
Palestine Polytechnic University
College of Engineering

Mechanical Engineering Department

Ball and Plate Balancing System

Team:

Anas Qasrawi
Yazeed Natsheh

Supervisors:

Dr . Jasem Tamimi

Submitted to the College of Engineering
in partial fulfillment of the requirements for the

Bachelor degree in Mechatronics Engineering

May 28, 2018

Ball and Plate Balancing System

Project Team

Anas Qasrawi

Yazeed Natsheh

Submitted to the College of Engineering in partial fulfilment of the requirements for
Bachelor degree in Mechatronics Engineering

Supervisor Signature

………………………

Testing Committee Signature

 ……………………. ………………………

Chair of the Departure Signature

………………………

May 2018

iii

Dedication

We dedicate our research project to our beloved parents for their continuous invaluable
support and encouragement all through the years and to our dear siblings for providing us with a
comfortable environment for study and research.

iv

Acknowledgement

We would like to express our gratitude to our supervisor, Dr Jasim Tamimi, for his full
support and guidance and remarkable suggestions. We would also like to thank our teachers for all
the efforts they have exerted to make us qualified engineers who can assume-with confidence-our
role in building our community. Thanks are also due to our classmates and friends for their
cooperation and encouragement.

We would also like to thank the Deanship of Graduate Studies and Scientific Research at
Palestine Polytechnic University for their financial support.

Abstract

This report presents the design and implementation of ball and plate
system. The system consists of a plate, a touch screen and servo motors.
The Touch screen is placed over the plate and the pate is moving by the
servo motors.The objective is to balance a rolling ball in a specific position
with the least possible error and smallest settling time achieved for the real
system. Linear and non linear mathematical model of the system is derived
for simulation purpose. MATLAB is used to evaluate the closed loop system
response and to determine the PID parameters. A ardunio is used as the
controller in which the PID control algorithm is implemented.

Keywords- Ball and Plate, balancing systems, PID controller,touch
screen .

الملخص

اللوحة ,هذا النظام يحتوي على لوحة وهذا المشروع يقدم التصميم والتنفيذ لنظام الكرة
وشاشة لمس ومحركات سيرفو , الشاشة اللمسية توضع على اللوحة ويتم تحريك اللوحة

بواسطة محركات السيرفو .يهدف هذا المشروع الى تحقيق توازن الكرة الدائرية في
لنظام مكان معين على اللوحة باقل مقدار من الخطأ واقل وقت ممكن .التمثيل الخطي ل

اشتق من اجل ايجاد العلاقة بين مدخلات النظام ومخرجات النظام .برنامج الماتلاب
استخدم من اجل تمثيل اساليب التحكم المختلفة وايجاد استجابة النظام المغلق و من اجل

التفاضلي .المتحكم الدقيق كم التناسبي التكاملي الحصول على متغيرات المتحكم المتح
بي التكاملي في النظام وتطبيق المتحكم التناسمن اجل تحقيق التحكم اردوينوا استخدم

 التفاضلي (بي اي دي).

بي التكاملي كم التناس,اتزان الانظمة ,المتح الكرة واللوحة–الكلمات المفاتحية
 التفاضلي(بي اي دي),الشاشات اللمسية .

Contents

Abstract i

List of Figures vii

List of Tables x

1 Introduction 1

1.1 Problem definition . 1

1.2 The importance and motivation of the project 2

1.3 Project aim and methodology 2

1.4 Literature review . 3

1.5 work plane . 6

1.6 Budget . 8

iii

1.7 Outline . 9

2 Mathematical Model 10

2.1 Introduction to modeling . 10

2.2 Mathematical Model . 12

2.3 Non-linear model . 16

2.4 Linearized model . 17

2.5 Torque calcalations . 18

3 Prototype design 21

3.1 Introduction to prototype design 21

3.2 The structure base . 22

3.3 Plate holder of the touch screen 23

3.4 The servo motor holder . 24

3.5 The servo motor arm . 24

3.6 The linkage threaded rod . 25

3.7 Servo rod bearing . 26

iv

3.8 Plate holder slider . 26

3.9 The central shaft . 27

3.10 Univrsal Joint . 27

3.11 Prototype design . 28

4 Electrical Design 29

4.1 Introduction to electrical design 29

4.2 Resistive touch screen . 30

4.3 Servo motor . 32

4.4 Microcontroller . 33

5 Control Design 34

5.1 Introduction to control design 34

5.2 State space model . 35

5.3 Transfer Function . 36

5.4 Simulation . 37

5.4.1 Non-linear Simulation 38

v

5.4.2 Resualt from Non-linear 40

5.4.3 state feedback . 40

5.4.4 Optimal control LQR 42

5.4.5 PID . 44

6 Experimental Setup 46

6.1 Hardware . 46

6.1.1 Prototype . 47

6.1.2 Real system response 48

6.2 User Interface . 50

6.2.1 Introduction to User interface 50

6.2.2 Graphical user interface 51

7 Conclusions and Future Work 52

7.1 Conclusions . 52

7.2 Future Work . 53

8 References 54

vi

Appendix A Datasheets 56

Appendix B MATLAB Code 76

Appendix C S-function 79

Appendix D Arduino codes 84

Appendix E visual studio code 100

vii

List of Figures

1.1 Wang ball and plate system 3

1.2 zeeshan ball and plate system 4

1.3 Fan,Xingzhe ball and plate system 5

2.1 schematic diagram of ball and plate 11

3.1 the structure base . 22

3.2 plate holder of touch screen 23

3.3 servo motor holder . 24

3.4 Servo motor arm . 24

3.5 Linkage threaded rod . 25

3.6 Servo rod bearing . 26

viii

3.7 Plate holder slider . 26

3.8 central shaft . 27

3.9 Univrsal Joint . 27

3.10 Prototype . 28

4.1 system wiring . 29

4.2 4-wire resistive touch screen 31

4.3 Servo Motor . 32

4.4 Microcontroller . 33

5.1 Non-linear model . 38

5.2 s-function block . 38

5.3 X-System response . 39

5.4 y-System response . 41

5.5 State feedback Model . 41

5.6 State feedback Response . 42

5.7 Optimal control in Simulink 43

ix

5.8 Optimal controller response in x-axis 43

5.9 Optimal controller response in y-axis 43

5.10 Close loop of the system in x-axis 44

5.11 close loop system in y-axis . 44

5.12 x-axis response . 45

5.13 y-axis response . 45

6.1 Real model . 47

6.2 Real model . 48

6.3 x-cordinate response . 49

6.4 y-cordinate response . 49

6.5 Graphical user interface . 51

x

List of Tables

1.1 Work Package List . 7

1.2 Cost Table . 8

xi

Chapter 1

Introduction

1.1 Problem definition

One of the most challenging problems in control system is balancing a system.
Many platforms for this field like double and multiple inverted pendulums,
ball-beam system, magnetic levitation , the last platforms is developed based
on mechatronics design principles. The challenge here is to balance these sys-
tems as desired. Ball and plate system is a promoted version of ball and beam
system. The challenge in ball and plate system is balancing the ball on the
plate.

The system of the ball and plate is a two-dimensional, non-linear, mul-
tivariable as well as unstable system in the open loop system. That is the
ball; will run away if the plate is not on the horizontal state unless the plate
correct it is angle to the horizontal plane. The ball and plate is a electrome-
chanical system include a rigid plate with a ball rolling freely on the plate,
several linear sensors for locating ball position and detecting plate deflection
angle, torque generation facilities such as stepping motor, servo motor

1

1.2 The importance and motivation of the

project

The ball and plate system it is a problem under continuous study for ap-
plications from robotics to transportation, it is extensions of the ball and
beam project. Therefore, the system can present many challenges and op-
portunities as an educational tool to laboratory experiments with different
proceeding of the control.

1.3 Project aim and methodology

The main aim of this project is to design and implement a ball and plate bal-
ancing system that can maintain a static ball position on the plate, rejecting
position disturbances. The initially horizontal plate will be lean along of two
horizontal axes in order to control the position of the ball. Each axis will be
operated by an electric motor independently. Each motor will be controlled
using control algorithm. The position of the ball on the plate will be mea-
sured with resistive touch screen.The scope of this project is to explain the
design of the hardware and software in a ball and plate balancing platform,
the requirements, the process of operation, as well as the Methods of control
implementation. This project is meant to be used to understand principles
of functionality and hardware generalities. by using mechatronics approach
as in following :

1- Choose the subject of the project.2- Collecting sources and references
.3- Collect the scientific material needed for project .4- Physical Systems
Modeling.5- 3D drawing of the system.6- sizing of each component sensor,
motors and hardware that is needed to use.7- Chose a suitable control system
strategy.8- Simulation and optimization result on software.9- Buy the project
compouint .10- Do hand work and lath work .11- Building a prototype for
the project .12- Test the prototype until having desired result .

2

1.4 Literature review

Many studies were presented in the literature about the ball and plate system.
These studies differfinite type of controls as well as the way of reading the
ball position. However, Some of the recent available researches on the ball
and plate system are reviewed in this section..

In the article presented by Wang, Y. in 2014 [1].A digital camera
is placed above the plate to measure the relative position of a copper ball
about the center of the plate. The control objective, by rotating the plate, is
to stabilize the ball on a specific position or make it go along a certain tra-
jectory. In this paper, active disturbance rejection control (ADRC) strategy
is used . (ADRC) algorithm based on the feedback linearization philosophy.
ADRC is a disturbance observer based control method and has demonstrated
its effectiveness in many fields. Utilized to reject the friction effect at low
velocity. A reduced-order disturbance observer is proposed to attenuate the
aftereffects caused by the friction on the output of the traditional PD-type
control scheme instead of compensating the primary friction mechanics. In
other words, a pseudo reference command is produced to counteract the out-
put error during the steady-state phase. Moreover, the describing function
technique is used to test whether the proposed method can generate limit
cycles or not. Figure 1.1 shows Wang prototype of ball and plate.

Figure 1.1: Wang ball and plate system

3

In the article presented by Zeeshan, A. in 2012 [2].The position
of the ball is being measured by using a grid of 11 x 11 phototransistors,
the distance between consecutive sensors being 1 inch. Each phototransistor
is provided with a monochromatic beam of laser light. Whenever the ball
passes in front of a particular phototransistor, its supply of light is interrupted
and the voltage level varies. This variation is interpreted by the controller
corresponding to each axes as x and y coordinates.. In order to control the
position and velocity of the motors, PID algorithm is applied on each motor.
The gains of Proportional, integral and derivative compensators were tuned
separately.Figure 1.2 shows Zeeshan prototype of ball and plate.

Figure 1.2: zeeshan ball and plate system

4

In the article presented by Fan, Xingzhe. in 2004 [3].A digital CCD
camera is used in this system to measure the ball potion. For the control
algorithm they used hierarchical fuzzy control scheme, which is composed
of three levels. The lowest level is a TS type fuzzy tacking controller; the
middle level is a fuzzy supervision controller that takes actions in extreme
situations; and the top level is a fuzzy planning controller that determines the
desired trajectory. In order to optimize the ball’s moving trajectory.Figure
1.3 shows Fan, Xingzhe prototype of ball and plate.

Figure 1.3: Fan,Xingzhe ball and plate system

5

1.5 work plane

The project Schedule outlines the tasks and activities of the project; the
duration; start and end dates for each individual task and the project as
a whole; and the resources and effort required.a Work packages where an
activity duration can be reliably estimated and managed.

A work package details a level of work to be completed. It would contain
a description of the work, details of constraints, and agreement between the
PM and the team or individual doing the work, that the work can be done
within the constraints. Assumptions would be defined in the work package
depending on the needs of the project.in this project we used work package to
develop the project Schedule for the two semester introduction of graduation
project and graduation project as shown below in table 1.1.

In the Work packages 1: Identification of Project Idea. we begin with
idefine the propblem in stabilizeing the system and how it related to our
project and the soulation that our system offer.in the Work packages 2:Main
Design Concepts and 3D drawings. we start to select out own design for the
project. By using drawing software we bulid our prototype.In Work packages
3: Derive the mathematical model and simulation.We use our math knwloge
to obtain a mathematical model for the system to be controlled which is a
closest approximation of its true behavior.In Work packages 4: Mechanical
Design and Electrical Design. we begin to define mechanical system parts
and physical structure which consists of the plate, joints, linkage... etc. and
electrical system components consist of the microcontroller, touch screen,
motors.In Work packages 5: chose a best control method.We begin to design
the control strategy.In WP6:Define the require equipment. in this WP we
chose the equipment we are going to use in our project.In WP7:Buy the
equipment. After we define the require equipment we start to look for the
best deal to buy the equipment.In WP7:Build the prototype after we buy the
necessary equipment we begin to assmply these equipment to bild the project
prototype.In WP9:Testing the prototype.we begin to test our prototype in
diffrent ways to find the best working way.In WP10:Compare simulation
result with the real result. After the prototype work correctly we begin
to collect the result and compare it to the result we have from simulation.In
WP11:Submit graduation book to department of mechanical engineering.The
final step in this project is submit it to department of mechanical engineering.

6

Table 1.1: Work Package List

7

1.6 Budget

The estimated cost of the project is around 2500 NIS , the Table 1.2 shows
the project component with there prices .

Table 1.2: Cost Table

8

1.7 Outline

The remainder is arranged as follows: Chapter 2 describes the Mathematical
Model of the ball and plate system. Chapter 3 present a prototype design
and 3D drawing of the project. Chapter 4 contains details about electrical
components. Chapter 5 proposes a control algorithm, presents a set of con-
tainability experiments using this algorithm and compares the results with
theoretical predictions. Chapter 6 is a discussion of the experimental ap-
paratus used and the communication constraints that govern its operation.
Chapter 7, presents the conclusions of the project and ideas for future work

9

Chapter 2

Mathematical Model

2.1 Introduction to modeling

In order to design a controller that will meet the required performance of the
system, it is important to obtain a mathematical model for the system to be
controlled which is a closest approximation of its true behavior. The system
can then be analyzed, and controlled.

In this chapter we present a mathematical model for the ball and plate
balancing system. In order to control the system approximate to its true
behave. The equation of motion for any system can be deriving either by
Newton laws or Lagrange’s equation. In the following section we derive the
motion equation of the system based on the Lagrange’s-Euler method, that
is equivalent to Newton’s laws of motion, but it has the advantage that it
takes the same form in any system of generalized coordinates, and it is better
suited to generalizations. The freebody digram of ball and plate is shown in
5.11

10

Figure 2.1: schematic diagram of ball and plate

11

The Euler-Lagrange equation of ball and plate system is as followings :

̇

− + = 𝑄 (2-1)

Where 𝑞 stands for i-direction coordinate, T is Kinetic energy of the system, V is potential
energy of system and Q is composite force . The system has 4 degree of freedom ; two in ball
motion and two in inclination of plate . Assume the generalized coordinates of system to be (xb
and yb) ball’s positions on plate and (𝛼 𝑎𝑛𝑑 𝛽) the inclination of the plate .It is important to
assume the center of x-y coordinates be at center of plate . The Kinetic energy of ball consists of
its both rotational with respect to its center of mass and translational energy :

 𝑇 = 𝑚 (�̇� + �̇�) + 𝐼 𝑤 + 𝑤 (2-2)

Where mb is mass of the ball and Ib is moment of inertia of the ball; x_ b and x_ b are
ball's translational velocities along x-axis and y-axis, 𝑤𝑥 and wy are ball' rotational velocities
along x-axis and y-axis. The following relations between translational velocities and rotational
velocities:

 �̇� = 𝑟 wy , �̇� = 𝑟 𝑤 (2-3)

In which rb denotes ball's radius. By substituting equations 3 into equations 4 :

 T = m ẋ + ẏ + ẋ + ẏ = m + ẋ + ẏ (2-4)

The kinetic energy of the plate, by considering ball as a point mass which is placed in
(xb, yb), , consists of its rotational energy with respect to its center of mass:

2.2 Mathematical Model

12

T = (I + I) α̇ + β̇ + m x α̇ + y β̇

T = I + I α̇ + β̇ + m x α̇ + 2x α̇y β̇ + y β̇ (2-5)

Where 𝛂 and 𝛃 are plate's angle of inclination along x-axis and y-axis, respectively.

Therefore�̇� and�̇� are plate's rotational velocity. Here we can calculate the kinetic energy of
system as followings:

 T = T + T

 T= m + ẋ + ẏ + I + I α̇ + β̇

 + m x α̇ 2x α̇y β̇ + y β̇ (2-6)

The potential energy of the ball relative (the relative potential) to horizontal plane in the
center of the inclined plate can be calculated as:

 V = m gh = m g(x sin α + y sin β) (2-7)

Here we can derive the system's equation by Lagrangian and equations:

 L = T + T − V (2-8)

̇
= (I + I)α̇ + m x x α̇ + y β̇ , = mg cos α (2-9)

̇ = (I + I)β̇ + m y y β̇ + x α̇ , = mg cos β (2-10)

̇

= m + ẋ , = m x α̇ + y β̇ α̇ (2-11)

̇

= m + ẏ , = m x α̇ + y β̇ β̇ (2-12)

Assume generalized toques as 𝜏 and 𝜏 which are exerted torques on the plate. From

Lagrange’s Euler equation we can write:

𝑑

𝑑𝑡

𝜕𝑇

𝜕�̇�
−

𝜕𝐿

𝜕𝛼
= (𝐼 + 𝐼)𝛼 ̈ + 𝑚 𝑥 𝛼 ̈ + 2𝑚 𝑥 �̇� �̇� + 𝑚 𝑥 𝑦 𝛼 ̈

 +𝑚 �̇� 𝑦 �̇� + 𝑚 𝑥 �̇� �̇� − 𝑚 𝑔 𝑐𝑜𝑠 𝛼 = 𝜏 (2-13)

𝑑

𝑑𝑡

𝜕𝑇

𝜕�̇�
−

𝜕𝐿

𝜕𝛽
= (𝐼 + 𝐼)𝛽 ̈ + 𝑚 𝑦 𝛽 ̈ + 2𝑚 𝑦 �̇� �̇� + 𝑚 𝑥 𝑦 �̈�

 +𝑚 �̇� 𝑥 �̇� + 𝑚 𝑦 �̇� �̇� − 𝑚 𝑔 𝑐𝑜𝑠 𝛽 = 𝜏 (2-14)

̇
−

̇
 = (𝑚 +) 𝑥 ̈ − 𝑚 𝑥 �̇� + 𝑦 �̇� �̇� + 𝑚 𝑔 𝑠𝑖𝑛 𝛼 = 0 (2-15)

̇
−

̇
 = (𝑚 +) 𝑦 ̈ − 𝑚 𝑦 �̇� + 𝑥 �̇� �̇� + 𝑚 𝑔 𝑠𝑖𝑛 𝛽 = 0 (2-16)

Substituting this expression into (1) and evaluating the derivatives and rearranging terms,
we obtain four differential equations as follows:-

 𝑚 + 𝑥 ̈ − 𝑚 𝑥 𝛼 ̇ + 𝑦 �̇��̇� + 𝑚 𝑔 𝑠𝑖𝑛 𝛼 = 0 (2-17)

 𝑚 + 𝑦̈ − 𝑚 𝑦 𝛽 ̇ + 𝑥 �̇��̇� + 𝑚 𝑔 𝑠𝑖𝑛 𝛽 = 0 (2-18)

 𝜏 = (𝐼 + 𝐼 + 𝑚 𝑥)𝛼 ̈ + 2𝑚 𝑥 �̇� �̇� + 𝑚 𝑥 𝑦 �̈�

 +𝑚 �̇� 𝑥 �̇� + 𝑚 𝑦 �̇� �̇� + 𝑚 𝑔𝑥 𝑐𝑜𝑠 𝛼 (2-19)

 𝜏 = 𝐼 + 𝐼 + 𝑚 𝑦 �̈� + 2𝑚 𝑦 �̇� �̇� + 𝑚 𝑥 𝑦 𝛼 ̈

 +𝑚 �̇� 𝑥 �̇� + 𝑚 𝑦 �̇� �̇� + 𝑚 𝑔𝑦 𝑐𝑜𝑠 𝛽 (2-20)

In these equations, m(kg) is the mass of the ball; R(m) is the radius of the ball; 𝑥 (m), �̇�
(m/s), and �̈� (m/s2) are the ball’s position, velocity and acceleration respectively along X-axis; 𝑦
(m), �̇� (m/s), and �̈� (m/s2) are the ball’s position, velocity and acceleration respectively along Y-

axis; 𝜃 (rad), �̇� (rad/sec) are respectively the plate’s deflection angle and angular velocity

about X-axis. 𝜃 (rad), �̇� (rad/sec) are respectively the plate’s deflection angle and angular

velocity about Y-axis; τθx (Nm)and τθy (Nm) are respectively the torque exerted on the plate
along X-axis and Y-axis [4].

Non-linear model

From equations (2-17) ,(2-18),(2-19) and (2-20) by considering theses Equations. As
mentioned 𝜏 and 𝜏 are toques exerted on the plane or on the ball from the motor in y-axis and

x-axis direction respectively. By defining state variables

= [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8]=[𝑥 , �̇� , 𝛼, �̇�, 𝑦 , �̇� , 𝛽, �̇�] , 𝑈 = [𝑢 , 𝑢] = [𝛼, 𝛽]

𝑥 = 𝑥

 𝑥 = �̇�

𝑥 = 𝛼

𝑥 = �̇�

𝑥 = 𝑦

𝑥 = �̇�

𝑥 = 𝛽

𝑥 = �̇�

�̇� = 𝑥

�̇� =
5

7
 𝑥 α̇2

− 𝑔𝑠𝑖𝑛𝛼 =
5

7
 (𝑥 𝑥 − 𝑔𝑠𝑖𝑛𝑥)

�̇� = 𝑥

�̇� = 𝑣

�̇� = 𝑥

�̇� =
5

7
 𝑦 β̇

2
 − 𝑔𝑠𝑖𝑛𝛽 =

5

7
 (𝑥 𝑥 − 𝑔𝑠𝑖𝑛𝑥)

�̇� = 𝑥

�̇� = 𝑣

2.3 Non-linear model

16

If one assumes that the angle do not change much, ±30 ◦, the sine function can be

replaced by its argument [5]. In equations (3) and (4), the velocities �̇� and �̇� are small and

hence have negligible effects when squared or multiplied together [6],[7]. Furthermore, the
system inputs are considered as θx and θy and not the torque moments τθx and τθy . Due to this
reason, (5) and (6) could be dropped out in the consecutive study of the system. As a result of
these assumptions, linearized, simplified and uncoupled ordinary differential equations are
obtained. Substituting for the moment of inertia of the ball, J = 25 (𝑚𝑅) we get:

𝟕

𝟓
�̈� = 𝐠𝛉𝐱

𝟕

𝟓
�̈� = 𝐠𝛉𝐲

2.4 Linearized model

17

 𝐹
(∗)

∗
=

∗
 (2-21)

 𝐹
()

 = 𝜏 (2-22)

 𝜏 = 𝜏
∗

 (2-23)

𝜏 = 4.75 ∗ 𝜏 (2-24)

𝜏 = 𝜏
.

∗
 (2-25)

 𝜏 = 6.2 ∗ 𝜏 (2-26)

You can see in figure below the diminution of our plate and diminution the motor arm

2.5 Torque calcalations

18

Figure 5.2 plate diminutions

Figure 5.3 motor arm diminutions

 By submite these calculations into torque equation we get

 𝜏
 ̈ ̇ ̇ ̈ ̇ ̇ ̇ ̇

.

𝜏
𝐼𝑃𝑦 + 𝐼𝑏 + 𝑚𝑏𝑦

𝑏

2 �̈� + 2𝑚𝑏𝑦
𝑏

�̇�
𝑏

�̇� + 𝑚𝑏𝑥𝑏 𝑦
𝑏

𝛼 ̈ + 𝑚𝑏�̇�
𝑏

𝑥𝑏 �̇� + 𝑚𝑏𝑦
𝑏

�̇�𝑏�̇� + 𝑚𝑏𝑔𝑦
𝑏

𝑐𝑜𝑠 𝛽

6.2

Chapter 3

Prototype design

3.1 Introduction to prototype design

In this chapter a three-dimensional structure is presented In this structure
a set of requirements. After we determined requirement and generate some
solutions by studying similar projects. We use the knowledge of mechanical
and Computer-aided design (CAD) software to specify design concept that
meet project requirement.We use Catia v5 softawre to draw the parts and
Solidworks software to assembly the parts and prduce the final product,
Solidthinking sfotware were used to proucess the project picture.dimension
of all the parts mention in the text above the figure.

21

3.2 The structure base

The structure base caries all the other components of the system, servo mo-
tors, servo motors linking, servo motors arm, center shaft, plate hold of
touch screen, and touch screen. Figure 3.1 show a 3D drawing to the struc-
ture base.The structure base made from aluminum with 300mm length and
250mm width and 9mm thickness.

Figure 3.1: the structure base

22

3.3 Plate holder of the touch screen

The plate holder made from acrylic the acrylic was chose to make it light
as passoible as we can .It should be wider that the resistive touch screen
with 3mm.Figure3.2 shows a 3D drawing of the plate holder.plate holder
dimension is 240mm length and 182mm

Figure 3.2: plate holder of touch screen

23

3.4 The servo motor holder

In this project we need two servo motor. So we have to design two servo
motor holders. The holders will be fits in the main base, and it will joint
tighter by nuts and screw.Figure 3.3 shows a 3D drawing of the servo base.

Figure 3.3: servo motor holder

3.5 The servo motor arm

Servo motor arm is use to link between servo motor and threaded rod. 3.4
shows a 3D drawing of the servo motor arm.

Figure 3.4: Servo motor arm

24

3.6 The linkage threaded rod

It is used to convert rotation motion from servo motor to liner motion in
the touch screen. In this project we have tow servo motor so we need tow
linkage. Figure 3.5 shows a 3D drawing of The linkage threaded rod.The
linkage threaded rod dimension is 110mm length and 5mm diameter

Figure 3.5: Linkage threaded rod

25

3.7 Servo rod bearing

small bearing are used between the servo rod and plate holder to reduce
twist of the plate holder during the moving of the holder.Figure 3.6 shows
3D drwaing of servo rod bearing.

Figure 3.6: Servo rod bearing

3.8 Plate holder slider

this slider used to conect the servo motor rod to plate holder and you can
move this slider in x-axis and y-axis.Figure 3.7 shows 3D drwaing of servo
rod bearing.

Figure 3.7: Plate holder slider

26

3.9 The central shaft

The central shaft used between structure base and middle of touch screen, it
helps to hold the touch screen. Figure 3.8 shows a 3D drawing of the central
shaft.The central shaft dimension is 120mm length and 10mm

Figure 3.8: central shaft

3.10 Univrsal Joint

the Univrsal joint used to reduce the twisted of the touch screen and to
allow the touch screen to move freely in spce.Figure 3.9 shows 3D drawing
of Univrsal joint

Figure 3.9: Univrsal Joint

27

3.11 Prototype design

Figure 3.10 show a complete system component.Draw usign catia v5 software
and assembly using solidworks and the final picture taken by solidthinking
software.

Figure 3.10: Prototype

28

Chapter 4

Electrical Design

4.1 Introduction to electrical design

This chapter contains details about electrical components that used in the
project. And the electrical hardware that used in the project.The electrical
circuit diagram is shown in The touch screen is connected to Ardunio which
is represented by pins A0-A4.The servo Motor X is connected to gital pin,
and the servo Motor Y is connected to digtal pin.4.1 show wireing digram of
the project .

Figure 4.1: system wiring

29

4.2 Resistive touch screen

Ball position feedback is accomplished through the usage of an analog resis-
tive touch screen element.As the feedback in this system, the touch screen
will read the application of pressure by a steel ball and track it as it moves
within the active portion of the screen. An analog resistive touch screen
works using a simple design. Two layers of material are coated with in-
dium tin oxide (ITO) to give them a known resistance, something between
100 and 500 ohm/sq. depending on the manufacturer and the application.
The two layers are then placed 90 degree offset from each other on top of a
glass or polycarbonate substrate, with a grid of transparent insulating dots
separating the layers. Silver bus bars are placed at the edges to allow the
application of voltage across the layers. To generate a touch position, the
user or an object must exceed the activation force of the screen, pressing
the two layers together. This creates an electrical connection between the
layers. However, both X and Y axes cannot be read simultaneously, because
the concept works by applying a voltage across one layer, and looking for
the voltage that appears on the other layer. Therefore, the system works by
alternately applying a voltage to one layer and reading off of the other. The
voltages are then read in by an analog-to-digital (A/D) converter to be used
as a coordinate value[1].
There are, however, several types of analog resistive touch screens, notably
4-wire, 5-wire and 8-wire. These designations refer to the number of wires
between the screen and the screen controller. 4-wire screens operate by ap-
plying voltage across the two wires for one layer, and reading a voltage from
the ground wire of the other layer. The voltage application and read op-
eration then swaps around for the other layer. The 5-wire screens use the
bottom layer for both axes measurements, applying voltage across the top
layer only. This simplifies measurement and voltage application duties over
the 4-wire screen. The 8-wire screen is an extension of the 4-wire screen, us-
ing the additional 2-wires per layer to provide a stable voltage gradient. This
makes the 8-wire screen immune to voltage and resistance fluctuations due
to ambient heat and humidity or aging of the screen. however in this project
we use a 4-wire resistive touch screen ,you can see more detalise on resistive
touch screen in appendices.4 wire touch screen is shown in 4.2 below.

30

Figure 4.2: 4-wire resistive touch screen

31

4.3 Servo motor

A servomotor is a rotary actuator or linear actuator that allows for precise
control of angular or linear position, velocity and acceleration it is a suitable
motor coupled to an encoder sensor for position feedback. It also has a rela-
tively customized controller, often a dedicated module designed specifically
for the use with servomotors. Here we use HS-422 servo motor as shown in
4.3.you can find more details about the servo in appendices.

Figure 4.3: Servo Motor

32

4.4 Microcontroller

In this project we useed Arduino Uno microcontroller. Arduino Uno is a
microcontroller board . It has 14 digital input/output pins (of which 6 can
be used as PWM outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB
connection, a power jack, an ICSP header and a reset button. It contains
everything needed to support the microcontroller; simply connect it to a
computer with a USB cable or power it with a AC-to-DC adapter or battery
to get started (See 4.4).you can find more details about the arduino uno in
appendices.

Figure 4.4: Microcontroller

33

Chapter 5

Control Design

5.1 Introduction to control design

The system we have here is unstable system, so we need to use control meth-
ods in order to stabilize the system. There are two common classes of control
systems, open loop control systems and closed loop control systems. In open
loop control systems output is generated based on inputs. In closed loop
control systems current output is taken into consideration and corrections
are made based on feedback. A closed loop system is also called a feedback
control system. Linear: A linear system is a mathematical model of a sys-
tem based on the use of a linear operator. Linear systems typically exhibit
features and properties that are much simpler than the general, nonlinear
case. After we derive mathematical model for the system now we can ana-
lyzed, and a controller can be designed to meet the required performance.
In the fowling sections we will present a state-space respiration using matlab
software for the system. And the control methods we intend to use.

34

We can write state equations of ball-on-plate system by considering Equations. As

mentioned τ and τ are toques exerted on the plane or on the ball from the motor in y-axis and

x-axis direction respectively. By defining state variables = [x , x , x , x , x , x , 𝑥 , 𝑥] =

[x , ẋ , α, α̇, y , ẏ , β, β̇] ,U = [u , u] = [α, β] and constant value b = Because of the

low velocity and acceleration of the plate rotation (|α ̇ | ≪1 and |β ̇ |≪1) we can omit the
coupling term in f(x,u) and divide the system into and divide the system into to sub-systems and
control them independently.

2

2

0 0

0 0
0 1 0 0

0
0 0 / 0 ()
0 0 0 1

0 0 0 0
0

()

1 0 0 0

0 1 0 0

x

y

xx mg
y jb gy m
xx

mg
yy j

m

x

y
c

x

y

u
ur

r

5.2 State space model

35

By assuming α(s) and β(s) as inputs to ball and plate system, we find the transfer

functions:

 𝐺 (𝑠) =
𝑋

𝛼(𝑠)
=

𝑔

5
7

𝑠

()

5.3 Transfer Function

36

5.4 Simulation

In this section we will show how the ball and plate system control problem is
solved going from the non-linear equations to the linear model and simulation
using Matlab and Simulink toolbox. We divide the system in two parts x and
y because it was the easiest way to have a full control.in the fowling section
we will present a matlab model amd thire response matlab m.file can find in
the appendices.

37

5.4.1 Non-linear Simulation

In this subsection we will show how non-linear model is bulid.S-function for
the whole non-linear system is bulid you can see s-function in appendices
.figure below show the simulink model.

Figure 5.1: Non-linear model

Figure 5.2: s-function block

38

Figure 5.3: X-System response

Figure 5.4: y-System response

39

5.4.2 Resualt from Non-linear

As we can see in figures above the response from non-linear system is unstable
system that because the PID control can’t deal with such complex system in
order to make the system stable you have to design another controller like
optimal control.

5.4.3 state feedback

We use state feedback control as regulator to achive point stabilization re-
gardless disturbance force on the ball.The regulator is to design a controller
that, while guaranteeing the stability of the closed-loop system , drives the
tracking error to zero.when the reference and disturbance signals are pro-
duced the regulator controller drive it to zero.Figure 5.5 shown a state feed-
back model.

Figure 5.5: State feedback Model

40

Figure 5.6: State feedback Response

as we can see in Figure 5.6 the system was able to regulat the disturbance
signals and drive it to zero .

5.4.4 Optimal control LQR

In this section we present the thery of a Linear Quadratic Regulator and the
matlab simulation optimal control depends on system states and the weight-
ing matrix Q and R ,Since the important state is position of the ball, and
care less about the velocity, we choose the Q matrix to have a high weighting
on the position states.Adjustment of the R matrix will either promote or
penalize the control eort. By altering these values, we can further adjust the
time-domain response, while making sure not to operate in the saturation
region of our motors. For this reason, it is important to take the motor sat-
uration into account when designing the simulation.The matlab m.file can
fined in appendices.

Q =

100 0 0 0
0 100 0 0
0 0 1 0
0 0 0 1

R =

[
1 0
0 1

]

41

Figure 5.7: Optimal control in Simulink

Figure 5.8: Optimal controller response in x-axis

With these state penalty matrices, the state gain matrix was calculated

with MATLAB. K =

[
3.162 5.0464 −16.75 4.0334
3.162 5.0464 −16.75 4.0334

]

Results from the simulation. Scope1: x; scope2: x ; scope3: ; scope4:
As we can see each graphic tends to different values in a stable way, we get
a stable system. can see in 5.85.9.

Figure 5.9: Optimal controller response in y-axis

42

5.4.5 PID

In order to obtain easier control algorithm the MIMO system is simplified
to a simpler combination of 2 SISO systems. As per the SISO model of the
plant in X-axis and Y-axis separately the PID control.[13]

In order to provide a system that is more resistant to disturbances the
parameters derived by tuning the settling time was much faster. The final
PID parameters is Kp = 1.01 ; Ki = 0.038 and Kd = -0.105.

Figure 5.10: Close loop of the system in x-axis

Figure 5.11: close loop system in y-axis

43

Figure 5.12: x-axis response

Figure 5.13: y-axis response

In Figure .5.13 and Figure 5.12,the simulation result for the tracking of
a desired is presented where we obtained an error less than 3 mm using these
parameters Kp = 1.01 ; Ki = 0.038 and Kd = -0.105.

44

Chapter 6

Experimental Setup

6.1 Hardware

Several physical components were selected to bulid the prototype servo mo-
tors,servo motors base,centr shafts,touch screen ,belts,unvirsal joint were nec-
essary in order to realize the construction of the system. These custom made
parts. Each of these parts of the system were machined out of aluminum
,steel and plastic and their full dimensions are included in Chapter 3 (proto-
type design). The lengths and widths of each component were designed to t
the size and shape of the touch screen that was used in the project with some
slight clearance along the long side of the unvirsal joint to allow for wiring to
move freely. The special shaft was designed to support the holder of touch
screen. the motor mount bracket was created to x the tilt axis motor to the
system. It was designed to place the motor directly on the base.

45

6.1.1 Prototype

Figure 6 shows the developed prototype. The movement of the prototype
operates the same as the drawings model; in such the resistive touch panel
detects and sends data to the controller and microcontroller, commanding
the two servos to produce torque to move the arm links and panel. There
are few alterations made to the dimensions of the arm links and mounts for
the servos. Inclusively, the ball-and-plate system is created in relation to the
model simulation.

Figure 6.1: Real model

46

Figure 6.2: Real model

6.1.2 Real system response

In the Figure below you can see a response from the real model as you can
see the system is able to drive the ball position with disturbance rejection.

47

Figure 6.3: x-cordinate response

Figure 6.4: y-cordinate response

48

6.2 User Interface

6.2.1 Introduction to User interface

The user interface (UI), in design field of human–computer interaction, is the
space where interactions between humans and machines occur. The goal of
this interaction is to allow effective operation and control of the machine from
the human end, whilst the machine simultaneously feeds back information
that aids the operators’ decision-making process. Examples of this broad
concept of user interfaces include the interactive aspects of computer oper-
ating systems, hand tools, heavy machinery operator controls, and process
controls. The design considerations applicable when creating user interfaces
are related to or involve such disciplines as ergonomics and psychology.in
this project we use Visual studio software to design out user interface. Vi-
sual Studio provides a rich, integrated development environment for creating
stunning applications for Windows,Android, and iOS, as well as modern web
applications and cloud services. Visual Studio 2017 also provides a com-
prehensive, highly flexible set of application lifecycle management (ALM)
tools. Visual Studio subscriptions offer customers high-value subscriber ben-
efits such as development/test use rights for Microsoft platform software like
SQL Server/Windows/Windows Server, monthly Microsoft Azure credits, a
developer account for publishing apps to the Windows Store and an Office
365 Developer subscription.

49

6.2.2 Graphical user interface

The graphical user interface (GUI) was designed using Visual studio de-
sign environment to control the real model. The designed GUI implements
14 sources of the reference value SetpointX,SetpointY,System states,X-servo
angle,Y servo angle,X-cordinate,Y-cordinates,X-servo response,Y-servo re-
sponse as you can see in 6.5.

Figure 6.5: Graphical user interface

50

Chapter 7

Conclusions and Future Work

7.1 Conclusions

We described the design and construction of a two dimnetaional four degree
of freedom ball and plate system .The objective of the project was to con-
trol the position of the ball on the plate for static positions, as well as have
the system capable of correcting for disturbances in ball position these goals
were accomplished, static position balancing and disturbance rejection.The
ball can be centered on the plate or another coordinate location, and will
quickly correct for even large disturbances to the ball position with fast re-
sponse time, small overshoot and a very minimal steady state error.The nal
results showed that the designed controllers had almost acceptable perfor-
mances.
In this project we used PID controller algorithms to control the ball posi-
tion.The resulting controller was able to reject disturbances. This solution
was robust enough to keep the ball in same position with disturbance rejec-
tion.The other control algorithms was design for simulation purpose only.
The graphical user interface (GUI) was designed, for control the real model.
This proved to be a valuable tool to quickly estimate reference values and
see the final outcome of the model.
In non-linear simulation the pid control can’t make the system to be stable
but in real system the pid control success to make the system stable

51

7.2 Future Work

After we built and test the protype, it can be used as an excellent test-
bed for testing various other control algorithm like optimal control full-state
feedback . Although controllers based on the linear model perform well but it
will interesting to apply of non-linear controls and have further improvements
in the system performance.Design a control algorithm to make the ball trace
any desired path on the plate, for example a circle.

52

1. Radi, K., A. Faraj, and Y. Amsad, Theoretical design of a ball
balancing on plate controller. Al-Mustansiriya University, 2008.

2. Zeeshan, A., N. Nauman, and M.J. Khan. Design, control and
implementation of a ball on plate balancing system. in Applied
Sciences and Technology (IBCAST), 2012 9th International Bhurban
Conference on. 2012. IEEE.

3. Negash, A. and N.P. Singh. Position Control and Tracking of Ball and
Plate System Using Fuzzy Sliding Mode Controller. in Afro-European
Conference for Industrial Advancement. 2015. Springer.

4. Wang, Y., et al., A novel disturbance-observer based friction
compensation scheme for ball and plate system. ISA Trans, 2014.
53(2): p. 671-8.

5. Fan, X., N. Zhang, and S. Teng, Trajectory planning and tracking of
ball and plate system using hierarchical fuzzy control scheme. Fuzzy
Sets and Systems, 2004. 144(2): p. 297-312.

Chapter 8

References

53

6. Wellstead, P.E., Introduction to physical system modelling. 1979:
Academic Press London.

7. Dušek, F., D. Honc, and K.R. Sharma. Modelling of ball and plate
system based on first principle model and optimal control. in
Process Control (PC), 2017 21st International Conference on. 2017.
IEEE.

8. Zamani, N.G., CATIA V5 FEA tutorials: release 19. 2010: SDC
Publications.

9. Walker, G., A review of technologies for sensing contact location on
the surface of a display. Journal of the Society for Information
Display, 2012. 20(8): p. 413-440.

10. Badamasi, Y.A. The working principle of an Arduino. in Electronics,
Computer and Computation (ICECCO), 2014 11th International
Conference on. 2014. IEEE.

11. Rodriguez, R.R., D.A.R. Diaz, and L.E.R. Vargas, BALL AND PLATE.
12. Kabil, A.M., et al., Ball and Plate Modeling and Control Hardware

Approach.
13. Haugen, F., The Good Gain method for PI (D) controller tuning.

Tech Teach, 2010: p. 1-7.
14. Lewis, F.L., D. Vrabie, and V.L. Syrmos, Optimal control. 2012: John

Wiley & Sons.

Appendix A

Datasheets

55

L

Series FTTouch Screens

www.nkk.com

In
di

ca
to

rs
A

cc
es

so
ri

es
Su

pp
le

m
en

t
Ta

ct
ile

s
K

ey
lo

ck
s

Ro
ta

ri
es

Pu
sh

bu
tto

ns
Ill

um
in

at
ed

 P
B

Sl
id

es
Pr

og
ra

m
m

ab
le

Ro
ck

er
s

To
uc

h
Ti

lt

L3

To
gg

le
s

NKK’s transparent touch screens are engineered
to complement the application of choice while
offering superior durability and flexibility. With
options in multiple sizes, and choices of input
by finger, gloved finger or stylus, we maintain a
consistent focus on impeccable quality and value
added solutions with the diverse needs of our
customers at the forefront.

Whether an application requires the 5- or 4-wire
technology, the features include metal tails (analog),
contact reliability with a connector, and ANR film,
eliminating many of the typical visual artifacts. The
film surface is non-glare and hard coated for ease of
use and integrity of the surface.

Additional benefits of NKK’s 5-wire touch screens
include:
• Screens highly resistant to static electricity
 and noise pollution
• Drift-free operation despite any temperature
 fluctuation
• Greater touch point density translating
 to more precision and reduction of false
 actuations
• Quicker response time

5-Wire, 4-Wire & Digital Solutions

Resistive Touch Screens

• Wide Range of Available Sizes

• Custom Solutions a Specialty

• Digital and Analog Solutions

• Controllers Available

• Anti-Newton Ring (ANR) Technology

• Design Minimizes Visual Artifacts

• RoHS Compliant

• Information Kiosks

• Industrial Automation

• Banking, Exchange
 Management Systems

• Broadcast

• Office Automation

DISTINCTIVE CHARACTERISTICS APPLICATIONS

• Medical Equipment

• Hand-held Devices

• Hospitality and
 Restaurant

• Gaming

Series FT Touch Screens

www.nkk.com

L

In
di

ca
to

rs
A

cc
es

so
ri

es
Su

pp
le

m
en

t
Ta

ct
ile

s
K

ey
lo

ck
s

Ro
ta

ri
es

Pu
sh

bu
tto

ns
Ill

um
in

at
ed

 P
B

Sl
id

es
Pr

og
ra

m
m

ab
le

Ro
ck

er
s

To
uc

h
Ti

lt

L4

To
gg

le
s

Customization Options
Parameter Notes & Options

Resistive Analog Touch Screen 4-Wire or 5-Wire

Integrate LCD & Touchscreen Yes - No

5-Wire - Screen Size Diagonal Inches Standard 10.4, 12.1, 15 (min 10.4, max 19)

4-Wire - Screen Size Diagonal Inches Standard 5.7, 6.5, 8.4, 10.4, 12.1, 15 (min 2.5, max 19)

Data Entry Area mm x mm Same as the dimensions of the display area of the LCD

Viewable Area mm x mm Same as the dimensions of the bezel opening of the LCD

Perimeter Dimensions mm x mm

Tail Type PCB standard, FPC option

Tail Pitch 1.25mm is standard

Tail Pins 8 is standard, 4 is option

Tail Length 2 standard options: 65mm or 80mm

Tail Base Width 28.2mm is standard

Tail Location Left side is standard, non-std options top or bottom

Tail Material Carbon-coated silver is standard, option is copper-gold

Glass Thickness 1.1 and 1.8mm are standard (note: total thickness = glass thickness + 0.3mm)

Hardcoat Treatment Standard

Anti-Newton Ring Treatment Standard

Optical Transmission Factor 80% is standard

Controller Yes - No (no = customer will supply)

Communication USB or RS232

Operating System Windows 7 or Windows XP

Series FT 4-Wire Touch Screens

www.nkk.com

L

In
di

ca
to

rs
A

cc
es

so
ri

es
Su

pp
le

m
en

t
Ta

ct
ile

s
K

ey
lo

ck
s

Ro
ta

ri
es

Pu
sh

bu
tto

ns
Ill

um
in

at
ed

 P
B

Sl
id

es
Pr

og
ra

m
m

ab
le

Ro
ck

er
s

To
uc

h
Ti

lt

L8

To
gg

le
s

4-Wire Analog Touch Screens

Part Number
Screen
Size in
Inches

Key Area
Dimensions

Viewing Area
Dimensions

External
Dimensions

Panel
Thickness

* Terminal Detail
8 Pin

.049” (1.25mm) Pitch

FTAS00-57AS4 5.7 4.54” x 3.40”
(115.2mm x 86.4mm)

 4.76” x 3.61”
(121.0mm x 91.6mm)

5.16” x 3.98”
(131.0mm x 101.0mm) .055”

(1.4mm)

Length
2.56” (65.0mm)

FTAS00-65AS4 6.5 5.20” x 3.90”
(132.0mm x 99.0mm)

5.43” x 4.13”
(138.0mm x 105.0mm)

5.91” x 4.57”
(150.0mm x 116.0mm)

Length
2.56” (65.0mm)

FTAS00-84AS4 8.4 6.73” x 5.10”
(170.9mm x 129.6mm)

6.95” x 5.33”
(176.5mm x 135.4mm)

7.34” x 5.69”
(186.5mm x 144.4mm)

.083”
(2.1mm)

Length
3.15” (80.0mm)

FTAS00-104AS4 10.4 8.32” x 6.24”
(211.2mm x 158.4mm)

8.47” x 6.39”
(215.0mm x 162.4mm)

8.88” x 6.75”
(225.6mm x 171.4mm)

Length
3.15” (80.0mm)

FTAS00-104AV4 10.4 8.35” x 6.28”
(212.2mm x 159.4mm)

8.52” x 6.43”
(216.4mm x 163.4mm)

8.92” x 7.21”
(226.5mm x 183.0mm)

Length
3.15” (80.0mm)

FTAS00-121A4 12.1 9.72” x 7.30”
(246.76mm x 185.32mm)

10.04” x 7.53”
(255.0mm x 191.32mm)

10.67” x 8.07”
(271.0mm x 205.0mm)

Length
3.15” (80.0mm)

FTAS00-121AS4 12.1 9.69” x 7.26”
(246.0mm x 184.5mm)

 9.84” x 7.42”
(250.0mm x 188.5mm)

10.28” x 7.80”
(261.0mm x 198.0mm)

Length
3.15” (80.0mm)

FTAS00-150A4 15.0 12.05” x 9.06”
(306.1mm x 230.1mm)

12.21” x 9.25”
(310.0mm x 235.0mm)

12.91” x 9.84”
(328.0mm x 250.0mm)

Length
3.15” (80.0mm)

Analog
FTAS00-57AS4

 Note: Input methods are finger or stylus. * 4 pin available with 1.0mm or 1.25mm pitch. Contact factory for details.

4-Wire Analog Resistive Touch Screens
Optical

Light Transmission Analog: 80% standard
Digital: 78% standard

Film Options Anti-glare, anti-Newton ring standard

Electrical

Power Level 1mA @ 5V DC (resistive load)

Insulation Impedance 10MΩ minimum @ 25V DC

Linearity 3% maximum (analog)

Chattering Time 10 milliseconds maximum

Mechanical

Touch Activation Force 1.4N maximum

Available Sizes 5.7” ~ 15” standard

Durability

Surface Hardness 2H (JIS K5600)

Expected Operational Life 1,000,000 operations minimum

Environmental

Operating Temperature Range –10°C ~ +60°C (+14°F ~ +140°F)

Storage Temperature Range –20°C ~ +70°C (–4°F ~ +158°F)

Relative Humidity +60°C (+140°F), humidity 90%, 240 hours

GENERAL SPECIFICATIONS FOR 4-WIRE

PART NUMBERS & DESCRIPTIONS FOR 4-WIRE

L

Series FT4-Wire Touch Screens

www.nkk.com

In
di

ca
to

rs
A

cc
es

so
ri

es
Su

pp
le

m
en

t
Ta

ct
ile

s
K

ey
lo

ck
s

Ro
ta

ri
es

Pu
sh

bu
tto

ns
Ill

um
in

at
ed

 P
B

Sl
id

es
Pr

og
ra

m
m

ab
le

Ro
ck

er
s

To
uc

h
Ti

lt

L9

To
gg

le
s

4-Wire Analog Touch Screen Dimensions

Part Number
Screen
Size in
Inches

Dim A
Dim B

Viewable
Area

Dim C
Active
Area

Dim D
Dim E

Viewable
Area

Dim F
Active Area

Dim G
Center of

Active Area
Dim H

FTAS00-57AS4 5.7 5.16”
(131±0.3mm)

4.76”
(121mm)

4.54”
(115.2mm)

3.40”
(86.4mm)

3.61”
(91.6mm)

3.98”
(101±0.3mm)

2.65”
(67.25mm)

.055”
(1.4mm)

FTAS00-65AS4 6.5 5.91”
(150±0.3mm)

5.43”
(138mm)

5.20”
(132mm)

3.90”
(99mm)

4.13”
(105mm)

4.57”
(116±0.3mm)

3.03”
(77mm)

.055”
(1.4mm)

FTAS00-84AS4 8.4 7.34”
(186.5±0.3mm)

6.95”
(176.5mm)

6.73”
(170.9mm)

5.10”
(129.6mm)

5.33”
(135.4mm)

5.69”
(144.4±0.3mm)

3.73”
(94.85mm)

.083”
(2.1mm)

FTAS00-104AS4 10.4 8.88”
(225.6±0.3mm)

8.46”
(215mm)

8.31”
(211.2mm)

6.24”
(158.4mm)

6.39”
(162.4mm)

6.75”
(171.4±0.3mm)

4.49”
(114.1mm)

.083”
(2.1mm)

FTAS00-121AS4 12.1 10.28”
(261±0.3mm)

9.84”
(250mm)

9.69”
(246mm)

7.26”
(184.5mm)

7.42”
(188.5mm)

7.80”
(198±0.3mm)

5.18”
(131.6mm)

.083”
(2.1mm)

FTAS00-150A4 15.0 12.91”
(328±0.3mm)

12.20”
(310mm)

12.05”
(306.1mm)

9.06”
(230.1mm)

9.25”
(235mm)

9.84”
(250±0.3mm)

6.52”
(165.6mm)

.083”
(2.1mm)

YUP

YLO

XLE XRI
1

8

B
A

D E F

YUP

YLO

X
LE

X
RI

.059
(1.5) Air Vent

.197
(5.0)

.394
(10.0)

.049
(1.25)

.443
(11.25)

Typ

1.11
(28.2)

Reinforcement Film

Stiffener
Tail

Contact Side Insulation Film

Reinforcement Film

Top Electrode

Bottom Electrode

.020
(0.5)

Pin 1

Center of Active Area

.031
(0.8) Typ

Pin 8 Center of Active Area

.012
(0.3)

±1

±0.1

±0.05

Viewable Area

C Active Area

G

H

(16x24)

XLE, XRI: Top Electrode Terminal
YUP, YLO: Bottom Electrode Terminal

(80.0)
 3.15

(70.0)
 2.76
(60.0)
 2.36

.394
(10.0)

Pin 1

Pin 8

±1(65.0)
 2.56

(55.0)
 2.17
(45.0)
 1.77

Pins Signal

1,2 YUP

3,4 YLO

5,6 XLE

7,8 XRI

4-Wire with Horizontal Tail

Tail Dimensions for
FTAS00-57AS4
FTAS00-65AS4

Series FT 4-Wire Touch Screens

www.nkk.com

L

In
di

ca
to

rs
A

cc
es

so
ri

es
Su

pp
le

m
en

t
Ta

ct
ile

s
K

ey
lo

ck
s

Ro
ta

ri
es

Pu
sh

bu
tto

ns
Ill

um
in

at
ed

 P
B

Sl
id

es
Pr

og
ra

m
m

ab
le

Ro
ck

er
s

To
uc

h
Ti

lt

L10

To
gg

le
s

8.35
(212.2) Active Area

8.52
(216.4) Viewable Area

4.51
(114.5)

8.92
(226.5)

6.28
(159.4)

6.43
(163.4) 7.20

(183.0) ±0.3

±0.3

Stiffener

Tail

Contact Side

Insulation Film

Reinforcement Film

Top Electrode

Bottom Electrode

Center of Active Area

Center of Active Area

.083
(2.1)

±0.05
.197
(5.0)

.394
(10.0)

2.36
(60.0)

2.76
(70.0)

3.15
(80.0)

.049
(1.25).443

(11.25)

Typ

1.11
(28.2)

Reinforcement Film

.020
(0.5)

Pin 1

.031
(0.8) Typ

Pin 8

.012
(0.3)

±0.2
.059
(1.5) Air Vent

±0.1

±1

3.72
(94.5)

YUP

X
LE

YLO

X
RI

(16X24)

18

YUP

YLO

XLE XRI

XLE, XRI: Top Electrode Terminal
YUP, YLO: Bottom Electrode Terminal

Pins Signal

1,2 YUP

3,4 YLO

5,6 XRI

7,8 XLE

4-Wire with Vertical Tail

FTAS00-104AV4

L

Series FT4-Wire Touch Screens

www.nkk.com

In
di

ca
to

rs
A

cc
es

so
ri

es
Su

pp
le

m
en

t
Ta

ct
ile

s
K

ey
lo

ck
s

Ro
ta

ri
es

Pu
sh

bu
tto

ns
Ill

um
in

at
ed

 P
B

Sl
id

es
Pr

og
ra

m
m

ab
le

Ro
ck

er
s

To
uc

h
Ti

lt

L11

To
gg

le
s

9.71
(246.76) Active Area
10.04

(255.0) Viewable Area

5.51
(140.0)

10.67
(271.0)

7.30
(185.32)

7.53
(191.32)

8.07
(05.0)

YUP

YLO

X
LE

X
RI ±0.3

±0.3

.059
(1.5) Air Vent

.197
(5.0)

.394
(10.0)

2.36
(60.0)

2.76
(70.0)

3.15
(80.0)

.049
(1.25)

.443
(11.25)

Typ

1.11
(28.2)

Reinforcement Film

Stiffener
Tail

Contact Side Insulation Film

Reinforcement Film

Top Electrode

Bottom Electrode

.020
(0.5)

Pin 1

Center of Active Area

.031
(0.8) Typ

Pin 8

Center of Active Area

.083
(2.1)

.012
(0.31) ±0.05 ±0.2

±0.1

±14.22
(107.25) 4.03

(102.25)

(16X24)

2

YUP

YLO

XLE XRI
1

8

XLE, XRI: Top Electrode Terminal
YUP, YLO: Bottom Electrode Terminal

Pins Signal

1,2 YUP

3,4 YLO

5,6 XLE

7,8 XRI

4-Wire with Horizontal Tail (Off-Center)

FTAS00-121A4

Series FT Controllers & Drivers

www.nkk.com

L

In
di

ca
to

rs
A

cc
es

so
ri

es
Su

pp
le

m
en

t
Ta

ct
ile

s
K

ey
lo

ck
s

Ro
ta

ri
es

Pu
sh

bu
tto

ns
Ill

um
in

at
ed

 P
B

Sl
id

es
Pr

og
ra

m
m

ab
le

Ro
ck

er
s

To
uc

h
Ti

lt

L12

To
gg

le
s

Controller Boards
Available
for RS232C

Controller Boards
Available
for USB

• High Quality and Reliability

• Easy Integration Replacing Mouse Functionality

• Compatible with Control Board USB/RS2

• Device Driver Compatible with Vista and Windows XP
 Operating Systems

 • Interface: USB and RS232C

 • High Speed and Accuracy

 • Built-in Calibration Function

 • Data Function Removal Built In to Eliminate Noise

IC & Accessories

4-Wire Touch Screen Controller Boards & Drivers

AT713 Receptacle Connector

This Receptacle Connector with code connects to RS232C
communication of the controller boards. It is compatible with
FTCS04A and FTCS04A2.

The IC is for use with the 5- and 4-wire transparent touch screens,
and is available for those who prefer to design their own control-
ler boards. When the screen is touched, it recognizes the position
of the touch by the level of the analog voltage detected by the
A/D. The A/D converter receives the value and sends a set of
coordinate values as serial data or USB.

See web site or contact factory for IC specifications.

NKK offers controller boards compatible with USB or with
RS232C. See web site or contact factory for specifications and
technical data.

IC FTCSU564

Controller Boards

Type Part No. Communication
Protocol

4-Wire FTCS04B RS232C

4-Wire FTCU04B USB

 See web site for dimensioned drawings or technical
 data for any of the controller boards and drivers.

DISTINCTIVE CHARACTERISTICS

DISTINCTIVE CHARACTERISTICS OPTIONAL ACCESSORIES

AT714 Receptacle Connector

AT714 is a Receptacle Connector with code to connect to
power source of the control boards.

For more details and dimensioned drawings of the accessories,
go to the web site or call our engineering support personnel.

L

Series FTStorage, Handling & Installation

www.nkk.com

In
di

ca
to

rs
A

cc
es

so
ri

es
Su

pp
le

m
en

t
Ta

ct
ile

s
K

ey
lo

ck
s

Ro
ta

ri
es

Pu
sh

bu
tto

ns
Ill

um
in

at
ed

 P
B

Sl
id

es
Pr

og
ra

m
m

ab
le

Ro
ck

er
s

To
uc

h
Ti

lt

L13

To
gg

le
s

Below are some general precautions for the 5-wire & 4-wire touch screen devices. Please check web site for complete documentation.

Installation (4-wire, 5-wire)
• Do not pull on the tail. Do not apply stress to the tail area.
• Avoid vibration or shock.
• The touch screen mounting should not be loose.
• Ensure there are no burrs around the edges of the case or housing that can cause false actuation. The edges of the case or housing should

not enter the keying area.
• The case or housing and upper electrode should have a space of about 0.5 mm to accommodate expansion or shrinkage due to humidity

variances. If a shock barrier is used do not press hard on the upper electrode area. Any shock barrier should be installed more than 0.6
mm above the screen.

• To secure the touch screen, secure the lower portion with an item such as the LCD display panel. Do not secure the upper electrode with
double-sided tape or similar items to avoid stress that can damage the upper or lower electrode.

• In order to balance upper and lower pressure, an air vent may be installed. Ensure that no liquid or oil will enter into the device.

Handling Precautions (4-wire, 5-wire)
• When opening product, take precaution with up/down and front/back directions. Glass edges are not chamfered, corners or edges can

be sharp. Wear gloves when handling the product.
• Do not pick up the product by the tail or pull the tail area.
• Use gloves or finger cots to prevent fingerprints on surface.
• When handling the product, hold it outside of the viewing area.
• Avoid stacking multiple products or placing other items on the product.
• Remove protective film after installation is completed.

Operating Precautions (4-wire, 5-wire)
• Only operate with fingers or a touch screen stylus.
• Do not press hard with pen or similar objects between viewing area and key area.

Design Precautions (4-wire, 5-wire)
• With analog type, resistive value change can dislocate the input area. Input area can be calibrated with software.
• When installing on top of a LCD, noise from the display device can create misoperation. To avoid noise, implement actions such as

grounding the display device frame.
• Do not create software for two point touch as analog type will read the center point between two touch points.
• When used to draw a line, analog type will have a break at dot spacer. Compensate for this with software.

Other Precautions (4-wire, 5-wire)
• Clean with a soft cloth and ethanol. Do not use any cleaning agents other than ethanol.
• Store product in original package and store at the temperature and humidity range specified.
• Do not store in an environment with acids or other corrosive gases or dew.
• Not suited for use in critical control systems such as nuclear power, aerospace, medical or transportation equipment, without

proper failsafe design consideration.

Handling Precautions (5-wire)
• NKK warrantees the 5-wire touch panel when it is used with the NKK control board and driver. Do not use third party control boards.
• 5-wire devices can misalign cathode position or touch position even after calibration. See web site for details.
• Create a larger input area. If you have the input button at the edge of a screen, it might not operate properly.
• Complete 9 point calibration with NKK driver. If more precision is desired, 25 point calibration is recommended.

Handling of Controller Board (5-wire)
• Warranty for one year after delivery. We do not warrantee the controller board unless used with NKK touch panel.
• Use arc prevention to protect device from static electricity.
• Power source should be activated after host and touch panel are connected.
• When inserting connector CN1 and touch panel tail, be sure the slider of connector CN1 is pulled. Do not pull more than 10 times.
• Do not alter the product.
• Do not use any commands other than the ones specified in specifications.
• Place the product away from noise source (such as inverter from LCD operation) since tail can be affected by noise.
• If device driver (USB) does not work after installation, reboot the host computer while connected to the controller board.
• This product does not support suspended mode (USB).
• Protocol of USB transmission is one frame per one transaction.
• Contact factory if not using protocol above.

Hitec HS422 Servo

SKU:SER0002

INTRODUCTION

The HS-422 has been around for a while and for a good reason, durability and the ability to be easily modified. For inexpensive

robotic applications this the perfect servo. It can easily be modified for wheeled applications since the output shaft is supported

on the botton and top with bronze bushings and the potentiometer is indirect drive. The circuit board is also seperate from the

motor so the potentiometer can be easily accessed. Simply a great servo at a great price.

SPECIFICATION

 Control System: +Pulse Width Control 1500usec Neutral

 Required Pulse: 3-5 Volt Peak to Peak Square Wave

 Operating Voltage: 4.8-6.0 Volts

 Operating Temperature Range: -20 to +60 Degree C

 Operating Speed (4.8V): 0.21sec/60° at no load

 Operating Speed (6.0V): 0.16sec/60° at no load

 Stall Torque (4.8V): 45.82 oz/in. (3.3kg.cm)

 Stall Torque (6.0V): 56.93 oz/in. (4.1kg.cm)

 Operating Angle: 45 Deg. one side pulse traveling 400usec

 360 Modifiable: Yes

 Direction: Clockwise/Pulse Traveling 1500 to 1900usec

 Current Drain (4.8V): 8mA/idle and 150mA no load operating

 Current Drain (6.0V): 8.8mA/idle and 180mA no load operating

 Dead Band Width: 8usec

 Motor Type: 3 Pole Ferrite

 Potentiometer Drive: Indirect Drive

 Bearing Type: Dual Oilite Bushing

 Gear Type: Nylon

 Connector Wire Length: 11.81" (300mm=11.81in)

 Dimensions: See Schematics

 Weight: 1.6oz (45.5g)

A = .780” (19.82mm=0.78in)

B = .530” (13.47mm=0.53in)

C = 1.33” (33.79mm=1.33in)

D = .400” (10.17mm=0.4in)

E = .380” (9.66mm=0.38in)

F = 1.19” (30.22mm=1.19in)

G = .460” (11.68mm=0.46in)

H = 1.05” (26.67mm=1.05in)

J = 2.08” (52.84mm=2.08in)

K = .368” (9.35mm=0.37in)

L = .172” (4.38mm=0.17in)

M = 1.57” (39.88mm=1.57in)

X = .120” (3.05mm=0.12in)

SHIPPING LIST

 Hitec HS422 Servo x1

 https://www.dfrobot.com/product-152.html 5-30-17

The Arduino Uno is a microcontroller board based on the ATmega328 (datasheet). It has 14 digital
input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a
USB connection, a power jack, an ICSP header, and a reset button. It contains everything needed to
support the microcontroller; simply connect it to a computer with a USB cable or power it with a AC-to-DC
adapter or battery to get started. The Uno differs from all preceding boards in that it does not use the FTDI
USB-to-serial driver chip. Instead, it features the Atmega8U2 programmed as a USB-to-serial converter.

"Uno" means one in Italian and is named to mark the upcoming release of Arduino 1.0. The Uno and version
1.0 will be the reference versions of Arduno, moving forward. The Uno is the latest in a series of USB
Arduino boards, and the reference model for the Arduino platform; for a comparison with previous versions,
see the index of Arduino boards.

EAGLE files: arduino-duemilanove-uno-design.zip Schematic: arduino-uno-schematic.pdf

Microcontroller ATmega328
Operating Voltage 5V
Input Voltage (recommended) 7-12V
Input Voltage (limits) 6-20V
Digital I/O Pins 14 (of which 6 provide PWM output)
Analog Input Pins 6
DC Current per I/O Pin 40 mA
DC Current for 3.3V Pin 50 mA

Flash Memory 32 KB of which 0.5 KB used by
bootloader

SRAM 2 KB
EEPROM 1 KB
Clock Speed 16 MHz

The Arduino Uno can be powered via the USB connection or with an external power supply. The power
source is selected automatically.

External (non-USB) power can come either from an AC-to-DC adapter (wall-wart) or battery. The adapter
can be connected by plugging a 2.1mm center-positive plug into the board's power jack. Leads from a
battery can be inserted in the Gnd and Vin pin headers of the POWER connector.

The board can operate on an external supply of 6 to 20 volts. If supplied with less than 7V, however, the 5V
pin may supply less than five volts and the board may be unstable. If using more than 12V, the voltage
regulator may overheat and damage the board. The recommended range is 7 to 12 volts.

The power pins are as follows:

• VIN. The input voltage to the Arduino board when it's using an external power source (as opposed to
5 volts from the USB connection or other regulated power source). You can supply voltage through
this pin, or, if supplying voltage via the power jack, access it through this pin.

• 5V. The regulated power supply used to power the microcontroller and other components on the
board. This can come either from VIN via an on-board regulator, or be supplied by USB or another
regulated 5V supply.

• 3V3. A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.
• GND. Ground pins.

The Atmega328 has 32 KB of flash memory for storing code (of which 0,5 KB is used for the bootloader); It
has also 2 KB of SRAM and 1 KB of EEPROM (which can be read and written with the EEPROM library).

Each of the 14 digital pins on the Uno can be used as an input or output, using pinMode(), digitalWrite(), and
digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and
has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have
specialized functions:

• Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. TThese pins are
connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip .

• External Interrupts: 2 and 3. These pins can be configured to trigger an interrupt on a low value, a
rising or falling edge, or a change in value. See the attachInterrupt() function for details.

• PWM: 3, 5, 6, 9, 10, and 11. Provide 8-bit PWM output with the analogWrite() function.
• SPI: 10 (SS), 11 (MOSI), 12 (MISO), 13 (SCK). These pins support SPI communication, which,

although provided by the underlying hardware, is not currently included in the Arduino language.

• LED: 13. There is a built-in LED connected to digital pin 13. When the pin is HIGH value, the LED is
on, when the pin is LOW, it's off.

The Uno has 6 analog inputs, each of which provide 10 bits of resolution (i.e. 1024 different values). By
default they measure from ground to 5 volts, though is it possible to change the upper end of their range
using the AREF pin and the analogReference() function. Additionally, some pins have specialized
functionality:

• I2C: 4 (SDA) and 5 (SCL). Support I2C (TWI) communication using the Wire library.

There are a couple of other pins on the board:

• AREF. Reference voltage for the analog inputs. Used with analogReference().
• Reset. Bring this line LOW to reset the microcontroller. Typically used to add a reset button to

shields which block the one on the board.

See also the mapping between Arduino pins and Atmega328 ports.

The Arduino Uno has a number of facilities for communicating with a computer, another Arduino, or other
microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is available on
digital pins 0 (RX) and 1 (TX). An ATmega8U2 on the board channels this serial communication over USB
and appears as a virtual com port to software on the computer. The '8U2 firmware uses the standard USB
COM drivers, and no external driver is needed. However, on Windows, an *.inf file is required..

The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the
Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the USB-to-
serial chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Uno's digital pins.

The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire
library to simplify use of the I2C bus; see the documentation for details. To use the SPI communication,
please see the ATmega328 datasheet.

The Arduino Uno can be programmed with the Arduino software (download). Select "Arduino Uno w/
ATmega328" from the Tools > Board menu (according to the microcontroller on your board). For details,
see the reference and tutorials.

The ATmega328 on the Arduino Uno comes preburned with a bootloader that allows you to upload new code
to it without the use of an external hardware programmer. It communicates using the original STK500
protocol (reference, C header files).

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial
Programming) header; see these instructions for details.

The ATmega8U2 firmware source code is available . The ATmega8U2 is loaded with a DFU bootloader,
which can be activated by connecting the solder jumper on the back of the board (near the map of Italy) and
then resetting the 8U2. You can then use Atmel's FLIP software (Windows) or the DFU programmer (Mac
OS X and Linux) to load a new firmware. Or you can use the ISP header with an external programmer
(overwriting the DFU bootloader).

Rather than requiring a physical press of the reset button before an upload, the Arduino Uno is designed in a
way that allows it to be reset by software running on a connected computer. One of the hardware flow control
lines (DTR) of the ATmega8U2 is connected to the reset line of the ATmega328 via a 100 nanofarad
capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The
Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the
Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR
can be well-coordinated with the start of the upload.

This setup has other implications. When the Uno is connected to either a computer running Mac OS X or
Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or
so, the bootloader is running on the Uno. While it is programmed to ignore malformed data (i.e. anything
besides an upload of new code), it will intercept the first few bytes of data sent to the board after a
connection is opened. If a sketch running on the board receives one-time configuration or other data when it
first starts, make sure that the software with which it communicates waits a second after opening the
connection and before sending this data.

The Uno contains a trace that can be cut to disable the auto-reset. The pads on either side of the trace can
be soldered together to re-enable it. It's labeled "RESET-EN". You may also be able to disable the auto-reset
by connecting a 110 ohm resistor from 5V to the reset line; see this forum thread for details.

The Arduino Uno has a resettable polyfuse that protects your computer's USB ports from shorts and
overcurrent. Although most computers provide their own internal protection, the fuse provides an extra layer
of protection. If more than 500 mA is applied to the USB port, the fuse will automatically break the connection
until the short or overload is removed.

The maximum length and width of the Uno PCB are 2.7 and 2.1 inches respectively, with the USB connector
and power jack extending beyond the former dimension. Three screw holes allow the board to be attached to
a surface or case. Note that the distance between digital pins 7 and 8 is 160 mil (0.16"), not an even multiple
of the 100 mil spacing of the other pins.

Arduino can sense the environment by receiving input from a variety of sensors and can affect its
surroundings by controlling lights, motors, and other actuators. The microcontroller on the board is
programmed using the Arduino programming language (based on Wiring) and the Arduino
development environment (based on Processing). Arduino projects can be stand-alone or they can
communicate with software on running on a computer (e.g. Flash, Processing, MaxMSP).

Arduino is a cross-platoform program. You’ll have to follow different instructions for your personal
OS. Check on the Arduino site for the latest instructions. http://arduino.cc/en/Guide/HomePage

Once you have downloaded/unzipped the arduino IDE, you can Plug the Arduino to your PC via USB cable.

Now you’re actually ready to “burn” your
first program on the arduino board. To
select “blink led”, the physical translation
of the well known programming “hello
world”, select

File>Sketchbook>
Arduino-0017>Examples>
Digital>Blink

Once you have your skecth you’ll
see something very close to the
screenshot on the right.

In Tools>Board select

Now you have to go to
Tools>SerialPort
and select the right serial port, the
one arduino is attached to.

1. Warranties

1.1 The producer warrants that its products will conform to the Specifications. This warranty lasts for one (1) years from the date of the sale. The
producer shall not be liable for any defects that are caused by neglect, misuse or mistreatment by the Customer, including improper installation or testing,
or for any products that have been altered or modified in any way by a Customer. Moreover, The producer shall not be liable for any defects that result from
Customer's design, specifications or instructions for such products. Testing and other quality control techniques are used to the extent the producer deems
necessary.

1.2 If any products fail to conform to the warranty set forth above, the producer's sole liability shall be to replace such products. The producer's liability
shall be limited to products that are determined by the producer not to conform to such warranty. If the producer elects to replace such products, the
producer shall have a reasonable time to replacements. Replaced products shall be warranted for a new full warranty period.

1.3 EXCEPT AS SET FORTH ABOVE, PRODUCTS ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." THE PRODUCER DISCLAIMS ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, REGARDING PRODUCTS, INCLUDING BUT NOT LIMITED TO, ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE

1.4 Customer agrees that prior to using any systems that include the producer products, Customer will test such systems and the functionality of the
products as used in such systems. The producer may provide technical, applications or design advice, quality characterization, reliability data or other
services. Customer acknowledges and agrees that providing these services shall not expand or otherwise alter the producer's warranties, as set forth
above, and no additional obligations or liabilities shall arise from the producer providing such services.

1.5 The Arduino products are not authorized for use in safety-critical applications where a failure of the product would reasonably be expected to cause
severe personal injury or death. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Arduino products are neither designed nor intended for use in military or aerospace applications or
environments and for automotive applications or environment. Customer acknowledges and agrees that any such use of Arduino products which is solely
at the Customer's risk, and that Customer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

1.6 Customer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its
products and any use of Arduino products in Customer's applications, notwithstanding any applications-related information or support that may be
provided by the producer.

2. Indemnification

The Customer acknowledges and agrees to defend, indemnify and hold harmless the producer from and against any and all third-party losses, damages,
liabilities and expenses it incurs to the extent directly caused by: (i) an actual breach by a Customer of the representation and warranties made under this
terms and conditions or (ii) the gross negligence or willful misconduct by the Customer.

3. Consequential Damages Waiver

In no event the producer shall be liable to the Customer or any third parties for any special, collateral, indirect, punitive, incidental, consequential or
exemplary damages in connection with or arising out of the products provided hereunder, regardless of whether the producer has been advised of the
possibility of such damages. This section will survive the termination of the warranty period.

4. Changes to specifications

The producer may make changes to specifications and product descriptions at any time, without notice. The Customer must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined." The producer reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The product information on the Web Site or Materials is
subject to change without notice. Do not finalize a design with this information.

The producer of Arduino has joined the Impatto Zero®
policy of LifeGate.it. For each Arduino board produced is
created / looked after half squared Km of Costa Rica’s
forest’s.

Appendix B

MATLAB Code

75

%LQR optimal control m.file

Ts=0.01;%sampling time
M=0.025; %ball mass
Ib=4.3e-6; %ball moment of inertia
R=0.02; %ball's radiu
g=9.8 %gravity
Tm=0.187;
b=(M/(M+(Ib/R^2)));

% system state space

Ax=[0 1 0 0;0 0 -b*g 0;0 0 0 -1;0 0 0 0];
Bx=[0 0 0 1/Tm]';
Cx=eye(4);
Dx=zeros(4,1);

Ay=[0 1 0 0;0 0 -b*g 0;0 0 0 -1;0 0 0 0];
By=[0 0 1 0]';
Cy=eye(4);
Dy=zeros(4,1);

Q=[10 0 0 0;0 10 0 0;0 0 10 0;0 0 0 10];
R=1;

%controller LQR

[K, P , E]=lqr(Ax,Bx,Q,R);

%state feedback mfile
Ts=0.01;%sampling time
M=0.025; %ball mass
Ib=4.3e-6; %ball moment of inertia
R=0.02; %ball's radiu
g=9.8 %gravity
Tm=0.187;
b=(M/(M+(Ib/R^2)));

% system state space

Ax=[0 1 0 0;0 0 -b*g 0;0 0 0 -1/Tm;0 0 0 0];
Bx=[0 0 0 1]';
Cx=eye(4);
Dx=zeros(4,1);

Ay=[0 1 0 0;0 0 -b*g 0;0 0 0 -1/Tm;0 0 0 0];
By=[0 0 0 1]';
Cy=eye(4);
Dy=zeros(4,1);

%controller

K=place(Ax,Bx,[-1.0 -0.99 -0.98 -0.999])
Ki=-K(:,4);

Appendix C

S-function

78

%The standerd S-Function tamplet written by MathWorks team

% the function rewritten to represent the Ball and Plate system

%for the sake of simulation & controller design

% the input for the system (torque1, torque2)

%the output for the system (xb,yb) respectivly

function [sys,x0,str,ts,simStateCompliance] =Ball_Plate(t,x,u,flag)

switch flag,

 %%%%%%%%%%%%%%%%%%

 % Initialization %

 %%%%%%%%%%%%%%%%%%

 case 0,

 [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes;

 %%%%%%%%%%%%%%%

 % Derivatives %

 %%%%%%%%%%%%%%%

 case 1,

 sys=mdlDerivatives(t,x,u);

 %%%%%%%%%%

 % Update %

 %%%%%%%%%%

 case 2,

 sys=mdlUpdate(t,x,u);

 %%%%%%%%%%%

 % Outputs %

 %%%%%%%%%%%

 case 3,

 sys=mdlOutputs(t,x,u);

 %%%%%%%%%%%%%%%%%%%%%%%

 % GetTimeOfNextVarHit %

 %%%%%%%%%%%%%%%%%%%%%%%

 case 4,

 sys=mdlGetTimeOfNextVarHit(t,x,u);

 %%%%%%%%%%%%%

 % Terminate %

 %%%%%%%%%%%%%

 case 9,

 sys=mdlTerminate(t,x,u);

 %%%%%%%%%%%%%%%%%%%%

 % Unexpected flags %

 %%%%%%%%%%%%%%%%%%%%

 otherwise

 DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));

end

% end sfuntmpl

%

%===

% mdlInitializeSizes

% Return the sizes, initial conditions, and sample times for the S-function.

%===

%

function [sys,x0,str,ts,simStateCompliance]=mdlInitializeSizes

%

% call simsizes for a sizes structure, fill it in and convert it to a

% sizes array.

%

% Note that in this example, the values are hard coded. This is not a

% recommended practice as the characteristics of the block are typically

% defined by the S-function parameters.

%

sizes = simsizes;

sizes.NumContStates = 8;

sizes.NumDiscStates = 0;

sizes.NumOutputs = 2;

sizes.NumInputs =2;

sizes.DirFeedthrough = 1;

sizes.NumSampleTimes = 1; % at least one sample time is needed

sys = simsizes(sizes);

%

% initialize the initial conditions

%

x0 = [0.08 0 0.08 0 0 0 0 0]; %xb,xb_d,yb,yb_d,alpha,alpha_d,beta,beta_d

%

% str is always an empty matrix

%

str = [];

%

% initialize the array of sample times

%

ts = [0 0];

% Specify the block simStateCompliance. The allowed values are:

% 'UnknownSimState', < The default setting; warn and assume DefaultSimState

% 'DefaultSimState', < Same sim state as a built-in block

% 'HasNoSimState', < No sim state

% 'DisallowSimState' < Error out when saving or restoring the model sim state

simStateCompliance = 'UnknownSimState';

% end mdlInitializeSizes

%

%===

% mdlDerivatives

% Return the derivatives for the continuous states.

%===

%

function sys=mdlDerivatives(t,x,u)

sys = [];

%states

%x(1)=xb; x(3)=yb; x(5)=alpha; x(7)=beta

%x(2)=xb_d; x(4)=yb_d; x(6)=alpha_d; x(8)=beta_d;

%Model parameters

sa=sin(x(5)); % sin(alpha)

sb=sin(x(7)); %sin(bata)

ca=cos(x(5)); % cos(alpha)

cb=cos(x(7)); %cos(bata)

%ball parameters

mb=112*10^-3;

rb=1.5*10^-2;

Ib=(2/3)*mb*rb^2;

%plate parameters

mp=428*10^-3;

Ly=24.8*10^-2;

Lx=19*10^-2;

th=3*10^-2;

Ipx=(mp/12)*(Ly^2+th^2); %mass moment of inertia

Ipy=(mp/12)*(Lx^2+th^2); %mass moment of inertia

%the computation of alpha_dd & beta_dd (x6dot & x8dot)

%mass matrix

M=[(Ipx+Ib+mb*x(1)^2)/4.7 (mb*x(1)*x(3))/4.75; (mb*x(1)*x(3))/6.2 (Ipy+Ib+mb*x(3)^2)/6.2

];

C=[(2*mb*x(1)*x(2)*x(6)+mb*x(4)*x(1)*x(8)+mb*x(3)*x(2)*x(8)+mb*9.8*x(1)*ca)/4.75;(2*mb*x

(3)*x(4)*x(8)+mb*x(4)*x(1)*x(6)+mb*x(3)*x(2)*x(6)+mb*9.8*x(3)*cb)/6.2] ;

% end mdlDerivatives

A=inv(M)*(u-(C));

x1dot=x(2);

x2dot=(mb*(x(1)*x(6)^2+x(3)*x(6)*x(8))-(mb*9.8*sa))/(mb+(Ib/rb^2));

x3dot=x(4);

x4dot=(mb*(x(3)*x(8)^2+x(1)*x(6)*x(8))-(mb*9.8*sb))/(mb+(Ib/rb^2));

x5dot=x(6);

x6dot=A(1);

x7dot=x(8);

x8dot=A(2);

sys=[x1dot x2dot x3dot x4dot x5dot x6dot x7dot x8dot];

%

%===

% mdlUpdate

% Handle discrete state updates, sample time hits, and major time step

% requirements.

%===

%

function sys=mdlUpdate(t,x,u)

sys = [];

% end mdlUpdate

%s

%===

% mdlOutputs

% Return the block outputs.

%===

%

function sys=mdlOutputs(t,x,u)

sys = [x(1) x(3)];

% end mdlOutputs

%

%===

% mdlGetTimeOfNextVarHit

% Return the time of the next hit for this block. Note that the result is

% absolute time. Note that this function is only used when you specify a

% variable discrete-time sample time [-2 0] in the sample time array in

% mdlInitializeSizes.

%===

%

function sys=mdlGetTimeOfNextVarHit(t,x,u)

sampleTime = 1; % Example, set the next hit to be one second later.

sys = t + sampleTime;

% end mdlGetTimeOfNextVarHit

%

%===

% mdlTerminate

% Perform any end of simulation tasks.

%===

%

function sys=mdlTerminate(t,x,u)

sys = [];

% end mdlTerminate

Appendix D

Arduino codes

83

 // Servo motor test cod
 #include <Servo.h>
 #define XServoPin 1 // x-servo pin
 #define YServoPin 2 // y-servo pin

 Servo xServo;// Define x servo
 Servo yServo;//Define y servo

 int xservo_angle;// Desire xServo angle
 int yservo_angle;// Desire yServo angle

 void setup(void) {

 xServo.attach(XServoPin);//attach x-servo
 yServo.attach(YServoPin);//attach y-servo

 Serial.begin(9600); }

 void loop(void) {

 xservo_angle=90;// Desire xServo angle
 yservo_angle=90;// Desire yServo angle
 xServo.write(xservo_angle);// servo angle
 yServo.write(yservo_angle);//servo angle

 delay(100);

 Serial.print(xservo_angle"); Serial. println(xservo_angle);
 Serial.print("yservo_angle"); Serial.
println(yservo_angle);
 }

 // Touchscreen Test cod

 #include "TouchScreen.h"

 #define YP A1 // must be an analog pin,
 #define XM A2 // must be an analog pin,
 #define YM 1 // can be a digital pin or analog pin
 #define XP 2 // can be a digital pin or analog pin

 TouchScreen ts = TouchScreen(XP, YP, XM, YM, 20);

 void setup(void) {

 delay(2000);
 Serial.begin(9600);
 }

 void loop(void) {

 TSPoint p = ts.getPoint();

 InputX = p.x;
 InputY = p.y;

 Serial.print("InputX"); Serial.print(InputX);
 Serial.print("InputY"); Serial.print(InputY);

}

 // PID test code
 #include <PID_v1.h>

 double SetpointX = 0, InputX = 0 , OutputX = 0;
 double xKp = 0 , xKd = 0 , xKi = 0;

 double SetpointY =0, InputY = 0 , OutputY = 0;
 double yKp =0, yKd = 0 , yKi = 0;

 PID xPID(&InputX, &OutputX, &SetpointX, xKp, xKi, xKd,
DIRECT);
 PID yPID(&InputY, &OutputY, &SetpointY, yKp, yKi, yKd,
DIRECT);

 void setup(void) {

 xPID.SetMode(AUTOMATIC);
 xPID.SetSampleTime(ts);

 yPID.SetMode(AUTOMATIC);
 yPID.SetSampleTime(ts);
 delay(2000);
 Serial.begin(9600);
 }

 void loop(void) {

 xPID.Compute();
 yPID.Compute();

 }

// PID Autotune code
#include <Servo.h>
#include "TouchScreen.h"
#include <PID_v1.h>
#include <PID_AutoTune_v0.h>

#define YP A1 // must be an analog pin,
#define XM A2 // must be an analog pin,
#define YM 1 // can be a digital pin
#define XP 2 // can be a digital pin
#define XServoPin 3 //
#define YServoPin 4 //
#define sen 25

TouchScreen ts = TouchScreen(XP, YP, XM, YM, 10);

byte ATuneModeRemember=2;

double kpmodel=1.5, taup=100, theta[50];
double outputStart=5;
double aTuneStep=50, aTuneNoise=1, aTuneStartValue=100;
unsigned int aTuneLookBack=20;

boolean tuning = false;
unsigned long modelTime, serialTime;

Servo xServo;
Servo yServo;
unsigned long time;
unsigned long stable = 0;
unsigned int noTouchCount = 0;

double SetpointX = 200, InputX = 200 , OutputX = 80;

double xKp = 0 , xKd = 0 , xKi = 0;

double SetpointY = 150, InputY = 150 , OutputY = 90;
//double yKp =0.29, yKd = 0.055 , yKi = 4*yKd;
double yKp =0, yKd = 0 , yKi = 0;

PID xPID(&InputX, &OutputX, &SetpointX, xKp, xKi, xKd, DIRECT);
PID yPID(&InputY, &OutputY, &SetpointY, yKp, yKi, yKd, DIRECT);
PID_ATune aTune(&InputX, &OutputX);
boolean useSimulation = true;
void setup(void) {

if(useSimulation)
 {
 for(byte i=0;i<50;i++)
 {
 theta[i]=outputStart;
 }
 modelTime = 0;
 }
 //Setup the pid
 xPID.SetMode(AUTOMATIC);

 if(tuning)
 {
 tuning=false;
 changeAutoTune();
 tuning=true;
 }

 serialTime = 0;

 xServo.attach(XServoPin);

 xServo.write(80);
 xPID.SetMode(AUTOMATIC);
 xPID.SetSampleTime(40);

 yServo.attach(YServoPin);
 yServo.write(90);
 yPID.SetMode(AUTOMATIC);
 yPID.SetSampleTime(30);
 delay(2000);
 Serial.begin(9600);
}

void loop(void) {

 unsigned long now = millis();

 while (stable < 125)
 {
 TSPoint p = ts.getPoint();

 xServo.attach(XServoPin);
 yServo.attach(YServoPin);

 if(!useSimulation)
{
 InputX =p.x;
 InputY =p.y;//
}

 if(tuning)
 {
 byte val = (aTune.Runtime());
 if (val!=0)
 {
 tuning = false;

 }
 if(!tuning)
 { //we're done, set the tuning parameters
 xKp = aTune.GetKp();
 xKi = aTune.GetKi();
 xKd = aTune.GetKd();
 xPID.SetTunings(xKp,xKi, xKd);
 AutoTuneHelper(false);
 }
 } else xPID.Compute();

 if (val!=0)
 {
 tuning = false;
 }
 if(!tuning)
 { //we're done, set the tuning parameters
 xKp = aTune.GetKp();
 xKi = aTune.GetKi();
 xKd = aTune.GetKd();
 xPID.SetTunings(xKp,xKi, xKd);
 AutoTuneHelper(false);
 }
 } else xPID.Compute();

 if(useSimulation)
 {
 theta[30]=OutputX;
 if(now>=modelTime)
 {
 modelTime +=100;
 DoModel();
 }
 }
 else
 {

 xServo.write(OutputX);
 }
 if(millis()>serialTime)
 {
 SerialReceive();
 SerialSend();
 serialTime+=500;
 }

 xPID.Compute();
 yPID.Compute();

 Serial.print("xki"); Serial.println(noTouchCount);
 Serial.print("xkd"); Serial.println(noTouchCount);
 Serial.print("xkd"); Serial.println(noTouchCount);

 }

void changeAutoTune()
{
 if(!tuning)
 {
 //Set the output to the desired starting frequency.
 OutputX=aTuneStartValue;
 aTune.SetNoiseBand(aTuneNoise);
 aTune.SetOutputStep(aTuneStep);
 aTune.SetLookbackSec((int)aTuneLookBack);
 AutoTuneHelper(true);

 tuning = true;
 }
 else
 { //cancel autotune
 aTune.Cancel();
 tuning = false;
 AutoTuneHelper(false);
 }
}

void AutoTuneHelper(boolean start)
{
 if(start)
 ATuneModeRemember = xPID.GetMode();
 else
 xPID.SetMode(ATuneModeRemember);
}

void SerialSend()
{
 Serial.print("setpoint: ");Serial.print(SetpointX); Serial.
print(" ");
 Serial.print("input: ");Serial.print(InputX); Serial.print("
");
 Serial.print("output: ");Serial.print(OutputX); Serial.
print(" ");
 if(tuning){
 Serial.println("tuning mode");
 } else {
 Serial.print("kp: ");Serial.print(xPID.GetKp());Serial.
print(" ");
 Serial.print("ki: ");Serial.print(xPID.GetKi());Serial.
print(" ");
 Serial.print("kd: ");Serial.print(xPID.GetKd());Serial.
println();

 delay(20);

 }
}

void SerialReceive()
{
 if(Serial.available())
 {
 char b = Serial.read();
 Serial.flush();
 if((b=='1' && !tuning) || (b!='1' &&
tuning))changeAutoTune();
 }
}

void DoModel()
{
 //cycle the dead time
 for(byte i=0;i<49;i++)
 {
 theta[i] = theta[i+1];
 }
 //compute the input
 InputX = (kpmodel / taup) *(theta[0]-outputStart) +
InputX*(1-1/taup) + ((float)random(-10,10))/100;

}

 #include <Servo.h>
 #include "TouchScreen.h"
 #include <PID_v1.h>

 #define YP A2 // must be an analog pin,
use "An" notation!
 #define XM A3 // must be an analog pin,
use "An" notation!
 #define YM A4 // can be a digital pin
 #define XP A5 // can be a digital pin
 #define XServoPin 3 //
 #define YServoPin 4 //
 #define near 35

 Servo xServo;
 Servo yServo;
 unsigned long time;
 unsigned long stable = 0;
 unsigned int noTouchCount = 0;

 double SetpointX = 185;
 double InputX = 200;
 double OutputX = 90;
 double xKp = 0.6 ;
 double xKd = 0.18 ;
 double xKi = 0.71;

 double SetpointY = 135;

 double InputY = 150 ;
 double OutputY = 90;
 double yKp =0.6;
 double yKd = 0.18 ;
 double yKi = 0.71;

 PID xPID(&InputX, &OutputX, &SetpointX,
xKp, xKi, xKd, DIRECT);
 PID yPID(&InputY, &OutputY, &SetpointY,
yKp, yKi, yKd, DIRECT);
 TouchScreen ts = TouchScreen(XP, YP,
XM, YM, 20);

 void setup(void) {

 xServo.attach(XServoPin);
 xServo.write(90);
 xPID.SetMode(AUTOMATIC);
 xPID.SetSampleTime(50);

 yServo.attach(YServoPin);
 yServo.write(90);
 yPID.SetMode(AUTOMATIC);
 yPID.SetSampleTime(40);
 delay(2000);
 Serial.begin(9600);
 }

 void loop(void) {

 while (stable < 100)
 {
 TSPoint p = ts.getPoint();
 if (p.x != 0 && p.y != 1023) // Ball is
on plate
 {
 xServo.attach(XServoPin);
 yServo.attach(YServoPin);

 InputX = map(p.x, 125, 965, 0,400);
 InputY = map(p.y, 130, 910, 300, 0);//

 noTouchCount = 0;
 if ((InputX > SetpointX - near && InputX
< SetpointX + near && InputY > SetpointY -
near && InputY < SetpointY + near))
 {
 stable++;
 }

 xPID.Compute();
 yPID.Compute();
 OutputY = map(OutputY,0,255,60,110);
 OutputX = map(OutputX,0,255,55,105);
 serialprint();
 } else
 {
 Serial.print(" No touch "); Serial.

println(noTouchCount);
 noTouchCount++;
 if (noTouchCount == 75)
 {
 noTouchCount++;
 OutputX = 90;
 OutputY = 90;
 xServo.write(OutputX);
 yServo.write(OutputY);
 delay(100);
 }
 if (noTouchCount == 150) //if there is no
ball on plate longer
 {
 xServo.detach();
 yServo.detach();
 }
 }

 xServo.write(OutputX);
 yServo.write(OutputY);
 }

 xServo.detach();
 yServo.detach();

 while (stable == 100)
 {
 Serial.print("Stable");

 TSPoint p = ts.getPoint();

 InputX = map(p.x, 125, 965, 0, 400);
 InputY = map(p.y, 130, 910, 300, 0);

 if ((InputX > SetpointX -near&& InputX <
SetpointX + near && InputY > SetpointY - near
&& InputY < SetpointY + near))
 {
 xServo.attach(XServoPin);
 yServo.attach(YServoPin);
 }else stable = 0;
 }
 }

 void serialprint ()

 {

 Serial.print("InputX"); Serial.
print(InputX);
 Serial.print("InputY"); Serial.
print(InputY);
 Serial.print("Xoutput");Serial.
print(OutputX);
 Serial.print("Youtput");Serial.
println(OutputY);

 }

Appendix E

visual studio code

99

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Windows.Forms;
using System.IO.Ports;
using System.Diagnostics;

namespace test1
{
 public partial class Form1 : Form
 {
 private String serData = "";
 private String speed;
 private String position;
 private int i;
 private String InputX;
 private String OutputX;
 private String InputY;
 private String OutputY;
 private String SetpointY;
 private String SetpointX;
 private String Notouch;
 private String xKp;
 private String xKi;
 private String xKd;
 private String yKp;
 private String yKi;
 private String yKd;

 public Form1()
 {
 InitializeComponent();
 SearchPorts();
 timer1.Start();
 serData= "0";
 i = 300;
 }
 void SearchPorts()
 {
 string[] port = SerialPort.GetPortNames();
 com_box.Items.AddRange(port);
 }
 private void connect_btn_Click(object sender, EventArgs e)
 {
 try
 {
 if (com_box.Text == "" || baud_box.Text == "")
 {
 label13.Text = "No Connection Available";
 }
 else
 {
 progressBar1.Value = 33;
 serialPort1.PortName = com_box.Text;
 progressBar1.Value = 66;
 serialPort1.BaudRate = Convert.ToInt32(baud_box.Text);
 serialPort1.Open();
 connect_btn.Enabled = false;
 circle_cont.Enabled = true;

 point_cont.Enabled = true;
 disconnect_btn.Enabled = true;

 send_btn.Enabled = true;
 xkp_text.Enabled = true;
 xki_text.Enabled = true;
 xkd_text.Enabled = true;
 ykp_text.Enabled = true;
 yki_text.Enabled = true;
 ykd_text.Enabled = true;
 label13.Text = "Connection Complete";
 progressBar1.Value = 100;

 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message, "Error", MessageBoxButtons.OK, MessageBoxIcon.Information);
 }

 }

 private void disconnect_btn_Click(object sender, EventArgs e)
 {

 progressBar1.Value = 33;
 serialPort1.Close();
 connect_btn.Enabled = true;
 progressBar1.Value = 66;
 disconnect_btn.Enabled = false;
 send_btn.Enabled = false;

 point_cont.Enabled = false;
 circle_cont.Enabled = false;

 xkp_text.Enabled = false;
 xki_text.Enabled = false;
 xkd_text.Enabled = false;
 label13.Text = "Communication Disconncted";
 progressBar1.Value = 100;

 }

 private void serData_Rec(object sender, SerialDataReceivedEventArgs e)
 {
 serData = serialPort1.ReadLine();
 this.Invoke(new EventHandler(data_display));

 }

 private void data_display(object sender, EventArgs e)
 {
 serData = serialPort1.ReadLine();
 String length;
 length = serData.Length.ToString();
 if (System.Convert.ToInt32(length) > 5)
 {
 if (serData.Substring(0, 9) == "SetpointX")
 {
 SetpointX = serData.Substring(9, System.Convert.ToInt32(length) - 10);
 serData = "";
 SetpointX_lab.Text = SetpointX;

 }

 else if (serData.Substring(0, 9) == "SetpointY")
 {
 SetpointY = serData.Substring(9, System.Convert.ToInt32(length) - 10);
 serData = "";
 SetpointY_lab.Text = SetpointY;

 }
 else if (serData.Substring(0, 7) == "Notouch")
 {
 Notouch = serData.Substring(7, System.Convert.ToInt32(length) - 8);
 serData = "";
 System_lab.Text = ("Notouch");

 }
 else if (serData.Substring(0, 7) == "OutputX")
 {
 OutputX = serData.Substring(7, System.Convert.ToInt32(length) - 8);
 serData = "";
 OutputX_lab.Text = OutputX;
 System_lab.Text = ("runing");

 }
 else if (serData.Substring(0, 3) == "xKp")
 {
 xKp = serData.Substring(3, System.Convert.ToInt32(length) - 4);
 serData = "";
 xkp_text.Text = xKp;

 }
 else if (serData.Substring(0, 3) == "xKd")
 {
 xKd = serData.Substring(3, System.Convert.ToInt32(length) - 4);
 serData = "";
 xkd_text.Text = xKd;

 }
 else if (serData.Substring(0, 3) == "xKi")
 {
 xKi = serData.Substring(3, System.Convert.ToInt32(length) - 4);
 serData = "";
 xki_text.Text = xKi;

 }
 else if (serData.Substring(0, 3) == "yKi")
 {
 yKi = serData.Substring(3, System.Convert.ToInt32(length) - 4);
 serData = "";
 yki_text.Text = yKi;

 }
 else if (serData.Substring(0, 3) == "yKp")
 {
 yKp = serData.Substring(3, System.Convert.ToInt32(length) - 4);
 serData = "";
 ykp_text.Text = yKp;

 }
 else if (serData.Substring(0, 3) == "yKd")
 {
 yKd = serData.Substring(3, System.Convert.ToInt32(length) - 4);
 serData = "";
 ykd_text.Text = yKd;

 }
 }

 }

 private void send_btn_Click(object sender, EventArgs e)
 {
 if (point_cont.Checked == true && circle_cont.Checked == false) { serialPort1.WriteLine("SM");

 }
 else if (circle_cont.Checked == true && point_cont.Checked == false) { serialPort1.WriteLine(

"circle"); }

 }

 private void timer1_tick(object sender, EventArgs e)
 {
 String length;
 length = serData.Length.ToString();
 if (System.Convert.ToInt32(length) > 5)
 {
 if (serData.Substring(0, 6) == "InputX")
 {
 InputX = serData.Substring(6, System.Convert.ToInt32(length) - 7);
 serData = "";
 InputX_lab.Text = InputX;
 this.chart1.Series["Cordinate"].Points.AddXY(i, System.Convert.ToDouble(InputX));
 i++;
 this.chart1.ChartAreas["ChartArea1"].AxisX.Minimum = i - 300;

 }
 else if (serData.Substring(0, 6) == "InputY")
 {
 InputY = serData.Substring(6, System.Convert.ToInt32(length) - 7);
 serData = "";
 InputY_lab.Text = InputY;
 this.chart2.Series["Cordinate"].Points.AddXY(i, System.Convert.ToDouble(InputY));
 i++;
 this.chart2.ChartAreas["ChartArea1"].AxisX.Minimum = i - 300;
 }
 else if (serData.Substring(0, 7) == "OutputX")
 {
 OutputX = serData.Substring(7, System.Convert.ToInt32(length) - 8);
 serData = "";
 OutputX_lab.Text = OutputX;

 }
 else if (serData.Substring(0, 7) == "OutputY")
 {
 OutputY = serData.Substring(7, System.Convert.ToInt32(length) - 8);
 serData = "";
 OutputY_lab.Text = OutputX;

 }
 }
 }
 private void chart1_Click(object sender, EventArgs e)
 {

 }

 private void groupBox3_Enter(object sender, EventArgs e)
 {

 }

 private void groupBox4_Enter(object sender, EventArgs e)
 {

 }

 private void com_box_SelectedIndexChanged(object sender, EventArgs e)
 {

 }

 private void Form1_Load(object sender, EventArgs e)
 {

 }

 private void ykd_text_TextChanged(object sender, EventArgs e)
 {

 }

 private void OutputX_lab_Click(object sender, EventArgs e)
 {

 }

 private void label9_Click(object sender, EventArgs e)
 {

 }

 private void groupBox1_Enter(object sender, EventArgs e)
 {

 }

 }
 }

	Abstract
	List of Figures
	List of Tables
	Introduction
	Problem definition
	The importance and motivation of the project
	Project aim and methodology
	 Literature review
	work plane
	 Budget
	Outline

	Mathematical Model
	 Introduction to modeling
	Mathematical Model
	Non-linear model
	Linearized model
	Torque calcalations

	 Prototype design
	Introduction to prototype design
	The structure base
	Plate holder of the touch screen
	The servo motor holder
	The servo motor arm
	The linkage threaded rod
	Servo rod bearing
	Plate holder slider
	The central shaft
	Univrsal Joint
	Prototype design

	Electrical Design
	Introduction to electrical design
	Resistive touch screen
	Servo motor
	Microcontroller

	Control Design
	Introduction to control design
	State space model
	Transfer Function
	Simulation
	Non-linear Simulation
	 Resualt from Non-linear
	 state feedback
	Optimal control LQR
	PID

	Experimental Setup
	Hardware
	Prototype
	Real system response

	User Interface
	Introduction to User interface
	Graphical user interface

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Appendix Datasheets
	Appendix MATLAB Code
	Appendix S-function
	Appendix Arduino codes
	Appendix visual studio code

