and cold water
W.C	1	34^{*}	\cdot		
lavatory		34^{*}	\cdot	\cdot	
Cloth washer	34^{*}	\cdot	\cdot		
Total WSFU				\cdot	\cdot
Total gal/min					

1- Design Of Well:

- The total area of the building service $=696 \mathrm{~m}^{2}$
- The amount of water fall in Palestine every year is 420 mm
- The volume of well required

$$
\begin{aligned}
& =\text { area of building service } \times \text { amount of water fall yearly } \\
& =696 \times 0.42=292.32 \mathrm{~m}^{3}
\end{aligned}
$$

This volume of the well is required or sufficient for the building consumption and store of water.

The selected well is with following data:

- The dimensions of well are $(9 \mathrm{~m} \times 11 \mathrm{~m})$
- The depth of the well is 3 m
- The total volume available of well $=9 \times 11 \times 3=297 \mathrm{~m}^{3}$

Well details shown in figure (A-1)

2- Design a reservoir for the building:

we well design the tanks separately for each apartment (floor) so that we will have 8 tanks for each apartment one for hot water and other for cold water.

1. Cold water tank design :

For cold water tank there are available many different size of cold water tank but the most peripheral one is the tank with dimension of $(1 \mathrm{~m} \times 1 \mathrm{~m} \times 2 \mathrm{~m})$ with total volume $2 \mathrm{~m}^{3}$ and this volume is sufficient for normally family.
2. Hot water design:

For hot water tanks there are available two standard volume tank that is 150 litter and 200 litter. Because of that we will design the tank storage capacity and heating capacity that we needed and then we select the tank.

1- the water consumption for each floor:

$$
\begin{aligned}
& \text { number of person }=8 \text { person } \\
& \text { water consumption }=50 \times 2+6 \times 30=280 \text { litter/ hour }
\end{aligned}
$$

2 - maximum hourly demand:

$$
\begin{aligned}
& =(1 / 7) \times \text { total hot water } \\
& =(1 / 7) \times 280=40 \text { litter/hour }
\end{aligned}
$$

3- maximum water demand in peak hour

$$
\begin{aligned}
& =\text { maximum hourly demand } \times \text { number of peak hour } \\
& =4 \times 40=160 \text { litter }
\end{aligned}
$$

4- storage capacity

$$
\begin{aligned}
& =(1 / 5) \times \text { total hot water demand } \\
& =(1 / 5) \times 40=8 \text { litter }
\end{aligned}
$$

5- heating capacity:

$$
\begin{aligned}
& =(1 / 7) \times \text { total hot water demand }(9.10) \\
& =(1 / 7) \times 40=5.714 \text { litter.h }
\end{aligned}
$$

6 - heat recovery rate

$$
\begin{aligned}
& =(\text { total daily demand-storage capacity }) / \text { peak hour } \\
& =(40-8) / 4=8 \text { litter/hour }
\end{aligned}
$$

3- Design Of Cold Water System:

We will design the cold water pipe in this project by down feed system according 4 lines, we use line for each floor.

How the cold water will reach from the well to cold tank?

we will need one line in order to connect the water from the well to two cold tanks and we will put pump for the line.

We select for the line:

- pipe with diameter $1^{\prime \prime}$
- pump with hours power which have:

1. delivery head :- $(25-33) \mathrm{m}=(82-108.24) \mathrm{ft}$
2. water flow :- $(80-20) \mathrm{L} / \mathrm{min}$
3. suction head :- 7 m

- water meter before the tank with friction $=2 \mathrm{Psi}=4.6 \mathrm{ft}$
- float tank friction is $=4 \mathrm{Psi}=9.2 \mathrm{ft}$

Chick if this pump able to connect the water from well to the tank or no?
The hight of the building is $=18 \mathrm{~m}=59.04 \mathrm{ft}$
The hight of the water tank base is $=2 \mathrm{~m}=6.56 \mathrm{ft}$
Length from pump to tank

$$
\begin{aligned}
& =\text { building hight }+ \text { horizontal distance }+ \text { tank intrance hight } \\
& =59.04+32.8+9.51=101.35 \mathrm{ft} \\
& \text { static head }=59.04+6.56=65.6 \mathrm{ft} \\
& \text { equivalent length }=101.35 \times 1.5=152.025 \mathrm{ft}
\end{aligned}
$$

Main pressure =
static head + friction head + minimum flow(friction water meter + friction of float)
$108.24 \mathrm{ft}=65.6+$ friction head (available by the pump) $+(4.6+9.2)$
Friction head (available by the pump) $=28.84 \mathrm{ft}=12.35 \mathrm{Psi}$

$$
=12.35 /(152.025 / 100)=8.125(\mathrm{Psi} / 100 \mathrm{ft})
$$

friction haed required from figure steel pipe (9.5) for :

- flow $=20 \mathrm{~L} / \mathrm{min}=0.33 \mathrm{l} / \mathrm{s}$
$0.33^{*} 15.85=5.3 \mathrm{gpm}$
- \quad diameter $=1^{\prime \prime}$
friction required $=6.2(\mathrm{Psi} / 100 \mathrm{ft})<$ friction available $=8.125(\mathrm{Psi} / 100 \mathrm{ft})$

From previous calculation we prove that the diameter and the pump selected are satisfy

Water supply system
Cold water
1- Roof floor
A - Minimium flow pressure $=4 \mathrm{psi}$
$B-$ Main pressure $=$ height of the tank from the faucet of fixture

$$
=3.36+1.25-0.55=4.6 \mathrm{~m}
$$

$$
\begin{aligned}
& =15.08 \mathrm{ft} \\
& =6.5 \mathrm{Psi}
\end{aligned}
$$

Main pressure $=$ height of the tank from the faucet of fixture

$$
=6.5 \mathrm{Psi}
$$

Main pressure $=$ friction loss + minimum flow pressure
6.5 Psi $=$ friction loss +4 Psi

Friction loss $=2.5$ Psi
C - The total length of cold water $=3.75+3.36+1.25$

$$
\begin{aligned}
& =8.36 \mathrm{~m} \\
& =27.41 \mathrm{ft}
\end{aligned}
$$

The total equivalent length $=$ total length $* 1.5$

$$
=41.11 \mathrm{ft}
$$

$\mathrm{D}-$ Friction $($ Psi $/ 100 \mathrm{ft})=($ net friction loss in pipe $) /($ total equivalent length $)$
$=(2.5 * 100) / 41.11=6.08($ Psi $/ 100 \mathrm{ft})$
E - Select the pipe diameter: from chart (9.5) for iron or steel pipe
Table (5.5): of cold water pipe

Pipe section	E.L(ft)	Size (inch)	Velocity (fps)	Fiction (Psi/100ft)	Section friction (Psi)
From the tank to fourth floor fixture	41.11	1	2.4	1.3	1.14

2 -first floor:
A - Minimum flow pressure $=8 \mathrm{Psi}$
$\mathrm{B}-$ Main pressure $=$ height of the tank from the faucet of fixture

$$
\begin{aligned}
& =3.15+3.36+1.25-0.55 \\
& =7.21 \mathrm{~m} \\
& =23.64 \mathrm{ft} \\
& =10.26 \mathrm{Psi}
\end{aligned}
$$

Main pressure $=$ height of the tank from the faucet of fixture

$$
=10.26 \mathrm{Psi}
$$

Main pressure $=$ friction loss + minimum flow pressure

$$
\text { 10.26 Psi = friction loss }+8 \mathrm{Psi}
$$

Friction loss $=2.26$ Psi
$\mathrm{C}-$ The total length $=9.8+3.15+3.36+1.25$

$$
\begin{aligned}
& =16.96 \mathrm{~m} \\
& =55.61 \mathrm{ft}
\end{aligned}
$$

The total equivalent length $=$ total length $* 1.5$

$$
=55.61 * 1.5=83.47 \mathrm{ft}
$$

D-Friction $($ Psi $/ 100 \mathrm{ft})=($ net friction loss in pipe $) /($ total equivalent length $)$

$$
=(2.26 * 100) / 83.41=2.7(\mathrm{Psi} / 100 \mathrm{ft})
$$

E - Select the pipe diameter : from chart (9.5) for iron or steel pipe
Table (5.6): of cold water pipe

Pipe section	E.L(ft)	Size (inch)	Velocity (fps)	Fiction (Psi/100ft)	Section friction (Psi)
From the tank to fourth floor fixture	83.41	1	2.4	1.3	1.34

3 -ground floor :
$\mathrm{A}-$ Minimum flow pressure $=15 \mathrm{Psi}$
$\mathrm{B}-$ Main pressure $=$ height of the tank from the faucet of fixture

$$
\begin{aligned}
& =3.52+3.15+3.36+1.5 \\
& =11.53 \mathrm{~m} \\
& =37.8 \mathrm{ft} \\
& =16.4 \mathrm{Psi}
\end{aligned}
$$

Main pressure $=$ height of the tank from the faucet of fixture

$$
=16.4 \mathrm{Psi}
$$

Main pressure $=$ friction loss + minimum flow pressure
16.4 $\mathrm{Psi}=$ friction loss +15 Psi

Friction loss $=1.4 \mathrm{Psi}$
C - The total length $=10.6+11.53$

$$
\begin{aligned}
& =22.13 \mathrm{~m} \\
& =72.56 \mathrm{ft}
\end{aligned}
$$

The total equivalent length $=$ total length * 1.5

$$
=72.56 * 1.5=108.8 \mathrm{ft}
$$

D-Friction $($ Psi $/ 100 \mathrm{ft})=($ net friction loss in pipe $) /($ total equivalent length $)$

$$
=(1.4 * 100) / 108.8=1.286(\mathrm{Psi} / 100 \mathrm{ft})
$$

E - Select the pipe diameter : from chart (9.5) for iron or steel pipe
Table (5.7): of cold water pipe

Pipe section	E.L(ft)	Size (inch)	Velocity (fps)	Fiction (Psi/100ft)	Section friction (Psi)
From the tank to fourth floor fixture	108.8	$3 / 4$	3.9	4.2	5.01

4 -floor number one:
$\mathrm{A}-$ Minimum flow pressure $=15 \mathrm{Psi}$
$\mathrm{B}-$ Main pressure $=$ height of the tank from the faucet of fixture

$$
\begin{aligned}
& =2.73+3.52+3.15+3.36+1.5 \\
& =14.26 \mathrm{~m} \\
& =46.75 \mathrm{ft} \\
& =20.3 \mathrm{Psi}
\end{aligned}
$$

Main pressure $=$ height of the tank from the faucet of fixture

$$
=20.3 \mathrm{Psi}
$$

Main pressure $=$ friction loss + minimum flow pressure
20.3 Psi $=$ friction loss +15 Psi

Friction loss $=5.2 \mathrm{Psi}$
C - The total length $=25.12$

$$
=82.4 \mathrm{ft}
$$

The total equivalent length $=$ total length * 1.5

$$
=82.4 * 1.5=123.6 \mathrm{ft}
$$

D-Friction $($ Psi $/ 100 \mathrm{ft})=($ net friction loss in pipe $) /($ total equivalent length $)$

$$
=(5.2 * 100) / 123.6=4.2(\text { Psi } / 100 \mathrm{ft})
$$

E - Select the pipe diameter : from chart (9.5) for iron or steel pipe
Table (5.8): of cold water pipe

Pipe section	E.L(ft)	Size (inch)	Velocity (fps)	Fiction $(\mathrm{Psi} / 100 \mathrm{ft})$	Section friction (Psi)
From the tank to fourth floor fixture	123.6	$3 / 4$	3.9	4.2	5.68

Hot water design
For 200 liter of hot water tank we need a sun collector with 3 mirrors and nine polyurethane insulation rows are needed from nairokh factory an electrical water heater is needed as well, that can be installed anywhere the family wants .

Sewage calculations:
Table (5.9) Total DFU for basement floor

FU	\#DFU			
lavatory	3	2	6	
Kitchen sink	3	1	3	
W.C (private)	4	2	8	
Total dfu				

Table (5.9) Total DFU for Firstt floor

FU	\# DFU			
Kitchen sink	1	1	1	
lavatory	1	2	2	
W.C (private)	2	4	8	
Bath tube	2	3	6	
Dish washer	1	2	2	
Total dfu	19			

Table (5.9) Total DFU for Second floor

FU	\#DFU		
lavatory	4	3	12
W.C (private)	3	2	6

Bath tube	3	2	6
urinal	1	4	4
Total dfu			

Table (5.9) Total DFU for Roof floor

FU	\# DFU			
lavatory	1	2	2	
W.C (private)	1	3	3	
Cloth washer	1	3	3	
Total dfu				

Total dfu for the house $=8+28+19+17=72$
From table 10-4
Stak diameter $=3$ inches
From table $10-5$
Slope $=1 \%$
$=1 / 8$
inches
From table 10
Velocity $=1.93 \mathrm{~m} / \mathrm{s}$ low
It must be at least $3 \mathrm{~m} / \mathrm{s}$ so we increase the slope to be $1 / 4$ inch
Velocity $=2.73 \mathrm{~m} / \mathrm{s}$
Man holes
We increase diameter to be 6 inches and decrease the slope
Slope $=1.5 \%$
Capacity of septic tank
From table 10-11
Capacity $=1200$ gal for 8 persons
From table 10-12
Quantity $=150 \mathrm{gal} /$ day $/$ person
Required absorption area $=150 * 8=1200 \mathrm{gal} /$ day
Porosity of 2
Area $=40 \mathrm{ft}^{2} / 100 \mathrm{gal}$
For 1200
$1200 * 40) / 100=480 \mathrm{ft}^{2}$.

Chapter six

Swimming pool calculation

6-1 Swimming pool

The pool water is filtered due to:-

1) biological contamination ; due to micro-organisms may be air bore or introduced by bather.
2) Wind and rain introduced dust, seeds, leaves...ext which is muddy and pollute the water.
Swimming pools owners seeking for absolute hygiene, crystal clear water, which can be achieved by:
3) Mechanical filtering system using pump and filters to remove suspended particle from pool water.
4) Chemical treatment:- to combat micro-organisms.
i) $\{$ chlorine, bromine, oxygen $\} \longleftrightarrow$ bactericide
ii) chloric acid
iii) aluminum sulphat
iv) algaecide
v) soda ash.

6-2 Level of alkalinity and acidity $\{\mathrm{PH}\}$

$\mathrm{PH}=7$ neutral
$\mathrm{PH}>7-14$ alanine
$\mathrm{PH}<0-7$ acid
If PH is larger than 7.6

1) the calcium will precipate into acleudy form giving pool water milky appearance.
2) Deposits will form on pool walls and equipments.
3) The chlorine will not act as bactericide

IF PH is lower-than 7.2

1) Water-becomes corrosive
2) Cause eye irritation
3) Affect mucous membranes.

7 - 3 Swimming pool calculation
Pool capacity $=$ surface area $*$ average depth

$$
=40 *((1.7+0.8) / 2)
$$

$$
=50 \mathrm{~m}^{3} \text { water }
$$

Turn over time $=$ pool capacity $/$ filter flow rate

$$
=50 / 4=12.5 \mathrm{~m}^{3} / \mathrm{hr} .
$$

filter surface area $=$ filter flow rate $/$ filtration velocity

$$
=12.5 / 30=0.4 \mathrm{~m}^{2}
$$

suction devices :
for skimmers $=1 / 3 * 12.5=4.16 \mathrm{~m}^{3} / \mathrm{hr}$.
for main draining $=2 / 3 * 12.5=8.3 \mathrm{~m}^{3} / \mathrm{hr}$.
one main draining $12 \mathrm{~m}^{3} / \mathrm{hr}$.
one skimmer $5 \mathrm{~m}^{3} / \mathrm{hr}$.
return inlet $4.5 \mathrm{~m}^{3} / \mathrm{hr}$.
filter diameter 750 mm
1 hp pump flow rate $12.5 \mathrm{~m}^{3} / \mathrm{hr}$.
Head 10 m
See appendix (a-12)

Discharge lines pipe sizing:

The discharge line from the pump to the various return inlets.
Information of main discharge lines

* Flow rate = 55 gpm.
* Maximum velocity acceptable $=10 \mathrm{ft} / \mathrm{sec}$.
* Maximum friction loss =
* Length $=\quad($ from AutoCAD drawing by measurement $)$

From PVC table in Appendix A, and by interpolation at the following values :

Table (6.1) Fraction head VS Velocity

Flow rate $(\mathbf{g p m})$	Fraction head $(\mathbf{f t} / \mathbf{1 0 0 f t})$	Velocity $(\mathbf{f t} / \mathbf{s e c})$
50	4.2	4.9
55	f	v
60	5.8	5.9

By interpolation we find :

* Friction head $=5.5 \mathrm{ft} / 100 \mathrm{ft}$.
* Velocity $=5.4 \mathrm{ft} / \mathrm{sec}$
* Diameter $=2$ inch $=63 \mathrm{~mm}$.

Return inlets

symbol	Clow rate $(\mathbf{g p m})$	Diameter $(\mathbf{m m})$	Friction head $(\mathbf{f t / 1 0 0 f t})$	Velocity $(\mathbf{f t} / \mathbf{s e c})$
a	45.838	2	1.9	6.23
b	36.676	1.5	8.07	5.968
c	27.514	1.5	4.75	4.45
d	18.352	1	4.84	4.03
e	18.352	1	4.84	4.03

For each return inlet:-

* Flow rate $=12.5 /$ number of return inlets $=12.5 / 6=2.0833 \mathrm{~m}^{3} / \mathrm{hr}=9.1622$
gpm.
* Maximum velocity acceptable $=10 \mathrm{ft} / \mathrm{sec}$.
* Maximum friction loss $=12 \mathrm{ft} / 100 \mathrm{ft}$.
* Friction head $=5.11 \mathrm{ft} / 100 \mathrm{ft}$.
* Velocity $=3.52 \mathrm{ft} / \mathrm{sec}$
* Diameter $=1$ inch $=30 \mathrm{~mm}$.

Suction lines pipe sizing:

The suction line from the main drains and skimmers to the pump.
Information of main suction lines

* Flow rate $=55$ gpm.
* Maximum velocity acceptable $=3.3 \mathrm{ft} / \mathrm{sec}$.
* Maximum friction loss $=\mathrm{ft} / 100 \mathrm{ft}$.
* Length $=\quad($ from AutoCAD drawing by measurement $)$

Flow rate $(\mathbf{g p m})$	Fraction head $(\mathbf{f t} / \mathbf{1 0 0 f t})$	Velocity (ft/sec)
50	0.6	2.2
55	f	v
60	0.9	2.7

By interpolation we find :

* Friction head $=0.75 \mathrm{ft} / 100 \mathrm{ft}$.
* Velocity $=2.45 \mathrm{ft} / \mathrm{sec}$
* Diameter $=3$ inch $=75 \mathrm{~mm}$.

Information of main drain lines

* Flow rate $=36.784 \mathrm{gpm}$.
* Maximum velocity acceptable $=3.3 \mathrm{ft} / \mathrm{sec}$.
* Maximum friction loss $=6 \mathrm{ft} / 100 \mathrm{ft}$.
* Length $=\quad($ from AutoCAD drawing by measurement $)$

From PVC table in Appendix A, and by interpolation at the following values :

Flow rate (gpm)	Fraction head (ft/100ft)	Velocity (ft/sec)
35	0.9	2.4
36.78	f	V
40	1.2	2.7

By interpolation we find :

* Friction head $=1 \mathrm{ft} / 100 \mathrm{ft}$.
* Velocity $=2.5 \mathrm{ft} / \mathrm{sec}$
* Diameter $=2.5$ inch $=75 \mathrm{~mm}$.

For skimmers:

Information of main discharge lines

* Flow rate $=4.16 \mathrm{~m}^{3} / \mathrm{hr}=18.304 \mathrm{gpm}$.
* Maximum velocity acceptable $=3.3 \mathrm{ft} / \mathrm{sec}$.
* Maximum friction loss $=\mathrm{ft} / 100 \mathrm{ft}$.
$*$ Length $=\quad($ from AutoCAD drawing by measurement $)$

From PVC table in Appendix A, and by interpolation at the following values:

Flow rate (gpm)	Fraction head $(\mathbf{f t} / \mathbf{1 0 0 f t})$	Velocity (ft/sec)
15	0.5	1.5
18.304	f	V
20	0.8	2

By interpolation we find :

* Friction head $=0.6982 \mathrm{ft} / 100 \mathrm{ft}$.
* Velocity $=1.8034 \mathrm{ft} / \mathrm{sec}$
* Diameter $=2$ inch $=63 \mathrm{~mm}$.

For each skimmer

* flow rate $=9.152 \mathrm{gpm}$.
* velocity $=2.028 \mathrm{ft} / \mathrm{sec}$.
* friction head $=5 \mathrm{ft} / 100 \mathrm{ft}$.
$*$ diameter $=1.25$ inch.

Figure 6.1 : swimming pool

Quantity tables

	Supply, install, testing and commissioning of the, 15cm thick for walls and base, pre- casted concrete manholes, with medium duty cast iron covers and frames, excavation, back filling (1/2" steps of galvanized steel for depth=80cm and above), benching, plastering and connection to existing drainage system as per drawings, specifications and related codes.				
14.7 .1	a- $\emptyset 60$ cm (inner diameter) manhole	No.	2		
14.7 .2	b- $\varnothing 80$ cm (inner diameter) manhole	No.	1		
	Totals				
	TOTAL CARRIED TO NEXT PAGE.				

BILL No. (14)
 MECHANICAL WORKS

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE	AMOUNT
No.				ILS	ILS
	MECHANICAL WORKS				
	FORWARDED TOTAL				
14.7.3	c- Ø 100 cm (inner diameter) manhole	No.	3		
14.8	Domestic Hot and Cold Water systems:				
	Supply, install, testing and commissioning of; GI schedule 40 class A PSI approved, not welded water pipes the price to include, valves, water taps, reducers, tees, plugs for different pipe diameters, including excavation, backfilling with sand, insulating pipes with fine insulation of 6 mm for cold and 13 mm for hot water, wrapping with 10 cm pvc tape and connecting from water				

14.12 .1	Ø3/4"	Eye	10				
14.12 .2	Ø11/4"	Eye	38				
14.13	Water pumps						
	Domestic Water Supply						
pump Set						\quad	Supply, install, test and
:---							
commission of, End suction							
Domestic water pump, of							
2900 rpm, class-F insulation,							
IP-55 to operate at 415 V, 50							
Hz. coupled motor, 20cn concrete base mounted on common bed plate with drip lip, casings to be epoxy coated cast iron, high grade properly balanced cast brass impeller, including; pressure regulating valves, control, check valves, pressure transducers, vibration pads, bypass loop with appropriate check valves, low pressure cut off switches, hydro pneumatic tank as per drawings, specifications, and related codes.							
Q=3m3/hr @ H305m head (P3)							

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE	AMOUNT
No.				ILS	ILS
	MECHANICAL WORKS				
	FORWARDED TOTAL				
14.14	Domestic Water Supply pump Set				

	fittings, 13mm stop angle valves, chrome plated 13mm hose, and accessories, heavy duty side 1 m length 13mm Chrome plated hand shower, connection to drainage and water systems as per drawings, specifications and related codes.				
14.16	As above but for handicapped with 1 1/4" stainless steel grab bar for handicapped.	No.	1		
14.17	Lavatory				
	Supply, install, testing and commissioning of, slab type, white vitreous china, lavatory (approximate bowl size 56x42cm) (Twiford) or approved equal with: faucet holes on 4" centers, foucet to be of, Solid cast brass construction, Chrome plated, washer less ceramic disc mixing cartridge, laminar flow, gooseneck spout with gear blade handles, hanging accessories, connection to hot/cold water and drainage system. as per specifications, drawings and related codes.	No.	8		
14.18	As above but for handicaped	No.	1		
14.19	Pathtup				
	Supply, install, testing and commissioning of, 80x80cm porcelain coate3d steel pathtup including, Solid cast brass construction, Chrome plated, washer less ceramic disc mixing cartridge, laminar flow, shower gear blade handles, connection to dranage system and all necessary accesorries as per drawings, specifications and related codes.	No.	4		
Totals					

	TOTAL CARRIED TO NEXT PAGE.				
BILL No. (14) MECHANICAL WORKS					
$\begin{array}{\|l\|} \hline \text { ITEM } \\ \hline \text { No. } \\ \hline \end{array}$	DESCRIPTION	UNIT	QUANTITY	RATE	AMOUNT
				ILS	ILS
MECHANICAL WORKS					
	FORWARDED TOTAL				
14.20	HAND DRAYERS				
	Supply, install, connect, test and commission Automatic, robots, vandal resistant, IP 54, Hand Dryer constructed of solid steel frame and painted dia cast aluminum front including thermal cut-out, infrared sensor, adjustable hot air nozzle, conduits, boxes, Double pole switch with pilot lamp and $3 * 2.5 \mathrm{~mm} 2$ cable with all accessories. as per specifications, drawings and related standards.	No.	3		
14.21	Sinks				
	Supply, install, testing and commissioning of, Single compartment stainless steel sink, drop-in, self-rimming, ledge-type, connected with a drain. with pre-punched fixture center hole, foucet of, Solid cast brass construction, Chrome plated, washer less ceramic disc mixing cartridge, laminar flow, gooseneck spout with gear blade handles integral back ledge to accommodate deck-mounted fixtures, brushed interior and top surfaces, sound deadened. Recommended for use in suspended or counter top. including Coordinate actual outside sink dimensions with the actual clear dimension of				

	cabinet specified to ensure that they are compatible. as per specifications, drawings and related codes.				
	Counter top Kitchen sink	No.	1		
14.22	Water Storage Tank				
	Supply, install, testing and commissioning of the following PVC water tanks, each of 1500 L capacity, the rate shall include; valves, nipples, shut off valves, vent pipes, non return valves, unions, flowt valve and steel painted stand made of $50 \times 50 \times 5 \mathrm{~mm}$ angle and all necessary accessories for connections to main watersupply pipes as per drawings, specifications and related codes.	No.			
14.23	Solar Water Heating System				
	Supply, install, testing and commissioning of, solar water heating system with 45 degrees tilt angle, freezing ambient conditions, using of the following solar water heating system consisting of 2 numbers $90 \times 190 \times 10 \mathrm{~cm}$ flat solar panels, 1500 ltr cold water storage tank with 2.5 KW heater, 160 liter water storage with heat exchange coil, valves and steel painted stand made of $50 \times 50 \times 5 \mathrm{~mm}$ angle as per drawing specification and related codes .	JOB	2		

14.24	Fire fighting systems:				
	Supply, install, testing and commissioning of; GI schedual 40 class A PSI approved, not welded water pipes the price to include, valves, water taps, reducers, tees, plugs for diffirent pipe diameters, including excavation, backfilling as per drawings, specifications and related codes.				
	$\emptyset 11 / 4 "$				
	$\emptyset 11 / 2^{\prime \prime}$	M.L	34		
	$\emptyset 3 "$	M.L	15		
	Totals	M.L	55		
	TOTAL CARRIED TO NEXT PAGE.				

ITEM	DESCRIPTION	UNIT	QUANTITY	RATE	AMOUNT
No.				ILS	ILS
	MECHANICAL WORKS				
	FORWARDED TOTAL				
14.31	Exhaust Air Fans				
	Supply and install testing and commissioning of: SWSI exhaust air inline ducted fans of industrial construction, galvanized steel housing with duct adapter, connection to electrical system, vibration absorbers and prefabricated top roof mount. as per specifications, drawings and related codes.				
14.31.1	Exhaust:200 CFM window type	No.	1		
14.31.2	Exhaust:100 CFM window type	No.	10		
14.32	LPG system				

$\left.\begin{array}{|l|l|l|l|l|l|}\hline & \text { 6- Defrost self contained unit } & & & & \\ \hline & \text { 7-Suction accumulator } & & & & \\ \hline & \begin{array}{l}\text { 8- Remote control with the } \\ \text { following features : }\end{array} & & & & \\ \hline & \text { a. On - Off }\end{array}\right)$

Chapter seven

Appendix

REFERENCES

1) ASTRALPOOL, Swimming pools and SPAS ,Catalogue 2004-2005
2) JOHN DAWES, Design and planning of swimming pools,CPI publishing , London, 1979.
3) Ashrae book
4) Fundamentals to HVAC systems (Robert mcdowall 2007)
5) Fluid mechanics (sie) (white)
