Palestine Polytechnic University

College of Engineering

Mechanical Engineering

Department of Refrigeration and Air-Conditioning

Graduation Project

Design and Documentation The Mechanical System of Two Hundred Fifty Bed at Halhoul Hospital

> By Mohammad Darawish Nidal Namoura

Supervisor: Dr. Ishaq Sider

Palestine

2017

Palestine Polytechnic University

College of Engineering

Mechanical Engineering Department

Hebron - Palestine

Graduation Project Evaluation

According to the project supervisor and according to the agreement of the

Testing Committee Members, this project is submitted to the Department of

Mechanical Engineering at College of Engineering and Technology in partial

fulfillments of the requirements of (B.SC) degree.

Supervisor Signature

Committee signature

.....

Department Headmaster Signature

Dedication

To The Souls of Our Ancestors

Who Left With Rivers Of Benevolence

To Our Parents Those Who Were Mentors, Teachers and Friends

Who Were Guidance with Their Endless Giving

To Our Teachers

Who Were Candles, Lighting Our Path to Excellence

To Our Beloved University

Where Our Hearts Will Remain

To All Those

We Promis

The Promise of the Blood of Martyrs

The Promise of Hungry Prisoners

That We Shall Forever Be Loyal Servants

To Our Glorious Palestine

Acknowledgement

Our thanks go first to Allah

And then our parents

And our project supervisor

Dr. Ishaq sider

His guidance and support made this work possible

And, finally, our thanks go to

All lecturers & doctors, engineers, and laboratory supervisors in PPU

Their effort and their nice dealing with us improved our characters to become successful

engineers in the future.

Abstract

This project aims to design a mechanical service for hospital in Halhoul city which includes 250 beds. So that the hospital services thousands of Palestinian people living in Halhoul.

The project is going to integrate service to the hospital in regard to the air conditioning, fire fighting system and plumbing systems. For the air conditioning, the Variable Refrigeration Volume system (VRV) is to be used, which is the most environmental friendly because of its efficiency in elimination both sound and environmental pollution, which reduce the consumption of the electrical energy. regarding the fire fighting system, the pump system that provides the water with the required pressure. Finally, in the plumbing system the water with the required pressure to each fixture unit inside the hospital and gets rid of waste water in a safe and healthy.

Contents

1	Intr	roduction 1
	1.1	General Overview
	1.2	Project benefits:
	1.3	Project objectives:
	1.4	Description of Project Idea
	1.5	Time table
	1.6	Project layout
2	Loa	ds Calculation 6
	2.1	The composition of heat gains
	2.2	Air conditioning system
		2.2.1 The Cooling load
		2.2.2 Cooling load sources
	2.3	Overall Heat Transfer Coefficient
	2.4	Cooling Load Calculations
		2.4.1 Total cooling load calculations for the sample room:
		2.4.2 Sample Calculation
	2.5	Heating Load
		2.5.1 Heating Load Calculations
		2.5.2 Sample Calculation
	2.6	Total cooling and heating loads for hospital
3	Hea	ating, Ventilation and Air Conditioning (HVAC) 24
U	3.1	Variable Refrigerant Flow (VRF) Systems
	0.1	3.1.1 Overview
		3.1.2 Variable Refrigerant Flow (VRF) Systems
		3.1.2 Variable Reingerant Flow (VRF) Systems 24 3.1.3 Building Load Profile 27
		3.1.4 Building Load Profile
		3.1.4 Building Load Frome 27 3.1.5 Selection units 28
	2.0	
	3.2	Mechanical ventilation
		3.2.1 Overview of ventilation
		3.2.2 Objectives of ventilation

4	Plu	mbing System	33
	4.1	Introduction	33
	4.2	Water Supply system	34
		4.2.1 Calculations of hot and cold water supply systems	34
		4.2.2 Flow rate calculations	37
		4.2.3 Pipe size calculations	37
	4.3	Sanitary Drainage System	40
		4.3.1 Drainage system components	40
		4.3.2 Sanitary drainage	41
		4.3.3 Manhole design	43
		4.3.4 Storm drainage	47
5	Fir€	e fighting system	48
	5.1	Types of fire fighting system	48
		5.1.1 Fire extinguishers	48
		5.1.2 Fire hose reel	49
		5.1.3 Fire hydrate system	50
		5.1.4 Automatic sprinkler system	51
	5.2	Calculating the A-Rated extinguishers required	52
	5.3	Selections of other fire fighting system components	54
6	Mee	dical gases	55
	6.1	introduction	55
	6.2	Medical gas flow rates	55
	6.3	Medical gas system design checklist	57
	6.4	Type of medical gases:	58
7	Ref	rigerators	60
	7.1	Cooling Load Calculation for Refrigeration	60
		7.1.1 The Overall Heat Transfer Coefficient	60
		7.1.2 Cooling Load Calculation For Rooms	67
		7.1.3 Compressor selection	73
		7.1.4 Condensers selection	74
	7.2	Cooling Load Calculation for freezer	75
		7.2.1 Compressor selection	81
		7.2.2 Condensers selection	81

List of Figures

1.1	Horizontal plan for the hospitals	2
 2.1 2.2 2.3 2.4 2.5 		0
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	VRF system with multiple indoor evaporator units24A schematic VRF arrangement24A schematic VRF arrangement24Indoor and out door capacity24Out door units24Split unit24Cassette unit24Sample bathroom35Sample calculation of ventilation34	6 6 7 8 9 9
$\begin{array}{c} 4.1 \\ 4.2 \\ 4.3 \\ 4.4 \\ 4.5 \end{array}$	Sample path room 34 Drainage system components 44 Sample of stacks 44 The details of the manholes 44 The details of the manholes 44	$ \begin{array}{c} 0 \\ 2 \\ 4 \end{array} $
5.1 5.2 5.3 5.4	Fire extinguishers 44 Fire hose reel 56 Fire hydrate system 57 Moody chart 57 Colored in the system 57	$0\\1\\3$
 6.1 7.1 7.2 7.3 7.4 	Schematic diagram for the medical gases network 50 External wall details 6 internal wall details 6 Ground details 6 Ground details 6	$1 \\ 2 \\ 3 \\ 4$
$7.5 \\ 7.6$	Ceiling details 6 Ceiling details 6	

7.7	The values of points in cycle.	71
7.8	The cycle in the PH diagram	72
7.9	The cycle in the PH diagram	73
7.10	The cycle in the PH diagram	73
7.11	Condensing units.	74
7.12	Technical data.	74
7.13	Technical data.	75
7.14	The values of points in cycle.	79
7.15	The cycle in the PH diagram	80
7.16	The compressor data sheet	81
7.17	Condenser data sheet.	82

List of Tables

1.1	Time table for first semester
1.2	Time table for second semester
2.1	Outdoors design conditions
2.2	Indoors design conditions
2.3	The overall heat transfer coefficient for outside walls
2.4	The overall heat transfer coefficient for inside walls
2.5	The overall heat transfer coefficient for roof
2.6	The overall heat transfer coefficient for ground
2.7	Area for sample room
2.8	CLTD for walls and roof 13
2.9	Outdoors design condition
2.10	Indoors design condition
2.11	Total cooling and heating loads for basement floor
	Total cooling and heating loads for ground floor
2.13	Total cooling and heating loads for first floor
2.14	Total cooling and heating loads for second floor
2.15	Total cooling and heating loads for third floor
2.16	Total cooling and heating loads for forth floor
3.1	Outdoor unit details for basement and ground floors
3.2	Outdoor unit details
3.3	: Ventilation rate $\ldots \ldots 32$
4.1	WSFU of cold and hot water for the bath room
4.2	WSFU of cold and hot water for the basement floor
4.3	WSFU of cold and hot water for the ground floor
4.4	WSFU of cold and hot water for the first floor
4.5	WSFU of cold and hot water for the second floor
4.6	WSFU of cold and hot water for the third floor
4.7	WSFU of cold and hot water for the fourth floor
4.8	The WSFU and gpm for all floors
4.9	Diameter of pipe sizing of water supply in inch for each floor
4.10	The drainage fixture unit (dfu)
4.11	Manholes Calculations

6.1	Color Coding for Piped Medical Gases	57
7.1	Variable of heat transfer coefficient for external wall.	61
7.2	Variable of heat transfer coefficient for internal wall	62
7.3	Variable of heat transfer coefficient for internal $Wall_2$	63
7.4	Variable of heat transfer coefficient for Ground.	65
7.5	Variable of heat transfer coefficient for Ceiling	65
7.6	Variable of heat transfer coefficient for Door	66
7.7	product used.	69
7.8	product used.	78
7.9	Bill of quantities.	85

Chapter 1 Introduction

1.1 General Overview

The Government hospitals in Palestine had an essential and vital rule, in promoting the general health of the Palestinians people, like Halhoul hospital. Halhoul hospital have different sections, including internal medicines, Pediatrics, Orthopedic, Surgery, Gynecology, Lab investigation, X-ray and Ultra sound in addition to outpatient clinics.

The different mechanical installation systems including central heating system, air conditioning system, water supply system, drainage supply system, and medical gasses system are not less important for the patients than the medical service itself so, such installations must be in the best manner in addition to the continuous maintenance needed to guarantee best performance.

Halhoul hospital as one of these governmental hospitals study, hoping through survey and evaluation of the mechanical systems to race problems and provide solutions for them, to full fill one of the polytechnic university aims to help the society.

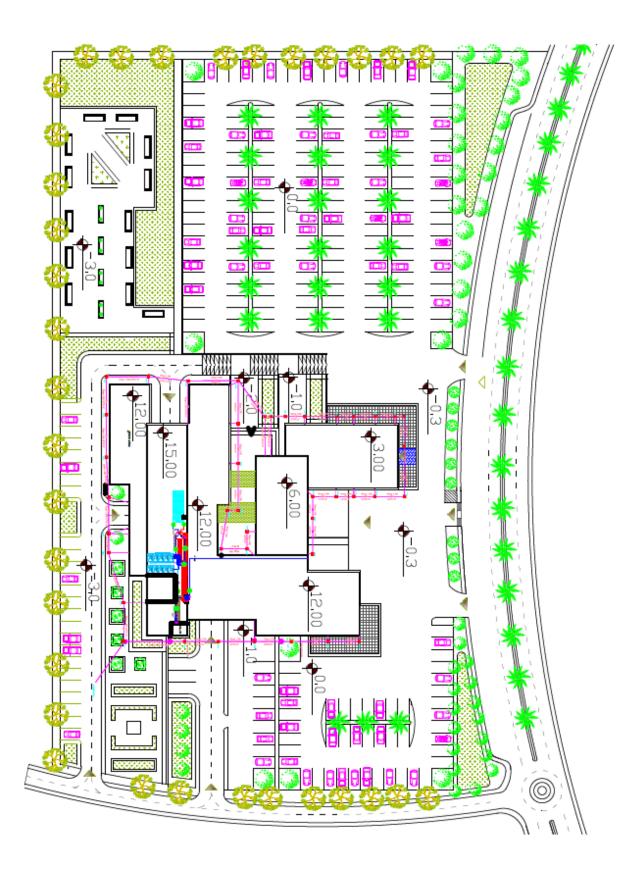


Figure 1.1: Horizontal plan for the hospitals

1.2 Project benefits:

- 1. The main benefit is to fulfill the graduation requirements of Palestine Polytechnic University, and be familiar with all mechanical design of system installed in building to be ready in working in this field after graduation .
- 2. To be familiar with the different mechanical drawings.

1.3 Project objectives:

The following main points summarize the objectives of this project:

- 1. To calculate and design a Variable Refrigeration Volume (VRV) air conditioning system.
- 2. To calculate and design the plumbing system including water supply and waste water systems for the hospital.
- 3. To calculate and design suitable fire fighting system that covers the requirements of the building.
- 4. To prepare the required drawings for the relevant systems on AutoCAD program in details.
- 5. To select the required equipment of the systems.
- 6. To prepare suitable bill of quantities table (BOQ) for the relevant systems

1.4 Description of Project Idea

The hospital named "Halhoul Hospital" is located in Halhoul in Hebron, which is planned to service thousands of people in Halhoul, it contains four floor, each floor area almost $(3000)m^2$.

The hospital also has the following medical departments:

- Delivery department.
- Surgery department.
- Emergency department.
- Labs of medical test.
- Radiology department.

1.5 Time table

	Ta	ble	1.1:	-11	me 1	tabl	<u>e to</u>	r fii	rst s	emes	ster.				
Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Project selection															
and proposal															
Information															
gathering															
Search for previ-															
ous projects															
Load calculation															
Fire fighting sys-															
tem															
Medical gases															
system															
project docu-															
mentation															
Project printing															

Table 1.1: Time table for first semester.

Table 1.2: Time table for second semester.

Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Plumping sys-															
tem															
Drainage system															
HVAC system															
Drawing															
Project printing															

1.6 Project layout

• Chapter one:

Introduction: Include an overview about the project, and the importance of the mechanical systems.

• Chapter two:

Loads calculation: Include an overview about the Thermal loads of the building account in the summer and winter.

• Chapter three:

Heating, ventilation and air conditioning (HVAC)

• Chapter Four:

Plumbing system: Include an overview about the water supply, drainage system, plumbing materials, water distribution in buildings, water service sizing.

• Chapter five:

Fire fighting system.

• Chapter six:

Medical gases.

- Chapter seven : Refrigerators.
- Appendix.

Chapter 2

Loads Calculation

A heating system is combination of equipment that is used to raise the temperature in any location. This can be accomplished several ways, using energy sources such as: solar, oil, wood, electricity and gas. Many systems are used for this purpose, such as heating by hot water or heating by warm air, sometime small heaters are used for this purpose, there are many criteria's that will be taken to select the suitable system such as cost, efficiency, flexibility and type of building.

2.1 The composition of heat gains

Heat gains are either sensible, tending to cause a rise in air temperature, or latent, causing an increase in moisture content. In comfort air conditioning sensible gains originate from the following sources:

- 1. Solar radiation through windows.
- 2. Transmission through the building envelope and by the natural infiltration of warmer air from outside.
- 3. persons.
- 4. Electric lighting.
- 5. Business machines and the like.

2.2 Air conditioning system

HVAC stands stands for heating, ventilating, air-conditioning. it's a process that simultaneously conditions air, distributes it combined with the outdoor air to the conditioned space and controls and maintains the required space temperature, humidity, air movement, air cleanliness, sound level, and pressure differential within predetermined limits for the health and comfort of the occupants, for product processing or both.

2.2.1 The Cooling load

To determine the size of the necessary refrigeration plant the cooling load should be calculated at about 15.00 h sun-time for the entire building.

2.2.2 Cooling load sources

The cooling loads for a given space consist of the following heat gains:

- 1. Heat gains that transmitted through building structures such as walls, floors and roof that are adjacent to unconditioned spaces .The heat transmitted is caused by temperature difference that exists on both sides of structures
- 2. Heat gain due to solar effect which include:
 - Solar radiation transmitted through the glass and absorbed by inside surfaces and furniture.
 - Solar radiation absorbed by walls, glass windows, glass doors and roofs that are exposed to solar radiation.
- 3. Sensible and latent heat gains brought into the space as a result of infiltration of air through windows and doors
- 4. Sensible heat produced in space by lights, appliances, motors and other miscellaneous heat gains.
- 5. Latent heat produced from cooking, hot baths, or any other moisture producing equipment.
- 6. Sensible and latent heat produced by occupants.

2.3 Overall Heat Transfer Coefficient

The overall heat transfer coefficient represents the total resistance experienced as heat is transferred between fluids or between a fluid and a solid. The overall heat transfer coefficient U can be determined from Eq. 2.1 below:

$$U = \frac{1}{\frac{1}{h_i} + \sum \frac{\Delta x_i}{k_i} + \frac{1}{h_o}}$$
(2.1)

Where:

U: Is the overall heat transfer coefficient .

 h_i : Is the inside film heat transfer coefficients.

 h_o : Is the outside film heat transfer coefficients .

 Δx_i : Is the thickness of wall layers.

 k_i : Is the thermal conductivity .

The following tables contains all the inside and outside design conditions needed for the next calculations.

• Outdoors design conditions Table 2.1.

Tab	ole 2.1: Ou	tdoors	design	conditions .
	Season	T_{out}	ϕ_{out}	h_{out}
		$^{\mathrm{o}}C$	%	kJ/kg
	Summer	30	55.00	67.00

• Indoors design conditions Table 2.2.

Ta	ble 2.2:	Indoors	design	conditions
	Season	T_{in}	ϕ_{in}	h_{in}
		$^{\mathrm{o}}C$	%	kJ/kg
	Summe	er 24	50.00	48.00

• The overall heat transfer coefficient for outside walls Table 2.3. And the section for outside walls Fig 2.1.

Table 2.3: The o	<u>verall heat transfer c</u>	<u>oefficient for outside w</u>	alls
Construction material	Material thickness	Thermal conduction	U
	[m]	$[W/m.^{o}C]$	$W/m^{2o}C$
1-stone	0.05	1.70	
2-Concrete	0.10	1.75	
3-Insulation	0.03	0.03	
4-Block	0.10	0.95	
5-Plaster	0.02	1.2	
Total			0.804

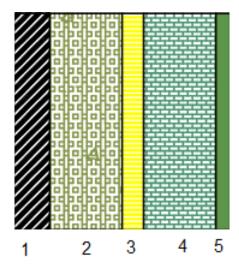


Figure 2.1: The section for outside walls

• The overall heat transfer coefficient for inside walls Table 2.4. And the section for inside walls Fig 2.2.

Table 2.4: The overall heat transfer coefficient for inside walls								
Construction material	Material thickness	Thermal conduction	U					
	[m]	$[W/m.^{o}C]$	$W/m^{2o}C$					
1-Plaster	0.02	1.2						
2-Block	0.10	0.95						
3-Plaster	0.02	1.2						
Total			2.45					

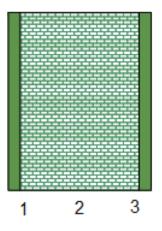


Figure 2.2: The section for inside walls

• The overall heat transfer coefficient for roof Table 2.5. And the section for the roof Fig 2.3.

Table 2.5: The overall heat transfer coefficient for roof					
Construction material	Material thickness	Thermal conduction	U		
	[m]	$[W/m.^{o}C]$	$W/m^{2o}C$		
1-Tiles	0.005	0.99			
2-Mortar	0.03	1.40			
3-Sand	0.10	0.30			
4-Bitumen	0.01	0.18			
5-Concrete	0.08	1.75			
6-Block	0.14	0.95			
7-Plaster	0.02	1.20			
With brick			1.016		
Without brick			1.194		

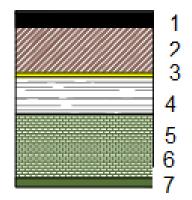


Figure 2.3: The section for roof

• The overall heat transfer coefficient for ground Table 2.6. And the section for the ground Fig 2.4.

Table 2.6: Th	Table 2.6: The overall heat transfer coefficient for ground				
Construction material	Material thickness	Thermal conduction	U		
	[m]	$[W/m.^{o}C]$	$W/m^{2o}C$		
1-Tiles	0.005	0.99			
2-Mortar	0.03	1.40			
3-Sand	0.10	0.30			
4-Bitumen	0.01	0.18			
5-Concrete	0.08	1.75			
Total			1.038		

Table 2.6: The overall heat transfer coefficient for ground

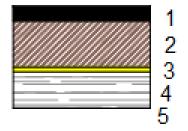


Figure 2.4: The section for ground

2.4 Cooling Load Calculations

Direct and diffused solar radiation that absorbed by walls and roofs result in raising the temperature of these surfaces. Amount of radiation absorbed by walls and roofs depends upon time of the day, building orientation, types of wall construction and presence of shading.

2.4.1 Total cooling load calculations for the sample room:

	Table 2.7: Area for sample room					
Room	Inside wall	Outside Wall	Ceiling Area	Ground Area	windows area	Doors Area
	m^2	m^2	m^2	m^2	m^2	m^2
15	44.76	27.20	54.70	54.70	4.45	3.6

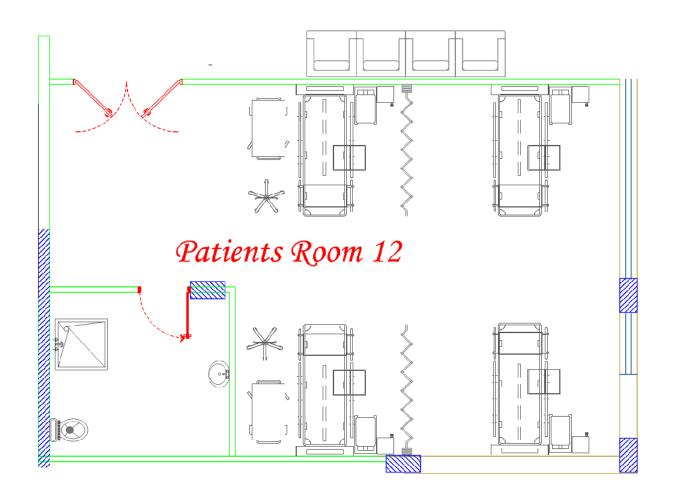


Figure 2.5: Sample room

Heat gain through walls and ceiling:

The calculation of this type of heat gain can be obtained by using the following relation for the heat transmission through the walls.

$$\dot{Q} = U * A * \Delta T \tag{2.2}$$

Where:

Q: Is the heat gain through walls and ceiling. [W]

U: Is the overall heat transfer coefficient. $[W/(m^2 * {}^{\circ}C)]$

A: Is the area of the walls and ceiling. $[m^2]$

 ΔT : Is the difference between the inlet and outlet temperature. [°C]

But the value of ΔT also called the cooling load temperature deference (CLTD), the value of CLTD is need to be corrected so the actual value is found for different cases and hence it will be called the corrected CLTD.

The heat transfer rate through sunlit walls or sunlit roofs is calculated from the following equation:

$$\dot{Q} = UA(CLTD)_{corr} \tag{2.3}$$

CLTD: is called cooling load temperature difference for sunlit roofs and walls (Appendix B) Table (2)

$$(CLTD)_{corr} = (CLTD + LM) * K + (25.5 - T_i) + (T_{o,m} - 29.4) * f$$
(2.4)

 $(CLTD)_{(corr)}$ for windows:

LM:Latitude correction factor for horizontal and vertical surfaces (Appendix B)Table (B-1)

K: colors adjustment factor such that:

k=1.0 for dark coloured walls.

k = 0.83 for permanent medium colour walls.

k=0.65 for Permanent Light coloured walls.

 $(25.5 - T_i)$: a correction factor for indoor design temperature where T_i is the room design temperature °C.

 $(T_{o,m} - 29.4)$: a correction factor for outdoor mean temperature $(T_{o,m})$

$$T_{o,m} = \frac{T_{max} + T_{min}}{2}$$
(2.5)

Where:

$$\begin{split} T_{max}: \text{ maximum average daily temperature, °C.} \\ T_{min}: \text{ minimum average daily temperature, °C.} \\ T_{max} &= 36.1 \text{ °C} \text{ ; from Palestinian Code.} \\ T_{max} &= 13.7 \text{ °C} \text{ ; from Palestinian Code.} \\ \text{Then: } T_{o,m} &= 24.9 \text{ °C.} \\ \text{f: attic or roof fan factor such that:} \\ \text{f=1.0 if there is no attic or roof fan} \\ \text{f} &= 0.75 \text{ if there is an attic or roof fan} \\ \text{from eg.2.4 then :} \\ (CLTD)_{corr} &= (8-0.5)*0.65+(25.5-24)+(24.9-29.4)*1 \\ (CLTD)_{corr} &= 6.90^{\circ}C \end{split}$$

In the following table(2.8) is the corrected CLTD for walls and roof and it is tabulated as follows:

Table 2		D for w	alls and roof
Wall	CLTD	LM	$CLTD_{corr}$
Ν	8.00	-0.50	6.90
NE	10.00	-0.50	8.20
Ε	13.00	-0.50	10.20
SE	12.00	-1.60	8.80
\mathbf{S}	9.00	-3.30	5.80
SW	11.00	-1.60	8.20
W	15.00	-0.50	11.50
NW	12.00	-0.50	9.50
Roof	14.00	0.00	11.20

2.4.2 Sample Calculation

Using patient room 12 at third floor as a sample calculation:

- Heat gain through ceiling $\dot{Q}_{Ceiling}$: $\dot{Q}_{Ceiling} = (U_1 * A_1 + U_2 * A_2)\Delta T$ Where: $U_1 : UCeilingWithbrick.$ $U_2 : UCeilingWithoutbrick.$ $A_1 = 4/5 * ACeiling$ $A_2 = 1/5 * ACeiling$ $\dot{Q}_{Ceiling} = (1.016 * \frac{4}{5} * 54.7 + 1.194 * \frac{1}{5} * 54.7) * 6$ $\dot{Q}_{Ceiling} = 345[W] = 0.345[kW]$
- Heat gain through walls \dot{Q}_{Walls} : $A_N = (9.8 * 3) - (1.8 * 2) = 25.80m^2$ $A_E = (6.8 * 3) - (4.5 * 1) = 15.90$ $A_S = (4 * 3) - (0) = 12.00m^2$ $A_W = (3.6 * 3) - (0) = 10.80m^2$ $\dot{Q}_N = 2.45 * 25.80 * 6.90 = 0.189kW$ $\dot{Q}_E = 0.804 * 15.90 * 10.2 = 0.131kW$ $\dot{Q}_S = 0.804 * 12 * 5.80 = 0.056kW$ $\dot{Q}_W = 2.45 * 10.80 * 6.90 = 0.079kW$ $\dot{Q}_{Walls} = 0.189 + 0.131 + 0.056 + 0.079 = 0.455kW$

• Heat gain through glass \dot{Q}_{Glas} :

$$\dot{Q}_{Glas} = \dot{Q}_{tr} + \dot{Q}_{conv} \tag{2.6}$$

Where:

 \dot{Q}_{tr} : transmission heat gain.

 \dot{Q}_{conv} : convection heat gain.

$$\dot{Q}_{tr} = A * (SHG) * (SC) * (CLF) \tag{2.7}$$

Where:

A :glass area, m^2 SHG: solar heat gain factor. SC: shading coefficient. CLF: cooling load factor. $A_E = 6.4 * 1 = 6.4m^2$ SHG in $W/m^2 \Rightarrow$ from (Appendix B)Table (B-7) E = 678 $SC = 0.2 \Rightarrow$ from (Appendix B)Table (B-9) CLF at 14:00 o'clock \Rightarrow from (Appendix B)Table (B-11) $\dot{Q}_{tr.E} = 6.4 * 678 * 0.2 * 0.22 = 0.191 kW$ $\dot{Q}_{tr} = 0.191 kW$ $\dot{Q}_{conv.} = UA(CLTD)_{corr}$ $CLTD = 7 \ ^{\circ}C$ at 14:00 o'clock \Rightarrow from (Appendix B)Table (B-12) k = 1 for glass f = 1 for glass $\dot{Q}_{conv.E} = 3.5 * 6.4 * 7 = 0.156 kW$ $\dot{Q}_{conv.} = 0.156 kW$ $\dot{Q}_{Glass} = 0.191 + 0.156 = 0.347 kW$

• Heat gain through light \dot{Q}_{Lt} :

$$\dot{Q}_{Lt.} = light \ intensity * A * (CLF)_{Lt.} * diversity \ factor$$
(2.8)

light intensity = 10-30 W/m^2 for apartment, so we will take $30W/m^2$. A: floor area = $54.7m^2$. $(CLF)_{Lt.} = 0.84 \Rightarrow$ from (Appendix B)Table (B-14) Diversity factor = 0.95 \Rightarrow from (Appendix B)Table (B-15). $\dot{Q}_{Lt.} = 30 * 54.7 * 0.84 * 0.95 = 1.310 kW.$

• Heat gain through infiltration \dot{Q}_f :

 $\nu_{out} = 9.2m/s \Rightarrow$ from Palestinian Code.

 $\vartheta = 0.88 m^3/kg \Rightarrow$ from psychrometric chart.

 $h_o = 68.13 kJ/kg \Rightarrow$ from psychrometric chart.

 $h_i = 38.5 kJ/kg \Rightarrow$ from psychrometric chart.

Calculate the infiltration air rate and compute the resulting heating load due to infiltration by using this equation:

$$\dot{Q}_f = \frac{\dot{V}_f}{V_o} * (h_{in} - h_o) \\ \frac{3600}{3600}$$
(2.9)

$$\dot{V}_f = (k * L * 0.613(S_1 * S_2 * \nu_o)^2)^{2/3}$$
 (2.10)

Where:

 \dot{Q}_{f} : rate of heat transfer due to infiltration, [kW]

 \dot{V}_f : volumetric flow rate of infiltrated air, $[m^3/h]$

 V_o : specific volume of outside air, $[m^3/kg]$

 h_{in} : enthalpy at inside conditions, kJ/kg

- h_o : enthalpy at outside conditions, kJ/kg
- k: infiltration coefficient

L: crack length,m.

 S_1 : factor that depends on the topography of the location of the building.

 S_2 : coefficient that depends on the height of the building and the terrain of its location.

 V_o : outside air velocity, [m/s].

 $\dot{V}_f = 0.7 * 12.3 * (0.613(1 * 0.79 * 9.2)^2)^{2/3} = 87.5m^3/h$ $\dot{Q}_f = [(87.5/0.88) * (67 - 48)]/3600 = 0.5kW$

• Heat gain through occupants \dot{Q}_{oc} :

$$\dot{Q}_{oc.} = \dot{Q}_{sensible} + \dot{Q}_{latent} \tag{2.11}$$

 $\dot{Q}_{sensible} = heat \ gain \ sensible * No.of \ people * (CLF)_{oc.} * Diversity \ Factor \ (2.12)$

Where: $(CLF)_{oc.}$: cooling load factor due to occupants. heat gain sensible = $70W \Rightarrow$ from (Appendix B)Table (B-17) No. of people = 16 $(CLF)_{oc.} = 0.79 \Rightarrow$ from (Appendix B)Table (B-16) Diversity Factor = $0.6 \Rightarrow$ from (Appendix B)Table (B-15) $\dot{Q}_{sensible} = 70 * 16 * 0.79 * 0.6 = 0.531kW$

$$\dot{Q}_{latent} = heat \ gain \ latent * No.of \ people * Diversity \ Factor$$
 (2.13)

heat gain latent = 44 $\dot{Q}_{latent} = 44 * 16 * 0.60 = 0.423 kW$ $\dot{Q}_{oc.} = 0.531 + 0.423 = 0.954 kW$

• Heat gain Due to ventilation Q_{vent} :

$$\dot{Q}_{vent} = \dot{m} * C_P * (T_{out} - T_{in}) \tag{2.14}$$

Where: $\dot{m} = \frac{V*N}{3600} * \rho$ V: The volume of the room $[m^3]$. N: The number of air change per hour. ρ The density of air $[kg/m^3]$. C_p of air is 1 [kJ/kg]. ρ for air is 1.25 $[kg/m^3]$. $\dot{Q}_{vent.} = ((164.1 * 2)/3600) * 1 * 1.25 * 6$ $\dot{Q}_{vent.} = 6.57KW$.

• Heat gain Due to inner door \dot{Q}_{door} : $\dot{Q}_{door} = U * A * \Delta T.$

 $\dot{Q}_{door} = 2.8 * 3.6 * 6 = 0.061 kW.$

The total heat loss from sample room is: $\dot{Q}_T = 11.172kW.$

2.5 Heating Load

Heating load is the rate at which heat energy must be supplied to a space to maintain a given inside design condition.

The heating load of a building consists of the following components:

- Heat loss through all exposed walls, ceiling, floor, windows, doors, and walls between a heated space and an unheated space (partition walls).
- Heat load required to warm outside cold air infiltrated to heated space through cracks (clearances) of windows and doors, and outside cold air infiltrated due to opening and closing of doors.
- Domestic hot water load.
- Miscellaneous loads such as emergency heating loads and safety factor heating load.

2.5.1 Heating Load Calculations

The general procedure for calculating the total heating load is:

- 1. Select the design outdoor air conditions of temperature, humidity, and wind speed and its direction.
- 2. Select the comfort design indoor conditions of temperature and relative humidity that must be maintained in the heated space. $\Delta T = T_{in} T_{out}$
- 3. Estimate temperature in adjacent unheated space.

 $\Delta T_{un} = 0.5 * (T_{in} - T_{out})$

- 4. Compute the overall heat transfer coefficients for all exposed surfaces of the building through which heat losses are to be calculated.
- 5. Determine all surface areas through which heat is lost.
- 6. Compute the heat loss for each type of walls, floor, ceiling or roof, doors, windows, etc. by using this equation $\dot{Q} = UA(T_{in} T_{out})$. Where:
 - $\dot{Q}:$ rate of heat transfer, [W]
- 7. Compute heat loss from bellow-grade walls and floor.
- 8. Calculate the infiltration air rate and compute the resulting heating load due to infiltration by using equation(2.9).
- 9. Assume a safety factor value of 10 to 15% to account for emergency loads.
- 10. The sum of all the above heat losses for all rooms represents the total heating load of the building.

The following tables contains all the inside and outside design conditions needed for the next calculations.

Season	T_{out}	ϕ_{out}	h_{out}
	$^{\mathrm{o}}C$	%	kJ/kg
Winter	5	65.00	14.00

Tab	ole	2.10:	Indoors	design	condition
-					

Season	T_{in} °C	$\stackrel{\phi_{in}}{\%}$	$h_{in} \ kJ/kg$
Winter	24	50.00	48.00

2.5.2 Sample Calculation

Using patient room 12 as a sample calculation:

- Heat loss through ceiling $\dot{Q}_{Ceiling}$ $\dot{Q}_{Ceiling} = (1.016 * \frac{4}{5} * 54.7 + 1.194 * \frac{1}{5} * 54.7) * 19$ $\dot{Q}_{Ceiling} = 1092[W] = 1.09[kW]$
- Heat loss through walls \dot{Q}_{Walls} : $\dot{Q}_{Walls} = U_W all * A_W all * \Delta T$ $\dot{Q}_{Walls} = 0.804 * 37.80 * 19$ $\dot{Q}_{Walls} = 2036[W] = 1.936[kW]$
- Heat loss through unconditioned walls $\dot{Q}_{un.walls}$:

$$Q_{un.walls} = U_{un.walls} * A_{un.walls} * \Delta T$$
$$\dot{Q}_{un.wall} = 2.45 * 18.6 * 10[W] = 0.356[kW]$$

- Heat loss through infiltration \dot{Q}_f :
 - k = 0.70; from (Appendix B)Table (B-18)
 - $S_1 = 1$; from (Appendix B)Table (B-19)
 - $S_2 = 0.79$; from Table (Appendix B)Table (B-20)
 - $\nu_o = 12.8m/s$; from Palestinian Code

 $v_o = 0.79m^3/kg$; from psychrometric chart

- $h_o = 13.03 kJ/kg$; from psychrometric chart
- $h_i = 32.9 kJ/kg$; from psychrometric chart
- L = 12.3[m]

$$\dot{V}_f = (0.70 * 26.8(0.613(1 * 0.79 * 12.8)^2)^{2/3} = 343m^3/h$$

 $\dot{Q}_f = [(343/0.79) * (32.9 - 13.03)]/3600 = 2.32kW$

- Heat loss through windows \dot{Q}_{Window} : $\dot{Q}_{Window} = U_{Window} * A_{Window} * \Delta T$ $\dot{Q}_{Window} = 3.5 * 6.4 * 16$ $\dot{Q}_{Window} = 358W = 0.358kW$
- Heat loss through doors \dot{Q}_{door}

$$Q_{doors} = U_{doors} * A_{doors} * \Delta T$$
$$\dot{Q}_{doors} = 2.8 * 3.6 * 10 = 301W$$
$$\dot{Q}_{doors} = 0.301kW$$

• Take Safety Factor 15% The total heat loss from sample room is: $\dot{Q}_T = 7.3kW$

2.6 Total cooling and heating loads for hospital.

- O.P :Operating Room.
- P.R :Patients Room.
- R.R :Recovery Room.
- D.R :Doctors Room.
- XR.R:X Rays Room.
- W.R:Waiting Room.
- K.R:Kitchen Room.

No	Room	Cooling load	Heating load
		kW	kW
1	D.R 1	12.1	9.6
2	D.R 2	11.7	8.5
3	D.R 3	12.3	9.1
4	D.R 4	10.9	7.9
5	K.R 1	10.3	9.8
6	K.R 2	10.9	9.9
$\overline{7}$	W.R	11.5	9.1
	Total	68.7	53.5

Table 2.11: Total cooling and heating loads for basement floor

No	Room	Cooling load	Heating load
		kW	kW
1	D.R 1	11.3	6.5
2	D.R 2	11.9	6.8
3	D.R 3	10.9	9.1
4	D.R 4	12.9	10.5
5	D.R 5	12.1	9.3
6	D.R 6	1.9	9.4
7	D.R 7	11.9	8.4
8	D.R 8	11.8	8.2
9	D.R 9	11.3	8.3
10	D.R 10	1.1	7.1
11	D.R 11	9.2	7.4
12	D.R 12	12.7	10.6
13	D.R 13	11.5	8.6
14	D.R 14	1.9	9.1
15	D.R 15	12.6	9.3
16	D.R 16	1.4	7.5
17	D.R 17	9.9	7.7
18	D.R 18	9.6	6.3
19	D.R 19	13.3	11.0
20	D.R 20	11.2	8.7
21	D.R 21	12.7	10.2
22	D.R 22	11.5	8.9
23	XR.R~1	3.2	2.1
24	XR.R.2	2.3	1.5
25	XR.R 3	2.5	1.6
26	XR.R.4	2.2	1.4
27	W.R 1	16.5	11.2
28	W.R 2	14.9	10.1
29	K.R	12.8	10.2
30	P.R 1	11.3	9.3
31	P.R 2	9.8	7.6
32	P.R 3	11.2	10.1
	Total	339.3	245.7

Table 2.12: Total cooling and heating loads for ground floor

<u> </u>	100001 000	ning and neath	ig iouad ioi iiib
No	Room	Cooling load	Heating load
		kW	kW
1	P.R 1	12.8	7.3
2	P.R 2	11.1	7.8
3	P.R 3	9.9	7.2
4	P.R 4	10.9	7.1
5	P.R 5	10.3	6.6
6	P.R 6	10.4	6.8
7	P.R 7	10.2	6.5
8	P.R 8	11.1	7.3
9	P.R 9	10.6	7.0
10	P.R 10	10.5	7.1
11	P.R 11	11.9	7.7
12	P.R 12	11.3	7.6
13	P.R 13	11.9	8.0
14	P.R 14	10.8	6.9
15	P.R15	10.9	7.2
16	R.R 1	7.3	4.4
17	R.R 2	7.9	5.1
18	R.R 3	6.1	3.9
19	R.R 4	6.1	3.9
20	R.R~5	6.8	4.9
21	R.R 6	11.5	7.6
22	D.R 1	10.7	7.1
23	D.R 2	10.2	6.5
24	D.R 3	7.9	4.5
25	D.R 4	6.2	3.9
26	D.R 5	5.8	3.6
27	D.R 6	3.1	1.9
28	D.R 7	1.9	1.2
29	D.R 8	2.2	1.3
30	D.R 9	11.6	8.2
31	O.R 1	12.8	7.3
32	O.R 2	12.3	7.1
33	O.R 3	14.6	10.1
34	O.R 4	11.1	6.9
35	O.R 5	13.1	8.2
36	W.R	12.2	9.9
37	XR.R 1	10.9	6.5
38	XR.R.2	11.2	7.3
39	XR.R 3	9.7	6.4
40	XR.R.4	11.5	11.8
	Total	383.8	215.6

Table 2.13: Total cooling and heating loads for first floor

No	Room	Cooling load	Heating load
		kW	kW
1	P.R 1	15.3	12.9
2	P.R 2	11.1	8.1
3	P.R 3	12.2	11.2
4	P.R 4	1.2	11.2
5	P.R 5	11.9	10.9
6	P.R 6	11.8	9.1
7	P.R 7	12.2	9.7
8	P.R 8	10.3	7.1
9	P.R 9	10.5	7.5
10	P.R 10	10.3	7.6
11	P.R 11	11.9	6.5
12	P.R 12	10.2	7.2
13	R.R 1	6.2	4.2
14	R.R 2	7.5	4.3
15	R.R 3	5.7	4.1
16	R.R 4	6.4	3.8
17	D.R 1	8.2	4.2
18	D.R 2	8.4	3.8
19	D.R 3	6.1	3.9
20	D.R 4	11.3	8.9
21	D.R 5	6.6	4.2
22	O.R 1	14.2	9.9
23	O.R 2	12.2	8.7
24	W.R 1	10.3	9.1
25	W.R 2	10.9	9.5
26	XR.R 1	12.1	10.3
27	XR.R.2	11.3	9.3
28	K.R	6.8	3.5
	Total	266.3	175.6

Table 2.14: Total cooling and heating loads for second floor

No	Room	Cooling load	Heating load
		kW	kW
1	P.R 1	11.3	8.3
2	P.R 2	12.6	12.1
3	P.R 3	12.3	9.6
4	P.R 4	17.1	14.2
5	P.R 5	11.9	10.3
6	P.R 6	11.1	7.9
7	P.R 7	9.8	6.9
8	P.R 8	11.2	9.2
9	P.R 9	11.3	8.9
10	P.R 10	12.2	9.4
11	P.R 11	15.3	13.9
12	P.R 12	11.2	7.3
13	P.R 13	10.4	7.9
14	P.R 14	10.3	9.5
15	P.R 15	11.4	9.2
16	R.R 1	6.5	4.6
17	D.R 1	2.2	1.3
18	D.R 2	1.5	1.1
19	D.R 3	8.3	4.1
20	D.R 4	5.6	3.6
21	D.R 5	5.1	3.4
22	O.R 1	15.2	11.3
23	W.R 1	9.9	6.5
24	W.R 2	12.3	9.1
	Total	245.8	155.9

Table 2.15: Total cooling and heating loads for third floor

Table 2.16: Total cooling and heating loads for forth floor

No	Room	Cooling load	Heating load
		kW	kW
1	P.R 1	11.3	8.3
2	P.R 2	12.6	12.1
3	P.R 3	12.3	9.6
4	P.R 4	9.8	7.9
5	D.R	10.8	8.9
6	N.R	16.6	12
	Total	72.8	58.9

Chapter 3

Heating, Ventilation and Air Conditioning (HVAC)

3.1 Variable Refrigerant Flow (VRF) Systems

3.1.1 Overview

The primary function of all air-conditioning systems is to provide thermal comfort for building occupants. There are a wide range of air conditioning systems available, starting from the basic window-fitted units to the small split systems, to the medium scale package units, to the large chilled water systems, and currently to the variable refrigerant flow (VRF) systems.

The term VRF refers to the ability of the system to control the amount of refrigerant flowing to each of the evaporators, enabling the use of many evaporators of differing capacities and configurations, individualized comfort control, simultaneous heating and cooling in different zones, and heat recovery from one zone to another. VRF systems operate on the direct expansion (DX) principle meaning that heat is transferred to or from the space directly by circulating refrigerant to evaporators located near or within the conditioned space. Refrigerant flow control is the key to many advantages as well as the major technical challenge of VRF systems.

3.1.2 Variable Refrigerant Flow (VRF) Systems

Variable refrigerant flow (VRF) is an air-condition system configuration where there is one outdoor condensing unit and multiple indoor units. The term variable refrigerant flow refers to the ability of the system to control the amount of refrigerant flowing to the multiple evaporators (indoor units), enabling the use of many evaporators of differing capacities and configurations connected to a single condensing unit. The arrangement provides an individualized comfort control, and simultaneous heating and cooling in different zones.

Currently widely applied in large buildings. The VRF technology/system was developed and designed by Daikin Industries, Japan who named and protected the term variable refrigerant volume (VRV) system so other manufacturers use the term VRF "variable refrigerant flow". In essence both are same. With a higher efficiency and increased controllability, the VRF system can help achieve a sustainable design. Unfortunately, the design of VRF systems is more complicated and requires additional work compared to designing a conventional direct expansion (DX) system.

VRF systems are similar to the multi-split systems which connect one outdoor section to several evaporators. However, multi-split systems turn OFF or ON completely in response to one master controller, whereas VRF systems continually adjust the flow of refrigerant to each indoor evaporator. The control is achieved by continually varying the flow of refrigerant through a pulse modulating valve (PMV) whose opening is determined by the microprocessor receiving information from the thermistor sensors in each indoor unit. The indoor units are linked by a control wire to the outdoor unit which responds to the demand from the indoor units by varying its compressor speed to match the total cooling and/or heating requirements. VRF systems promise a more energy-efficient strategy (estimates range from 11% to 17% less energy compared to conventional units) at a somewhat higher cost.

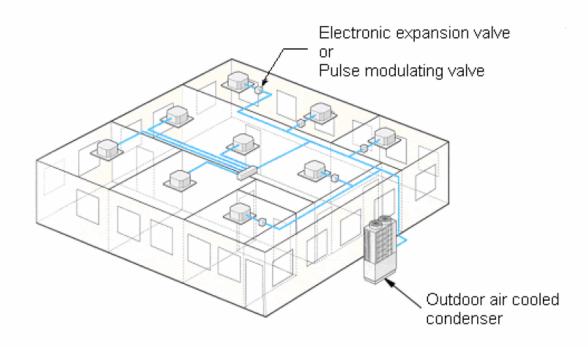


Figure 3.1: VRF system with multiple indoor evaporator units

The modern VRF technology uses an inverter-driven scroll compressor and permits as many as 48 or more indoor units to operate from one outdoor unit (varies from manufacturer to manufacturer). The inverter scroll compressors are capable of changing the speed to follow the variations in the total cooling/heating load as determined by the suction gas pressure measured on the condensing unit. The capacity control range can be as low as 6% to 100%. Refrigerant piping runs of more than 200 ft are possible, and outdoor units are available in sizes up to 240,000 Btuh. A schematic VRF arrangement is indicated below:

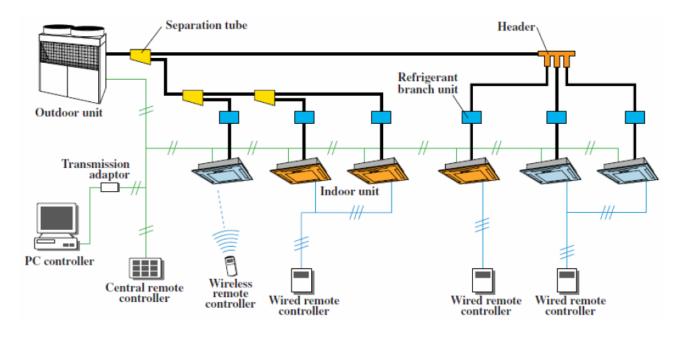


Figure 3.2: A schematic VRF arrangement

VRF systems are engineered systems and use complex refrigerant and oil control circuitry. The refrigerant pipe-work uses a number of separation tubes and/or headers (refer schematic figure above). A separation tube has 2 branches whereas a header has more than 2 branches. Either of the separation tube or header, or both, can be used for branches. However, the separation tube is NEVER provided after the header because of balancing issues.

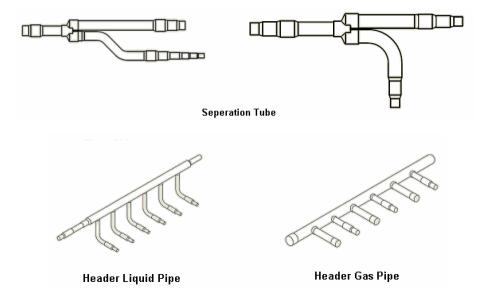


Figure 3.3: A schematic VRF arrangement

3.1.3 Building Load Profile

When selecting a VRF system for a new or retrofit application, the following assessment tasks should be carried out:

- Determine the functional and operational requirements by assessing the cooling load and load profiles including location, hours of operation, number/type of occupants, equipment being used, etc.
- Determine the required system configuration in terms of the number of indoor units and the outdoor condensing unit capacity by taking into account the total capacity and operational requirements, reliability and maintenance considerations.

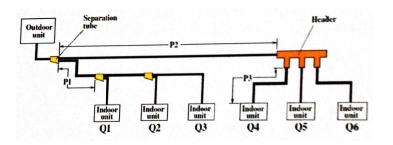


Figure 3.4: Indoor and out door capacity

- Size of P1: Depends on the total capacity of (Q1+Q2+Q3)
- Size of P2: Depends on the total capacity of (Q4+Q5+Q6)
- Size of P3: Depends on the total capacity of (Q4)

3.1.4 Building Load Profile

When selecting a VRF system for a new or retrofit application, the following assessment tasks should be carried out:

- 1. Installation Advantages. VRF systems are lightweight and modular. Each module can be transported easily and fits into a standard elevator.
- 2. Design Flexibility. A single condensing unit can be connected to many indoor units of varying capacity (e.g., 0.5 to 4 tons [1.75 to 14 kW]) and configurations (e.g., ceiling recessed, wall mounted, floor console). Current products enable up to 20 indoor units to be supplied by a single condensing unit. Modularity also makes it easy to adapt the HVAC system to expansion or reconfiguration of the space, which may require additional capacity or different terminal units.
- 3. Maintenance and Commissioning. VRF systems with their standardized configurations and sophisticated electronic controls are aiming toward near plug-and-play commissioning.

- 4. Comfort. Many zones are possible, each with individual set point control. Because VRF systems use variable speed compressors with wide capacity modulation capabilities, they can maintain precise temperature control, generally within $\pm 1^{\circ}F(\pm 0.6^{\circ}C)$, according to manufacturers, literature.
- 5. Energy Efficiency. The energy efficiency of VRF systems derives from several factors. The VRF essentially eliminates duct losses, which are often estimated to be between (10-20) percent of total airflow in a ducted system.VRF systems typically include two to three compressors, one of which is variable speed, in each condensing unit, enabling wide capacity modulation. This approach yields high part-load efficiency, which translates into high seasonal energy efficiency, because HVAC systems typically spend most of their operating hours in the range of 40% to 80% of maximum capacity.
- 6. Refrigerant piping runs of more than 200 feet (60.96 m) are possible and outdoor units are available in sizes up to 240,000 Btu/ h (60478.98 kW).

3.1.5 Selection units

This section talks about selection of outdoor and indoor units of VRF system, depending on the "Samsung VRF catalogue", since this company product exists in Hebron. Outdoor and indoor units are selected according to the thermal load of the building.

Outdoor unit

We are chosen three compact packages outdoor units tow packages individual for three units and the third individual for tow units, with capacity 48 HP,46 HP and 20 HP .

Figure 3.5: Out door units

1401		etails for Dasement al.	la grouna noors.
Unit	Cooling Load (HP)	Cooling load (kW)	Outdoor Unit Name
Unit 1-1	16		RVXVHT160GE
Unit $1-2$	16	137.4	RVXVHT160GE
Unit 1-3	16		RVXVHT160GE
Unit 2-1	14		RVXVHT140GE
Unit 2-2	16	128.5	RVXVHT160GE
Unit 2-3	16		RVXVHT160GE
Unit 3-1	10	56	RVXVHT100GE
Unit 3-2	10		RVXVHT100GE

Table 3.1: Outdoor unit details for basement and ground floors.

Indoor unit

In this project there are two types of indoor units selected, which are split and cassette units. The figure below shows the two types of selected units:

Figure 3.6: Split unit

Figure 3.7: Cassette unit

The selected indoor units for the basement and ground floor are listed in the tables below:

Table 3.2: Outdoor unit details								
Indoor Unit Type	Cooling load (kW)	Indoor Unit Name	Quantity					
Cassette(4 way)	11.2	AVXC4H112E	15					
Cassette(4 way)	12.8	AVXC4H128E	2					
Cassette(4 way)	14	AVXC4H140E	8					
$\operatorname{Split}(\operatorname{Neoforte})$	5.6	AVXWNH056EE	17					
Split(Neoforte)	7.1	AVXWNH071EE	10					

3.2 Mechanical ventilation

3.2.1 Overview of ventilation

Ventilation is the process of supplying and removing air by natural or mechanical means to and from a building. The design of a buildings ventilation system should meet the minimum requirements of the building (Ventilating Systems) regulations. There are two ways for Ventilation:

- 1. Natural ventilation:- covers uncontrolled inward air leakage through cracks, windows, doorways and vents (infiltration) as well as air leaving a room (exfiltration) through the same routes. Natural ventilation is strongly affected by weather conditions and is often unreliable.
- 2. Mechanical: or forced ventilation is provided by air movers or fans in the wall, roof or air conditioning system of a building. It promotes the supply or exhaust airflow in a controllable manner.

The airflow rate into a room space, for general mechanical supply and extract systems, is usually expressed in:

- 1. Air changes per hour. An air change per hour (ACH) is the most frequently used basis for calculating the required airflow. Air changes per hour are the number of times in one hour an equivalent room volume of air will be introduced into, or extracted from the room space.
- 2. Airflow rate per person. Airflow rate per person are generally expressed as liters per person (L/P), and are usually used where fresh air ventilation is required within occupied spaces.
- 3. Airflow rate per unit floor area. Airflow rates per unit floor area are similar in effect to air changes per hour except that the height of the room is not taken into consideration. Mechanical ventilation system in this project is just for bathrooms and kitchens & by first method air changes per hour.

3.2.2 Objectives of ventilation

Ventilation in a building serves to provide fresh and clean air, to maintain a thermally comfortable work environment, and to remove or dilute airborne contaminants in order to prevent their accumulation in the air. Air conditioning is a common type of ventilation system in modern office buildings. It draws in outside air and after filtration, heating or cooling and humidification circulates it throughout the building. A small portion of the return air is expelled to the outside environment to control the level of indoor air contaminants.

Designing of mechanical ventilation

Steps of designing mechanical ventilation:

- 1. Calculate the required ventilating rate of air by using "Ventilation Rates Calculator" software.
- 2. Calculate the volume of the room in (m^3)
- 3. Calculate the flow rate of air by using air changes per hour method
- 4. converts the value to cubic feet per minute (CFM).

Sample calculation

Using bathroom the volume is 18.15 m^3

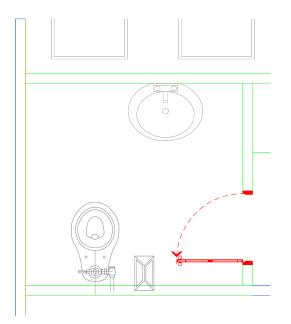


Figure 3.8: Sample bathroom

Rate/person & Rate/Area ² ACH							
Units :	Volume :			7			
SI 🔹	Detailed Volume	Width (m)	2.31				
		Length (m)	2.05				
		Height (m)	3.3				
	O Custom Volume (m ³	80					
Ventilation Rate = 43.41 L/s			Сору	Copy Column 2			
	Space			ACH			
Class A Operat	ing/Procedure room (o) ((d)	15				
INPATIENT N	NURSING						
Patient room (s)		6				
Toilet room			10				
Newborn nursery suite			6				
Protective envir			12				

Figure 3.9: Sample calculation of ventilation

	Table 3.3: Ventilation rate							
Room	Volume	Ventilating Rate	Ventilating Rate					
	(m^3)	(L/s)	(CFM)					
Kitchen	240	88	186.5					
$Bathrooms^*$	525	1458	3089.3					

Chapter 4

Plumbing System

4.1 Introduction

In order to maintain daily operations and patient care services, health care facilities need to develop an Emergency Water Supply Plan (EWSP) to prepare for, respond to, and recover from a total or partial interruption of the facilities' normal water supply. Water supply interruption can be caused by several types of events such as natural disaster, a failure of the community water system, construction damage or even an act of terrorism. Because water supplies can and do fail, it is imperative to understand and address how patient safety, quality of care, and the operations of your facility will be impacted. Below are a few examples of critical water usage in a health care facility that could be impacted by a water outage. Water may not be available for:

- Hand washing and hygiene.
- Drinking at faucets and fountains.
- Food preparation.
- Flushing toilets and bathing patients.
- Laundry and other services provided by central services (e.g., cleaning and sterilization of surgical instruments).
- Reprocessing of medical equipment (e.g., endoscopes, surgical instruments, and accessories) after use on a patient.
- Patient care (e.g., hemodialysis, hemofiltration, extracorporeal membrane oxygenation, hydrotherapy).
- Radiology.
- Fire suppression sprinkler systems.
- Water-cooled medical gas and suction compressors (a safety issue for patients on ventilation).

- Heating, ventilation, and air conditioning (HVAC).
- Decontamination/hazmat response.

A health care facility must be able to respond to and recover from a water supply interruption. A robust EWSP can provide a road map for response and recovery by providing the guidance to assess water usage, response capabilities, and water alternatives.

The Emergency Water Supply Planning Guide for Hospitals and Health Care Facilities provides a four step process for the development of an EWSP:

- 1. Assemble the appropriate EWSP Team and the necessary background documents for your facility;
- 2. Understand your water usage by performing a water use audit;
- 3. Analyze your emergency water supply alternatives; and
- 4. Develop and exercise your EWSP

The EWSP will vary from facility to facility based on site-specific conditions, but will likely include a variety of emergency water supply alternatives evaluated in step #3 above. How the EWSP is developed for a health care facility will depend on the size of the facility. For a small facility, one individual may perform multiple functions, and the process may be relatively simple with a single individual preparing an EWSP of only a few pages. However, for a large regional hospital, multiple parties will need to work together to develop an EWSP. In this case the process and the plan would be more complex. However, regardless of size, a health care facility must have a robust EWSP to be prepared to ensure patient safety and quality of care while responding to and recovering from a water emergency.

4.2 Water Supply system

4.2.1 Calculations of hot and cold water supply systems

To determine the pipe size for cold and hot water supply system the water supply fixture unit (WSFU) for each fixture unit must be determined and total fixture unit on each piping run out be calculated, the minimum floor pressure required at the critical fixture unit must be determined.

Example: calculation of water supply unit (WSFU) in the Bathroom shown fig4.1. There was three fixtures (shower, lavatory, and water closet with flush valve) each have (WSFU) as following Table 4.1 WSFU of cold and hot water for the bath room.

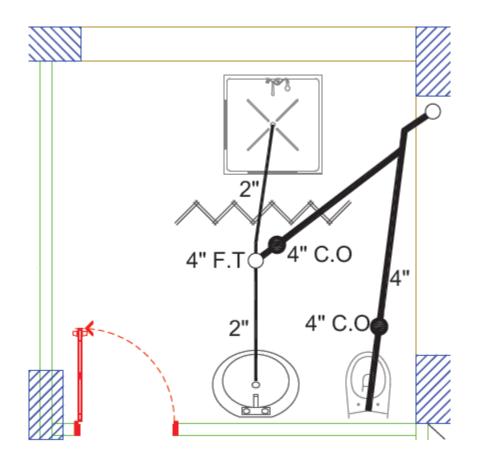


Figure 4.1: Sample path room

Fixture	No. of	Load from	Total of WSFU	Total of WSFU for	Total of WSFU For
Unit	Units	table public	for cold water	hot water	hot and cold water
Water closet	1	3	3	-	3
Lavatory	1	3/4*1	0.75	0.75	1
Bath tub	1	$3/4^{*}2$	1.5	1.5	2
			$\Sigma = 5.25 \text{ WSFU}$	$\Sigma = 2.25 \text{ WSFU}$	$\Sigma = 6$ WSFU

Table 4.1: WSFU of cold and hot water for the bath room

The following Table 4.2 shown WSFU of cold and hot water for basement floor.

Fixture	No. of	Load from	Total of WSFU	Total of WSFU for	Total of WSFU For
Unit	Units	table public	for cold water	hot water	hot and cold water
Water closet	4	3	12	-	12
Lavatory	7	3/4*1	5.25	5.25	7
Sink	10	$3/4^{*2}$	15	15	20
Bath tub	3	$3/4^{*}2$	4.5	4.5	6
			$\Sigma = 36.75 \text{ WSFU}$	$\Sigma = 24.75 \text{ WSFU}$	$\Sigma = 45 \text{ WSFU}$

Table 4.2: WSFU of cold and hot water for the basement floor.

The following Table 4.3 WSFU of cold and hot water for ground floor.

Table 4.3: WSFU of cold and hot water for the ground floor.							
Fixture	No. of	Load from	Total of WSFU	Total of WSFU for	Total of WSFU For		
Unit	Units	table public	for cold water	hot water	hot and cold water		
Water closet	40	3	120	-	120		
Lavatory	46	3/4*1	34.5	34.5	46		
Sink	5	$3/4^{*2}$	7.5	7.5	10		
Bath tub	5	$3/4^{*}2$	7.5	7.5	10		
			$\Sigma = 169.5 \text{ WSFU}$	$\Sigma = 49.5 \text{ WSFU}$	$\Sigma = 186 \text{ WSFU}$		

The following Table 4.4 WSFU of cold and hot water for first floor.

Table 4.4: WSFU of cold and hot water for the first floor.								
Fixture	No. of	Load from	Total of WSFU	Total of WSFU for	Total of WSFU For			
Unit	Units	table public	for cold water	hot water	hot and cold water			
Water closet	19	3	57	-	57			
Lavatory	21	3/4*1	15.75	15.57	21			
Bath tub	17	$3/4^{*}2$	25.5	25.5	34			
			$\Sigma = 98.25 \text{ WSFU}$	$\Sigma = 41.25 \text{ WSFU}$	$\Sigma = 112 \text{ WSFU}$			

The following Table 4.5 WSFU of cold and hot water for second floor.

Table 4.5: WSFU of cold and hot water for the second floor.								
Fixture	No. of	Load from	Total of WSFU	Total of WSFU for	Total of WSFU For			
Unit	Units	table public	for cold water	hot water	hot and cold water			
Water closet	16	3	48	-	48			
Lavatory	18	3/4*1	13.5	13.5	18			
Bath tub	12	$3/4^{*}2$	18	18	24			
			$\Sigma = 79.5 \text{ WSFU}$	$\Sigma = 31.5 \text{ WSFU}$	$\Sigma = 90 \text{ WSFU}$			

The following Table 4.6 WSFU of cold and hot water for third floor.

Fixture	No. of	Load from	Total of WSFU	Total of WSFU for	Total of WSFU For
Unit	Units	table public	for cold water	hot water	hot and cold water
Water closet	21	3	63	-	63
Lavatory	22	$3/4^{*}2$	16.5	16.5	22
Bath tub	14	$3/4^{*}2$	21	21	28
			$\Sigma = 100.5 \text{ WSFU}$	$\Sigma = 37.5 \text{ WSFU}$	$\Sigma = 113 \text{ WSFU}$

Table 4.6: WSFU of cold and hot water for the third floor.

The following Table 4.7 WSFU of cold and hot water for fourth floor.

	Table 4.7: WSFU of cold and hot water for the fourth floor.							
Fixture	No. of	Load from	Total of WSFU	Total of WSFU for	Total of WSFU For			
Unit	Units	table public	for cold water	hot water	hot and cold water			
Water closet	2	3	6	-	6			
Lavatory	6	3/4*1	4.5	4.5	6			
Bath tub	6	$3/4^{*}2$	9	9	12			
			$\Sigma = 19.5 \text{ WSFU}$	$\Sigma = 13.5 \text{ WSFU}$	$\Sigma = 24 \text{ WSFU}$			

4.2.2 Flow rate calculations

By using table (B-21 / Appendix B) for supply system predominantly for flush tank for ground floor the estimating demand in gpm for cold water = 106.5 WSFU. So, by using interpolation = 8.75 gpm. Now we calculate the (gpm) for each floor so, (gpm) for each floor as in the following tables 4.8:

	Table 4.8: The WSFU and gpm for all floors.								
No. of	Total No.	Total No.	Total No.	Total No.	Total No.	Total No.			
	of WSFU	of WSFU	of WSFU	of gpm	of gpm	of gpm			
	for cold	for	for hot&	for cold	for	for hot &			
Floor	water	hot water	cold water	water	hot water	cold water			
Basement	36.75	24.75	45	23.75	16.85	27			
Ground	169.5	49.5	186	58.9	28.8	62.2			
First	98.25	41.25	112	43.65	25.5	47			
Second	79.5	31.5	90	38.85	20.75	41.5			
Third	100.5	37.5	113	44.125	23.75	47.25			
Fourth	19.5	13.5	24	13.7	10.1	15.8			

Table 4.8: The WSFU and gpm for all floors

4.2.3 Pipe size calculations

The maximum instantaneous water demand on:

1. The amount of total WSFU for cold water = 504 WSFU.

2. The amount of total WSFU for hot water = 198 WSFU.

The total WSFU for cold and hot water = 702 WSFU. So, the total demand for cold and hot water = 161.36 gpm. The available mains pressure at the level outlet is: Main pressure = static head pressure + friction head pressure + main flow pressure Static head = [height of floors + height of water tank + height of stairs well - height of fixture unit] Height of floors = 3 mHeight of stairs well = 3mHeight of water tank as selected = 2mHeight of sink = 1.05m So we find Conversion meter to ft 1ft = 12 in * 2.54 cm = 30.48 cmSo, the static head = 3 + 2 + 3 - 1.05 = 6.95 m = 22.796 ft Static pressure = 22.796 * 0.433 = 9.87 psi Total equivalent length (TEL): the distance from water tanks to the collector in ground floor + distance from collector to fixture unit TEL = longest run * 1.5TEL = 39 * 1.5 = 58.5 ftMain flow pressure of the critical fixture = 8 psi Friction head = static pressure – main flow pressure = 9.87 - 8 = 1.87 psi Uniform friction loss = friction head / TEL = 1.87 / 58.5 = 1.87 / (0.585 *100)

Uniform friction loss = 3.19 psi/100 ft

Selection of water pipes diameters:

By using chart of friction head loss (figure B-22 / Appendix B) for galvanized steel pipes we select diameters of pipes refer to calculated values of the main pipe that supply cold water from tanks to distribution points on the roof .The diameter is 2.5" refer to calculated values for flow rate (125.72 gpm) , and friction head loss(3.19 psi/100ft) for riser. We have 2 risers in two regions.

The following table 4.9 shows the diameters of hot and cold water pipes for all floors.

we select two-pump standby WB200/185D from NINGBO YINZHOU H.T. INDUSTRY COMPANY.

No.	No.	Total load	sizing of water Total load	Friction	Diameter	Diameter
of	of	of cold	of hot	of	of cold	of hot
floor	collector	water (gpm)	water (gpm)	head loss	water pipe	water pipe
	1	9.65	5.65	2.72	1"	3/4"
Basement	2	8.6	7.25	2.19	1"	3/4"
	3	8.6	7.25	2.19	1"	3/4"
	1	17.3	6.125	2.14	$\frac{1\frac{1}{4}}{1}$	3/4"
	2	11	5	3.62	1"	3/4"
	3	6.1	1.5	4.2	3/4"	3/4"
	4	6.12	5	4	3/4"	3/4"
Ground	5	22.62	6.68	3.52	$1\frac{1}{4}$ "	1"
	6	8.6	5	2.3	1"	3/4"
	7	11.09	4	3.62	1"	3/4"
	8	13.7	6.57	2.62	$1\frac{1}{4}$ " 1"	1"
	9	12.65	3	4.69	1,"	3/4"
	10	12.65	3	4.69	1"	3/4"
	1	11	5	3.62	1"	3/4"
	2	11	5	3.62	1"	3/4"
	3	8.25	4.6	2.13	1"	3/4"
	4	6.1	4	4.2	3/4"	3/4"
First	5	11	5	2.55	1"	3/4"
	6	5	3.5	2.8	3/4"	3/4"
	7	8.75	5	2.37	1"	3/4"
	8	12.65	8.56	4.69	1"	3/4"
	1	6.4	4	4.2	3/4"	3/4"
	2	11	5	2.55	1"	3/4"
	3	11	5	3.62	1"	3/4"
Second	4	8.25	4.6	2.13	1"	3/4"
	5	5	3.5	2.8	3/4"	3/4"
	6	8.25	5	2.13	1	3/4"
	7	8.75	5	2.37	1"	3/4"
Third	1	11	5	3.62	1"	3/4"
	2	13.65	5	5.4	1"	3/4"
	3	11	5	3.62	1"	3/4"
	4	11	5	3.62	1"	3/4"
	5	5	3	2.8	3/4"	3/4"
	6	6	2.7	3.92	$\frac{3}{4}$ "	3/4"
	7	8.75	5 F	2.37	1	3/4"
	8	8.25	5	2.13	1"	3/4"
	1	5	5	2.8	3/4"	3/4"
Fourth	2	5.56 6 195	5.56 F	3.41	3/4"	3/4"
	3	6.125	5	4.07	3/4"	3/4"

Table 4.9: Diameter of pipe sizing of water supply in inch for each floor.

4.3 Sanitary Drainage System

The main objective of drainage system is to carry the waste water from the fixture unit to manhole and from the manhole to the septic tank or to the municipal sewage system. The provision of drainage systems:

- Sanitary drainage
- Storm drainage

4.3.1 Drainage system components

The main components of drainage system are:

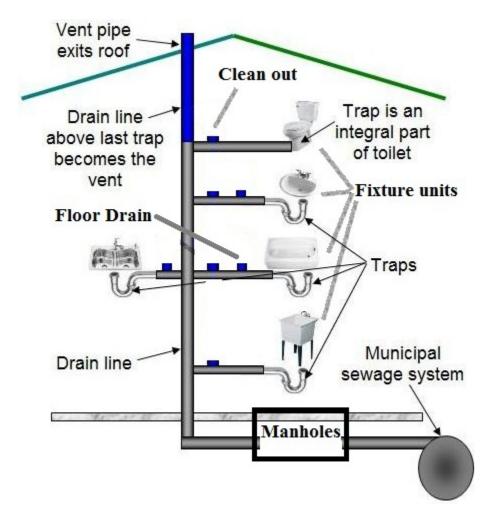


Figure 4.2: Drainage system components

A: Fixture units

B: Trap

C: Clean out

D: Drainage pipe

E: Stack and vent pipes

F: Manholes

G: Septic tank or municipal sewage system

H: Accessories

4.3.2 Sanitary drainage

procedure and pipe sizing

Pipe size is calculated by using a concept of fixture units (DFU) instead of using gpm of drainage water. This unit takes into account not only the fixtures water use but also its frequency of use, which is the DFU has a built–in diversity factor. This enables us, exactly as for water supply to add DFU of various fixtures to obtain the maximum expected drainage flow. Drainage pipes sized for a particular number of drainage fixture units, according to Tables (B-21, B-22, B-23)/ Appendix B. These tables are built into the fill factors, which are:

- * 50% fill in branches (horizontal pipes)
- * (25-33)% fills in stack (vertical pipes)
- * 50% fill in building and swear drains

The recommended velocity for drainage piping:

- * For branches the recommended velocity is 2 ft/s.
- * For building pipes the recommended velocity is 3 ft/s.
- * For greasy flow the recommended velocity is 4 ft/s.

Velocity of water flow through drainage piping depends on:

- * Pipe diameter.
- * Slope.

Design procedure:

- 1: Calculation of the number of DFU for each branch .
- 2: Calculation of the number of DFU for each stack.
- 3: Choosing the branch pipe diameter.

- 4: Choosing the stack pipe diameter.
- 5: Comparing the stack pipe diameter with branch diameter.
- 6: Choosing the building drain pipe diameter .

To achieve the recommended velocities which are 3 fps in building drain, it will be chosen the slope and flow velocity in building drain.

The following figure 4.3 and shows sample of stacks:

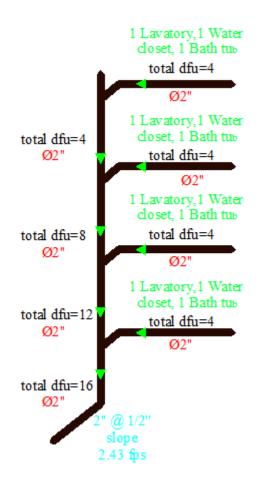


Figure 4.3: Sample of stacks

The following Table 4.10 will show the drainage fixture unit (dfu).

Stake	dfu value	Diameter of pipe [inch]
Α	55	4
В	26	4
\mathbf{C}	75	4
D	11	4
Ε	26	4
\mathbf{F}	32	4
G	26	4
Η	40	4
Ι	40	4
J	40	4
Κ	27	4
\mathbf{L}	47	4
Μ	89	4
Ν	41	4
Ο	47	4
Р	26	4
\mathbf{Q}	46	4
R	42	4
\mathbf{S}	42	4
Т	29	4
U	39	4
V	9	4
W	7	4
Х	7	4
Y	9	4
Z	9	4
A1	12	4
A2	28	4
A3	22	4
A4	42	4
A5	53	4
A6	42	4
A7	41	4

Table 4.10: The drainage fixture unit (dfu).

4.3.3 Manhole design

The main purpose of the manholes is to carry the water from stacks to various drainage points.

We design the manhole around the building so as that the sewage comes from the stacks flows in, then the sewage flows from one manhole to another so as reaching the septic tank . The design of the manholes depend on the ground and its nature around the building, and so as the first manhole height should not be less than 50 cm. and then we calculate the height of the other manhole depending on the spacing between manholes and the slope of drainage pipes between manhole to be1.5%.

As a result of these calculations we estimate the invert level of the manhole that is the depth of the pipe entering the manhole and we choose the diameter of the manhole depending on the depth of the manhole as below.

 ϕ 60 cm for manhole depth (50-100) cm.

 ϕ 80 cm for manhole depth (100-150) cm.

 ϕ 100 cm for manhole depth (150-250) cm.

 ϕ 120 cm for manhole depth(250- ∞) cm.

Manholes Calculations

The depth of the first manhole is 60 cm, the calculation of the second manhole done according to the first manhole and so on. Using the following steps we does the calculations: Depth: $(Depth_{Manholes(x)} = (Depth_{Manholes(x-1)} + (Slope * Distance) + 5 + LevelDifference)[cm]$

Top level: Manholes face level on the ground

Outlet level = Top level-Depth MAN [m]

Invert level = Outlet Level of MAN + 5 [m]

The figure 4.4 below shows the details of the manholes:

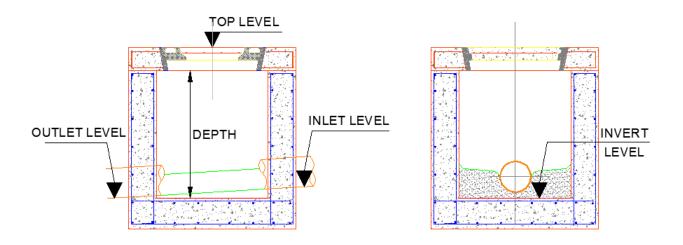


Figure 4.4: The details of the manholes.

We assume the depth of the first manhole to be (60 cm) and we calculate the second manhole according to it and so on.

For Manhole.1: Top level = 0.0 mDepth = 0.6Outlet level=Top level-Depth = 0.0-0.6 = -0.6 mFor MAN.2: The distance between MAN.1 & MAN.2 is 8 m. Depth of MAN.2 is: Depth = 60+(.015*800)+5+0= 77 cm Outlet level MAN.2 = Top level-Depth MAN.2= 0.0- 0.77 = -0.77m Slope is 1.5Invert level of MAN.2 = Outlet Level of MAN.2 + 5 cm = -0.72 m

The following table 4.11 shows calculations and dimensions of all manholes that used in our project.

Drop Manholes

When a sewer connects with another sewer, where the difference in level between invert level of branch sewer and water line in the main sewer at maximum discharge is greater than 0.6 m, a manhole may be built either with vertical or nearly vertical drop pipe from higher sewer to the lower one (Figure 4.5). The drop manhole is also required in the same sewer line in sloping ground, when drop more than 0.6 m is required to control the gradient and to satisfy the maximum velocity i.e., non-scouring velocity.

The drop pipe may be outside the shaft and encased in concrete or supported on brackets inside the shaft. If the drop pipe is outside the shaft, a continuation of the sewer should be built through the shaft wall to form a rodding and inspection eye, provided with half blank flange (Figure 4.5). When the drop pipe is inside the shaft, it should be of cast iron and provided with adequate arrangements for rodding and with water cushion of 150 mm depth at the end. The diameter of the drop pipe should be at least equal to incoming pipe.

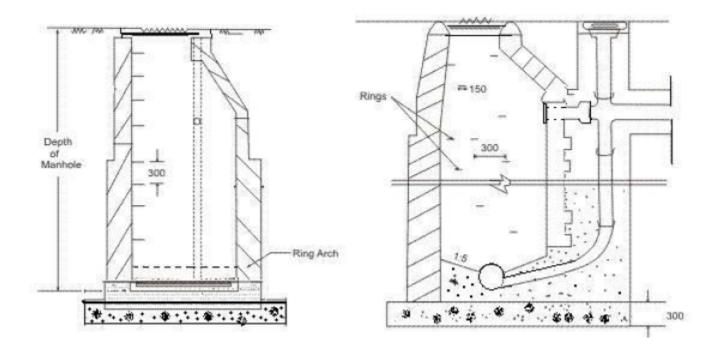


Figure 4.5: The details of the manholes.

MAN.NO	Top Level	Invert Level	<u>Manholes Cale</u> Outlet Level	Depth	Diameter	Cover
	[m]	[m]	[m]	[cm]	[cm]	
MH_1	0.0	-0.55	-0.60	60	60	Medium duty
MH_2	0.0	-0.72	-0.77	70	60	Medium duty
MH_3	0.0	-0.85	-0.90	90	60	Medium duty
MH_4	0.0	-0.98	-1.03	103	80	Medium duty
MH_5^{+}	0.0	-1.08	-1.13	113	80	Medium duty
MH_6	0.0	-1.20	-1.25	125	80	Medium duty
MH_7	-0.3	-1.35	-1.40	110	80	Medium duty
MH_8	-0.3	-1.55	-1.60	130	80	Medium duty
MH_9	-0.3	-1.72	-1.77	147	80	Medium duty
MH_{10}	-0.3	-1.80	-1.85	155	100	Medium duty
MH_{11}^{10}	-0.3	-1.91	-1.96	166	100	Medium duty
MH_{12}	-0.3	-2.03	-2.08	178	100	Medium duty
MH_{13}^{12}	-0.3	-2.13	-2.18	188	100	Medium duty
MH_{14}^{10}	-1.0	-2.28	-2.33	133	80	Medium duty
MH_{15}	-1.0	-2.39	-2.44	144	80	Medium duty
MH_{16}	-1.5	-2.50	-2.55	105	80	Medium duty
MH_{17}^{10}	-1.5	-2.56	-2.61	111	80	Medium duty
MH_{18}	-1.7	-2.25	-2.30	60	60	Medium duty
MH_{19}^{10}	-1.7	-2.35	-2.40	70	60	Medium duty
MH_{20}	-1.7	-2.48	-2.53	83	60	Medium duty
MH_{21}	-1.7	-2.66	-2.71	101	80	Medium duty
MH_{22}^{-1}	-1.7	-2.74	-2.79	109	80	Medium duty
$MH_{23}^{}$	-1.7	-2.95	-3.00	130	80	Medium duty
MH_{24}	-2.0	-2.84	-2.89	119	80	Medium duty
MH_{25}	-2.0	-3.04	-3.09	139	80	Medium duty
MH_{26}	-3.0	-3.57	-3.62	62	60	Medium duty
MH_{27}	-3.0	-3.76	-3.81	81	60	Medium duty
MH_{28}	-3.0	-3.95	-4.00	100	80	Medium duty
MH_{29}	-3.0	-4.13	-4.18	118	80	Medium duty
MH_{30}	-3.0	-4.33	-4.38	138	80	Medium duty
MH_{31}	-3.0	-4.52	-4.57	175	100	Medium duty
MH_{32}	-3.0	-4.70	-4.75	157	100	Medium duty
MH_{33}	-3.0	-4.81	-4.86	186	100	Medium duty
MH_{34}	-3.0	-5.04	-5.09	209	100	Medium duty
MH_{35}	0.0	-0.55	-0.60	60	60	Medium duty
MH_{36}	0.0	-0.75	-0.80	80	60	Medium duty
MH_{37}	0.0	-0.93	-0.98	98	60	Medium duty
MH_{38}	-1.0	-1.55	-1.6	60	60	Heavy duty
MH_{39}	-1.0	-1.72	-1.77	77	60	Heavy duty
MH_{40}	-1.0	-1.89	-1.94	94	60	Medium duty
MH_{41}	-3.0	-5.23	-5.28	228	100	Medium duty

Table 4.11: Manholes Calculations.

4.3.4 Storm drainage

Here we will talk about the choice of diameter and slope of the drainage pipe system and we will take the following Bathroom as an example of how we will choose the diameter and the slope of the drainage pipe system.

- We will use pipes (Branches) from fixture unit to the floor drainage (F.D.) with diameter (2") for lavatory and shower and with slope(1%).
- We will use pipes (Building Drains) from fixture unit to the manhole with diameter (4") for water closet with flush valve and with slope (1% 2%).
- We will use pipes (Sewage Pipes) between manholes with diameter (6") and with slope (1.5%), and the waste water will transfer between manholes until it reach the main Manhole.
- We will use floor trap (F.T.) at the end of the branches as a collection box for this pipes and in order to provide a water seal to prevent odors, sewage gases and vermin's from entering building.
- We will use clean out (C.O) at the end of the branches in order to clean the pipes from any things that can blockage and close the pipes.
- We will use a stack with diameter (4") in order to drain the waste water to the manholes.

The design procedure

- 1. Draw an isometric of the entire system to show all the fixtures.
- 2. Assign drainage unit to each fixture, if a fixture not listed specifically base DFU requirement on its trap size. Drainage requirements not due to fixtures, such as nonrecalculated of cooling water or process water, use conversion of 1gpm=2DFU.
- 3. Find the total of DFU in each drainage pipe and mark them on the drawing.
- 4. Determined the required size of horizontal fixture branches and stacks.
- 5. Determined the size and slop of the building drain and its branches and the building sewer.
- 6. Determined that the size and slop that found in step 5 meet the requirement of the code .

Chapter 5 Fire fighting system

A fire fighting system is probably the most important of the building services, as its aim is to protect human life and property, strictly in that order. fire fighting systems and equipment vary depending on the age, size, use and type of building construction.

5.1 Types of fire fighting system

- Fire extinguishers.
- Fire hose reels.
- Fire hydrant systems.
- Automatic sprinkler systems.

5.1.1 Fire extinguishers

Portable fire extinguishers can contain a wide variety of extinguishing agents; the portable fire extinguishers enable an individual with minimal training to extinguish an incipient fire. A portable fire extinguisher should not be considered as the sole solution to fire protection analysis of a building but, rather only one of many components of a total fire protection plan.

Types of portable fire fighting extinguishers:

The principle fire extinguisher types currently available include Fig.

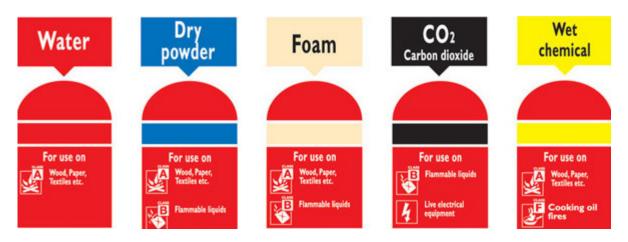


Figure 5.1: Fire extinguishers

- 1. Foam: fire extinguishers extinguish the fire by taking away the heat element of the fire triangle. Foam agents also separate the oxygen element from the other elements. Water extinguishers are for Class A fires only they should not be used on Class B or C fires. The discharge stream could spread the flammable liquid in a Class B fire or could create a shock hazard on a class C fire. Foam extinguishers can be used on Class A and B fires only. They are not for use on Class C fires due to the shock hazard.
- 2. Carbon Dioxide: Carbon dioxide fire extinguishers extinguish the fire by taking away the oxygen element of the fire triangle and also by removing the heatwith a very cold discharge. Carbon dioxide can be used on Class B and C fires. They are usually ineffective on Class A fires.
- 3. Clean agent extinguishers: Halogenated or Clean Agent extinguishers include the halon agents as well as the newer and less ozone depleting halocarbon agents. They extinguish the fire by interrupting the chemical reaction of the fire triangle.
- 4. Dry chemical extinguishers, hand and wheeled: fire extinguishers extinguish the fire primarily by interrupting the chemical reaction of the fire triangle.
- 5. Wet chemical extinguishers: Wet Chemical is a new agent that extinguishes the fire by removing the heat of the fire triangle and prevents reigniting by creating a barrier between the oxygen and fuel elements and use in kitchen.
- 6. Dry Powder: extinguishers are similar to dry chemical except that they extinguish the fire by separating the fuel from the oxygen element or by removing the heat element of the fire triangle.

5.1.2 Fire hose reel

Fire hose reel systems consist of pumps, pipes, water supply and hose reels located strategically in a building, ensuring proper coverage of water to combat a fire fig.5.2. The system is manually operated and activated by opening a valve enabling the water to flow into the hose that is typically 30 meters away. The usual working pressure of a fire house can vary between 8 and 20 (116 and 290 psi). Fire hose reels are provided for use by occupants as a first attack fire fighting measure but may, in some instances, also be used by fire fighters. When stowing a fire hose reel, it is important to first attach the nozzle end to the hose reel valve, then close the hose reel valve, then open the nozzle to relieve any pressure in the wound hose, then close the nozzle.

Figure 5.2: Fire hose reel

5.1.3 Fire hydrate system

Fire hydrant systems fig.5.3. are installed in buildings to help fire fighters quickly attack the fire. Essentially, a hydrant system is a water reticulation system used to transport water in order to limit the amount of hose that fire fighters have to lay; thus speeding up the fire fighting process. Fire hydrants are for the sole use of trained fire fighters (which includes factory fire fighting teams). Because of the high pressures available serious injury can occur if untrained persons attempt to operate the equipment connected to such installations. Fire hydrant systems sometimes include ancillary parts essential to their effective operation such as pumps, tanks and fire service booster connections. These systems must be maintained and regularly tested if they are to be effective when needed.

Figure 5.3: Fire hydrate system

5.1.4 Automatic sprinkler system

Time is essential in the control of fire. Automatic sprinkler systems are one of the most reliable methods available for controlling fires. Today's automatic fire sprinkler systems offer state of the art protection of life and property from the effects of fire. Sprinkler heads are now available which are twenty times more sensitive to fire than they were ten years ago.

A sprinkler head is really an automatic (open once only) tap. The sprinkler head is connected to a pressurized water system. When the fire heats up the sprinkler head, it opens at a preset temperature, thus allowing pressurized water to be sprayed both down onto the fire and also up to cool the hot smoky layer and the building structure above the fire. This spray also wets combustible material in the vicinity of the fire, making it difficult to ignite, thereby slowing down or preventing fire spread and growth.

When a sprinkler head operates, the water pressure in the system drops, activating an alarm, which often automatically calls the fire brigade via a telephone connection.

5.2 Calculating the A-Rated extinguishers required

According to BS5306:8-2000 you should have no less than 26A (provided by 2 extinguishers) of fire protection per floor, where the floor area exceeds $100m^2$. The A-Rating required for a single floor in a property can be calculated using the following formula Eq.(5.1):

$$A - RatingRequired = FloorArea * 0.065$$

$$(5.1)$$

The number of extinguishers required to cover this A-Rating can then be calculated as below Eq.(5.2):

$$Extinguishers perfloor = \frac{A - Rating Required}{extinguisher A - Rating}$$
(5.2)

The A-Rating of a fire extinguisher is printed onto the extinguisher body, as marked in Figure This will vary dependent on the size, make and type of extinguisher used see appendix B.

• A-Rating Required calculation:

A-Rating Required for ground floor = $2858 * 0.065 = 185.77m^2$ A-Rating Required for first floor = $2396 * 0.065 = 155.70 m^2$ A-Rating Required for second floor = $2074 * 0.065 = 134.80 m^2$ A-Rating Required for third floor = $2074 * 0.065 = 134.80 m^2$ A-Rating Required for fourth floor = $568 * 0.065 = 36.80 m^2$

• Extinguishers per floor calculation:

Extinguisher for ground floor = 185.77/26 = 7Extinguisher for first floor = 155.70/26 = 6Extinguisher for second and third floor = 134.80/26 = 5Extinguisher for fourth floor = 36.8/26 = 2

• Fire hose calculation and pump selection.

The pipe is manufacturing from steel. We select pipe with diameter D=4 inch riser and branch is D=4 inch its loss coefficient $k = 0.045 * 10^3 m^3$ For riser 17.5 m

 $Area(A) = \frac{\pi D^2}{4} = \frac{\pi * 0.11^2}{4} = 0.009485m^2$ Flow rate $(Q_{efectiv}) = 100gpm$ which equal 0.00639 m^3

The velocity in the pipe defined in the equation:

$$V = \frac{Q}{A} = 0.00639/0.009485 = 0.673m/s$$

Reynolds number (Re):

$$Re = \frac{\rho * V * D}{\mu}$$

Re = 1000 * 0.673 * 0.11/0.001 = 74030from mody chart Fig.5.4 the friction factor (f)=0.03

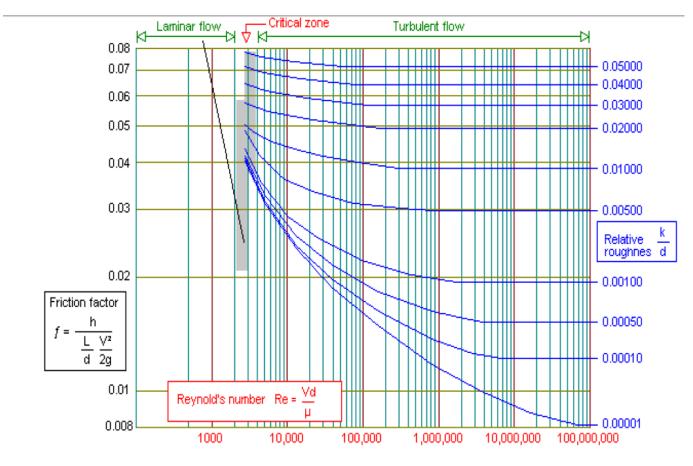


Figure 5.4: Moody chart

• Head loss: $h_{fr} = \frac{flV^2}{2g*0.1524} = 0.113m$ The same calculation on branch we find $h_{fp} = 0.102$ Major $h_f = 0.113 + 0.102 = 0.215$ m.

Miner losses h_f (fitting), Equivalent length (in meters) of straight pipe for fittings like bends, returns tees and valves. From Table of equivalent length Table B-25 see appendix B

We use 4 regular 90 deg tow sex inch and one four inch and one 1.5.

 $H_f = 2^{*}2.7 + 1.8 + 0.7 = 7.9 \text{ m losses}$

Total head losses = head major + head miner =0.215+7.9=8.115 m.

Factor of safety = 8.115*1.15 = 9.33

Turn it into pressure

P = 9.81*1000*9.33 = 91549.37 Pascal.

P loss =0.915 bar

Total pressure = pressure require + pressure loss Total pressure = 4.5+0.915=5.5 bar

5.3 Selections of other fire fighting system components

1. Fire hose :

We need a hose length of 30 meter.

Selection : kiddeModel 31A.

2. Pumps:

Continuous water and pumping station supply should always be available and ready to fight fire, the following three pumps should be connected to a suction header (from water tank), and discharge header (to fire fighting network).

Pumping should be included:

- (a) Electrical fire fighting pump. Xylem Model 2.5X2.5X7F.
- (b) Diesel Fire fighting Pump,(Stand-by pump).Xylem Model 3X2X11F-S . Diesel pump works if:
 - i. The electrical pump is out of service, or if there is a lack of electricity.
 - ii. The electrical pump is working but can't satisfy system water requirements.
- (c) Jockey Pump: work to make up the system pressure in case of leakage or during the first seconds of fire.Peerless Model J J65F.
- 3. Fire Extinguishers:

Wet Chemical Extinguishers.

HCFC Extinguishers.

Carbone dioxide.

Chapter 6 Medical gases

6.1 introduction

Health care is in a constant state of change, which forces the plumbing engineer to keep up with new technology to provide innovative approaches to the design of medical-gas systems. In designing medical-gas and vacuum systems, the goal is to provide a safe and sufficient flow at required pressures to the medical-gas outlet or inlet terminals served. System design and layout should allow convenient access by the medical staff to outlet/inlet terminals, valves, and equipment during patient care or emergencies. This section focuses on design parameters and current standards required for the design of nonflammable medical-gas and vacuum systems used in therapeutic and anesthetic care. The plumbing engineer must determine the needs of the health-care staff. Try to work closely with the medical staff to seek answers to the following fundamental design questions at the start of a project:

- How many outlet/inlets are requested by staff?
- How many outlet/inlets are required?
- Based on current conditions, how often is the outlet/inlet used?
- Based on current conditions, what is the average duration of use for each outlet/inlet?
- What is the proper usage (diversity) factor to be used? Schematic diagram for the medical gases network Fig.6.1 .

6.2 Medical gas flow rates

Each station must provide a minimum flow rate for the proper functioning of connected equipment under design and emergency conditions. The flow rates and diversity factors vary for individual stations in each system depending on the total number of outlets and the type of care provided. The flow rate from the total number of outlets, without regard for any diversity, is called the "total connected load." If the total connected load were used for sizing purposes, the result would be a vastly oversized system, since not all

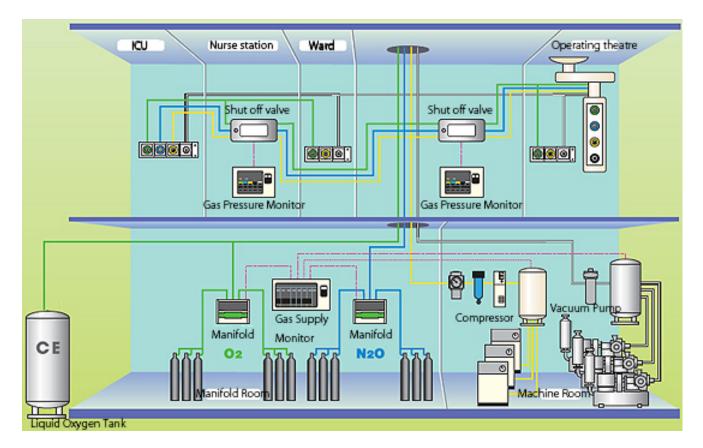


Figure 6.1: Schematic diagram for the medical gases network

of the stations in the facility will be used at the same time. A diversity, or simultaneoususe factor, is used to allow for the fact that not all of the stations will be used at once. It is used to reduce the system flow rate in conjunction with the total connected load for sizing mains and branch piping to all parts of the distribution system. This factor varies for different areas throughout any facility. The estimated flow rate and diversity factors for various systems, area stations. Total demand for medical-gas systems varies as a function of time of day, month, patient-care requirements, and facility type. The number of stations needed for patient care is subjective and cannot be qualified based on physical measurements. Knowing the types of patient care and/or authority requirements will allow placement of stations in usage groups. These groups can establish demand and simultaneous-use factors (diversities), which are used in the calculation for sizing a particular system. All medicalgas piping systems must be clearly identified using an approved color-coding system similar to that shown in Table 6.1 .

Gas intended for medical use	United States Color
Oxygen	Green
Carbon dioxide	Gray
Nitrous oxide	Blue
Cyclopropane	Orange
Helium	Brown
Nitrogen	Black Silver on black
Air	Yellow
Vacuum	White
Gas mixtures (other than	Color marking of mixtures shall be
mixtures of oxygen and nitrogen)	a combination of color corresponding
	to each component gas.
Gas mixtures of oxygen and nitrogen	Yellowa Black and green
19.5 to $23.5%$ oxygen	
All other oxygen concentrations	

Table 6.1: Color Coding for Piped Medical Gases

6.3 Medical gas system design checklist

As any hospital facility must be specially designed to meet the applicable local code requirements and the health-care needs of the community it serves, the medical-gas and vacuum piping systems must also be designed to meet the specific requirements of each hospital. Following are the essential steps to a well-designed and functional medical-gas piped system, which are recommended to the plumbing engineer:

- 1. Analyze each specific area of the health-care facility to determine the following items:
 - Which piped medical-gas systems are required?
 - How many of each different type of medical-gas outlet/inlet terminal are required?
 - Where should the outlet/inlet terminals be located for maximum efficiency and convenience?
 - Which type and style of outlet/inlet terminal best meet the needs of the medical staff?
- 2. Anticipate any building expansion and plan in which direction the expansion will take place (vertically or horizontally). Determine how the medical-gas system should be sized and valved in order to accommodate the future expansion.
- 3. Determine locations for the various medical-gas supply sources.
 - Bulk oxygen (O_2) .
 - High-pressure cylinder manifolds $(O_2, N_2 O \text{ or } N_2)$.
 - Vacuum pumps (VAC).

- Medical-air compressors (MA).
- 4. Prepare the schematic piping layout locating the following:
 - Zone valves.
 - Isolation valves.
 - Master alarms.
 - Area alarms.

6.4 Type of medical gases:

1. Oxygen

Oxygen is one of the most extensively used at atmospheric temperatures and pressures exists and its a colorless, odorless, non-flammable and tasteless gas. Primarily used by patients with respiratory or airway obstruction and to relieve. symptoms and signs associated with respiratory distress, therapy, anesthesia, used for face mask and ventilator. Oxygen should be avoided as a power source because of fire risk and 90 cost, and should not be used where medical air is available, Oxygen supplied to hospitals by multiple standard cylinders. Pressures are usually around 55 psi.

Oxygen is generally supplied from:

- A liquid source such as a large vacuum-insulated evaporator (VIE).
- Liquid cylinders or compressed gas cylinders.
- A combination of these to provide the necessary stand-by/back-up capacity.
- Oxygen can also be supplied from an oxygen concentrator (pressure-swing adsorbed). Such systems are usually installed where liquid or cylinders are expensive, unavailable or impracticable.
- 2. Nitrous Oxide (NO_2) : Nitrous Oxides a medical gas that used for anesthetic and analgesic purposes, being mixed with air, oxygen, and nebulizer agents. It delivered to the hospitals in standard tanks. System pressures around 50 psi.
- 3. Medical air MA4 Medical Air is primarily used for respiratory therapy. it supplied by a special air compressor to patient care areas using clean outside air. Pressure are maintained around 55 psi.
- 4. Medical Vacuum

Medical Vacuum Primarily used for patient treatment in surgery, recovery, and ICU to remove fluids and aid in drainage, but it doesn't used in Infectious Diseases Unit (IDU). Medical vacuum systems operate low flow rates at the terminal units (40 L/min), it usually supplied to hospitals by vacuum pump systems. Continuous vacuum is maintained around 22 inches of mercury.

5. Anesthetic Anesthetic gas scavenging system:

Anaesthetic Gas Scavenging System (AGSS) used for example in anesthetic and operating room. Used to capture and carry away gasesvented from the patient breathingcircuit during the normal operation of gas anesthesia or analgesia equipment. AGSS incorporate a mechanical pump to assist with the disposal of the waste gas.

Chapter 7 Refrigerators

7.1 Cooling Load Calculation for Refrigeration

Using this law to find Cooling Load Calculation:

$$Q = UA\Delta T \tag{7.1}$$

- Q: Cooling Load in [kW] .
- U : Overall heat transfer coefficient in $[W/m^2.^{\rm o}C~]$.

$$U = \frac{1}{\frac{1}{h_i} + \sum \frac{\Delta x_i}{k_i} + \frac{1}{h_o}}$$
(7.2)

 $\begin{array}{l} h_{in}: \text{ is the Inside Convection Coefficient } 9.37 \ W/m^2.^{\circ}C \ . \\ h_{out}: \text{ is the Outside Convection Coefficient } 22.7 \ W/m^2.^{\circ}C \ . \\ \text{K: is the thermal conductivity for material in } [W/m^{\circ}C] \ . \\ \Delta X: \text{ is the Thickness of the material in } [m] \ . \\ \text{A: Surface area in } [m^2] \ . \\ \text{A=Length * Width.} \\ \Delta T: \text{ The difference in temperature } [^{\circ}C] \ . \\ \text{Temperature surrounding } T_{sur}: \\ T_{sur} = 30^{\circ}C \\ \text{Room Temperature } T_{Room}: \\ T_{Room} = T_{in} + 2/3(T_{sur} + T_{in}) \\ T_{in}: \text{ is the storage temperature of product } = 5 \ ^{\circ}C \ . \\ T_{Room} = 5 + 2/3 \ (30 + 5) \\ T_{Room} = 28.3 \ ^{\circ}C. \\ \end{array}$

7.1.1 The Overall Heat Transfer Coefficient

1. External Walls:

The following figure 7.1 shows external wall details. The variable of heat transfer coefficient Table 7.1.

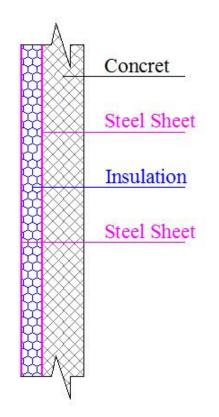


Figure 7.1: External wall details

 $\begin{array}{ccc} \mbox{Table 7.1: } V\underline{ariable \ of \ heat \ transfer \ coefficient \ for \ external \ wall.} \\ Material \ K \ Thickness \end{array}$

Material	IX	1 IIICKIIE55
	$(W/m.^{\circ}C)$	(m)
Concrete	1.750	0.300
Steel Sheet	16.00	0.002
Insulation	0.050	0.070
Steel Sheet	16.00	0.002

Thickness of the wall = 0.37 m.

$$U = \frac{1}{\frac{1}{9.37} + \frac{0.3}{1.75} + \frac{0.002}{16} + \frac{0.07}{0.05} + \frac{0.002}{16} + \frac{1}{22.7}}$$

$$U = 0.58 \ W/m^2.^{\circ}C.$$

$$\Delta T = T_{sur} - T_{in}$$

$$\Delta T = 30 - 5 = 25^{\circ}C.$$

$$A - ExternalWall = 3.74 * 3.05 = 11.4 \ m^2.$$

$$\dot{Q}_{ExternalWall_1} = 0.58 * 25 * 11.4$$

$$dotQ_{ExternalWall_1} = 165 \ W = 0.165 \ kW.$$

2. Internal Wall₁:

The following figure 7.2 shows internal wall details. The variable of heat transfer coefficient Table 7.2.

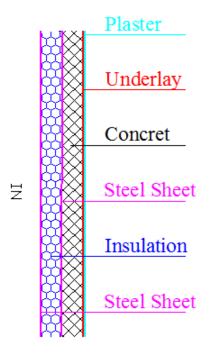


Figure 7.2: internal wall details

Material	Κ	Thickness
	$(W/m.^{\circ}C)$	(m)
Plaster	1.200	0.002
Underlay	0.980	0.008
Concert	1.750	0.200
Steel Sheet	16.00	0.002
Insulation	0.050	0.070
Steel Sheet	16.00	0.002

Table 7.2: Variable of heat transfer coefficient for internal wall.

Thickness of the wall = 0.284 m.

$$U = \frac{1}{\frac{1}{9.37} + \frac{0.002}{1.2} + \frac{0.008}{0.98} + \frac{0.2}{1.75} + \frac{0.002}{16} + \frac{0.07}{0.05} + \frac{0.002}{16} + \frac{1}{9.37}}$$

$$U = 0.575 \ W/m^2.^{\circ}C.$$

$$\Delta T = T_{Room} - T_{in}$$

$$\Delta T = 28.3 - 5 = 23.3^{\circ}C.$$

$$\begin{split} A-internalWall&=4.44~*3.05=13.54~m^2~.\\ Q_{InternalWall-1}&=0.575~*~23.3~*~13.54\\ Q_{InternalWall-1}&=181~\mathrm{W}=0.181~\mathrm{kW}. \end{split}$$

3. Internal Wall₂:

The following figure 7.3 shows internal wall details. The variable of heat transfer coefficient Table 7.3.

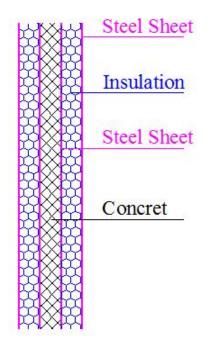


Figure 7.3: internal wall-2 details

MaterialKThickness $(W/m.^{o}C)$ (m)Steel Sheet16.00.002Insulation0.050.070Steel Sheet16.00.002Concrete1.750.100Steel Sheet16.00.002Insulation0.050.070Steel Sheet16.00.002Insulation0.050.070Steel Sheet16.00.002	e 7.3:	variable of neat	transier coe	melent for internal	١
Steel Sheet16.00.002Insulation0.050.070Steel Sheet16.00.002Concrete1.750.100Steel Sheet16.00.002Insulation0.050.070		Material	Κ	Thickness	
Insulation 0.05 0.070 Steel Sheet 16.0 0.002 Concrete 1.75 0.100 Steel Sheet 16.0 0.002 Insulation 0.05 0.070			$(W/m.^{o}C)$	(m)	
Steel Sheet 16.0 0.002 Concrete 1.75 0.100 Steel Sheet 16.0 0.002 Insulation 0.05 0.070		Steel Sheet	16.0	0.002	
Concrete 1.75 0.100 Steel Sheet 16.0 0.002 Insulation 0.05 0.070		Insulation	0.05	0.070	
Steel Sheet 16.0 0.002 Insulation 0.05 0.070		Steel Sheet	16.0	0.002	
Insulation 0.05 0.070		Concrete	1.75	0.100	
		Steel Sheet	16.0	0.002	
Steel Sheet 16.0 0.002		Insulation	0.05	0.070	
		Steel Sheet	16.0	0.002	

Table 7.3: Variable of heat transfer coefficient for internal Wall₂.

Thickness of the wall = 0.284 m.

$$U = \frac{1}{\frac{1}{9.37} + \frac{0.002}{16} + \frac{0.007}{0.05} + \frac{0.002}{16} + \frac{0.1}{1.75} + \frac{0.002}{16} + \frac{0.07}{0.05} + \frac{0.002}{16} + \frac{1}{9.37}}$$

$$U = 0.325 \ W/m^2.^{\circ}C.$$

$$\Delta T = T_{Room} - T_{in}$$

$$\Delta T = 5 - 18 = 23^{\circ}C.$$

$$A - internalWall_2 = 4.44 \ *3.05 = 13.54 \ m^2.$$

$$Q_{InternalWall_2} = 0.325 \ * \ 23 \ * \ 13.54$$

$$Q_{InternalWall_2} = 101 \ W = 0.101 \ kW.$$

4. Internal $Wall_3$:

The same propriety of Internal Wall-2 but the aria is difference

A = A _{InternalWall3} - A Door = (3.74 * 3.05) - 4 = 7.4 m2.

Q $_{InternalWall_3}$ = 0.575 * 23.3 * 7.4 = 99 W = 0.099 kW .

5. Ground:

The following figure 7.4 shows Ground details. The variable of heat transfer coefficient Table 7.4.

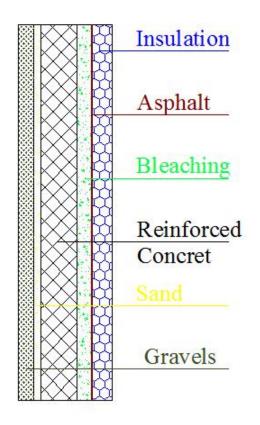


Figure 7.4: Ground details

Material	Κ	Thickness
	$(W/m.^{\circ}C)$	(m)
Insulation	0.05	0.100
Asphalt	0.30	0.002
Bleaching	0.98	0.050
Reinforced Concrete	0.88	0.200
Sand	0.68	0.020
Gravels	0.58	0.050

Table 7.4: Variable of heat transfer coefficient for Ground.

Thickness of the ground = 0.284 m .

$$U = \frac{1}{\frac{1}{9.37} + \frac{0.1}{0.05} + \frac{0.002}{0.3} + \frac{0.05}{0.98} + \frac{0.2}{0.88} + \frac{0.02}{0.68} + \frac{0.05}{0.58}}$$

U= 0.399 W/m².°C.

$$\Delta T = T_{Ground}$$

$$\Delta T = 5 \ ^{\circ}C .$$

$$A - Ground = 4.44 \ ^{*}3.74 = 16.6 \ m^{2} .$$

$$Q_{Ground} = 0.399 \ ^{*}5 \ ^{*}16.6$$

$$Q_{Ground} = 33 \ W = 0.033 \ kW.$$

6. Ceiling:

The following figure 7.5 shows Ceiling details. The variable of heat transfer coefficient Table 7.5.

Material	Κ	Thickness
	$(W/m.^{o}C)$	(m)
Tiles	1.10	0.005
Concrete	1.75	0.050
Insulation	0.05	0.096
Concrete	1.75	0.15
Steel Sheet	16.0	0.002

Table 7.5: Variable of heat transfer coefficient for Ceiling.

Thickness of the Ceiling = 0.362 m.

$$U = \frac{1}{\frac{1}{9.37} + \frac{0.005}{1.1} + \frac{0.05}{1.75} + \frac{0.096}{0.05} + \frac{0.15}{1.75} + \frac{0.002}{16} + \frac{1}{9.37}}$$

U=0.444 W/m².°C.
 $\Delta T = 28.3-5$
 $\Delta T = 23.3$ °C.

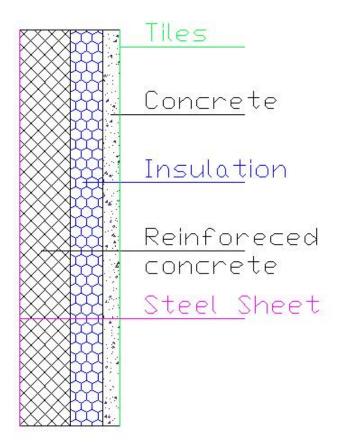


Figure 7.5: Ceiling details

 $A_{Ceiling} = 4.44 * 3.74 = 16.6 m^2$. $Q_{Ceiling} = 0.444 * 23.3 * 16.6$ $Q_{Ceiling} = 172 W = 0.172 kW.$

7. Door:

The following figure 7.6 shows Door details. The variable of heat transfer coefficient Table 7.6.

Table 7.6	<u>: Variable of</u>	heat transfer	<u>coefficient</u> for Door.
	Material	Κ	Thickness
		$(W/m.^{o}C)$	(m)
	Steel Sheet	16.0	0.002
	Insulation	0.05	0.056
	Wood	0.16	0.040
	Steel Sheet	16.0	0.002

Thickness of the Door = 0.1 m.

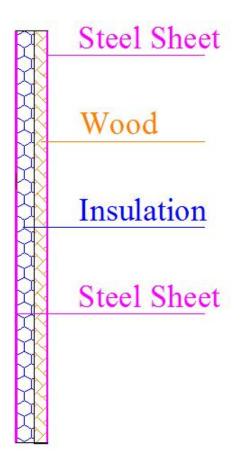


Figure 7.6: Ceiling details

$$U = \frac{1}{\frac{1}{9.37} + \frac{0.002}{16} + \frac{0.056}{0.05} + \frac{0.04}{0.16} + \frac{0.002}{16} + \frac{1}{9.37}}$$

U=0.631W/m².°C.

$$\Delta T = 28.3-5$$

$$\Delta T = 23.3 \ ^{\circ}C .$$

$$A - Door = 2^{*2} = 4 \ m^{2} .$$

$$Q_{Door} = 0.631 \ ^{*}23.3 \ ^{*}4$$

$$Q_{Door} = 59W = 0.059 \ \text{kW}.$$

7.1.2 Cooling Load Calculation For Rooms

Using this law to calculate cooling load for rooms:

$$\dot{Q}_{Total} = \dot{Q}_{Envelope} + \dot{Q}_{Product} + \dot{Q}_{Air} + \dot{Q}_{Service} + \dot{Q}_{Respiration}$$
(7.3)

For Refrigerator:

• \dot{Q} Envelope Calculation:

 \dot{Q} : heat gain from walls, doors, windows, floor and ceiling. $\dot{Q} = \dot{Q}_1 + \dot{Q}_{Solar}.$

$$\dot{Q} = \dot{Q}_{Wall} + \dot{Q}_{Door} + \dot{Q}_{Floor} + \dot{Q}_{Ceiling} \tag{7.4}$$

$$\begin{split} \dot{Q}_{Wall} &= \dot{Q}_{Externalwall_1} + \dot{Q}_{InternalWall_1} + \dot{Q}_{InternalWall_2} + \dot{Q}_{InternalWall_3} \\ &= 0.165 + 0.181 + 0.101 + 0.099 = 0.546. \\ \dot{Q}_1 &= 0.546 + 0.033 + 0.172 + .059 = 0.81 \text{ kW}. \\ \dot{Q}_{Solar} &= 0 \\ \dot{Q}_{Envelope} &= 0 + 0.81 = 0.81 \text{ kW}. \end{split}$$

• \dot{Q} Product Calculation:

$$\dot{Q}_{Product} = \dot{Q}_2^* + \dot{Q}_2^{**} + \dot{Q}_{Packaging} \tag{7.5}$$

$$\begin{split} \dot{Q}_2^* &= \dot{m} cp \Delta T. \\ \text{When:} \\ \dot{m} &= \left(\mathbf{m}_{Product} \; / \; \text{Time Cooling} \; \right) \\ \text{Time Cooling: Working Time Per a Day .} \\ \Delta T &= \Delta T_{sur} = 30^{\circ}C. \\ \dot{Q}_2^* &= 1.65 \; \text{kW} \; . \; \dot{Q}_2^{**} = 0 \; \text{Used to freeze} \\ &\qquad \qquad \dot{Q}_{Packaging} = \left(m_{Material} / TimeCooling \right) * cp * \Delta T \end{split}$$
(7.6) Where: $\mathbf{m}_{Material} = \mathbf{m}^* \; \text{N} \; . \\ \mathbf{m} : \text{ is the mass of one pallet} = 15 \; \text{kg} \; . \end{split}$

N: is the number of pallets in the room = 20. m_{Material} = 15 * 20 = 300 kg . cp : is the Specific Heat for Pallet = 0.67 kJ/kg.K . $\Delta T = \Delta T_{sur} = 30^{\circ}C.$ $\dot{Q}_{Packaging} = (300 / (4 * 16 * 3600)) * 0.67 * 30 = 0.105 kW .$ $\dot{Q}_{Product} = 1.65 + 0 + 0.105 = 1.755 kW.$

	ible 7.7	: pro	auct usea.	•
Product	ср	m	ṁ	\dot{Q}_2^*
Apple	3.64	40	0.000694	0.075833
Avocados	3.01	40	0.000694	0.062708
Bananas	3.35	40	0.000694	0.069792
Bass	3.43	30	0.000521	0.053594
Black Barry	3.64	20	0.000347	0.037917
Butter	2.72	30	0.000521	0.0425
Cabbage	3.94	50	0.000868	0.102604
Carrots	3.81	20	0.000347	0.039688
cheese	3.27	40	0.000694	0.068125
Chicken	2.72	80	0.001389	0.113333
cucumber	4.1	100	0.001736	0.213542
eggs	3.18	30	0.000521	0.049688
Eggplant	3.98	50	0.000868	0.103646
Grapes	3.6	50	0.000868	0.09375
Lemons	3.81	60	0.001042	0.119063
Milk	3.81	40	0.000694	0.079375
Tomatoes	3.98	120	0.002083	0.24875
Watermelon	3.94	100	0.001736	0.205208
Σ				1.653281

Table 7.7: product used

• \dot{Q}_{Air} Calculation:

$$\dot{Q}_{Air} = \dot{Q}_{Infiltration} + \dot{Q}_{Ventilation} \tag{7.7}$$

 $\dot{Q}_{Infiltration} = 0$ kW.

Prove it :

 $\dot{Q}_{Infiltration} = (1250 / 3600) * \dot{v} * (T_{Room} - T_{in}) \dot{v} = K * L * 0.613 * (S1 * S2 * v_o) 2 (3 / 2)$

L : Perimeter of the door .

L = 2 * 3 + 2 * 3 = 12 m.

 ${\rm K}: {\rm The \ infiltration \ air \ coefficient} = 0.25$.

S1 : Factor that depend on the topography of the location of the building = 0.9.

S2: Coefficient that depend on the height of the building and the term of its location = 0.74 .

$$\begin{split} v_o: \mbox{ The wind velocity} &= 0.5 \mbox{ mL } / \mbox{ sec }. \\ v_o &= 0.25 \mbox{ }^* 12 \mbox{ }^* 10\text{-}3 \mbox{ }^* \mbox{ } 0.613 \mbox{ }^* \mbox{ } (\mbox{ } 0.9 \mbox{ }^* 0.74 \mbox{ }^* \mbox{ } 0.5 \mbox{ })2 \mbox{ } (\mbox{ } 3 \mbox{ } /2 \mbox{ }) \\ &= 5.3 \mbox{ }^* 10^{-5} \mbox{ mL } / \mbox{ sec }. \\ \dot{Q}_{Infiltration} &= (1250/3600) \mbox{ } 5.3 \mbox{ } 10^{-5} \mbox{ } (25.1\text{-}0) = 0.0004 \mbox{ } \approx 0 \mbox{ kW }. \end{split}$$

• $\dot{Q}_{Ventilation}$ Calculation:

$$\dot{Q}_{Ventilation} = \dot{Q}_{Product} + \dot{Q}_{People} \tag{7.8}$$

 $\dot{Q}_{Product} = m_o * (h_{out} - h_{in})$ From Psychometric Chart: $h_{out} = 72J/kg.^{\circ}C@Tout = 30^{\circ}C\&R.H = 56\%.$ $h_{in} = 17J/kg.^{\circ}C@Tin = 5^{\circ}C\&R.H = 85\%$. $m_o = \rho_{Air} * v_o$ ρ_{Air} : it is the density of the air = 1.2 kg/m². $V_o = v^* a.$ V : Volume of the room $in[m^3]$. $V = 4.44 * 3.74 * 3.05 = 50.6 m^3.$ a : number of air change each second , it depend for the volume of the room . from interpolation a = 21.3 L/s. [Table 10-7] $\dot{m} = 1.2 * 50.6 * (21.3 / 1000) = 1.293 m^3 / s$. $\dot{Q}_{Product} = 1.293 * (72 - 17) = 71.13 \text{ W} = 0.071 \text{ kW}$. $\dot{Q}_{People} = \dot{m} * (h_{out} - h_{in}) * (hour occupied/24) * a$ When: a : The number of people inside the room = 2. $\dot{m} = \rho_{Air} * \dot{V}$ $\dot{V} = 20m^3/h.$ $\dot{m} = 1.2 * (20/3600) = 6.66 * 10^3 kg/s.$ hour occupied: is the time needed to work in the room = 2 hours $\dot{Q}_{People} = 6.66 * 10-3 * 55^* (2/24) * 2 = 0.061 \text{ W} = 6.1 * 10-5 \text{ kW}$. $\dot{Q}_{Ventilation} = 0.071 + 6.1 * 10-5 = 0.0711 \text{ kW}$. $\dot{Q}_{Air} = 0 + 0.0711 = 0.0711 \text{ kW}$. • $Q_{Service}$ Calculation: $\dot{O}_{a} + - \dot{O}_{b} + \dot{O}_{c}$

$$\dot{Q}_{People} = q \hat{Q}_{People} + \hat{Q}_{Light}.$$

$$\dot{Q}_{People} = n * \dot{Q}_{Person} * (Workinghours/24)$$

$$\dot{Q}_{Person} = 0.275.$$

$$\dot{Q}_{People} = 2 * 0.275 * (2 / 24) = 0.046 \text{ kW}.$$

$$\dot{Q}_{Light} = P_{Light} * CLF * N$$

 \dot{Q}_{Light} = 24 W. CLF: Cooling Load Factor of Lighting = 0.88 . N: Number of Lights N = 2 \dot{Q}_{Light} = 24 * 0.88 * 2 = 42.24 W = 0.0422 kW $\dot{Q}_{Service}$ = + 0.046 + 0.0422 = 0.088 KW .

• $\dot{Q}_{Respiration}$ Calculation:

 $\dot{Q}_{Respiration} = m * q_{Rips}$ $\dot{Q}_{Respiration} : \text{ is the rate of respiration }.$ m : is the mass of the product in the room in [kg] . $q_{Rips} \text{ Rate of heat given off Breathing product }.$ $q_{Rips} = 0.029 \text{ . [Table 10-12] }.$ $\dot{Q}_{Respiration} = 0.029 * 1000 = 29 \text{ W} = 0.029 \text{ kW }.$ Consequently: $\dot{Q}_{Total} = 0.81 + 1.755 + 0.0711 + 0.088 + 0.029 = 2.75 \text{ kW }.$ $\dot{Q}_{Total} = 2.75^{*}\text{F.S} = 2.75^{*}1.5 = 4.125 \text{ Kw}$

The following figure 7.8 for the cycle in PH diagram and the values of points in cycle figure 7.7 from Cool pack

Point	T	P	v	h	s
1	[°C]	[bar]	[m^3/kg]	[kJ/kg]	[kJ/(kg K)]
1	4.999	3.496	0.058019	400.073	1.7194
2	37.960	8.868	0.023373	419.252	1.7194
3	37.960	8.868	0.023373	419.252	1.7194
4	35.000	8.868	N/A	248.748	N/A
5	N/A	3.496	N/A	248.748	N/A
6	5.000	3.496	0.058015	400.073	1.7194
15	N/A	8.868	N/A	248.748	N/A

Figure 7.7: The values of points in cycle.

 $\begin{array}{l} q_e = h_1 - h_5 \\ = 400.073 - 248.748 = 151.325 \ \mathrm{kJ/kg} \ . \\ q_c = h_2 - h_4 \\ = 419.252 - 248.748 = 170.504 \ \mathrm{kJ/kg} \ . \\ W_c = h_2 - h_1 \\ = 419.252 - 400.073 = 19.179 \ \mathrm{W} \\ \dot{Q}_e = \dot{m} R q_e \\ \dot{m} R = Q_e/q_e = 4.125/151.315 = 0.02726 kg/s. \end{array}$

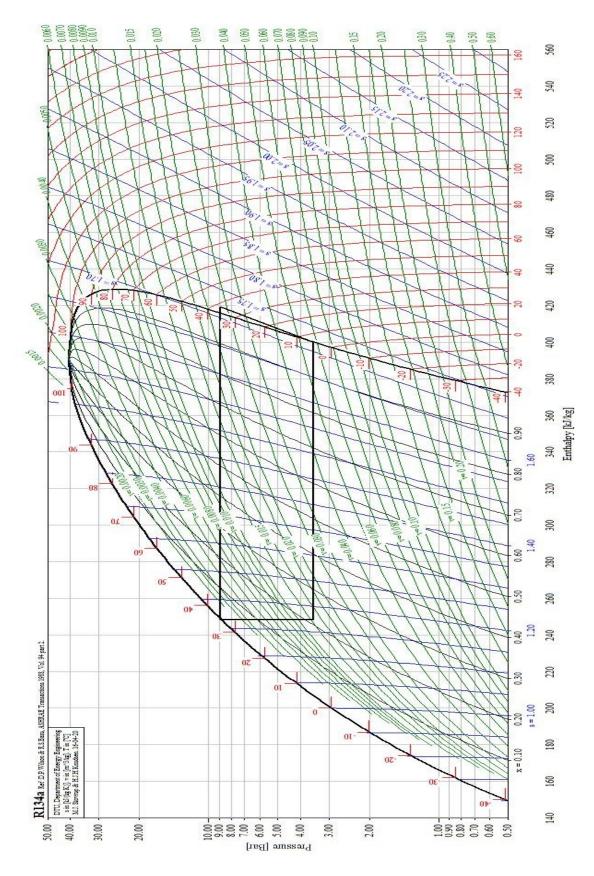
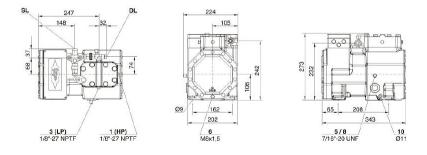


Figure 7.8: The cycle in the PH diagram


$$\begin{split} \dot{Q}_c &= \dot{m} R q_c \\ = 0.02726 \ ^*170.504 = 4.648 \ \mathrm{kW} \ . \\ \mathrm{P} &= \dot{m} W_c \\ = 0.02726 \ ^*19.179 \\ = \ 0.5228 \ \mathrm{kW} = 0.701086348 \ \mathrm{hp} \ \mathrm{hp} : \ \mathrm{horsepower} \ [\mathrm{electric}] \ . \\ \mathrm{Coefficient} \ \mathrm{of} \ \mathrm{performance} \ (\mathrm{cop}) &= \ q_e \ / \ \mathrm{W} = \ 151.315/19.179 = 7.889 \end{split}$$

7.1.3 Compressor selection

By Using BITZER-Software : compressor data sheet figure 7.9 & 7.10 below.

Technical Data: 2HES-1Y

Dimensions and Connections

Technical Data

Compressor Selection: Semi-hermetic Reciprocating Compressors

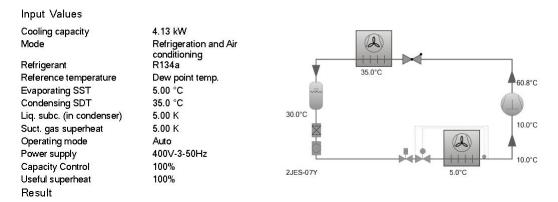


Figure 7.10: The cycle in the PH diagram

For more about data sheet go to appendix B

7.1.4 Condensers selection

By Using BITZER-Software

Condenser data sheet figure 7.11 & 7.12 & 7.12 below.

Compressor Selection: Condensing Units

Input Values

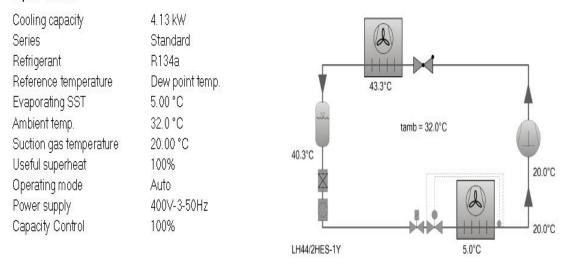


Figure 7.11: Condensing units.

Technical Data: LH44/2GES-2Y

Dimensions and Connections

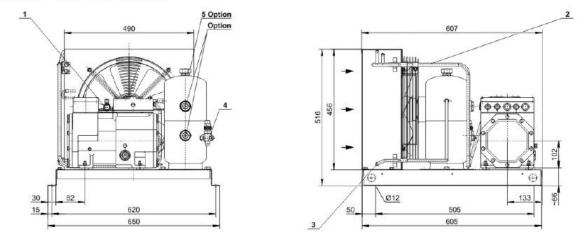


Figure 7.12: Technical data.

Technical Data	
Technical Data	
Weight	81 kg
Total width	650 mm
Total depth	607 mm
Total height	516 mm
Connection suction line	16 mm - 5/8"
Connection liquid line	10 mm - 3/8"
	1
Voltage (more on request)	230V-1-50Hz (Standard)
Current / Power consumption of each fan	0,56 A / 125 W
Air flow condenser 50Hz	1840 m²/h
Voltage (more on request)	230V-1-60Hz (Standard)
Current / Power consumption of each fan	0.78 A / 175 W
Air flow condenser 60Hz	2070 m³/h
Coil Volume	2.5 dm3
Receiver type (Standard)	FS056
Max. refrigerant charge 90% at 20°C	
R22	6,1 kg
R134a	6.2 kg
R407C	5.8 kg
B404A/B507A	5,4 kg
Receiver type (Option)	FS076
B22	8,5 kg
B134a	8,6 kg
R407C	8.1 kg
R404A/R507A	7,5 kg
Extent of delivery (Standard)	
Discharge line	Standard
Protective charge	Standard
Available Options	
Oil separator	Option
Check valve	Option
High & low pressure switch	Option
Dressed unit	Option
Weather protective housing	Option
Fans: elect. Speed control	Option
Sound measurement	
Sound power level (-10°C / 45°C)	73,5 dB(A) @ 50Hz
Sound pressure level @ 1 m (-10°C / 45°C)	65,5 dB(A) @ 50Hz
Data of compressors: see compressor program	

Figure 7.13: Technical data.

7.2 Cooling Load Calculation for freezer

Using this law to find Cooling Load Calculation:

 $Q = UA\Delta T \text{ eg } 6.1.$

Q: Cooling Load in [kW] .

U : Overall heat transfer coefficient in $[W/m^2.^{\circ}C]$.

 $U = \frac{1}{\frac{1}{h_i} + \Sigma \frac{\Delta x_i}{k_i} + \frac{1}{h_o}}$

 h_{in} : is the Inside Convection Coefficient 9.37 $W/m^2.^{\circ}C$. h_{out} : is the Outside Convection Coefficient 22.7 $W/m^2.^{\circ}C$. K: is the thermal conductivity for material in $[W/m^{\circ}C]$. ΔX : is the Thickness of the material in [m]. A: Surface area in $[m^2]$. A=Length * Width.

 ΔT : The difference in temperature [°C].

1. External Wall:

$$\Delta T = T_{sur} - T_{in}$$

$$\Delta T = 30 - 18 = 48$$

 $A_{ExternalWall_1} = 3.74 * 3.05 = 11.4m^2 \ .$

 $\dot{Q}_{ExternalWall_1} = 0.58 * 48 * 11.4 = 0.317$ kW.

2. Internal $Wall_1$:

$$\begin{split} \Delta T &= T_{Room} - T_{in} \\ &= 28 - .18 = 46 \ ^{\text{o}}\text{C} \ . \\ A &= A_{InternalWall} - A_{Door} \\ &= (4.44 \ ^{*} \ 3.05 \) \\ &= 13.54m^{2}. \\ A &= A_{InternalWall} - A_{Door} \\ &= (3.74 \ ^{*} \ 3.05) - 4 \\ &= 7.4m^{2} \ . \\ \dot{Q}_{InternalWall_{1}} &= 0.575 \ ^{*} \ 46 \ ^{*} \ 20.94 = 0.584 \ \text{kW} \ . \end{split}$$

3. Internal $Wall_2$:

$$\begin{split} \Delta T &= T_{Room} - T_{in} \\ &= 5 - .18 = 23 \ ^{\mathrm{o}}\mathrm{C} \ . \\ \mathrm{A} &= A_{InternalWall_2} \\ &= (4.44 \ ^{*} \ 3.05 \) \\ &= 13.54m^{2}. \\ \dot{Q}_{InternalWall_2} &= 0.325 \ ^{*} \ 23 \ ^{*} \ 13.54 = 101\mathrm{W} = 0.101 \ \mathrm{kW}. \end{split}$$

4. Ground :

$$\begin{split} \Delta T &= T_{Ground} - T_{in} \\ &= 5 - .18 = 23 \ ^{\mathrm{o}}\mathrm{C} \ . \\ \mathrm{A} &= A_{Ground} \\ &= (4.44 \ ^{*} \ 3.74 \) \\ &= 16.6m^{2}. \\ \dot{Q}_{Ground} &= 0.399 \ ^{*} \ 23 \ ^{*} \ 16.6 = 0.153 \ \mathrm{kW} \ . \end{split}$$

5. Ceiling :

$$\begin{split} \Delta T &= 28 - T_{in} \\ &= 28 - .18 = 46 \ ^{\mathrm{o}}\mathrm{C} \ . \\ \mathrm{A} &= A_{Ceiling} \\ &= (4.44 \ ^{*} \ 3.74 \) \\ &= 16.6m^{2}. \\ \dot{Q}_{Ceiling} &= 0.444 \ ^{*} \ 46 \ ^{*} \ 16.6 = 0.339 \ \mathrm{kW} \ . \end{split}$$

6. Door :

$$\Delta T = T_{Room} - T_{in}$$

= 28- -18 = 46 °C .
A = A_{Door}
= (2*2)
= 4m².
 $\dot{Q}_{Door} = 0.631 * 46 * 4 = 0.116 \text{ kW}$

Use this law to calculate cooling load for rooms:

 $\dot{Q}_{Total} = \dot{Q}_{Envelope} + \dot{Q}_{Product} + \dot{Q}_{Air} + \dot{Q}_{Service} + \dot{Q}_{Respiration}$ For Refrigerator:

• $\dot{Q}_{Envelope}$ Calculation:

 $\dot{Q}_{Envelope}$: heat gain from walls, doors, windows, floor and ceiling.

$$\begin{split} \dot{Q}_{Envelope} &= \dot{Q}_1 + \dot{Q}_{Solar}.\\ \dot{Q} &= \dot{Q}_{Wall} + \dot{Q}_{Door} + \dot{Q}_{Floor} + \dot{Q}_{Ceiling}\\ \dot{Q}_{Solar} &= 0\\ \dot{Q}_{Envelope} &= 0.685 + 0.47 + 0.339 + 0.116 + 0 = 1.61 \text{ kW}. \end{split}$$

• \dot{Q} Product Calculation:

$$\dot{Q}_{Product} = \dot{Q}_2^* + \dot{Q}_2^{**} + \dot{Q}_{Packaging}$$
$$\dot{Q}_2^* = \dot{m}cp\Delta T.$$
When:
$$\dot{m} = (m_{Product} / \text{Time Cooling})$$

Time Cooling: Working Time Per a Day . $\Delta T = \Delta T_{sur} = 30^{\circ}C.$ $\dot{Q}_{2}^{*} = 0.855 \text{ kW} .$ $\dot{Q}_{2}^{**} = (\text{m/time})^{*}\Delta h + (m/time) * cp * \Delta T$ $= (1000/11^{*}3600)^{*}47 + (1000/16^{*}3600)^{*}1.6^{*}(0\text{--}18)$ = 1.18 kW + 0.5 kW = 1.68 kW $\dot{Q}_{Packaging} = (m_{Material}/TimeCooling) * cp * \Delta T$ Where: m_{Material} = m * N . m : is the mass of one pallet = 15 kg . N: is the number of pallets in the room = 20. m_{Material} = 15 * 20 = 300 kg .

cp : is the Specific Heat for Pallet = $0.67~{\rm kJ/kg.K}$.

$$\begin{split} \Delta T &= \Delta T_{sur} = 30^{\circ}C.\\ \dot{Q}_{Packaging} &= (\ 300\ /\ (\ 4\ *\ 16\ *\ 3600\)\)\ *\ 0.67\ *\ 30 = 0.105\ {\rm kW}\ .\\ \dot{Q}_{Product} &= 0.885{+}1.68{+}0.105 = 2.535\ {\rm kW}. \end{split}$$

1	able 1	.o. pro	Juuci useu.	
Product	ср	m	ṁ	Q_2^*
Beef	1.59	120	0.002083	0.099375
Chicken	1.63	120	0.002083	0.101875
Clams	1.51	40	0.000694	0.031458
Codfish	1.63	70	0.001215	0.059427
Halibut	1.67	80	0.001389	0.069583
Ice cream	1.67	30	0.000521	0.026094
lamp	1.55	50	0.000868	0.040365
Oysters	1.72	60	0.001042	0.05375
Reindeer	1.55	40	0.000694	0.032292
salmon	1.55	80	0.001389	0.064583
Sausage	1.34	100	0.001736	0.069792
sword fish	1.67	80	0.001389	0.069583
tripe	1.72	50	0.000868	0.044792
veal	1.59	50	0.000868	0.041406
white fish	1.63	60	0.001042	0.050938
Σ				1.653281

Table 7.8: product used

• \dot{Q}_{Air} Calculation:

$$\begin{split} \dot{Q}_{Air} &= \dot{Q}_{Infiltration} + \dot{Q}_{Ventilation} \\ \dot{Q}_{Infiltration} &= 0 \text{ kW.} \\ \dot{Q}_{Ventilation} &= \dot{Q}_{Product} + \dot{Q}_{People} \\ \dot{Q}_{Product} &= \dot{m} * (h_{out} - h_{in}) \\ \dot{Q}_{Product} &= 1.293 * (72 - 10) = 80.16 \text{ W} = 0.08 \text{ kW} . \\ \dot{Q}_{People} &= \dot{m} * (h_{out} - h_{in}) * (houroccupied/24) * a \\ \dot{Q}_{People} &= 6.66 * 10 - 3 * 55 * (2/24) * 2 \\ \dot{Q}_{People} &= 0.061 \text{ W} = 6.1 * 10 - 5 \text{ kW.} \\ \dot{Q}_{Ventilation} &= 0.08 + 6.1 * 10 - 5 = 0.08 \text{ kW.} \\ \dot{Q}_{Air} &= 0 + 0.08 = 0.08 \text{ kW.} \end{split}$$

• $\dot{Q}_{Service}$ Calculation:

$$\dot{Q}_{Service} = \dot{Q}_{People} + \dot{Q}_{Light}.$$

$$\dot{Q}_{People} = n * \dot{Q}_{Person} * (Workinghours/24)$$

$$\dot{Q}_{Person} = 0.275. \text{ [Table 10-14]}.$$

$$\begin{split} \dot{Q}_{People} &= 2 \, * \, 0.275 \, * \, (2 \ / \ 24) = 0.046 \ \mathrm{kW} \ . \\ \dot{Q}_{Light} &= \mathrm{P}_{Light} \, * \, \mathrm{CLF} \, * \, \mathrm{N} \\ \dot{Q}_{Light} &= 24 \ \mathrm{W} . \\ \mathrm{CLF: \ Cooling \ Load \ Factor \ of \ Lighting = 0.88 \ . } \\ \mathrm{N: \ Number \ of \ Lights} \\ \mathrm{N} &= 2 \\ \dot{Q}_{Light} &= 24 \, * \, 0.88 \, * \, 2 = 42.24 \ \mathrm{W} = 0.0422 \ \mathrm{kW} \\ \dot{Q}_{Service} &= + \, 0.046 \, + \, 0.0422 \, = 0.088 \ \mathrm{KW} \ . \end{split}$$

• $\dot{Q}_{Respiration}$ Calculation:

 $\dot{Q}_{Respiration} = m * q_{Rips}$

 $Q_{Respiration}$: is the rate of respiration.

m : is the mass of the product in the room in [kg].

 q_{Rips} Rate of heat given off Breathing product .

 $q_{Rips} = 0.029$. [Table 10-12].

 $\dot{Q}_{Respiration} = 0.029 * 1000 = 29 \text{ W} = 0.029 \text{ kW}$.

Consequently:

 $\dot{Q}_{Total} = 1.61 + 2.535 + 0.08 + 0.088 + 0.029 = 4.35 \text{ kW}$.

 $\dot{Q}_{Total} = 4.35 * \text{F.S} = 4.35 * 1.5 = 6.5 \text{ kW}.$

The following figure 7.15 for the cycle in PH diagram and the values of points in cycle figure 7.14 from Cool pack

Point	T	P	v	h	s
	[°C]	[bar]	[m^3/kg]	[kJ/kg]	[kJ/(kg K)]
1	-17.916	3.260	0.060907	357.822	1.6236
2	40.469	16.065	0.012189	389.924	1.6236
3	40.469	16.065	0.012189	389.924	1.6236
4	34.676	16.065	N/A	254.208	N/A
5	N/A	3.260	N/A	254.208	N/A
6	-17.916	3.260	0.060907	357.822	1.6236
15	N/A	16.065	N/A	254.208	N/A

Figure 7.14: The values of points in cycle.

 $\begin{array}{l} q_e = h_1 - h_5 \\ = 357.822 - 254.208 = 103.14 \ \mathrm{kJ/kg} \ . \\ q_c = h_2 - h_4 \end{array}$

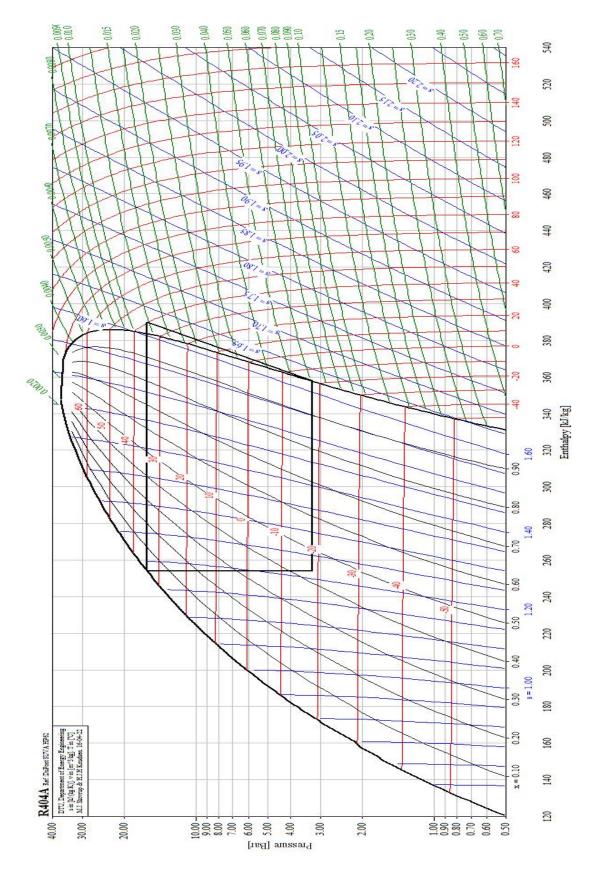


Figure 7.15: The cycle in the PH diagram

 $\begin{array}{l} q_c = 389.924 - 254.208 = 135.716 \ \mathrm{kJ/kg} \ . \\ W_c = h_2 - h_1 \\ W_c = 389.924 - 357.822 = 32.102 \ \mathrm{kJ/kg} \ . \\ \dot{Q}_e = \dot{m} R q_e \\ \dot{m} R = Q_e/q_e = 6.5/103.14 = 0.063 kg/s. \\ \dot{Q}_c = \dot{m} R q_c \\ \dot{Q}_c = 0.063 * 135.716 = 8.55 \ \mathrm{kW} \ . \\ \mathrm{P} = \dot{m} W_c \\ = 0.063 * 32.102 \\ = 2.02 \ \mathrm{kW} = 2.7 \ \mathrm{hP} \ \mathrm{hP} : \mathrm{horsepower} \ [\mathrm{electric}] \ . \\ \mathrm{Coefficient \ of \ performance} \ (\mathrm{cop}) = q_e \ / \ \mathrm{W} = 103.14/32.102 = 3.212 \end{array}$

7.2.1 Compressor selection

By Using BITZER-Software : compressor data sheet figure 7.16 below.

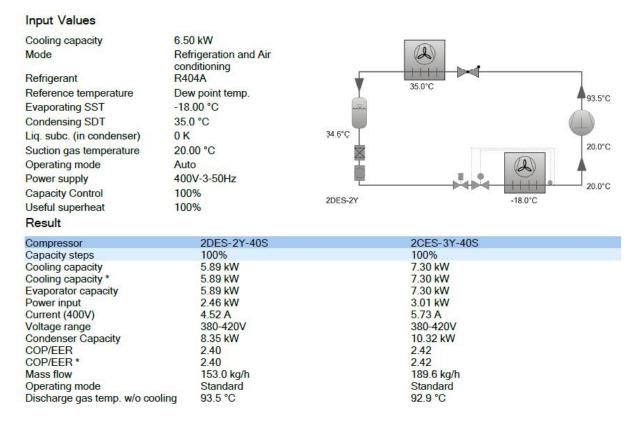


Figure 7.16: The compressor data sheet

For more about data sheet go to appendix B

7.2.2 Condensers selection

By Using BITZER-Software

Condenser data sheet figure 7.17 below.

Compressor Selection: Condensing Units

Input Values Cooling capacity 6.50 kW Series Standard 0 Refrigerant R404A Reference temperature Dew point temp. 43.2°C Evaporating SST -18.00 °C Ambient temp. 30.0 °C tamb = 30.0°C Suction gas temperature 20.00 °C 39.9°C Useful superheat 100% 20.0°C Operating mode Auto Power supply 400V-3-50Hz 8 6 Capacity Control 100% 20.0°C LH53E/2DES-2Y -18.0°C

Result

Unit type	LH53E/2DES- 2	Y-40SLH64E/2DES-3	Y-40SLH64E/2CES-3	Y-40SLH84E/2CES-4Y-40S
Capacity steps	100%	100%	100%	100%
Cooling capacity	5.22 kW	5.62 kW	6.72 kW	7.11 kW
Evaporator capacity	5.22 kW	5.62 kW	6.72 kW	7.11 kW
Power input *	2.79 kW	2.88 kW	3.56 kW	3.43 kW
Current (400V)	4.74 A	5.09 A	5.98 A	5.95 A
Voltage range	380-420V	380-420V	380-420V	380-420V
Mass flow	144.5 kg/h	148.6 kg/h	182.3 kg/h	185.9 kg/h
Condensing SDT	43.2 °C	39.5 °C	41.6 °C	38.5 °C
Liquid subcooling	3.00 K	3.00 K	3.00 K	3.00 K
Operating mode	Standard	Standard	Standard	Standard

Figure 7.17: Condenser data sheet.

References

- 1. Ronald L.Howell, Principles of Heating Ventilating and Air Conditioning 6th edition, ASHRAE, USA, 2009.
- 2. Health Technical Memorandum, Medical gas pipeline systems The Design, installation, validation and verification, USA, 2002.
- 3. M. A. M. Ashamed, Heating and Air Conditioning for Residential Buildings, National Library Department, Jordan, 2007.
- 4. J. F. Krieger, Handbook of Heating, Ventilation, and Air Conditioning, Boca Raton, CRC.Press LLC, Florida, 2001.
- 5. Mohammad A. Hammed, Heating and Air conditioning 3rd edition, Jordan, 1996.
- 6. Brain L.Olsen, Plumbing System 2nd edition, Missouri Group, USA, 1982.
- Dennis Kubicki, FIRE PROTECTION DESIGN CRITERIA 3rd edition, Washington, D.C, 1982.
- 8. $https: //rcwapp.xyleminc.com/fp_select.asp$.
- 9. https://engineeringtoolbox.com .
- 10. http://www.healthyheating.com/Definitions/Operative-temperature.htm.WHx-C1MrLIU.
- 11. https://www.aspe.org/sites/default/files/webfm/ArchivedIssues/2006/20060102/ContinuingEdMed@

Appendix (A)

Bill of Quantities

Item No.	Description	Unit	Qty.	Unit Rate
1.0	Mechanical works			
	In the list of recommended makes, out of two			
	or three makes mentioned in the list, only			
	1st. Make shall be preferred for use, unless			
	otherwise specified in BOQ.			
	However if non-availability or any other tech-			
	nical reason, the alternative make is allowed.			
	This section shall be read in conjunction with			
	general and particular mechanical technical			
	specifications, mechanical drawings, adden-			
	dums and invitation to bid conditions except			
	where otherwise indicated.			
	The unit price for all items in this section			
	shall include supplying, installing, testing,			
	and commissioning of mechanical works and			
	materials, unless otherwise specifically men-			
	tioned or instructed by engineer.			
	All civil and finishing works related to the			
	concerned items shall be included in the unit			
	price.			
	Preparing of coordinated shop drawing and			
	submitting to the approval of the supervision			
	engineer, coordination with other activities,			
	material storage, removing away from site			
	the remnant of mechanical works and han-			
	dling over the mechanical works to local me-			
	chanical auth.			
	Flexible PVC suitable size conduits and			
	adaptors to be used for connecting motors			
	to power supply.			
	Electrical cables up to mechanical equip-			
	ment, to be supplied, installed connecting to			
	mains side, testing and to be commissioned			
	by electrical contractor, just cables termina-			
	tion to mechanical equipment to be carried			
1.1	on by mechanical contractor.			
1.1	Waste and drainage system			

Table 7.9: Bill of quantities.

	Table 7.9 - Continued from previous page	T T •4		
Item No.	Description	Unit	Qty.	Unit Rate
1.1.1	Vertical and horizontal UPVC pipe			
	Supply, install UPVC pipes and fittings sim-			
	ilar to (Royal) or E.A. The rate shall include			
	all needed connections and all types of fit-			
	tings caps, all done according to drawings,			
	specifications and the approval of the super-			
	vision engineer.			
A.	Dia 2"	ML	180	
B.	Dia 4"	ML	250	
1.1.2	Floor trap and clean out			
	Supply, installation, and commissioning of			
	floor trap melding threaded $(15*15)$ cm			
	chrome plated cover UPVC red siphon (in-			
	cluding junction box). And connected it with			
	vertical pipes the price including rings fit-			
	tings and whatever needed to complete the			
	job as located on drawing specifications and			
	approval of supervision engineer.			
A.	Floor trap size 4" diameter	No.	28	
В.	Floor drain size $4/2$ " diameter	No.	21	
С.	Clean outs 4" but with closed type cover,	No.	40	
	size $(11*11)$ cm.			
D.	Clean outs 6" but with closed type cover.	No.	2	
1.1.3	Supply, installation, and commissioning all	Job	1	
	pipes and fittings to and overflow storage			
	tank in basement the price includes manhole			
	inside boiler room and whatever needed to			
	complete the job as located on drawing spec-			
	ifications and approval of supervision engi-			
	neer.			
1.1.4	Supply install and test UPC (UPA) or E.A.			
	external drainage			
	All rain pipes and fittings including con-			
	nection excavation covering with layer 20			
	cm sand around the pipe and back filling			
	as shown in drawings and specifications ap-			
	proval of supervisor engineer.			
А.	Size 6 inch diameter	ML	40	
L	Continued	1	4	

Table 7.9 – Continued from previous page

Item No.	Table 7.9 - Continued from previous page Description	Unit	Otv	Unit Rate
1.1.5	Supply and install PRE-CAST concrete	Unit	Qty.	Unit nate
1.1.0	manholes of 15 cm thick walls and base with			
	heavy duty cast iron covers and frames of 25			
	tons load strength with all necessary excava-			
	tion back filling as specified to the required			
	depth with steps of galvanized pipe of $1/2$ "			
	benching and connecting it to main city man-			
	holes as shown in drawing and in accordance			
	to specifications and approval engineers.	N	0	
A.	Size 60 cm (inside diameter)	No.	2	
1.1.6	Supply and install concrete manholes of 15			
	cm thick walls and base with Medium duty			
	concrete and frames of 8 tons load strength			
	with all necessary excavation back filling as			
	specified to the required depth with steps of			
	galvanized pipe of $1/2$ " benching and con-			
	necting it to main city manholes as shown in			
	drawing and in accordance to specifications			
	and approval engineers.		10	
A.	Size 60 cm (inside diameter)	No.	12	
B.	Size 80 cm (inside diameter)	No.	18	
C.	Size 100 cm (inside diameter)	No.	9	
1.1.7	Supply, install and test drain water and rain			
	concrete channel with low carbon steel frame			
	and mesh cover as shown in drawing and in			
	accordance to specifications and approval en-			
	gineers.			
A.	Width = 25 cm , h = 30 cm	No.	2	
В.	Ditto but with stainless steel frame and mesh	No.	3	
	cover.			
1.1.8	HVAC Drain Piping			
	Supply, install and test UPVC heavy class			
	drain piping for SPLIT UNITS and Cassette			
	type units for the following diameters of the			
	pipes. The pipes shall be insulated with			
	6mm thick nitrile rubber and in accordance			
ļ	to specifications and approval engineers.		4.5	
A.	25 mm Rm	m	40	
В.	32 mm Rm	m	40	
1.2	Domestic hot and cold water system			
		-		

Item No.	Description	Unit	Qty.	Unit Rate
Item No.	DescriptionMain water supplySupply and install galvanized steel main water pipes 2" with asphalt protection (factory covered) which will take from the main line of the city 2", with all necessary fitting e.g.elbow tee union stop valves non return valve and whatever needed to complete the job and all are of approved quality pipes are to be piped and laid underground through 4"PVC pipe from main supply to water storage tank, price shall include piping with all fitting, water meter, steel box excavation insulation with sand back filling disposal of remained excavated soil and charges for connection with main water supply all are according to PWA and approval of supervisor	Unit L.S	Qty. 1	Unit Rate
1.2.2 A. B. C.	engineer. Supply and install galvanized pipes medium class for domestic cold water, hot water and hot water return, the work includes all fit- tings, valves, required flow direction signs, TOLGO type hangers, all required fittings, the prices includes vidoflex 13 mm for hot water pipes and hot water return. Dia 3/4" Dia 11/4"	ML ML ML	110 60 40	
D. E.	Dia 11/2" Dia 2"	ML ML	20 35	

Table 7.9 $-$	Continued	from	nrevious	naae
14010 1.5	Continueu	JION	previous	page

	α \cdot \cdot \cdot	C		
Table 7.9 –	Continued	trom	previous	page
		J	1	I J

Item No.	Table 7.9 - Continued from previous page Description	Unit	Otre	Unit Data
	Description	Unit	Qty.	Unit Rate
1.2.3	Supply and install hot and water collectors			
	type GIACOMINI or E.A. price include all			
	the supplying and installing 16 mm PEX			
	plastic pipes with its 22 mm plastic conduits			
	to be connected from the copper collectors			
	openings up to location of sanitary fixtures			
	outlets according to plans and engineers in-			
	structions, with all required hangers (type			
	GIACOMINI) and support, air vent, shut-			
	off values on the collectors outlets, shut- off			
	valve each collector must have main valve at			
	the entrance of the collector the price include			
	metallic painted steel cabinet of approved			
	quality, including cover with double doors for			
	domestic water collectors. Job as located on			
	drawing specification and approval of super-			
	visor engineer.			
A.	Dia 3/4"	EYE	26	
2.0	HVAC System :			
	Supply of new factory supplied air cooled			
	Variable Refrigerant Flow System. Supply			
	of variable Refrigerant Flow modular type			
	air conditioning system complete with indoor			
	& outdoor units with individual corded con-			
	troller as per the following capaicties of the			
	IDU and ODU.			
2.1	Outdoor Units			
	Modular type outdoor units equipped with			
	highly efficient scroll compressors with all in-			
	verter type compressor(s) only, special acryl			
	precoated heat exchanger, low noise con-			
	denser fan, pre coated fin type heat exchang-			
	ers. The outdoor and indoor units shall be			
	integrated with special super wiring system			
	with a central monitoring remote controller			
	into one common wiring. All refnet piping			
	system shall be imported. Refrigerant should			
	be R410A. All structural frame work plat-			
	forms required shall be of HVAC vendor as			
	_			
Δ.	per site conditions.	N -	1	
A.	48 HP	No.	1	

Continued on next page

Item No.	Description	Unit	Qty.	Unit Rate
В.	46 HP	No.	1	
С.	20 HP	No.	1	
2.2	Indoor Units for above mentioned			
	<u>outdoor unit</u>			
2.2.1	Ceiling mounted four way air discharge cas-			
	sette indoor units with compact cooling coil,			
	electronic expansion valve and multi speed			
	fan motor, The blower shall be dynami-			
	cally balanced and designed for silent oper-			
	ation, the filters shall be Plasma and syn-			
	thetic washable media type arranged for con-			
	venient cleaning and replacement, built in			
	drain pump, the drain pan shall be fabricated			
	out of heavy sheet steel insulated with 6mm			
	expanded polyethylene sheet.			
A.	11.2 kW	No.	15	
В.	12.8 kW	No.	2	
С.	14 kW	No.	8	
2.2.2	High wall mounted units with plasma and			
	synthetic washable filter.			
A.	5.6 kW	No.	17	
В.	7.1 17kW	No.	10	
2.3	Wired Remote controls for all the Hi-wall	No.		
	and Cassette type units which shall be sleek			
	and self diagnostic type.			
2.4	Simple Central Controller Unit capable of	No.		
	controlling all the Indoor and outdoor units			
2.5	Refrigerant Piping			
	Supply and installation of Refrigerant Cop-			
	per piping insulated with Nitrile Rub-			
	ber Tubular Insulation with covered with			
	polyshield		100	
A.	54.1 mm with 19 mm thick insulation	M	120	
B.	41.3 mm with 19 mm thick insulation	M	120	
C.	34.9 mm with 19 mm thick insulation	M	70	
D.	28.6 mm with 19 mm thick insulation	M	70	
E.	25.4 mm with 19 mm thick insulation	M	65	
F.	22.2 mm with 13 mm thick insulation	M	65	
G.	19.1 mm with 13 mm thick insulation	M	35	
H.	15.9 mm with 10 mm thick insulation	M	45	
I.	12.7 mm with $10 mm$ thick insulation	M	160	

Table 7.9 – Continued from previous page

Item No.	Description	Unit	Qty.	Unit Rate
J.	9.5 mm with 8 mm thick insulation	М	60	
К.	6.4 mm with 8 mm thick insulation	М	155	
2.6	Electrical Cabling	L.S		
	Armoured copper cables from the isolator to			
	the units at terrace. (Power Cable) (the			
	size of the cabel to selected by the vendor			
	as per the manufacturer standard and to be			
	approved by the consulanat.			
2.7	Notes			
А.	All civil works pertaining to Air-conditioning			
	like breaking, making, painting of walls, glass			
	etc. as required as per site conditions.			
B.	Supply and installation all of the items men-			
	tioned in the previous must be in accordance			
	to specifications and approval engineers.			
C.	Catalogues of all equipments shall be en-			
	closed with Compressor rating charts.			
D.	Incoming Power supply near indoor unit will			
	be provided by other agencies.			
E.	Taxes to be included in the price of equip-			
	ments /accessories			
3.2	fire extinguisher cylinder:			
	Supply and install the CO_2 " 3 kg", HCFC			
	"3kg", and Wet chemical "3kg".			
A.	CO_2 fire extinguisher cylinder	No	10	
В.	HCFC fire extinguisher cylinder	No	35	
С.	Wet fire extinguisher cylinder	No	3	

Table 7.9 – Continued from previous page

Appendix (B)

		1	NNE	NE	ENE	E	ESE	SE	SSE		Horizonta
Lat.	Month	N	NNW		WNW	w	WSW			S	Roofs
16	December	-2.2	-3.3	-4.4	-4.4	-2.2	-0.5	2.2	5.0	7.2	-5.0
	Jan./Nov.	-2.2	-3.3	-3.8	-3.8	-2.2	-0.5	2.2	4.4	6.6	-3.8
	Feb./Oct.	-1.6	-2.7	-2.7	-2.2	-1.1	0.0	1.1	2.7	3.8	-2.2
	Mar/Sept.	-1.6	-1.6	-1.1	-1.1	-0.5	-0.5	0.0	0.0	0.0	-0.5
	Apr./Aug.	-0.5	0.0	-0.5	-0.5	-0.5	-1.6	-1.6	-2.7	-3.3	0.0
	May/July	2.2	1.6	1.6	0.0	-0.5	-2.2	-2.7	-3.8	-3.8	0.0
	June	3.3	2.2	2.2	0.5	-0.5	-2.2	-3.3	-4.4	-3.8	0.0
24	December	-2.7	-3.8	-5.5	-6.1	-4.4	-2.7	1.1	5.0	6.6	-9.4
	Jan./Nov.	-2.2	-3.3	-4.4	-5.0	-3.3	-1.6	-1.6	5.0	7.2	-6.1
	Feb./Oct.	-2.2	-2.7	-3.3	-3.3	-1.6	-0.5	1.6	3.8	5.5	-3.8
	Mar/Sept.	-1.6	-2.2	-1.6	-1.6	-0.5	-0.5	0.5	1.1	2.2	-1.6
	Apr./Aug.	-1.1	-0.5	0.0	-0.5	-0.5	-1.1	-0.5	-1.1	-1.6	0.0
	May/July	0.5	1.1	1.1	0.0	0.0	-1.6	-1.6	-2.7	-3.3	0.5
	June.	1.6	1.6	1.6	. 0.5	0.0	-1.6	-2.2	-3.3	-3.3	0.5
32	December	-2.7	-3.8	-5.5	-6.1	-4.4	-2.7	1.1	5.0	6.6	-9.4
	Jan./Nov.	-2.7	-3.8	-5.0	-6.1	-4.4	-2.2	1.1	5.0	6.6	-8.3
	Feb./Oct.	-2.2	-3.3	-3.8	-4.4	-2.2	-1.1	2.2	4.4	6.1	-5.5
	Mar/Sept.	-1.6	-2.2	-2.2	-2.2	-1.1	-0.5	1.6	2.7	3.8	-2.7
	Apr./Aug.	-1.1	-1.1	-0.5	-1.1	0.0	-0.5	0.0	5.0	0.5	-0.5
	May/July	0.5	0.5	0.5	0.0	0.0	-0.5	-0.5	-1.6	-1.6	0.5
	June	0.5	1.1	1.1	0.5	0.0	-1.1	-1.1	-2.2	-2.2	1.1
40	December	-3.3	-4.4	-5.5	-7.2	-5.5	-3.8	0.0	3.8	5.5	-11.6
	Jan./Nov.	-2.7	-3.8	-5.5	-6.6	-5.0	-3.3	0.5	4.4	6.1	-10.5
	Feb./Oct.	-2.7	-3.8	-4.4	-5.0	-3.3	-1.6	1.6	4.4	6.6	-7.7
	Mar/Sept.	-2.2	-2.7	-2.7	-3.3	-1.6	0.5	2.2	3.8	5.5	-4.4
	Apr./Aug.	-1.1	-1.6	-1.6	-1.1	0.0	0.0	1.1	1.6	2.2	1.6
	May/July	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5
	June	0.5	0.5	0.5	0.5	0.0	0.5	0.0	0.0	-0.5	1.1
	December	-3.3	-4.4	-6.1	-7.7	-7.2	-5.5	-1.6	1.1	3.3	-13.8
	Jan./Nov.	-3.3	-4.4	-6.1	-7.2	-6.1	-4.4		2.7	4.4	-13.3
	Feb./Oct.	-2.7	-3.8	-5.5	-6.1	-4.4	-2.7	0.5	4.4	6.1	-10.0
	Mar/Sept.	-2.2	-3.3	-3.3	-3.8	-2.2	-0.5	2.2	4.4	6.1	-6.1
	Apr./Aug.	-1.6	-1.6	-1.6	-1.6	-0.5	0.0	2.2	3.3	3.8	-2.7
	May/July	0.0	-0.5	0.0	0.0	0.5	0.5	1.6	1.6	2.2	0.0
	June	0.5	0.5	1.1	0.5	1.1	0.5	1.1	1.1	1.6	1.1

	Roof							1		<i>,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											_		_			
	Description of	Uev.											Sol	ar T	ime	, h	-									
No	. Construction	W/m ^{2,o} C	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
	•					v	Vith	out	Sus	pen	ded	Cei	iling	ţ.											-	
1	Steel sheet with 25.4 mm (or 50.8 mm) insulation	1.209 (0.704)	0	-1	-2	-2	-3	-2	3	11	19	27	34	40	43	44	43	39	33	25	17	10	7	5	3	1
2	25 mm wood with 25.4 mm insulation	0.963	3	2	0	-1	-2	-2	-1	2	8	15	22	29	35	39	41	41	39	35	29	21	15	11	8	5
3	101.6 mm L.W. concrete	1.209	5	3	1	0	-1	-2	-2	1	5	11	18	25	31	36	39	40	40	37	32	25	19	14	10	7
4	50.8 mm H.W. concrete 25.4 mm (or 50.8 mm) insulation	1.170 (0.693)	7	5	3	2	0	-1	0	2	χ6	11	17	23	28	33	36	37	37	34	30	25	20	16	12	10
5	25.4 mm wood with 50.8 insulation	0.619	2	0	-2	-3	-4	-4	-4	-2	3	9	15	22	27	32	35	36	35	32	27	20	14	10	6	3
6	152.4 mm L.W. concrete	0.897	12	10	7	5	3	2	1	0	2	4	8	13	18	24	29	33	35	36	35	32	28	24	19	16
7	63.5 mm wood	0.738	16	13	11	9	7	6	4	3	4	5	8	11	15	19	23	27	29	31	31	30	27	25	22	19
-	with 25.4 mm insulation	· · · · · · · · · · · · · · · · · · ·													1 m m m 1 m 1			an 1								
8	203.4 mm L.W.	0.715	20	17	14	12	10	8	6	5	4	4	5	7	11	14	18	22	25	28	30	30	29	27	25	22
9	101.6 mm H.W. concrete with 25.4 mm (or 50.8 mm) insulation	1.136 (0.681)	14	12	10	8	7	5	4	4	6	8	11	15	18	22	25	28	29	30	29	27	24	21	19	16
10	63.5 mm wood with insulation	0.528	18	15	13	11	9	8	6	5	5	5	7	10	13	17	21	24	27	28	29	29	27	25	23	20
11	Roof terrace system	0.602	19	17	15	14	12	11	9	8	7	8	8	10	12	15	18	20	22	24	25	26	25	24	22	21
12	152.4 mm H.W. concrete with 25.4 mm (or 50.8 mm) insulation	0.664	18	16	14	12	11	10	9	8	8	9	10	12	15	17	20	22	24	25	25	25	24	22	20	19
13	101.6 mm wood with 25.4 mm (or 50.8 mm) insulation		21	20	18	17	15	14	13	11	10	9	9	9	10	12	14	16	18	20	22	23	24	24	23	22

TABLE B-2 Cooling load temperature differences (CLTD) for sunlit roofs, °C.

COOLING LOAD CALCULATIONS

	Ro	of Construct	ion					
Solar Time	Light	Light Medium Heavy						
10:00	5		_					
11:00	12							
12:00	19	3	0					
13:00	25	8	2					
14:00	29	14	5 5					
15:00	31	19	8					
16:00	31	23	10					
17:00	29	25	12					
18:00	24	26	14					
19:00	19	25	- 15					
20:00	11	22	. 16					

TABLE B-3	Approximate CLTD values for sunlit roofs, *C.
-----------	---

 $1 \to 10^{-10}$

ТА	BLE B	4	Coc	oling	g loa	ad te	amp	orat	ure	diffi	erer	083	; (C	LTD) fo	r va	rio	IS O	ons	truc	tion	gro	ups	of	suni	it walls,	•C.		
	North Latitude Wall Facing		2			5		7	8		:	Sol	ar 1	Гin	ie Å	k								23		Hour of Max.			Difference CLTD
		鷤				백위			1		G	rou	ip J	N	Val	ls -	關		-		将			i i i		÷			
	N	8	8	8	7	7	7	7	6	6	6	6	6	.6	6	6	6	6	6	7	7	7	7	8	8	2	6	8	2
	NE	11	11	10	10	10	9	9	9	8	8	8	9	9	9	9	10	10	10	11	11	11	11	11	11	22	8	11	3
	E	14	13	13	13	12	12	11	11	10	10	10	11	11	12	12	13	13	13	14	14	14	14	14	14	22	10	14	4
	SE	13	13	13	12	12	11	11	10	10	10	10	10	10	11	11	12	12	13	13	13	13	13	13	13	22	10	13	3
	s	11	11	11	11	10	10	9	9	9	8	8	8	8	8	8	8	9	9	10	10	11	11	11	11	23	8	11	3
	SW	14	14	14	14	13	13	12	12	11	11	10	10	10	9	9	10	10	10	11	12	13	13	14	14	24	9	14	5
	w	15	15	15	14	14	14	13	13	12	12	11	11	10	10	10	10	10	11	11	12	13	14	14	15	1	10	15	5
	NW	12	12	11	11	11	11	10	10	10	9	9	8	8	8	8	8	8	8	9	9	10	11	11	11	1	8	12	4
		89	ŝŔ	381	ŚĞ,	物		99	1	96) 1	Ġ	rot	ip Ì	B V	Val	15	臀		鳢	C)			2e	쮖	er.	÷ 3.			
	N	8	8	8	7	7	6	6	6	5	5	5	5	5	5	5	6	6	7	7	8	8	8	8	8	24	5	8	3
	NE	11	10	10	9	9	8	7	7	7	7	8	8	9	9	10	10	11	11	11	12	12	12	11	11	21	7	12	5
	Е	13	13	12	11	10	10	9	8	8	9	9	10	12	13	13	14	14	15	15	15	15	15	14	14	20	8	15	7
	SE	13	12	12	11	10	10	9	8	8	8	8	9	10	11	12	13	14	14	14	14	14	14	14	14	21	8	14	6
	s	12	11	11	10	9	9	8	7	7	б	6	6	6	7	8	9	10	11	11	12	12	12	12	12	23	6	12	6
	sw	15	15	14	13	13	12	11	10	9	9	8	8	7	7	8	9	10	11	13	14	15	15	16	16	24	7	16	9
	w	16	16	15	14	14	13	12	11	10	9	9	8	8	8	8	8	9	11	12	14	15	16	16	17	24	8	17	9
	NW	13	12	12	11	11	10	9	9	8	7	7	7	6	6	7	7	8	8	9	11	12	13	13	13	24	6	13	- 7
		譈						88		сų,	1	ire	up C	w	ills			12		詞	18		be:	88					
	N	9	8	7	7	6	5	5	4	4	4	4	4	5	5	6	6	7	8	9	9	9	10	9	9	22	4	10	6
	NE	10	10	9	8	7	6	6	6	6	7	8	10	10	11	12	12	12	13	13	13	13	12	12	11	20	6	13	7
	E	13	12	11	10	9	8	7	7	8	9	11	13	14	15	16	16	17	17	16	16	16	15	14	13	18	7	17	10
	SE	13	12	11	10	9	8	7	6	7	7	9	10	12	14	15	16	16	16	16	16	16	15	14	13	19	6	16	10

 SW
 16 15 14 12 11 10
 9
 8
 7
 7
 6
 6
 7
 8 10 12 14 16 18 18 18 13 17
 22
 6
 18
 12

 W
 17 16 15 14 12 11 10
 9
 8
 7
 7
 7
 8
 9 11 13 16 18 19 20 19 18
 22
 7
 20
 13

S 12 11 10 9 8 7 6 6 5 5 5 5 6 8 9 11 12 13 14 14 14 14 13 12 20

9

14

5

COOLING LOAD CALCULATIONS

TABLE B-5: Description of wall construction groups.

Group		Uov.
No.	Description Of Construction	W/m ^{1,*} C
	101.6 mm Face Brick + (Brick)	
С	Air space + 101.6 mm face brick	2.033
D	101.6 mm common brick	2.356
С	25.4 mm insulation or air space + 101.6 mm common	
	brick	0.987-1.709
в	50.6 mm insulation + 101.6 mm common brick	0.630
в	203.2 mm common brick	1.714
A	Insulation or air space + 203.2 mm common brick	0.874-1:379
	101.6 mm Face Brick ± (H,W.; Concrete)	
C	Air space + 50.8 mm concrete	1.987
в	50.8 mm insulation + 101.6 mm concrete	0.658
· A	Air space or insulation + 203.2 mm or more concrete	0.625-0.636
101.6	mm Face Brick + (L.W.; or H.W.Concrete Block)	
E	101.6 mm block	. 1.811
D	Air space or insulation + 101.60 mm block	0.868-1.397
D	203.2 mm block	1.555
C	Air space or 25.4 mm insulation + 152.4 mm or 203.2	
	mm block	1.255-1.561
В	50.8 insulation + 203.2 mm block	0.545-0.607
	101.6 mm Face Brick + (Clay Tile)	2.163
D	101.6 mm tile	2.103
D	Air space + 101.6 mm tile Insulation + 101.6 mm tile	0.959
C C	203.2 mm tile	1.561
В	Air space or 25.4 mm insulation + 203.2 mm tile	0.806-1.255
A	50.8 mm insulation + 203.2 mm tile	0.551
	L.W. Concrete Wall + (Finish)	
E	101.5 mm concrete	3.321
D		1.136 - 0.675
č	50.8 mm insulation+101.6 mm concrete	0.675
č	203.2 mm concrete	2.782
B	203.2 mm concrete + 25.4 mm or 50.8 mm insulation	1.061 - 0.653
Ã	203.2 mm concrete + 50.8 mm insulation	0.653
в	304.8 mm concrete	2.390
Ā	304.8 mm concrete + insulation	0.642
	L.W. and H.W. Concrete Block + (Finish)	14 C 14 C 14 C 14 C
F	101.6 mm block + air space/insulation	0.914-1.493
E	50.8 mm insulation + 101.6 mm block	0.596-0.647
E	203.2 mm block	1.669-2.282
D	203.2 mm block + air space/insulation	0.846-0.982
	Clay Tile + (Finish)	
F	101.6 mm tile	2.379
F	101.6 mm tile +air space	1.720
F	101.6 mm tile + 25.4 mm insulation	0.993
D	80.8 mm insulation + 10.4 mm tile	0.825
С	203.3 mm tile + air space/25.4 mm insulation	0.857-1.312
В	50.8 mm insulation + 203.2 mm tile	0.562

		_			W	all con	structi	on						
Solar		Lig	<u>g</u> ht			Med	ium		Heavy					
Time	N	E	s	w	N	Е	s	w	N	Е	S	w		
8:00		16	_	_	_				_					
9:00	-	20			-	6	_							
10:00		21	2	_		11		_	_			-		
11:00	-	18	. 7	· · · ·		14			-	3				
12:00		12	12			15			_	5				
13:00	2	9	15	5	-	14	5		_	7				
14:00	3	7	16	13	_	12	9	1		8	-			
15:00	3	7	14	21	. 1	10	11	6	_	8	1	-		
16:00	4	6	11	27	2	9	12	12	_	8	3			
17:00	4	5	7	30	2	8	11	17	_	8	5	3		
18:00	5	3	4	27	3	7	-9.	22	·	8	6	7		
19:00	2	1	1	17	3	5	7	23	·	7	6	10		
20:00				6	3	3	5	20	1	7	6	12		

TABLEB-6 Approximate CLTD values for light, medium, and heavy weight construction walls, °C.

	Nominal	Solar	Shading Coefficien	nt, W/m²·K
Type of Glass	Thickness, mm	Trans.	$h_o = 22.7$	$h_o = 17.0$
美洲的市场的新闻的 新闻	Sin	gle Glass		國和特許的思想
Clear	3	0.84	1.00	1.00
	6	0.78	0.94	0.95
	10	0.72	0.90	0.92
	12	0.67	0.87	0.88
Heat absorbing	3	0.64	0.83	0.85
	6	0.46	0.69	0.73
	10	0.33	0.60	0.64
	12	0.42	0.53	0.58
Contract research in the second	Dou	ible Glass		计注意公 约 21 年 中
Regular	3	_	0.90	annan ,
Plate	6		0.83	
Reflective	6	_	0.20-0.40	
的。 他们的问题,我们的	Insula	ating Gla	SS	的现在分词
Clear	3	0.71	0.88	0.88
	6	0.61	0.81	0.82
Heat absorbing [*]	6	0.36	0.55	0.58

TABLE B-7: Shading coefficient (SC) for glass windows without interior shading.1

TABLE B-8 Shading coefficient (SC) for glass windows without interior shading.1									
	Nominal	Solar	Shading Coefficien	nt, W/m²·K					
Type of Glass	Thickness, mm	Trans.	$h_o = 22.7$	$h_o = 17.0$					
我们们们在一些问题的 这种情	Sin	gle Glass		國際的自然的自治					
Clear	3	0.84	1.00	1.00					
	6	0.78	0.94	0.95					
	10	0.72	0.90	0.92					
	12	0.67	0.87	0.88					
Heat absorbing	3	0.64	0.83	0.85					
	6	0.46	0.69	0.73					
	10	0.33	0.60	0.64					
	12	0.42	0.53	0.58					
Karata ang Karata	Dou	ble Glass							
Regular	. 3 .		0.90						
Plate	6		0.83						
Reflective	6	_	0.20-0.40						
自由的法律和法律法律	Insula	ating Glas	SS	(在1996年)。 第二十一章					
Clear	3	0.71	0.88	0.88					
· .	6	0.61	0.81	0.82					
Heat absorbing*	6	0.36	0.55	0.58					

E B-9:Shadin	g coefficient (SC)	for glass win	dows with in	terior shadi of Interior	ng.	
L D-V.						
	Nominal	Venetia	n Blinds		Roller Sh	
	Thickness,			Ops	ique	Translucent
Type of Glass	mm	Medium	Light	Dark	White	Light
部黨連續的法律	2、1872年3月	Single	Glass	R. S. S. S.		
Clear, regular	2.5-6.0			-		
Clear, plate	6.0-12.0					_
Clear Pattern	3.0-12.0	0.64	0.55	0.59	0.25	0.39
Heat Absorbing	3 5.0-5.5					-
Pattern or	5.0-5.5				1000000	
Tinted(gray						
sheet)						
Heat	5.0-6.0	0.57	0.53	0.45	0.30	0.36
Absorbing,	MILL MILL	0103	01010	10.11010	Sector 10	0000
plate						
Pattern or	3.0-5.5					
Tinted, gray						
sheet						
Heat Absorbing	10	0.54	0.52	0.40	0.82	0.32
Plate or Pattern						
Heat Absorbing		1				
Heat Absorbing		0.42	0.40	0.36	0.28	0.31
or Pattern		0.782	0.700	0.50	0.20	0.51
		1.1	100	11		
Reflective		0.30	0.25	0.23		
Coated Glass						
	_	0.40	0.33	0.29		
	_	0.50	0.42	0.38		—
		0.60	0.50	0.44		
	energen st	Doubb	the second s		编制的加速	
Regular	3	0.57	0.51	0.60	0.25	-
Plate B-R-start	6	0.57	0.51	0.60	0.25	
Reflective	6	0.20- 0.40	_	-	-	_
CONTRACTOR DE LOS DE		Insulati	or Glass	14773-1114-11		0.0000000000000000000000000000000000000
Clear	2.5-6.0	0.57	0.51	0.60	0.25	0.37
Heat Absorbing	5.0-6.0	0.39	0.36	0.40	0.22	0.30
Reflective		0.20	0.19	0.18		
Coated		10 L 100 M		50 C 10 T		
	_	0.30	0.27	0.26		
		0.40	0.34	0.33		· ·

TABL

Note: Shading coefficient SC, for other shading types and shading devices that are not included in Table 9-9 are as follows:

Dark venetian blinds	0.72
Canva awning	0.25
Roof overhang	0.25
Outside shading screen	0.30
Wood sash	0.85

TABLE B- 10 :

Solar heat gain factor (SHG) for sunlit glass, W/m², for a latitude angle of 32 °N.

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Ν	76	85	101	114	120	139	126	117	104	88	76	69
NNE/NNW	76	85	117	252	350	385	350	249	110	88	76	69
NE/NW	91	205	338	461	536	555	527	445	325	199	91	69
ENE/WNW	331	470	577	631	656	656	643	615	546	451	325	265
E/W	552	647	716	716	694	675	678	691	678	615	546	511
ESE/WSW	722	764	748	691	628	596	612	663	716	738	710	688
SE/SW	786	782	716	590	489	439	473	571	688	754	773	776
SSE/SSW	789	732	615	445	213	262	303	429	596	710	776	795
S	776	697	555	363	233	189	227	350	540	678	767	795
Horizontal	555	685	795	855	874	871	861	836	770	672	552	498

TABLE B-12:

		Co	òlin	g lóe	id te	mpe	rati	ine c	iffe	renc	es (CLT	D) f	or c	anw	ectic	n he	sat g	jain	for	ylas	s wi	ndo	WS.
Solar Time	1	2	3	. 4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
CLTD °C	1	0	-1	-1	-1	-1	-1	0	1	2	4	5	7	7	8	8	7	7	6	4	3	2	2	1

TABLE B-16:

Cool	Cooling load factor due to occupants (CLF)est, , for sensible heat gain. ⁶													
Hours after			Т	otal hou	us in spa	ce								
each entry into														
space	2		6	8	10	12	14	16						
1	0.49	0.49	0.50	0.51	0.53	0.55	0.58	0.62						
2 .	0.58	0.59	0.60	0.61	0.62	0.64	0.66	0.70						
3	0.17	0.66	0.67	0.67	0.69	0.70	0.72	0.75						
4	0.13	0.71	0.72	0.72	0.74	0.75	0.77	0.79						
5	0.10	0.27	0.76	0.76	0.77	0.79	0.80	0.82						
6	0.08	0.21	0.79	0.80	0.80	0.81	0.83	0.85						
7	0.07	0.16	0.34	0.82	0.83	0.84	0.85	0.87						
8	0.06	0.14	0.26	0.84	0.85	0.86	0.87	0.88						
9	0.05	0.11	0.21	0.38	0.87	0.88	0.89	0.90						
10 .	0.04	0.10	0.18	0.30	0.89	0.89	0.9	0.91						
11	0.04	0.08	0.15	0.25	0.42	0.91	0.91	0.92						
12	0.03	0.07	0.13	0.21	0.34	0.92	0.92	0.93						
13	0.03	0.06	0.11	0.18	0.28	0.45	0.93	0.94						
14	0.02	0.06	0.10	0.15	0.23	0.36	0.94	0.95						
15	0.02	0.05	0.08	0.13	0.20	0.30	0.47	0.95						
16	0.02	0.04	0.07	0.12	0.17	0.25	0.38	0.96						
17	0.02	0.04	0.06	0.10	0.15	0.21	0.31	0.49						
18	0.01	0.03	0.06	0.09	0.13	0.19	0.26	0.39						

Cooling load factor due to occupants (CLF)ess, , for sensible heat gain.⁶

Number of hours		re X ^t	Fixture Y ^e			
after lights are	hours of	operation	hours of o	peration		
turned On	10	16	10	16		
Ũ	0.08	0.19	0.01	0.05		
1	10.62	0.72	0.76	0.79		
2	0.66	0.75	0.81	0.83		
3	0.69	0.77	0.84	0.87		
4	0.73	0.80	0.88	0.89		
5	0.75	0.82	0.90	0.91		
6	0.78	0.84	0.92	0.93		
7	0.80	0.85	0.93	0.94		
8	0.82 ·	0.87	0.95	0.95		
9	0.84	0.88	0.96	0.96		
10	0.85	0.89	0.97	0.97		
11	0.32	0.90	0.22	0.98		
12	0.29	0.91	0.18	0.98		
13	0.26	0.92	0.14	0.98		
14	0.23	0.93	0.12	0.99		
15	0.21	0.94	0.09	0.99		
16	0.19	0.94	0.08	0.99		
17	0.17	0.40	0.06	0.24		
18	0,15	0.36	0.05	0.20		

TABLE B-14: Cooling load factor (CLF)u , for lights."

TABLE B-15: Diversity factor for selected applications.4

	Diversity	Factor
Application	Lights	People
Peripheral aras of offices with glazing area of 20%-50%	0.70-0.85	0.7-0.8
Core areas of offices and peripheral areas with less than	0.90-1.00	0.7-0.8
20% glazing		
Apartments and hotel bedrooms	0.30-0.50	0.4-0.6
Public rooms in hotels	0.90-1:00	0.4-0.6
Department stores and supermarkets	0.90-1.00	0.8-1.0

Type of Activity	Typical Application	Total Heat Dissipation Adult Male	Total Adjusted ⁵⁰ Heat Dissipation	Heat,	Latent Heat, W
Seated at rest	Theater :				
	Matinee	111.5	94.0	64.0	30.0
	Evening	111.5	100.0	70.0	30.0
Seated, very light work	Offices, hotels, apartments,				
	restaurants	128.5	114.0	70.0	44.0
Moderately active office work	Offices, hotels, apartments	135.5	128.5	71.5	57.0
Standing, light	Department store, retail store.				
work, walking	supermarkets	157.0	143.0	71.5	. 71.5 -
Walking, seated	Drug store	157.0	143.0	71.5	71.5
Standing, walking					
slowly	Bank	157.0	143.0	71.5	71.5
Sedentary work	Restaurant	168.5	157.0	78.5	78.5
Light bench work	Factory	238.0	214.0	78.0	136.0
	Small-Parts				182.0
Moderate work	assembly	257.0	243.0	87.0	156.0
Moderate dancing	Dance halls	257.0	243.0	87.0	156.0
Walking at 1.5 m/s	Factory	286.0	285.0	107.0	178.0
Bowling (participant)	Bowling alley	428.5	414.0	166.0	248.0
Heavy work	Factory	428.5	414.0	166.0	248.0

TABLE B-17: Instantaneous heat gain from occupants in units of WattsHI.

(a) Adjusted heat dissipation is based on the percentage of men, women and children for the application.

	Infiltrat	ion Air Coel	fficient K
Window Type	Average	Minimum	Maximum
Sliding			
Iron	0.36	0.25	0.40
Aluminum	0.43	0.25	0.70
Hung			
Iron	0.25	0.10	0.60
Aluminum (side pivoted)	0.36	0.07	0.70
Aluminum (horizontal pivoted)	0.30	0.07	0.50
PVC	0.10	0.03	0.15

TABLE B-18: Values of infibration air coefficient K.P. for windows.

TABLE B-19: Values of the factor S1 of Eq. (2.10)

N₂	Topography of Location	Value of S ₁
1	Protected locations by hills or buildings (wind speed = 0.5 m/s)	0.9
2	Unprotected locations such as sea shores, hill tops, etc.	1.1
3	Locations other than that listed in item (1) or (2) of this table.	1.0

Location Class		Class	1		Clas	s 2		Class	3		Class	4
Building Height,	Α	В	\mathbf{C}	Α	в	С	A	в	С	A	в	С
m												
3	0.47	0.52	0.56	0.55	0.60	0.64	0.63	0.67	0.72	0.73	0.78	0.83
5	0.50	0.55	0.60	0.60	0.65	0.70	0.70	0.74	0.79	0.78	0.83	0.88
10	0.58	0.62	0.67	0.69	0.74	0.78	0.83	0.88	0.93	0.90	0.95	1.00
15	0.64	0.69	0.74	0.78	0.83	0.88	0.91	0.95	1.00	0.94	0.99	1.03
20	0.70	0.75	0.79	0.85	0.90	0.95	0.94	0.98	1.03	0.96	1.01	1.06
30	0.79	0.85	0.90	0.92	0.97	1.01	0.98	1.03	1.07	1.00	1.05	1.05
40	0.89	0.93	0.97	0.95	1.00	1.05	1.01	1.06	1.10	1.03	1.08	1.12
50	0.94	0.98	1.02	1.00	1.04	1.08	1.04.	1.08	1.12	1.06	1.10	1.14
60	0.98	1.02	1.05	1.02	1.06	1.10	1.06	1.10	1.14	1.08	1.12	1.15
80	1.03	1.07	1.10	1.06	$1.10 \cdot$	1.13	1.09	1.13	1.17	1.11	1.15	1.18
100	1.07	1.10	1.13	1.09	1.12	1.16	1.12	1.16	1:19	1.13	1.17	1.20
120	1.10	1.13	1.15	1.11	1.15	1.18	1.14	1.18	1.21	1.15	1.19	1.22
140	1.12	1.15	1.17	1.13	1.17	1.12	1.16	1.19	1.22	1.17	1.20	1.24
160	1.14	1.17	1.19	1.15	1.18	1.21	1.18	1.21	1.24	1.19	1.22	1.25
	1.16	1.19	1.20	1.17	1.20	1.23	1.19	1.22	1.25	1.20	1.23	1.26
200	1.18	1.21	1.22	1.18	1.21	1,24	1.21	1.24	1.26	1.21	1.24	1.27

TABLE B-20: Values of the factor S_2 of Eq.(2.10)

Demand (Load)	Demand (Load),	Demand (Load),
Fixture Units	gpm system with	gpm system with
	Fluch Tanks	Fluch Valves
1	0	•
2	1	•
3	3	-
4	4	-
5	6	-
10	8	27
20	14	35
30	20	41
40	25	47
50	29	52
60	32	55
70	35	59
80	38	62
90	41	65
100	44	68
140	53	78
180	61	87
200	65	92
250	75	101
300	85	110
400	105	126
500	125	142
750	170	178
1000	208	208
1250	240	240
1500	267	267
1750	294	294
2000	321	321
2500	375	375
3000	432	432
4000	525	525
5000	593	593
10000	769	769

TABLE B-21: Conversion of Fixture Units to Equivalent GPM

TABLE B-22: Water Supply Fixture Units and Pixture Branch Sizes

Finance	Use	Type of Supply Control	F intere Desits ¹⁰	Min. Size of Ficture Branch ⁴ in
Bathroom group"	Private	Flushometer	8	
Bathroom group"	Private	Flush tank for closet	6	_
Bathoub	Private	Faucet	2	15
Bathtub	General	Faucet	4	16
Clothes washer	Private	Facort	2	1
Clothes washer	General	Faccet	4	16 M
Combination fixture	Private	Faucet	3	驗
Dishwasher?	Prinate	Automatic	1	×6,
Drinking fountain	Offices, etc.	Faucet % in.	0.25	16
Kitchen aink	Private	Fasser.	2	10
Kitchen sirik	General	Faucet.	4	10
Laundry trays (1-3)	Private	Faucet	3	16
Lavatory	Private	Faucet	1	16
Lavatory	General	Faselet	2	10
Separate shower	Private	Mising valve	2	12
Service sink	General	Faucet	з	5
Shower head	Private	Mining valve	2	-5
Shower head	General	Mining valve	4	5
Urinal	General	Flushometer	5	44
Urinal	General	Flush tank	3	10
Water closet	Private	Phylometer	6	1
Water cluset	Private	Flushometer/tank	3	5
Water closet	Private	Flush tank	3	15
Water clutet	General	Flushameter	10	1
Water closet	General	Flushometer/tank	5	<u>16</u>
Water closet	General	Flush tank	5	6

Water supply outlets not listed above shall be computed at their maximum demand, but in no case less than the following values:

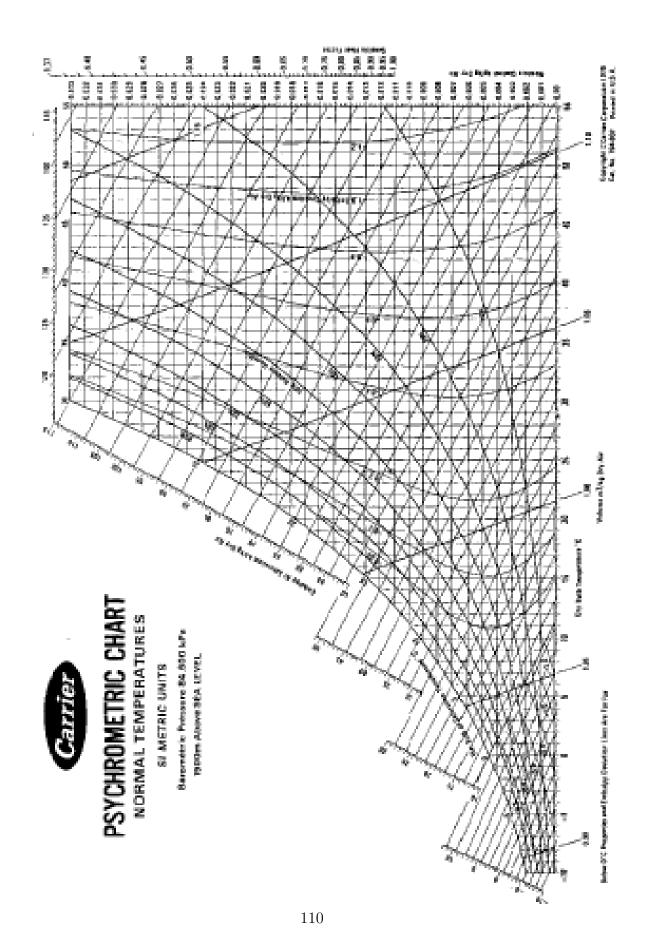
Fixture	Pressure, psi*	Flow, gpm
Basin faucet	8	3
Basin faucet, self-closing	12	2.5
Sink faucet, %-in	10	4.5
Sink faucet, ½-in	5	4.5
Dishwasher	15-25	Ŷ
Bathtub faucet	5	6
Laundry tub cock, 14-in	5	5
Shower	12	3-10
Water closet ball cock	15	3
Water closet flush valve	15-20	15-40
Urinal flush valve	15-20	15
Garden hose, 50 ft, and sill cock	30	5

TABLE B-23 : Required Minimum Flow Rates and Pressures during Flow for Fixtures

*Residual pressure in pipe at entrance to fixture. 20 psi minimum required at water conserving type fixture. Verify minimum pressure reqirements with fixture manufacturer.

[†]As specified by fixture manufacturer.

Equivalent Length of Straight Pipe for Valves and Fittings (neter)														
Eine -	and Fittings							ipa Sia						
	Sector consider	1/2	-34	1	114	1112	2	21/2	- 3	- 4	-6	- 6	8	10
	Progutar 90 cog	0.3	0.4	0.0	0.6	- 0.T	0.9	1.1	1.3	1.5	2.2	2.7	3.7	-4.3
Elbows	Long radius 90 deg	0.3	0.4	0.5	0.6	0.7	0.4	0.9	1.0	1.3	1.5	1.7	2.1	2.4
	Regular 45 deg	0.1	0.2	0.2	0.3	0.4	0.0	0.6	0.8	1.1	1.4	-1.7	2.3	27
Tees	Line flow	0.2	0.3	0.3	0.4	0.5	0.6	0.6	0.7	0.9	1.0	1.2	1.4	1.6
THUS	Branch fow	0.0	0.8	1.0	1.3	1.6	2.0	2.3	2.9	3.7	4.0	5.3	7.2	9.2
Return Bends	Regular 190 deg	4.2	0.4	0.5	0.6	0.7	0.6	1.1	1.2	1.8	2.2	2.7	2.7	4.3
CONTRACTOR CONTRACTOR	Long radius 160 deg	1.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0	1.3	1.6	1.7	.2.1	-24
	Gobe	11.6	12.2	13.7	16.5	10.0	21.4	23.5	38.7	36.6	45.8	58.0	79.3	94.6
Valves	Gate	0.0	0.0	0.0	0.0	0.0	0.6	0.0	0.9	0.9	9,9	1.0	1.0	1.0
	Angle	4.6	4.6	62	5.5	6.5	6.4	6.7	9.6	11.6	15.3	19.2	27.6	36.6


Table B_25: Equivalent Length.

engineeringtooloox.com

Table of A rating 1

Туре	Size	A-Rating
Water	3ltr	13A
Water	6ltr	13-21A
Water	9ltr	13A
AFF Foam	3ltr	13A
AFF Foam	6ltr	21A
ABC Powder	2kg	13A
ABC Powder	4kg	21A
ABC Powder	6kg	34A
Wet Chemical	6ltr	13A

Typical examples of A-Ratings

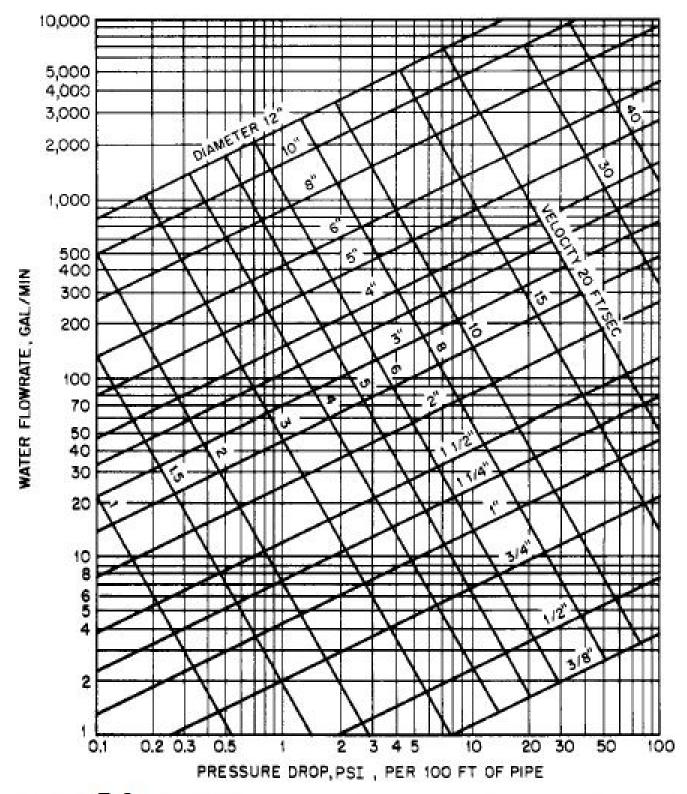


FIGURE **B-24** Chart for determination of flow in pipes such as galvanized steel and wrought iron that will be fairly rough after 15 to 20 years of use.

					(-							
12	11	10	9	8	7	6	5	4	3	2	1	الشهر
10.8	16	20.1	22.3	24	23.6	21.7	19.9	17.4	9.5	8.2	8.3	المتوسط الشهري
13.7	19.3	21.2	27.4	30	29.3	27.5	25.3	20.8	13.6	11.8	11.2	المتوسط الشهري للدرجة القصوى
7.9	12.6	15.9	17	18	17.9	15.8	14.5	13.9	5.4	4.7	5.3	المتوسط الشهري للدرجة الدنيا
5.8	6.7	8.3	10.4	12	11.4	11.7	10.8	6.9	8.3	7.2	5.9	المدى
25.3	28.6	32.9	36.1	36.1	35.8	33.2	33.2	34.1	19.7	19.7	14.3	الدرجة القصوى
6.6	11.9	14	14.7	13.7	13.8	10.9	7	4.4	-1.3	1.2	-2	الدرجة الدنيا
							1	1	1		ة الرابعة	درجة الحرارة التصمية للمنطق صيفاً: 30 س°
												شتاءً: 4.7 س°

درجات حرارة المنطقة الرابعة(س°)

قيم الرطوبة النسبية التصميمية (بالمائة)

ِّدَانًا الم	شز	فاً		
اقصى	ادنى	اقصى	ادنى	
69.3	65.7	49	44	المنطقة الاولى
69.3	65.7	49	44	المنطقة الثانية
69.7	68	61.9	55.5	المنطقة الثالثة
71.7	68	53.7	49.7	المنطقة الرابعة
73.7	65.9	65.2	61.5	المنطقة الخامسة
69	62	77	75	المنطقة السادسة - غزة
69.7	68	61.9	55.5	المنطقة السابعة- غزة

TABLE (P-3) BUILDING DRAINS AND SEWERS

	MAXIMUM NUMBER OF DRAINAGE FIXTURE UNITS CONNECTED TO ANY PORTION OF THE BUILDING DRAIN OR THE BUILDING SEWER, INCLUDING BRANCHES OF THE BUILDING DRAIN ^a									
DIAMETER OF PIPE		Slope	per foot							
(inches)	¹ / ₁₆ inch	¹ / ₈ inch	¹ / ₄ inch	¹ / ₂ inch						
1 ¹ / ₄	-	-	1	1						
11/2		-	3	3						
2		8 <u>—</u> 8	21	26						
2 ¹ / ₂	-	-	24	31						
3	-	36	42	50						
4	-	180	216	250						
5	-	390	480	575						
6	-	700	840	1,000						
8	1,400	1,600	1,920	2,300						
10	2,500	2,900	3,500	4,200						
12	3,900	4,600	5,600	6,700						
15	7,000	8,300	10,000	12,000						

For SI: 1 inch = 25.4 mm, 1 inch per foot = 83.3 mm/m. a. The minimum size of any building drain serving a water closet shall be 3 inches.

HORIZONTAL FIXTURE BRANCHES AND STACKS^a

	м	AXIMUM NUMBER OF DR	AINAGE FIXTURE UN	ITS (dfu)						
		Stacks ^b								
DIAMETER OF PIPE (inches)	Total for horizontal branch	Total discharge into one branch interval	Total for stack of three branch Intervals or less	Total for stack greater than three branch intervals						
1 ¹ /2	3	2	4	8						
2	6	6	10	24						
2 ¹ / ₂	12	9	20	42						
3	20	20	48	72						
4	160	90	240	500						
5	360	200	540	1,100						
6	620	350	960	1,900						
8	1,400	600	2,200	3,600						
10	2,500	1,000	3,800	5,600						
12	3,900	1,500	6,000	8,400						

CO₂ EXTINGUISHERS

MODEL	CAPACITY	FIRE RATING
CD25	2 kg	34 B
CD25Z	2 kg	55 B
CD2G	2 kg	21 B
CD5Gi	5 kg	55 B

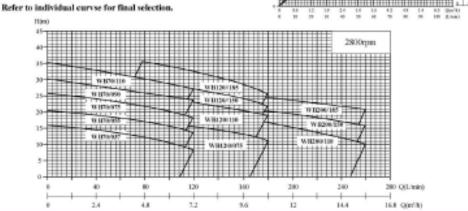
MODEL	CAPACITY	TYPE	DESCRIPTION
CD 2-6	2.8g	Portable	Stored Pressure
CD 54	5 Lbs	Portable	Stored Presoure
CD 10-L	10 Ubs	Portable	Stored Pressure
CD 5-6	Sig	Portable	Stored Precoure
CD 6-8	6 kg	Portable	Stored Pressure
CD 154.	15 Um	Portable	Stored Pressure
TCSD	10 kg	Mobile	Stored Pressure
TC20	20 kg	Mobile	Stored Pressure
TC25	25 ig	Mobile	Stored Precoure
1030	S0 kg	Metala	Stored Pressure
TC45	45 kg	Mobile	Stored Pressure
7050	50 kg	Mobile	Stored Pressure
1060	60 kg	Mobile	Stored Pressure

CEEECO	004061-061402:	UNLINESOFTCE:	ISA OMBAG-ARMON	ISA (KSIBRI - BARMEN KCURA 1963	KSA WESTERN - JEDGAN	NACHA-SUCIAL	SAUGU M
STFELU.	DOM: NOT STREET	102.00x.000.000.0042	NUMBER OF STREET,	NO. 804 7943	TAX REALIZED IN THE	THE HEAD DESIGN COMP.	Margan water of some
	26-23 (South)	3573.5429	Rysta 1678	Department (2004)	Sectors 20428	For which provide the	behalt (cfield control)
N	14-4754303487	14-014080337	Tel: 100112050020	Tot 2005 (1875/1862)	14-0802670386	Institution to the second	
	Fact with a second state	And well a part of the	Republic Condition	Kart-Mark Crists Store	Fair Heat 3 (Deltable)		
	6.545/500242.00	nike (jefferum	rijedhijirfkeruartus	den man (office conce	(dddA)(dhaacanca		

Applications

WB & 2WB Series of stainless steel pumps are designed for general purpose WB with single impeller and 2WB with twin impellers. They are suitable for domestic. commercial and industrial service. The applications include:

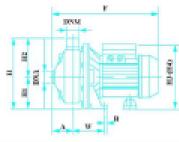
- water transfer;
- water supply;
- · water circulation;
- pressure systems; irrigation.

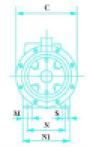

FEATURES

- · Back-pull-out design;
- · All wet components in 304 stainless steel;
- · Hard face mechanical seal as standard;
- · Impeller type: Closed;

Technical Data

- Liquid: clean water or non-aggressive liquids compatible with AISI 304 stainless steel;
- Max. working pressure: 8 bar for WB, 10 bar for 2WB ٠
- Flows up to 16 m/h;
- Heads up to 62m; ٠
- Liquid temperature: -15°C to +80°C;
- IP55 TEFC motor standard; .
- · F class insulation;
- · Continuously rated;
- Suction Size: 1-1/4 & 1-1/2 inch; ٠
- · Discharge Size: 1";
- Motor Power: 0.37-1.85 KW
- Range Chart


2900epca


.....

Performance Data Water test temperature: 20°C. Performance limits: ISO2548. Specifications for standard class C Pump.

									Ca	pacity						
3 phase	Pes	mer	L/min	- 20	-40	- 60	-80	100	120	140	160	180	200	220	240	260
/			m/th	1.2	2.4	3.6	4.8	6.0	7.2	8.4	9.6	10.8	12	13.2	14.4	15.6
1 phase	Kw	Hp							He	ad (m)						
WB70/037	0.37	0.5		15.5	14.5	13.5	12.5	11.5	10	13.5	12.2	11	15	13	11.5	- 9
WB70/055	0.55	0.75		-19	18	-17	16	- 15 -	13.5	- 21	19.5	18	19.5	18	16.5	- 15
WB70/075	0.75	1.0		- 25	23.5	22.5	21.5	20	18.5	- 25	23.5	21	- 24 -	23	22	- 21
WB70/090	0.90	1.2		29	28	-27	25.5	24	22.5	29.5	28	2.5				
WB70/110	1.10	1.5		- 33	32	31	29.5	28.5	26.5	18	17	16				
WB120/075	0.75	1.0			18.3	17.5	16.7	15.8	14.8	22.3	21.5	20.5				
WB120/110	1.10	1.5			26	25	-24	23	22	26.5	25.5	24.5				
WB120/150	1.50	32.0			-31	-30	29	28	26.5							
WB120/185	1.85	2.5			36.5	35.5	- 34	- 33	31.5							
WB200/110	1.10	1.5				21	20.5	- 20	- 19							_
WB200/150	1.50	2.0				25	24.5	24	23							
WB200/185	1.85	2.5				28.5	-28	27.5	27							
2WB70/150	1.50	2.0		-54	-52	-50	-47	-43								
2WB70/185	1.85	2.5		-61	-58	56	.52	48								

Dimensions

Model 3 Phase							Dimer	isions	(mm)	ŀ							Weight kg
1 Phase	- A	C	F	H	HI	H2	*H3	*H4	М	N	NI	-8	W	B	DNA	DNM	
WB70/037	- 52	213	31.5	232	108	124	241	213	- 39	120	158	9	- 92	13	G1*1/4	G1*	8.1
WB70/055	52	213	315	232	108	124	241	213	39	120	158	9	92	13	G1*1/4	G1*	8.8
WB70/075	- 52	213	31.5	232	108	124	241	213	- 39	120	158	- 9	-92	13	G1*1/4	- G1*	10
WB70/090	-52	213	31.5	232	108	124	241	213	- 39	120	158	9	- 92	13	G1*1/4	G12	11
WB70/110	-52	235	386	252	120	132	234	234	- 39 -	140	180	- 9	- 94	13	G1*1/4	- G1* -	14.6
WB120/075	- 52	213	31.5	232	108	124	240	213	- 39	120	158	9	-92	13	G1*1/4	- G1* -	10
WB120/110	-52	213	370	232	108	124	224	224	39	120	158	9	- 92	13	GL*1/4	GI*	11.6
WB120/150	-52	235	386	252	120	132	234	234	- 39 -	120	180	9	- 94	13	G1*1/4	- 01*	15.8
WB120/185	-52	235	386	252	120	132	234	234	- 39	120	180	- 9	- 94	13	G1*1/4	- G1*	- 17
WB200/110	-52	213	370	232	108	124	224	224	39	120	158	9	92	13	G1*1/4	G1*	11.6
WB200/150	- 52 -	213	370	232	108	124	224	224	- 39	120	158	- 9	-92	13	61*1/4	- G1*	15
WB200/185	-52	213	370	232	108	124	224	224	- 39 -	120	158	- 9	-92	13	G1*1/4	- G1*	16
2WB70/150	87	235	416	2.52	120	132	234	234	39	140	180	- 9	- 94	13	G1*1/4	G1*	17.8
2WB70/185	87	235	416	252	120	132	234	234	- 39	140	180	9	- 94	-13	G1*1/4	- G1* -	19.6
H3 for motors on single phase The month of the set of t																	

H4 for motors on three phase

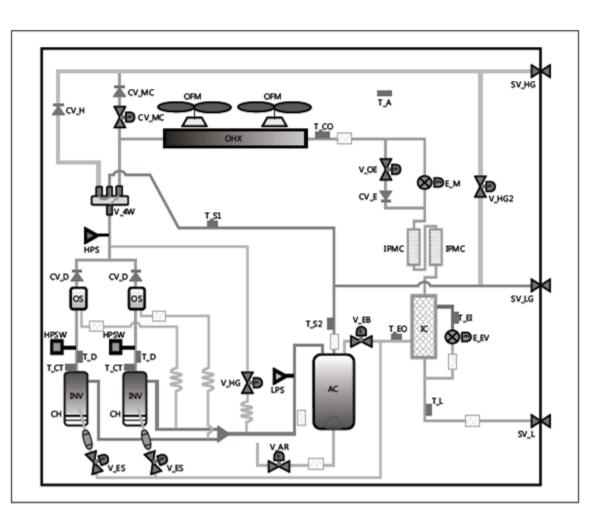
The specifications may change without notice.

2-2-3 Accessory

Clas	sification	Model	Relevant Product Group	Description	Option class		
Refnet Joint		MXJ-YA1509A MXJ-YA2212A MXJ-YA2512A MXJ-YA2815A MXJ-YA3819A MXJ-YA3819A	Outdoor Unit	Including Liquid pipe, Gas pipe, Insulating materials	Requisite		
Refnet header		MXJ-HA2512A MXJ-HA3115A MXJ-HA3819A	Outdoor Unit	Including Liquid pipe, Gas pipe, Insulating materials	Option		
Outdoor unit connection pipe	-	MXJ-T3819A	Outdoor unit	Liquid pipe, Gas pipe	Option		
		MXD-A13K116		Below 4.0kW(1 room)+5.2kW-9.0kW(1 room)			
		MXD-A13K200	1	Below 4.0kW(2 rooms)	1		
Distributor kit		MXD-A16K200	Wall-mounted,	5.2kW-9.0kW(2 rooms)			
	in h	MXD-A22K200		5.2kW~7.2kW(2 rooms)	Option		
		MXD-A13K216	Ceiling	Below 4.0kW(2 rooms) + 5.2kW-9.0kW(1 room)	opuur		
		MXD-A13K300	1	Below 4.0kW(3 rooms)	1		
		MXD-A16K213	1	Below 4.0kW(1 room)+5.2kW-9.0kW(2 rooms)			
		MXD-A16K300	1	5.2kW - 9.0kW(3 rooms)			
		MDP-E075SEE	Duct type (Slim)				
Drain Pump	-	MDP-075SA	Duct type (Low pressure)	750mm drain up			
ulain Failip		MDP-075SB	Duct type (High pressure)		Option		
		MDP-H075SA	Duct type (Built-in)				
		MGKH181M1	1 way cassette				
Front Panel		MGGH1031M1	2 way cassette	Cooling / Cooling & Heating	Requisite		
		MGCH0951M3	4 way cassette				

2-35

Samsung Electronics


Accessory

Product	Image	Model	Remark
	nî.	MXD-A38K2A	8~12HP
PDM KIT		MXD-A12K2A	14~16HP
	2	MXD-A58K2A	18~26HP
	- 9	MSD-CAN1	4Way Cassette S 4Way Cassette S(600x600)
S-Plasma Ion KIT	-	MSD-EAN1	ERV-Plus
Motion detect Sensor		MCR-SMA	4Way Cassette S (600x600)
ERV CO2 Sensor	1	MOS-C1	ERV, ERV PLUS
	E.S.	MDP-N047SNC0D	OAP Duct (14.0 kW)
	- St	MDP-N047SNC1D	HSP Duct (22.0 / 28.0 kW) OAP Duct (22.4 / 28.0 kW)
		MDP-M075SGU1D	MSP Duct (9.0 / 11.2 kW)
		MDP-M075SGU2D	MSP Duct (12.8 / 14.0 kW) HSP Duct (11.2 / 12.8 / 14.0 kW)
	1.1	MDP-M075SGU3D	MSP Duct (5.6 / 7.1 kW)
Drain Pump	-	MDP-E075SEE3D	Slim Duct (2.0~14.0 kW)
	1.000	MDP-G075SP	Duct S (External, All Capacities)
	¢.	MDP-G075SQ	Duct S (Internal, 3.5 kW~14 kW)
		PC1NUSMAN	Slim 1Way Cassette
		PC1NUPMAN	Slim 1Way Cassette (Z-sliding)
		PC1MWSKAN	1Way Cassette (1.7 kW, 2.2 kW)
Panel	-	PC2NUSMEN	2Way cassette
		PC4SUSMAN	4Way Cassette S(600x600) (Waffle)
		PC4SUSMEN	4Way Cassette S(600x600) (Classic)
		PC4NUSKAN	4 Way cassette S (Waffle)
		PC4NUSKEN	4 Way cassette S (Classic)
		PC4NBSKAN	4 Way cassette S (Waffle, Black)

	System Model						Outdoor Ur	nit Selection				
Capacity	System Model Code	Number of	8HP	10HP	12HP	14HP	16HP	18HP	20HP	22HP	24HP	26HP
Capacity	system model code	Modules	AM080JXVH GH/EU	AM100JXVH GH/EU	AM120JXVH GH/EU	AM140JXVH GH/EU	AM160JXVH GH/EU	AM180JXVH GH/EU	AM200JXVH GH/EU	AM220JXVH GH/EU	AM240HXV AGH/EU	AM260HX AGH/EU
8HP		1	1									
10HP		1		1								
12HP		1			1							
14HP		1				1						
16HP		1					1					
18HP		1						1				
20HP		1							1			
22HP		1								1		
24HP		1									1	
26HP	-	1										1
24HP*	AM240JXVHGH1EU*	2			2							
26HP*	AM260JXVHGH1EU*	2			1	1						
28HP	AM280JXVHGH1EU	2			1		1					
30HP	AM 300,00 HGH1EU	2			1			1				
32HP	AM320.00VHGH1EU	2			1				1			
34HP	AM 340,00 HGH1EU	2			1					1		
36HP	AM 360,00VHGH1EU	2				1				1		
38HP	AM 380,00 HGH1EU	2					1			1		
40HP	AM400.00VHGH1EU	2				1						1
40HP*	AM400JXVHGH1EU*	2							2			
42HP	AM420JXVHGH1EU	2							1	1		
44HP	AM440JXVHGH1EU	2								2		
46HP	AM460JXVHGH1EU	3			2					1		
48HP	AM480JXVHGH1EU	3			1	1				1		
SOHP	AM500JXVHGH1EU	3			1		1			1		
52HP	AM520JXVHGH1EU	3			1			1		1		
54HP	AM540JXVHGH1EU	3			1				1	1		
56HP	AM560JXVHGH1EU	3			1					2		
58HP	AMSBOJXVHGH1EU	3				1				2		
60HP	AM600JXVHGH1EU	3					1			2		
62HP	AM620JXVHGH1EU	3							2	1		
64HP	AM640,0XVHGH1EU	3							1	2		
66HP	AM660.0XVHGH1EU	3								3		
68HP	AM680,0XVHGH1EU	4			2					2		
70HP	AM700JXVHGH1EU	4			1	1				2		
72HP	AM720JXVHGH1EU	4			1		1			2		
74HP	AM740JXVHGH1EU	4			1			1		2		
76HP	AM760JXVHGH1EU	4			1				1	2		
78HP	AM780JXVHGH1EU	4			1					3		
80HP	AM800JXVHGH1EU	4			1	1				3		

L

8 Cycle diagram

Classification	Description
INV	Inverter Compressor
OFM	Outdoor Fan Motor
OHX	Outdoor Heat Exchanger
AC	Accumulator
OS	Oil Separator
IC	Intercooler
IPMC	IPM Cooler
CH	Crank Case Heater
HPS	High Pressure Sensor
LPS	Low Pressure Sensor
HPSW	High Pressure Switch
E_M	Main EEV
E_EV	EVI EEV
V_MC	Main Cooling Valve
V_ES	EVI Solenoid Valve
V_EB	EVI Bypass Valve
V_HG1	Hot Gas Bypass Valve 1 120
V_HG2	Hot Gas Bypass Valve 2

Classification	Description
V_4W	4Way Valve
V_AR	Accumulator Oil Return Valve
V_OE	Outdoor EEV Valve
CV_E	EEV Bypass Check Valve
CV_D	Discharge Check Valve
CV_H	HR Check valve
CV_MC	Main Cooling Check Valve
T_D	Discharge Temp. Sensor
T_S1	Suction Temp. Sensor 1
T_S2	Suction Temp. Sensor 2
T_CO	Cond Out Temp. Sensor
T_EI	EVI In Temp. Sensor
T_EO	EVI Out Temp. Sensor
T_L	Liquid Tube Temp. Sensor
T_CT	Comp. Top Temp. Sensor
T_A	Ambient Temp. Sensor
SV_HG	Low Gas Pipe Service Valve
SV_LG	Ambient Temp. Sensor
SV_L	Liquid Pipe Service Valve

Indoor Unit (cont.)

4 way cassette type

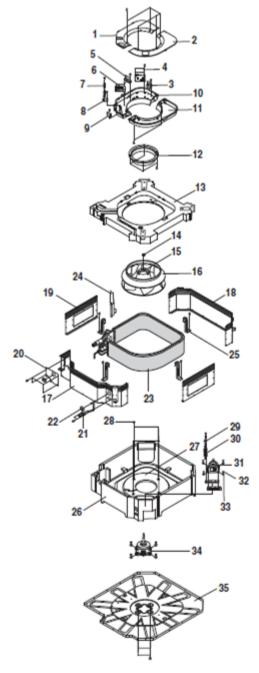
Model				AVXC4H056E*	AVXC4H071E*	AVXC4H112E*	AVXC4H128E*	AVXC4H140E*			
Power supply			ø, V, Hz			1, 220-240, 50					
Remark						Heat pump					
Performance	Capacity	Cooling*1	Btu/h	19,100	24,300	38,000	44,000	48,000			
			KW	5.6	7.1	11.2	12.8	14.0			
		Heating**	Btu/h	21,500	27,300	43,000	47,000	54,000			
			KW	6.3	8.0	12.5	13.8	16.0			
	Sound Level**	•	dB	38/35	40/37	44/41	46/43	47/44			
Power	Fan motors	Model	-	OSME-186SAC(5032)	OSME-186SAC(\$032)	OSME-8568AC(\$816)	OSME-856SAC(S816)	OSME-856SAC(S816)			
		Туре	-	Turbo fan	Turbo fan	Cross fan	Cross fan	Cross fan			
		Output	W	26	26	58	72	85			
		Air flow rate(Cool/Heat)	m?/min	16.0/18.1	16.0/18.1	26.1/28.4	28.3/30.9	28.9/32.3			
	Running current	-	Α	0.5	0.5	0.71	0.73	0.78			
	Power input	-	W	110	110	160	164	172			
	Refrigerari	t Control		EEV(Electronic Expansion Valve)							
Piping connect	tions	Liquid(Flare)	mm	6.35	9.52	9.52	9.52	9.52			
		Gas(Flare)	mm	12.7	15.88	15.88	15.88	15.88			
		Drain	mm		VP 25, external	diameter 32, Inter	mal diameter 25				
Set Size	Net weight		kg	26	26	29.5	29.5	29.5			
	Shipping weight		kg	31	31	35.5	35.5	35.5			
	Net dimension (W	xHxD)	mm	840x230x840	840x230x840	840x288x840	840x288x840	840x288x840			
	Shipping dimension	n(WxHxD)	mm	939x324x923	939x324x923	939x382x923	939x382x923	939x382x923			
Panel Size	Net weight		kg	4.9	4.9	4.9	4.9	4.9			
	Shipping weight		kg	10	10	10	10	10			
	Net dimension (W	xHxD)	mm	950x42x950	950x42x950	950x42x950	950x42x950	950x42x950			
	Shipping dimension	on (WXHxD)	mm	1,067x134x1,067	1,067x134x1,067	1,067x134x1,067	1,067x134x1,067	1,067x134x1,067			
Function /	Auto restart		Yes/No	Yes	Yes	Yes	Yes	Yes			
Option	Auto change over		Yes/No	No	No	No	No	No			
	Centralized control	ller (On/Off)	Yes/No	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)			
	Group/Individual of	ontrol for R/C	Yes/No	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)			
	Troubleshooting b	y L.E.D	Yes/No	Yes	Yes	Yes	Yes	Yes			
	Auto swing (Up/D	own)	Yes/No	Yes	Yes	Yes	Yes	Yes			
	Max. Installation o	eiling height	mm	255	255	315	315	315			
	Drain pump		Yes/No	Yes	Yes	Yes	Yes	Yes			

Indoor Unit (cont.)

4 way cassette type

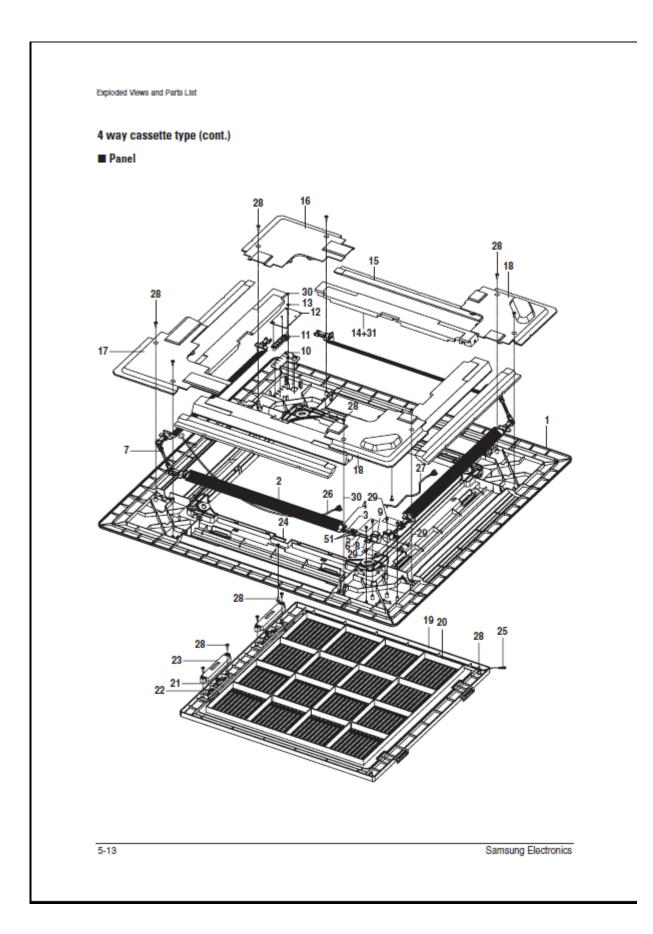
Model				AVXC4H056E*	AVXC4H071E*	AVXC4H112E*	AVXC4H128E*	AVXC4H140E*			
Power supply			ø, V, Hz			1, 220-240, 50					
Remark						Heat pump					
Performance	Capacity	Cooling*1	Btu/h	19,100	24,300	38,000	44,000	48,000			
			KW	5.6	7.1	11.2	12.8	14.0			
		Heating**	Btu/h	21,500	27,300	43,000	47,000	54,000			
			KW	6.3	8.0	12.5	13.8	16.0			
	Sound Level**		dB	38/35	40/37	44/41	46/43	47/44			
Power	Fan motors	Model	-	OSME-196SAC(S032)	OSME-1965AC(S032)	OSME-8568AC(\$816)	OSME-856SAC(S816)	OSME-856SAC(S816)			
		Туре	-	Turbo fan	Turbo fan	Cross fan	Cross fan	Cross fan			
		Output	W	26	26	58	72	85			
		Air flow rate(Cool/Heat)	m?/min	16.0/18.1	16.0/18.1	26.1/28.4	28.3/30.9	28.9/32.3			
	Running current	-	Α	0.5	0.5	0.71	0.73	0.78			
	Power input	-	W	110	110	160	164	172			
	Refrigeran	t Control		EEV(Electronic Expansion Valve)							
Piping connec	tions	Liquid(Flare)	mm	6.35	9.52	9.52	9.52	9.52			
		Gas(Flare)	mm	12.7	15.88	15.88	15.88	15.88			
		Drain	mm		VP 25, external	diameter 32, inter	mal diameter 25				
Set Size	Net weight		kg	26	26	29.5	29.5	29.5			
	Shipping weight		kg	31	31	35.5	35.5	35.5			
	Net dimension (W	xHxD)	mm	840x230x840	840x230x840	840x288x840	840x288x840	840x288x840			
	Shipping dimensio	n(WXHXD)	mm	939x324x923	939x324x923	939)(382)(923	93913821923	939x382x923			
Panel Size	Net weight		kg	4.9	4.9	4.9	4.9	4.9			
	Shipping weight		kg	10	10	10	10	10			
	Net dimension (W	xHxD)	mm	950x42x950	950x42x950	950x42x950	950x42x950	950x42x950			
	Shipping dimensio	in (WXHxD)	mm	1,067x134x1,067	1,067x134x1,067	1,067x134x1,067	1,067x134x1,067	1,067x134x1,067			
Function /	Auto restart		Yes/No	Yes	Yes	Yes	Yes	Yes			
Option	Auto change over		Yes/No	No	No	No	No	No			
	Centralized contro	ller (On/Off)	Yes/No	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)			
	Group/Individual of	ontrol for R/C	Yes/No	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)			
	Troubleshooting b	y L.E.D	Yes/No	Yes	Yes	Yes	Yes	Yes			
	Auto swing (Up/Dx)	Yes/No	Yes	Yes	Yes	Yes	Yes			
	Max. Installation of	elling height	mm	255	255	315	315	315			
	Drain pump		Yes/No	Yes	Yes	Yes	Yes	Yes			

Indoor Unit (cont.)


4 way cassette type

Model				AVXC4H056E*	AVXC4H071E*	AVXC4H112E*	AVXC4H128E*	AVXC4H140E*			
Power supply			ø, V, Hz			1, 220-240, 50					
Remark						Heat pump					
Performance	Capacity	Cooling*1	Btu/h	19,100	24,300	38,000	44,000	48,000			
			KW	5.6	7.1	11.2	12.8	14.0			
		Heating**	Btu/h	21,500	27,300	43,000	47,000	54,000			
			KW	6.3	8.0	12.5	13.8	16.0			
	Sound Level**	•	dB	38/35	40/37	44/41	46/43	47/44			
Power	Fan motors	Model	-	OSME-186SAC(5032)	OSME-186SAC(\$032)	OSME-8568AC(\$816)	OSME-856SAC(S816)	OSME-856SAC(S816)			
		Туре	-	Turbo fan	Turbo fan	Cross fan	Cross fan	Cross fan			
		Output	W	26	26	58	72	85			
		Air flow rate(Cool/Heat)	m?/min	16.0/18.1	16.0/18.1	26.1/28.4	28.3/30.9	28.9/32.3			
	Running current	-	Α	0.5	0.5	0.71	0.73	0.78			
	Power input	-	W	110	110	160	164	172			
	Refrigeran	t Control		EEV(Electronic Expansion Valve)							
Piping connect	tions	Liquid(Flare)	mm	6.35	9.52	9.52	9.52	9.52			
		Gas(Flare)	mm	12.7	15.88	15.88	15.88	15.88			
		Drain	mm		VP 25, external	diameter 32, Inter	mal diameter 25				
Set Size	Net weight		kg	26	26	29.5	29.5	29.5			
	Shipping weight		kg	31	31	35.5	35.5	35.5			
	Net dimension (W	xHxD)	mm	840x230x840	840x230x840	840x288x840	840x288x840	840x288x840			
	Shipping dimensio	n(WxHxD)	mm	939x324x923	939x324x923	939x382x923	939x382x923	939x382x923			
Panel Size	Net weight		kg	4.9	4.9	4.9	4.9	4.9			
	Shipping weight		kg	10	10	10	10	10			
	Net dimension (W	xHxD)	mm	950x42x950	950x42x950	950x42x950	950x42x950	950x42x950			
	Shipping dimensio	on (WXHXD)	mm	1,067x134x1,067	1,067x134x1,067	1,067x134x1,067	1,067x134x1,067	1,067x134x1,067			
Function /	Auto restart		Yes/No	Yes	Yes	Yes	Yes	Yes			
Option	Auto change over		Yes/No	No	No	No	No	No			
	Centralized control	ller (On/Off)	Yes/No	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)			
	Group/Individual o	ontrol for R/C	Yes/No	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)	Yes(Option)			
	Troubleshooting by L.E.D		Yes/No	Yes	Yes	Yes	Yes	Yes			
	Auto swing (Up/Dx	own)	Yes/No	Yes	Yes	Yes	Yes	Yes			
	Max. Installation of	eiling height	mm	255	255	315	315	315			
	Drain pump		Yes/No	Yes	Yes	Yes	Yes	Yes			

Exploded Views and Parts List


4 way cassette type (cont.)

Body(11.2kW~14.0kW)

5-11

Samsung Electronics

Exploded Views and Parts List

No.	Code No.	Description	Specification	Q'TY	SA/SNA
NO.	Code No.	Description	specification	AGCH095IKE	SAVONA
1	D864-011438	PANEL FRONT	HIPS	1	SNA
2	DB66-00757C	BLADE-H	SAN/GF20	4	SA
3	DB61-01871A	CONNECTOR BLADE	POM	8	SNA
4	DB61-01870A	HOLDER BLADE	ABS	8	SNA
5	DB66-00756A	JOINT UNIVERSAL	POM	6	SNA
6	DB66-00759A	LINK MOTOR	POM	2	SNA
7	DB66-00758A	LINK BLADE	POM	2	SNA
8	DB61-01872A	BRACKET MOTOR	SGCC-M	2	SNA
9	DB31-10129C	MOTOR STEP	GSP-24RW-045	2	SA
10	DB64-01141A	INLAY PCB	PC	1	SA
11	DB64-01142A	BUTTON PCB	ABS	1	SNA
12	DB93-02803A	ASSY PC8 DISPLAY	ASSY	1	SA
13		WASHER	•	1	SNA
14	DB69-00947A	CUSHION IN	EPS	4	SNA
15	DB69-00948A	CUSHION OUT	EPS	4	SNA
16	DB63-010148	COVERA	HIPS	1	SNA
17	DB63-010158	COVER B	HIPS	1	SNA
18	DB63-010168	COVER C	HIPS	2	SNA
19	DB64-011448	GRILLE AIR INLET	HIPS	1	SNA
20	DB74-00002A	FILTER AIR	PP	1	SA
21	DB64-01145A	KNOB SLIDE	HIPS	2	SNA
22	DB67-00030A	SPRING KNOB	STS304	2	SNA
23	DB63-01036A	COVER KNOB	HIPS	2	SNA
24	DB70-00302A	PLATE HANGER	STS304	2	SNA
25	DB65-00023A	CLIP WIRE ASS'Y	ASSY	1	SNA
26	DB39-00082D	CONNECT WIRE M-D	ASSY	1	SA
27	DB39-00542C	CONNECT WIRE MOTOR	ASSY	1	SA
28	6002-001079	SCREW TAPPING	TH, +, 2S, M4, L10	17	SNA
29	6002-000536	SCREW TAPPING	PH, +, 2S, M4, L8	8	SNA
30	6002-000534	SCREW TAPPING	PH, +, 2S, M3, L8	1	SNA
31	DB72-00298A	SEAL CUSHION	FLOCKED	4	SNA

Parts List

Samsung Electronics

5-14