Palestine Polytechnic University College of Engineering

Mechanical work for Birzeit girl housing students

Prepared by:

Ayman Maali

Wasim Saleh

Supervisor: Dr. Kazem Osaily

Submitted to the College of Engineering

In partial fulfillment of the requirements for the

Bachelor degree in Refrigeration and Air Conditioning

Technology Engineering

Hebron, August 2017

TABLE OF CONTENTS

SUBJECT	Page
TABLE OF CONTENTS	I
LIST OF TABLES	
LIST OF FIGURES	IV
إهداء	V
Acknowledgment	1
خلاصة	2
Abstract	3
Time table	4
Chapter One: Building Characteristics	6
1.1 Introduction:	7
1.2 Modes of heat transfer:	8
1.2.1 Convection:	8
1.2.2 Radiation:	9
1.3 Thermal resistance:	9
1.4. Overall heat transfer coefficient (U factor):	10
1.4.1. Overall heat transfer coefficient for the external walls:	11
1.4.2 Overall heat transfer coefficient for the exposed roof:	12
1.4.3. Overall heat transfer coefficient for the roof floor:	13
1.4.4. Overall heat transfer coefficient for the windows:	14
1.4.5. Overall heat transfer coefficient for the doors:	14
Chapter Two: Heating& cooling Loads Estimation.	15
2.1 Introduction:	16
2.2 Thermal comfort:	16
2.3 Cooling loads calculation:	
2.3.1 Transmission load:	19
2.3.2. Estimated cooling & heating load:	19
Chapter 3: HVAC Systems & duct design.	
3.1 Introduction:	25
3.2 Heating system:	25
3.3 Ventilation:	26
3.4 Air conditioning system:	26

3.5 Indoor & outdoor:
3.5.1. Outdoor unit (Chiller):28
3.5.2 Indoor unit (Fan Coil Unit F.C.U):
3.6 Calculation and Duct design:
Chapter Four: Water Consumption Estimation
4.1 Introduction:
4.2. Domestic water requirements estimation:
4.3. Water storage system:
4.4 System Design:
4.4.1 Pipe Sizing:
Pump Selection:
4.5 Sanitary Drainage system:
4.5.1 Drainage system components:42
4.5.2 Design & pipe sizing:43
4.5.3 Manhole Design:46
4.6 Storm Drainage:
Chapter Five: Fire Protection System:49
5.1 Introduction:
5.2 Types of firefighting system:
5.2.1 Fire Extinguishers:
5.2.2 Fire Hose reel:
5.2.3 Fire Hydrate System:52
5.2.4 Automatic Sprinkler System:53
5.3 Pump Selection:
Chapter Six: Bill of quantity (BOQ):57
Bibliography70

LIST OF TABLES

Table 1: Air thermal resistance.	10
Table 2: Absolute calculation of (U) factor for the external wall.	12
Table 3: Tabulated calculation of (U) factor for the exposed roof.	13
Table 4:Tabulated calculation of (U) factor for the ground floor	14
Table 5: Sample calculation for duct design	32
Table 6: Universal water consumptions.Universal water consumptions.	36
Table 7: the Fu, pipe size & flow for every fixture type	37
Table 8: Water quantity consumption for every fixture	41
Table 9:Sizing & DFU for every fixture	44
Table 10: General size use in Palestine Shops & works	44
Table 11: Sizing of stack1	45
Table 12: Sizing of black water stacks and building drain	45
Table 13: Diameter of the manhole according to their depth	46
Table 14: the depth of manholes & Pipe diameter. (sewerhistory.org, 2004)	47

LIST OF FIGURES

Figure 1: Cross section for the external wall11
Figure 2:Cross section for the external roof12
Figure 3:Construction of the ground floor13
Figure 4: Thermal comfort zone17
Figure 5:This picture show the Chiller
Figure 6: Fan Coil Unit (F.C.U)
Figure 7: Sample Room
Figure 8: Friction Head loss in black steel pipe
Figure 9: Pressure loss in disk-type water meter
Figure 10 : Manholes details
Figure 11: Fire hose reel
Figure 12: Fire Hydrate System (normteknik, 2015)53
Figure 13: Sprinkler. (normteknik, 2015)54
Figure 14: Landing valve. (normteknik, 2015)55

إهداء

لابد لنا ونحن نخطو خطواتنا الأخيرة في الحياة الجامعية من وقفة نعود إلى أعوام قضيناها في رحاب الجامعة مع أساتذتنا الكرام الذين قدموا لنا الكثير باذلين بذلك جهودا كبيرة في بناء جيل الغد لتبعث الأمة من جديد...

وقبل أن نمضي نقدم أسمى آيات الشكر والامتنان والتقدير والمحبة إلى الذين حملوا أقدس رسالة في الحياة... الى مشرفنا الدكتور كاظم عسيلي إلى أمهاتنا وآباءنا إلى أساتذتنا إلى أساتذتنا إلى زملائنا وزميلاتنا إلى الشموع التي تحترق لتضئ للآخرين أهدي هذا البحث المتواضع راجياً من المولى عز وجل أن يجد القبول والنجاح

Acknowledgment

It would be unfair to forget the precious knowledge and assistance provided by our teachers during those past years, especially those who helped us in University and outside it.

We would like to dedicate this project to our supervisor,

Dr. Kazem Osaily a faculty member in PPU University, who really helped us to complete this project, by providing us with his advises, steps, knowledge, and the necessary data required to finish this project.

خلاصة

تعد أنظمة الارتياح الحراري أحد أهم متطلبات الحياة العصرية،ويتطلب ذلك توفير درجة الحرارة الملائمة للغرفة صيفا وشتاءً بهدف الحصول على الأجواء الملائمة لاستمرار النشاط الانساني بشكل للاستعمال طبيعي ،وقد تتعدى هذه الانظمة الى أشكال اخرى مثل توفير المياه الساخنة والباردة اليومي والتخلص السليم من هذه المياه او معالجتها للاستخدامات الأخرى كذلك فان هذه الانظمة تتضمن توفير كميات المياه اللازمة للتغلب على الحرائق في حال حدوثها كل هذه الانظمة وغير ها تندرج تحت منظومة الاعمال الميكانيكية التي يتم اعدادها في المبنى لتوفير درجة من الراحة والأمان.

تم في هذا العمل والذي يندرج تحت مساق (مقدمة الى مشروع التخرج)،اجراء دراسة على كافة الاعمال الميكانيكية المنوي القيام بها في سكن الطالبات الداخلي والذي تنوي جامعة بيرزيت البدء في انجازه قريبا .

بدأت هذه الدراسة بحساب الاحمال الحرارية للمباني من خلال دراسة مكونات المباني الانشائية ، بعد ذلك تم البدأ بعمل اختيار للنظام الملائم للتدفئة من خلال اجراء مقارنة بين اكثر من نوع من هذه الانظمة ،كذلك فقد تم اجراء دراسة تقديرية على كميات المياه الساخنة والباردة اللازمة للاستعمال اليومي،وما ينتج عنها من مياه عادمة .كذلك فقد تم اجراء دراسة على انظمة مكافحة الحرائق واختيار نظام يتلائم ونوع المبنى للتغلب على الحريق في حال اندلاعه.

تم في مقدمة مشروع التخرج هذه اجراء كافة الدراسات وذلك للبدء في انجاز مشروع التخرج للفصل القادم والذي يشمل تصميم كامل لنظام التدفئة الملائم للمبنى،وما يتبعه من انظمة اخرى مساعدة (مثلا انظمة اللواقط الشمسيه)

كذلك فان هذا العمل سيشمل وجود طريقة فعالة للتعامل مع الحرائق في حال حدوثها كل هذه الاعمال سيتم القيام بها بناء على الحسابات والتقديرات التي تم القيام بها في العمل الحالي.

Abstract

Birzeit University intends to build a student dormitory for girl at the place of the old building, in order to make their study life easier, and to near the way to university. This project concentrates on providing the services for students at its highest quality, and minimum cost.

As mechanical engineers are interested in providing the comfort conditions for living. These comfort conditions include the availability of suitable temperature for living space, and suitable temperature expands to suitable air conditions. In this project it intend to make a complete study for the different possible ways for heating & cooling by use Chilled water system, this system is applied by using chiller(outdoor unit) & Fan coil unit(in door unit),. In order to start the design of the proper system, the load must be estimated at each element of building construction (wall, floor, window.....etc.).

Another need for the building is the domestic clean water supply. Domestic water divided into two main parts, hot and cold water, hot water for shower, washing, and the cold water for the cleaning and toilet flushing. The water usage rate must be estimated in order to prepare the suitable system for water supply, this estimation depend on many variables (e.g. number of students, load factor, type of usage...etc.). As for waste water, we intend to study the different choices for waste water disposal e.g. (waste water treatment plant for other requirements such as irrigation, toilet flushing).

Firefighting system is another important part of the mechanical works in the building, since it controls the fire expansion. As a result it should design and estimate the amount of water needed for firefighting system, and this will be done by determining the severity (light, ordinary and extra hazard) of the system that will use. Many components of the firefighting system must be determined (e.g. Water tank and its alternatives, the pumps required, design of the pipe network, sizes of pipes of fire hose cabinets or CO_2).

Time table

In this section the tasks it shown below:

Task ID	Task Description		
T1	Choosing the project		
T2	Overview previous projects		
Т3	Overall heat transfer coefficient calculations for walls, ceiling, floor,		
	doors,		
T4	Heating and cooling loads calculations		
T5	Water supply system calculations		
T6	Drainage system calculations		
T7	Editing and modifying		
Т8	Design Chiller & Fan coil unit system		
Т9	Design the Chilled air duct in the building		
T10	Design Fresh air & exhaust air duct & fan		
T11	Design the plumbing system		
T12	Design the firefighting system		
T13	Selection and drawing the relevant systems		
T14	Doing bill of quantity tables		
T15	Printing		

1st 5 Task/Week 2 3 4 6 7 8 9 10 11 12 13 14 15 1 **T1 T2 T3 T4 T5 T6 T7 T8** 2nd Task/Week 17 18 19 22 23 24 25 26 28 29 16 20 21 27 30 **T9 T10 T11** T12 T13 T14 T15

Table 1.2: Time table

Chapter One: Building Characteristics

- **1.1 Introduction:**
- **1.2 Modes of heat transfer:**
- **1.2.1 Convection.**
- **1.2.2 Radiation.**
- **1.3 Thermal resistance:**
- **1.4. Overall heat transfer coefficient (U factor).**
- **1.4.1.** Overall heat transfer coefficient for the external walls.
- **1.4.2** Overall heat transfer coefficient for the exposed roof.
- **1.4.4.** Overall heat transfer coefficient for the windows.
- **1.4.5.** Overall heat transfer coefficient for the doors.

1.1 Introduction:

In mechanical work one of the most important issue to study conditions in order to build the suitable systems of heating, cooling and ventilation, etc. to build efficient system we need to understand the fundamentals of heat transfer modes (conduction, convection, radiation).

Heat transfer processes are classified into three types. The first is conduction, which is defined as transfer of heat occurring through intervening matter without bulk motion of the matter. A solid (a block of metal, say) has one surface at a high temperature and one at a lower temperature. This type of heat conduction can occur, for example, through a turbine blade in a jet engine. The outside surface, which is exposed to gases from the combustor, is at a higher temperature than the inside surface, which has cooling air next to it. The level of the wall temperature is critical for a turbine blade.

The second heat transfer process is convection, or heat transfer due to a flowing fluid. The fluid can be a gas or a liquid; both have applications in aerospace technology. In convection heat transfer, the heat is moved through bulk transfer of a non-uniform temperature fluid.

The third process is radiation or transmission of energy through space without the necessary presence of matter. Radiation is the only method for heat transfer in space. Radiation can be important even in situations in which there is an intervening medium; a familiar example is the heat transfer from a glowing piece of metal or from a fire.

Each material has different thermal properties; it has different conductivity, emissivity, and thermal resistance. By studying these terms we can choose the proper materials with the suitable properties to reduce heat losses .Now, since each material has different thermal properties, more generalized method will be

7

used, in order to get the thermal properties for a multiple layered assemblies material.

In this chapter we will make a complete study about the heat losses from the dorms, based on the common method of heat transfer. The thermal properties for each type of construction will be discussed. And the thermal property (overall heat transfer coefficient) will be found based on scientific data about each type.

1.2 Modes of heat transfer:

Heat Transfer is the thermal energy transported due to a temperature difference. In other words, it is explain the energy gained by the cold part from the hot part of the space. There are two common modes of heat transfer.

1.2.1 Convection:

It is the transfer of energy which occurs between fluids (liquids, gases) in motion, and surface when there is a difference in temperature.

Convection heat transfer consists of two mechanisms, the random molecular motion which it is known as **diffusion**, and the bulk **macroscopic motion of fluid.**

The convection heat transfer can be categorized according to the nature of the flow, there is the forced convection when flow is induced by external ways like fans or pumps, and there is the free convection, the flow is induced by **buoyancy** forces, which arises from density difference due to temperature difference .The rate equation of the convection heat transfer is as Known as **Newton's law of cooling.**

$$\mathbf{Q} = \mathbf{h}(\mathbf{T}_{\mathrm{s}} - \mathbf{T}_{\infty}) \tag{2.2}$$

h: the convection heat transfer coefficient of the fluid $(W/m^2. °C)$

 T_s : is the temperature of the surface in contact with the fluid.

 \mathbf{T}_{∞} : is the temperature of the fluid.

(Asaad & Hammad)

1.2.2 Radiation:

It is the energy emitted by a surface at a given temperature. Unlike the conduction and the convection heat transfer, the radiation heat transfer doesn't need medium to transfer energy. Radiation occurs more efficiently in a vacuum because the energy of radiation is transported by electromagnetic waves, energy exchange between a surface and its surrounding is given by the equation below.

$$\mathbf{q} = \varepsilon \sigma A \left(T_{\rm s}^{4} - T_{\rm surr}^{4} \right) \tag{2.3}$$

Where:

σ: (Stephan- Boltzmann constant) = 5.67×10^{-8} w/m²k⁴

ε: is the emissivity, the value of it is between
$$0 < \varepsilon < 1$$
, 1 is for blackbody
Qrad = hr A(Ts - Tsurr) (2.4)
hr = εσ(T_s - T_{surr})(T_s² - T_{surr}²) (2.5)
1.3 Thermal resistance:

The thermal resistance of material is defined as the ability of a material to resist heat flow. In other words it is a measure of how much the material behaves as an insulator. High thermal resistances indicate better performance of insulating.

The rate equations for both the conduction and convection heat transfer is linear, but for radiation, the rate equation is not linear.

Heat transfer calculations could be simplified if the radiation heat transfer equation became linear and that could be achieved by transforming Steven Boltzmann equation into linear equation by adding hr in the equation. After we do this step, we realize that all three equations is a function of a constant multiplied by area multiplied by temperature difference. It is possible to analog the equation with When the heat transfer equation is written according to Ohm's law, the equations became like:

$$\mathbf{Q} = \frac{\Delta \mathrm{T}}{\mathrm{R}_{\mathrm{th}}} \tag{2.6}$$

Where R_{th} : is the thermal resistance.

For any type of construction the thermal resistance will be :

$$\mathbf{R} = \frac{\mathrm{L}}{\mathrm{K}} \tag{2.7}$$

For the air, the thermal resistance will be as tabulated below as shown:

Air thermal resistance		
Туре	Thermal resistance (W / m ² . ° C)	
Horizontal, still air, heat flow up	0.11	
Horizontal, still air, heat flow down	0.16	
, heat flow horizontal Vertical	0.12	
Outside air film (horizontal& vertical)	0.029	
Horizontal air space	0.24	
Vertical air space	0.14	

Table 1: Air thermal resistance.

1.4. Overall heat transfer coefficient (U factor):

Overall heat transfer coefficient is a combination between different thermal properties, for multi layered section. This coefficient has a unit of W/m².°C,

which is the same as the conduction coefficient, since both measure the same thing. On the other hand convection and radiation is coupled into formula such as conduction. In our case, we interested in lower (U) factor, which mean better insulation.

$$\mathbf{U} = \frac{1}{R} = \frac{QA}{\Delta T} = \frac{K}{L}$$
(2.9)

U: over all heat transfer coefficient ($W/m^{2\circ}C$)

R: the summation of thermal resistance (m^2 . °C/W)

L: Thickness (m)

K: Thermal Conductivity (W/m °C).

1.4.1. Overall heat transfer coefficient for the external walls:

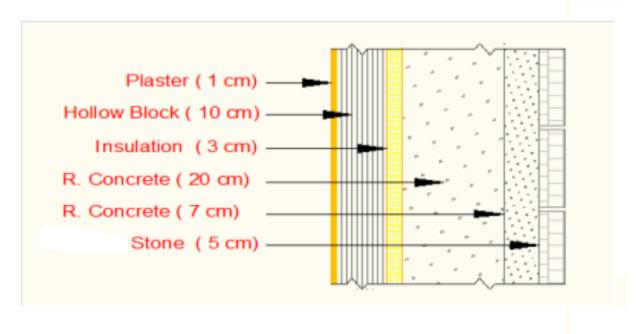


Figure 1: Cross section for the external wall.

Over All heat Transfer Coefficient (U) for External wall			
Material Type	Thickness(L) (m)	Thermal Conductivity (k) (W/m °C)	Thermal Resistance (R) = (L/K) (m ² .°C /W)
Outside air film			0.029
stone	0.05	1.69	0.030
Concrete	0.27	1.75	0.154
Insulation	0.03	0.036	0.833
Hollow Block	0.1	0.72	0.139
Plastering	0.01	1.2	0.008
Inside air film			0.12
Over All Heat Transfer Coefficient (U - $W/m \circ C$) = (1/ ΣR)			0.76

Table 2: Absolute calculation of (U) factor for the external wall.

The following table shows the overall heat transfer coefficient(U):

1.4.2 Overall heat transfer coefficient for the exposed roof:

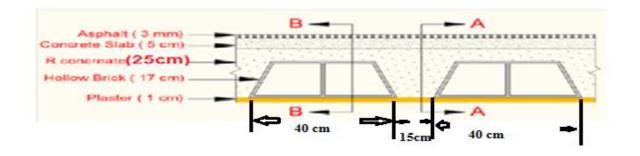


Figure 2:Cross section for the external roof.

The exposed roof construction can be divided into two sections (A and B), these

section are illustrated in the figure above.

We will find an average value for U factor, based on the assumption of 40/55 section B, and 15/55 of section A by area. $a/b = \frac{1}{4}$, A+B= 5 section note for brick = 4 / 5, Or concrete = 1/5

Over All heat Transfer Coefficient (U) for Exposed Roof section (A)			
Element	Thickness(L) (m)	Thermal Conductivity(k) W/m.°C)	Thermal Resistance R=(L/k)(m ² .°C/W)
Outside air film			0.029
R. Concrete	0.25	1.75	0.14285
Plaster	0.01	1.2	0.0083
Asphalt	0.003	0.7	0.004
Concrete slab	0.05	1.75	0.029
Inside air film			0.16
Over All Heat Transfer Coefficient (U- W/m ² . $^{\circ}C) = (1/\Sigma R)$			2.68
Over All heat Transfer Coefficient (U) for Exposed Roof section (B)			
Outside air film			0.029
R. Concrete	0.08	1.75	0.045
Plaster	0.01	1.2	0.0083
Asphalt	0.003	0.7	0.004
Concrete slab	0.05	1.75	0.029
Hollow Bricks	0.17	0.95	0.179
Inside air film			0.16
Over All Heat Transfer Coefficient (U- W/m ² °C =1/ Σ R)			2.19
Average Value= 15/55*2.68+40/55*2.19		2.32	

The following table shows the heat Transfer Coefficient (U) for material used in roof:

Table 3: Tabulated calculation of (U) factor for the exposed roof.

1.4.3. Overall heat transfer coefficient for the roof floor:

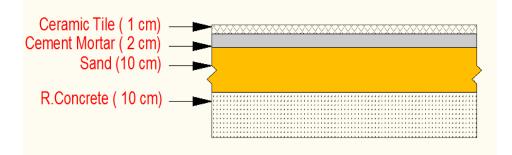


Figure 3:Construction of the ground floor

The following table shows the heat Transfer Coefficient (U) for Tabulated calculation of (U) factor for the ground floor:

Over All heat Transfer Coefficient (U) for Exposed Roof section (A)			
Element	Thickness(L) (m)	Thermal Conductivity (K) (W/m °C)	Thermal Resistance (R)= (L/k) (m ² . $^{\circ}C$ /W)
inside air film			0.11
R. Concrete	0.1	1.75	0.0571
Sand	0.1	0.3	0.333
Cement mortar	0.02	1.75	0.0114
Ceramic tile	0.01	1.05	0.00952
Over All Heat Transfer Coefficient (U- W/m ² °C) = (1/ Σ R)		1.92	

Table 4:Tabulated calculation of (U) factor for the ground floor.

1.4.4. Overall heat transfer coefficient for the windows:

The window that used is double glazing with 6 mm air gap. The air space between the glass layers will lower the amount of heat losses, since the still air has high thermal resistance (0.17 m²°C /W). The amount of (U) factor for double glazing is $3.2 \text{ W/m}^{2\circ}\text{C}$.

1.4.5. Overall heat transfer coefficient for the doors:

External doors are made from glass, it is the same as the double glazing _ U factor =3.2 W/m²°C. Internal door is made from wood _ U factor =3W/m²°C. Window Area = 2 m² Door = 2 m² (Asaad & Hammad) **Chapter Two: Heating& cooling Loads Estimation.**

- **2.1 Introduction.**
- 2.2 Thermal comfort.
- **2.3 Cooling loads calculation:**
- 2.3.1 Transmission load.
- 2.3.2. Estimated cooling load.

2.1 Introduction:

Heat transfer is an important science in the field of our study; it is an extension

for Thermodynamics analysis. Heat transfer is the thermal energy transported due to at temperature difference; it also deals with the rate of transfer of thermal

energy. It is used in many engineering applications. Many buildings are designed based on the principle of heat transfer, like the heating and air conditioning systems, refrigerators, and freezers.

2.2 Thermal comfort:

Thermal comfort is defined as "that condition of mind which expresses satisfaction with the thermal environment". This condition is also sometimes called as "neutral condition", though in a strict sense, they are not necessarily same. A living human body may be likened to a heat engine in which the chemical energy contained in the food it consumes is continuously converted into work and heat. A human body is very sensitive to temperature. The body temperature must be maintained within a narrow range to avoid discomfort, and within a somewhat wider range, to avoid danger from heat or cold stress. Studies show that at neutral condition, the temperatures should be

Skin temperature, skin $\approx 33.7^{\circ}$ C

Core temperature, core $\approx 36.8^{\circ}$ C

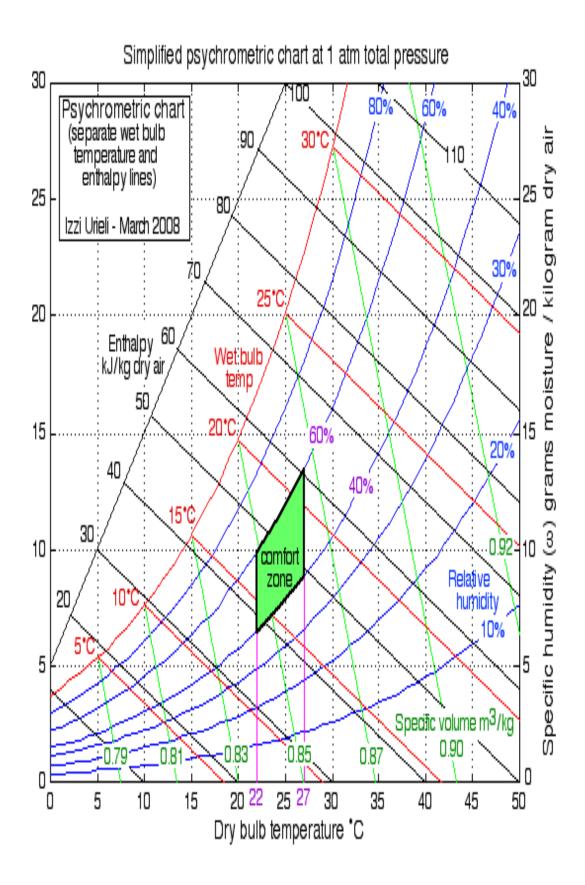


Figure 4: Thermal comfort zone.

Thermal comfort is important in our life, because it makes you feel psychologically comfortable and increases the worker productivity, or makes the students focus in their studiesetc.

Most people think that the temperature of the surrounding air is the only factor that affects the thermal comfort, but in fact there are six factors that can be categorized into environmental and personal aspects.

1. Environmental aspect includes radiant temperature which represents the radiant heat from a hot body, air velocity and humidity which represent the amount of moisture content in the air. (Asaad & Hammad)

2. Personal aspect which includes the insulation of clothing, it represents the amount of clothing layers the person wear, and the type of material it made from, which minimizes the heat loss from the human body, and the last factor is the metabolic heat which represents the amount of heat generated in our bodies when doing a physical activates, which increases the heat loss from the human body to prevent it from overheating ,thus the type of human activity ,age , sex, weight and size all these factors affect the human comfort which should be considered when designing an effective air conditioning system.

2.3 Cooling loads calculation:

The primary function of cooling load calculation is to estimate the capacity that will be required for various Cooling & Heating components, necessary to maintain comfort within a space. These calculations are therefore based on peak load conditions corresponding to environmental conditions which are normally taken near the extremes. The Cooling load consists in general of three major types, first is the transmission loads, second is the infiltration load and the ventilation load, we calculate cooling load since it is large than heating load & cooling components is also used for heating system.

2.3.1 Transmission load:

For the transmission load, the load comes from the heat transfer through walls, roofs, windows and floors to the surrounding. It is given by the relation

$$\mathbf{q}_{\mathbf{t}} = \mathrm{UA}\left(\mathrm{T}_{\mathrm{o}} - \mathrm{T}_{\mathrm{i}}\right) \tag{2.1}$$

Where:

q: is the thermal load in watts.

U: is overall heat transfer coefficient in W/ m^2 . °C

A: is the surface area of the floor, ceiling....etc. in m^2 .

 T_0 : is the temperature of the outdoor.

T_i: is the temperature of the indoor

This load is totally sensible. Because it is a function of temperature difference between inner surface and outer surface.

2.3.2. Estimated cooling & heating load:

The shown sample calculation is for room number G16; the area for this room is 22.04 m^2 .

Heating load:

Some variable must be known:

 $T_{o} = 2 \text{ °C}$ Relative Humidity out = 75 % Velocity of air =1.4 m/s T_i = 24 °C Relative humidity in= 50 % U (over all heat transfer for outside wall) = 0.76 W/m². °C U (over all heat transfer for inside wall) = 2.6 W/m². °C $T_{un} = 12 \text{ °C}, U \text{ floor} = U = 1.92 \text{ W/m}^2. \text{ °C}$ Q from inside wall Q wall inside = U $A^{*}\Delta T$ $Q_{in} = 2.6*6.3*(24-12) = 196.5 \text{ W}$ Q wall outside = $U^*A^*\Delta T$ $Q_0 = 0.76 * ((1.8*3.08+10.14)*(24-2) = 262.2 W$ Q floor = U * A * Δ T Q floor = 1.92*(5.8*3.8)*(24-12) = 507.8 W Q from window = U *A * Δ T U window = 3.2 W/m^2 . °C $Q = 3.2^{*} (2)^{*} (24-2) = 140.8 W$ Q from door = $U^*A^*\Delta T = 3 * 2^*(24-12) = 72$ W Q from ceiling = zero $V_{\text{infltriation}} = \frac{\text{ACH} * v * 1000}{3600} = \frac{1 * 5.8 * 3.8 * 3.08 * 1000}{3600} = 18.8 \text{ L/S}$ ACH from table 4-6 $Q_{inf} = 1.2 * V_{inf} * (T_{in} - T_o) = 1.2 * 18.8 * (24-2) = 496.32$ Total heating load for room #16 = 196.5 + 262.2 + 507.8 + 140.8 + 496.32=1603.6 W The heating load from bath room : Q floor = 1.92 * 5.8*12 = 133.6 W $V_{inf} = (0.5 \times 5.8 \times 3.3 \times 1000)/3600 = 2.6 \text{ L/S}$ $Q_{inf} = 2.6 \times 1.2 \times (24-2) = 68.6 \text{ W}$ Q from inside wall = $U^*A^*\Delta T = 2.6^*6.25^*12 = 195$ W Q door = $U^*A^*\Delta T = 3 * 2 * 12 = 72 W$ The total heat = 133.6 + 68.6 + 195 + 72 = 469.2 W

Cooling load:

Some variable must be known:

 $V_{\text{infltriation}} = \frac{\text{inside volume } * v*1000}{3600}$

ACH: air change per hour from (table 4-6 in Appendix A)

For G16 ACH = 18.8 L/s

V_{Vent} : Air ventilation requirement, from (table 4-5 in Appendix A)

 $V_{Vent} = 7.5 \text{ L/s/person.}$

Number of people in this room = 4

Q wall, in = the heat loss convection from inside wall

The north wall the heat loss = 0

The west wall the heat loss = $U * A * (T_{un} - T_{in})$,

 $T_{un} = temp in the room unconditioned$

T_{in}= temp room condition

Q wall, in = 2.6*(1.2*3.3)*6.6 = 68 W

The south wall = U * A * (CLTD _{corr})

CLTD _{corr} For south wall= (CLTD + LM) * K + (25.5 – T_i) + (T_o – 29.4) * f

k = 0.83 for medium color

CLTD from (table 9-4 in Appendix A) group c wall at solar time 4 pm= 8

LM: latitude month,

From table (9-2 in Appendix A), Latitude 32° at June = -2.2

 $T_{in} = 22^{\circ}C, T_{out} = 32^{\circ}C$ $CLTD_{corr} = (8 - 2.2) * 0.83 + (25.5 - 22) + (32 - 29.4) = 11^{\circ}C$ Heat loss = 0.76 * 3.08*1.8*11 = 46.3 W From east wall CLTD corr = 11.08 Heat loss = 0.76*10.14*11.08 = 85.38 W Q floor = U * A* (T_{ground} - T_{in}) U = 1.92 w/m². °C Q = 1.92*.3.8*5.8*6 = 253.9 W Q_{Roof} = zero because the first floor condition Q_{door} = U*A*(To-Ti) U = 3 W/m². °C Q_{door} = 3 *2*0 = 0 W Q_{Window}:

1- Heat transmitted = $A^{*}(SHG)^{*}(SC)^{*}(CLF)$ SHG= solar heat gain factor (table 9.7 in Appendix A) SC= shading factor (table 9.8 and table 9.9 in Appendix A) CLF = cooling load factor (table 9.10 and table 9.11 in Appendix A) $Q = A^{*}(SHG)^{*}(SC)^{*}(CLF)$ Q = 2*675*0.95*0.3 = 384.75 W 2- Convection heat = $U^*A^*(CLTD_{corr})$ $U = 3.2 \text{ w/m}^2 \cdot ^{\circ}C$ $A = area = 2m^2$ CLTD _{corr} = (CLTD +LM) *k (25.5-T_i) + (T₀-29.4)*f From (Table 9-12 in Appendix A), CLTD = 8CLTD _{corr} = 14.1 $^{\circ}$ C $Q_{conv} = 3.2 \times 2 \times 14.1 = 90.2 \text{ W}$ The total heat from window = 474.9 W $Q_{light} = 10 \text{ W/m}^2$ The total heat = 10 * 22.04 = 220.4 W $Q_{people} = 1$ - sensible = $q_s * n * CLf$, $q_s =$ sensible heat From (table 4.2 in Appendix A), n = number of people in the space, CLF = cooling load factor $Q_{\text{people.sensible}} = 70*4*0.9 = 252 \text{ W}$ Latent = $q_l * n$, q_l From table 4.2 = 30 $Q_{lpeople,latent} = 30*4 = 120 \text{ W}$ $Q_{s,eqp} = Q_{sensible equipment} = q_s *CLf, q_s$ (from table 9.13 in Appendix A), CLf: cooling load factor $Q_{s} = 1100 \text{ W}$ $Q_1 = ql$ (from table 9.13 in Appendix A), =0 W $Q_{\rm sen,vent}$ = heat sensible ventilation

 $Q_{\text{sen,vent}} = 1.2 * \text{Vvent } *(\text{To-Tin}) = 1.2 * 30*(32-22) = 360 \text{ W}$ $V_{\text{Vent}} = \text{air change requirement}$ $Q_{\text{latent,Vent}} = \text{heat latent from ventilation}$ $Q_{\text{latent,Vent}} = 3 * \text{Vvent } *(\text{Wo-Wi}),$ $W_{\text{o}} \& W_{\text{i}} \text{from psychometric chart moisture content},$ $W_{\text{o}} = 18 \text{ g/Kg}, W_{\text{in}} 6 \text{ g/Kg}$ Q = 3 * 30*12 = 1080 W $Q_{\text{sen,tot}} = Q \text{ sensible total} = Q_{\text{wall in}} + Q_{\text{wall external}} + Q_{\text{floor}} + Q_{\text{roof}} + Q_{\text{door}} +$

 $Q_{window}+Q_{light}+Q_{people,sensible}+Q_{equipment sensible}+Q_{sensible ventilation} = 2792.88 W$

 $Q_{sen,tot} = 1.15 * Q$ sensible total = 1.15 * 2792 = 3211.8 W,

Where 1.15 is safety factor

 $Q_{Lat,tot} = Q$ latent ventilation+ Q latent equipment+ Q latent people= 1200W

Where $Q_{Lat,tot} = Q$ latent total

 V_{circ} , L/s = V circulation in litter per second =

 V_{circ} , $L/s = (Q_{Lat,tot}+Q_{sen,tot})/1.2*(T_{circ} - T_{in})$

 $(T_{circ} - T_{in}) = 10 \ ^{\circ}C$

 $V_{circ} = (1200 + 3211.8)/12 = 367.6 \text{ L/S}$

CFM = 2.2* V_{circ} = 2.2*367.6= 807 CFM

To determine the number of diffuser:

Of Diffuser per room if the dimension of diffuser is 40 cm * 40 cm we supply

300CFM

#Diffuser = # CFM/ 300

#Diffuser = 807 / 300 = 3 diffuser / room

In the same way; cooling loads calculate for all rooms in the building, as shown in the Appendix c.

Then, when calculate the cooling loads for all rooms in the building, the suitable outdoor & indoor machine can be select.

Chapter 3: HVAC Systems & duct design.

- **3.1. Introduction.**
- **3.2. Heating system.**
- **3.3 Ventilation.**
- **3.4 Air conditioning system.**
- 3.5. Indoor & outdoor.
- 3.5.1. Outdoor unit (Chiller).
- **3.5.2 Indoor unit (Fan Coil Unit F.C.U).**
- **3.6 Calculation and Duct design.**

3.1 Introduction:

Heating, ventilation and air conditioning (HVAC) is the technology of indoor and vehicular environmental comfort. Its goal is to provide thermal comfort and acceptable indoor air quality. HVAC system design is a sub discipline of mechanical engineering, based on the principles of thermodynamics, fluid mechanics, and heat transfer. Refrigeration is sometimes added to the field's abbreviation as HVAC&R or HVACR, or ventilating is dropped as in HACR (such as the designation of HACR-rated circuit breakers).

HVAC is an important part of residential structures such as single family homes, apartment buildings, hotels and senior living facilities, medium to large industrial and office buildings such as skyscrapers and hospitals, onboard vessels, and in marine environments, where safe and healthy building conditions are regulated with respect to temperature and humidity, using fresh air from outdoors.

Ventilating or ventilation (the V in HVAC) is the process of exchanging or replacing air in any space to provide high indoor air quality which involves temperature control, oxygen replenishment, and removal of moisture, odors, smoke, heat, dust, airborne bacteria, carbon dioxide, and other gases. Ventilation removes unpleasant smells and excessive moisture, introduces outside air, keeps interior building air circulating, and prevents stagnation of the interior air.

Ventilation includes both the exchange of air to the outside as well as circulation of air within the building. It is one of the most important factors for maintaining acceptable indoor air quality in buildings. Methods for ventilating a building may be divided into mechanical/forced and natural types.

3.2 Heating system:

Heaters are appliances whose purpose is to generate heat (i.e. warmth) for the building. This can be done via central heating. Such a system contains a boiler, furnace, or heat pump to heat water, steam, or air in a central location such as a furnace room in a home, or a mechanical room in a large building. The heat can be transferred by convection, conduction, or radiation.

3.3 Ventilation:

Ventilation is the process of changing or replacing air in any space to control temperature or remove any combination of moisture, odors, smoke, heat, dust, airborne bacteria, or carbon dioxide, and to replenish oxygen. Ventilation includes both the exchange of air with the outside as well as circulation of air within the building. It is one of the most important factors for maintaining acceptable indoor air quality in buildings. Methods for ventilating a building may be divided into mechanical/forced and natural types.

Mechanical or forced ventilation:

Mechanical, or forced, ventilation is provided by an air handler (AHU) and used to control indoor air quality. Excess humidity, odors, and contaminants can often be controlled via dilution or replacement with outside air. However, in humid climates more energy is required to remove excess moisture from ventilation air.

Kitchens and bathrooms typically have mechanical exhausts to control odors and sometimes humidity. Factors in the design of such systems include the flow rate (which is a function of the fan speed and exhaust vent size) and noise level. Direct drive fans are available for many applications, and can reduce maintenance needs. Ceiling fans and table/floor fans circulate air within a room for the purpose of reducing the perceived temperature by increasing evaporation of perspiration on the skin of the occupants. Because hot air rises, ceiling fans may be used to keep a room warmer in the winter by circulating the warm stratified air from the ceiling to the floor.

3.4 Air conditioning system:

An air conditioning system, or a standalone air conditioner, provides cooling and humidity control for all or part of a building. Air conditioned buildings often have sealed windows, because open windows would work against the system intended to maintain constant indoor air conditions. Outside, fresh air is generally drawn into the system by a vent into the indoor heat exchanger section, creating positive air pressure. The percentage of return air made up of fresh air can usually be manipulated by adjusting the opening of this vent. Typical fresh air intake is about 10%.

Air conditioning and refrigeration are provided through the removal of heat. Heat can be removed through radiation, convection, or conduction. Refrigeration conduction media such as water, air, ice, and chemicals are referred to as refrigerants. A refrigerant is employed either in a heat pump system in which a compressor is used to drive thermodynamic refrigeration cycle, or in a free cooling system which uses pumps to circulate a cool refrigerant (typically water or a glycol mix).

A simple stylized diagram of the refrigeration cycle:

- 1) Condensing.
- 2) Expansion valve.
- 3) Evaporator coil.
- 4) Compressor.

The refrigeration cycle uses four essential elements to cool.

The system refrigerant starts its cycle in a gaseous state. The compressor pumps the refrigerant gas up to a high pressure and temperature.

From there it enters a heat exchanger (sometimes called a condensing coil or condenser) where it loses energy (heat) to the outside, cools, and condenses into its liquid phase.

An **expansion valve** (also called metering device) regulates the refrigerant liquid to flow at the proper rate.

The liquid refrigerant is returned to another heat exchanger where it is allowed to evaporate, hence the heat exchanger is often called an evaporating coil or evaporator. As the liquid refrigerant evaporates it absorbs energy (heat) from the inside air, returns to the compressor, and repeats the cycle. In the process, heat is absorbed from indoors and transferred outdoors, resulting in cooling of the building.

In variable climates, the system may include a reversing valve that switches from heating in winter to cooling in summer. By reversing the flow of refrigerant, the heat pump refrigeration cycle is changed from cooling to heating or vice versa. This allows a facility to be heated and cooled by a single piece of equipment by the same means, and with the same hardware.

3.5 Indoor & outdoor:

3.5.1. Outdoor unit (Chiller):

Chilled water is a commodity often used to cool a building's air and equipment, especially in situations where many individual rooms must be controlled separately, such as a hotel. The chilled water can be supplied by a vendors, such as a public utility or created at the location of the building that will use it, which has been the norm.

Thin in the modern time the manufactured company developed the chiller to use it in heating sys, by convert the direction of the flow loop, thus, it can use for cooling and heating, & and contributed to reducing the initial costs (like install the system) and the running cost.

The chiller is connect to indoor unit by using pipe, and then to make air change in the room we use air diffuser, the air diffuser is connect the indoor unit by use iron duct.

The following picture show the outdoor machine Chiller:

Figure 5: This picture show the Chiller.

3.5.2 Indoor unit (Fan Coil Unit F.C.U):

A Fan Coil Unit (FCU) is a simple device consisting of a heating and/or cooling heat exchanger or 'coil' and fan. It is part of an HVAC system found in residential, commercial, and industrial buildings. A fan coil unit is a diverse device sometimes using ductwork, and is used to control the temperature in the space where it is installed, or serve multiple spaces. It is controlled either by a manual on/off switch or by a thermostat, which controls the throughput of water to the heat exchanger using a control valve and/or the fan speed.

Due to their simplicity and flexibility, fan coil units can be more economical to install than ducted 100% fresh air systems (VAV) or central heating systems with air handling units or chilled beams. Various unit configurations are available, including horizontal (ceiling mounted) or vertical (floor mounted).

Noise output from FCUs, like any other form of air conditioning, is principally due to the design of the unit and the building materials around it. A correctly selected

FCU, like some of those from the UK, can offer noise levels as low as NR25 or NC25.

The output from an FCU can be established by looking at the temperature of the air entering the unit and the temperature of the air leaving the unit, coupled with the volume of air being moved through the unit. This is a simplistic statement, and there is further reading on sensible heat ratios and the specific heat capacity of air, both of which have an effect on thermal performance.

The following picture show the indoor machine Fan Coil Unit:

Figure 6: Fan Coil Unit (F.C.U)

3.6 Calculation and Duct design:

Exhaust air = $V_{infltriation} = \frac{ACH * Room volume * 1000}{3600} = L/s$ ACH = number of change air per hour (from table 4.5 in Appendix A): ACH for living room = 5 ACH for kitchen = 15 ACH for office = 6 ACH for passage = 4 For room # G 16: Exhaust air $=\frac{5*22.04 * 3.3*1000}{3600} = 101$ L/s

Fresh air for this room from calculation the less than exhaust air but we must fresh air equal or greater than exhaust air

Fresh air for room # G 16 = 101 L/s.

M chiller (mass flow rate for chiller) = $\frac{\text{total cooling load (watt)}}{\text{cp } *\text{T}}$

Cp: specific heat for water = 4186 W/ Kg. $^{\circ}$ C

T = the amount of temperature exchange between air and water

$$M = \frac{1192326.3}{4186*6} = 47.4 \text{ L/s}$$

Pressure loss in pipe in general = 200 to 550 Pa/m

We assume the pressure loss in this network = 300 Pa/m

The longest path in this network = 208 meter including fitting

The head of pump chiller = 62.4 KPa

M/room = mass flow rate per room inlet the fun coil unit

m = cooling load / (4186 *6)

For room G16 the cooling load = 4504.3/(4186*6) = 0.179 L/s

The size of pipe (PVC plastic pipe) from figure 7-15a

The condition of selection: The velocity of water = (0.6 to 1.2 m/s), pressure loss =

300 pa /m

The variable known: mass flow rate and pressure loss, form graph we find the size of pipe.

The size of pipe in this room = 25 mm, and the return = 25 mm

The diffuser size 40 cm * 40 cm we supply 300 cfm

The diffuser size 60 cm * 60 cm we supply 400 cfm

The duct size: first step select velocity 5 m/s in main branch and we find the pressure loss and save this value and second step we make this value constant in other branch and we design the ducts For room G16 the calculation of supply air duct from fan coil unit to diffuser size:

Duct section	V(L/s)	V(m/s)	A(m²)	Size (rectangle)	Size (diameter)	pa/m
1	367	5	0.073	200*400mm	305 mm	1.05
2	245	4.5	0.054	200*300mm	281 mm	1.05
3	122	3.8	0.032	200*175mm	201 mm	1.05
4	122	3.8	0.032	200*175mm	201 mm	1.05
5	122	3.8	0.032	200*175mm	201 mm	1.05

(Hint: this Design if we want to add duct, diffuser & grill in the small rooms)

Table 5: Sample calculation for duct design

V: (l/s): mass flow rate of the air in the branch.

V: (m/s): velocity of air in the branch.

A: area of the section branch.

Pa/m: pressure loss.

Assume the velocity in the main branch 5 m/s and we calculate if area of the Section: A = mass flow rate / velocity = $0.367/5 = 0.073 \text{ m}^2$ Now calculate the diameter of section D = $(4 * \text{ A } / 3.14)^{0.5}$ = 305 mm From (table 10.2 in Appendix A) find the size as rectangle = 200 *400 mm From (figure 10.5a in Appendix A) find the pressure loss = 1.05 Pa/m Now the size in the sub section assume the pressure 1.05, find the velocity from (figure 10.5a in Appendix A) = 3.8 and , now calculate the diameter, and from (table 10.2 in Appendix A) find the size as rectangle. Size the duct exhaust air: Assume the velocity of air 5 m/s and the mass flow = 101 L/s Same step in the supply duct and the fresh air same as From table 9.2 in Appendix A; The CLTD for all directions equal: CLTD for north direction = 7.87° C CLTD for south direction = 11° C CLTD for west direction = 11.08° C Over all heat for inside wall = $2.6 \text{ W/m}^2.^{\circ}$ C Over all heat for floor = $1.92 \text{ W/m}^2.^{\circ}$ C Over all heat for external wall = .76 W/m².°C Over all heat for roof = .88W/m².°C T_{un} Condition room and place = 28.6°C T_{in} = 22°C T₀ = 32 °C

The duct for all rooms is calculate and design In the same way. (Asaad & Hammad)

Chapter Four: Water Consumption Estimation.

- **4.1. Introduction.**
- 4.2. Domestic water requirements estimation.
- 4.3. Water storage system.
- 4.4. System Design.
- 4.4.1 Pipe Sizing.

4.1 Introduction:

Water supply is an important aspect of life, so we should design an efficient system to supply the water requirements at any time, either for domestic uses or any other thing, such as firefighting. Water supply system depends on some factors:

1. Building type, building type describe the way by which the water is consumed, and its amount. For example homes, factories, offices, hospitals and schools, each one of these has a different characteristic, which make its water requirements different, for our case the building is designed for students dorms.

2. The number of people live in the building, each person consume fixed amount of water daily.

3. Water storage system, water storage system is important side of the system. This should be build based on the suitable data about the daily consumptions, and the time period between each supply from the utility.

4. Supply schematic and its related characteristic (pipe sizing, pumping ... etc.).

5. Waste water amount per occupant, and its percentage of the total amount.

6. Amount of water needed for the fire protection system, this depend on the class of building hazard, and the area of the building. (Stein, 1997)

7. Type of fire protection system, since each type consumes water in different amount. For example, water cabinet consumes water more than water sprinkler.

4.2. Domestic water requirements estimation:

The largest water requirement in the home can be seen in the toilet flushing, laundry, and showers. This two side represent nearly 85% of total uses. The rest uses (kitchen, cleaning.....etc.) occupy only 15%, the figure below show the water source of uses in home:

35

In order to estimate the water requirements in the home, the water volume in liters is estimated per person. This estimation based on a universal code for hot and cold water requirements. However, the universal code is not valid in Palestine.

Moreover a Girl dorm does not use water as residential homes, but in lower amount, this may be due to:

1. Students usually spend most of his time at the university, so the water amount required is not necessary the same as in residential uses.

2. The building contains a laundry room, but most students go homes for laundry. The major water source of use will be the toilet flushing and may a shower every day.

Because of this the water amount in the dorms assumed to be 50% of the universal consumptions. This amount tabulated as below:

Type of building	Consumption per occupant (L/day)	Peak demand per occupant (L/day)
Factories	22-45	9
Hospitals(general)	160	30
Hospitals(mental)	110	22
Hostels	90	45
Hotels	90-160	45
Houses and flats	90-160	45
Offices	22	9
School(boarding)	115	20
School(day)	15	20

Table 6: Universal water consumptions. Universal water consumptions.

4.3. Water storage system:

The suitable water storage system should be designed in order to:

- 1. Provide for an interruption of supply.
- 2. Accommodate peak demand.
- 3. Provide a pressure (head) for gravity supplies.

Water storage system design requirements:

1. Time period between each supply from the utility.

- 2. The daily water consumption per person and the total consumption.
- 3. Total storage tank or well can be calculated based on the previous.

4.4 System Design:

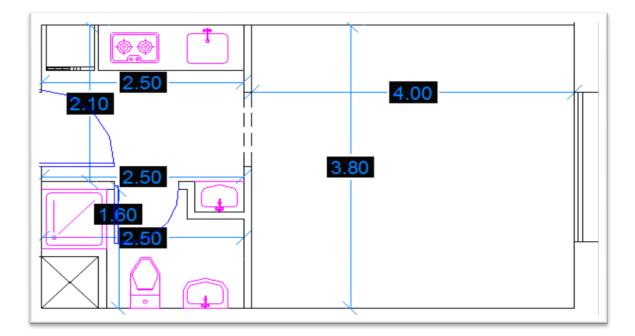
4.4.1 Pipe Sizing:

To size the pipe, we follow this steps:

To size the pipe, we follow this steps:

- 1. From Table 6-14: take the fixture unit for every fixture type.
- 2. From table 6-2: take the flow rate for every fixture.
- 3. Calculate the total flow at all pipe section.
- 4. From Table 6-3a & 6.8: take the suitable main diameter pipe.
- 5. From table 6-15: take the pipe size for every fixture.

In this project, there are several plumbing fixture usage such as shower, water closet, lavatories and sink.


There is reference to the code for each unit a certain number of fixture unit for example: sink = 1.5 fixture unit, But there are network design for each some of plumbing fixture usage Collector cold water and hot water is distributed to these units and is calculated flow water in the pipes, and from the code we take size of pipe.

The Fixture unit that used in our project is shown on the following table with the

fixture unit & pipe size for every fixture:

Fixture Type	Fixture Unit (FU)	Fixture Pipe size (in)	Flow rate (Gpm)	Total FU For room
Sink	1.5	1/2	3.8	1*1.5=1.5
Shower	1.5	1/2	3.8	1*1.5=1.5
Lavatories	.75	1/2	3.8	2*0.75=1.5
water closet	3	1	10.8	3
Total	·	·	·	7.5

Table 7: the Fu, pipe size & flow for every fixture type.

Figure 7: Sample Room

After calculate the total Fu (7.5 FU); the flow rate equal 12.3 GPM for the supply pipe, then when use 0.8 diversity factor; the total flow rate is = (12.3 * 0.8 = 9.84 Gpm), so the suitable pipe size is equal 1".

Pipe size calculations for main supply:

By using the up feed distribution system in which the water is supplied to the building water tank.

Before us calculations should now some information's:

- 1. The main pressure is equal 50 psi.
- 2. The friction loss through the water meter equal 7.7psi by chart water meter
- 3. The total equivalent length from the source to critically fixture unit is 42 meter and equal 138.15 feet.
- 4. The static pressure equal 17.71 meter equal 58.25 feet and equal 25.22 psi
- 5. Flow of the total building 11.6 $\frac{\text{liter}}{\text{sec}}$ equal 183.86 US gpm

Main Pressure = Static pressure+ Friction head loss

Static pressure = $17.71 \times \frac{0.433}{0.304} = 25.22psi$

Friction head loss = 50-25.22-7.7= 17.08psi

Suppose that the diameter of the water meter is $\phi 3$ "

Then: friction head loss water meter 7.7 psi Then: friction head loss = 17.08psi Equivalent length == 138.15 × 1.5 = 207.22 feet Uniform design friction loss = $\frac{Availble head loss}{Equivalent length}$ = $\frac{17.08 \times 100}{20700}$ = 8.24 $\frac{psi}{10050}$

$$=\frac{10000000}{207.22} = 8.24 \frac{pst}{100ft}$$

Diameter of the water meter is ø 3" at 8 psi

The diameter of the main feeder tube of the building $\phi 2.1/2$ " at 8.24 psi

And velocity 10.5 FPS

(Stein, 1997)

FRICTION HEAD : IRON OR STEEL PIPE

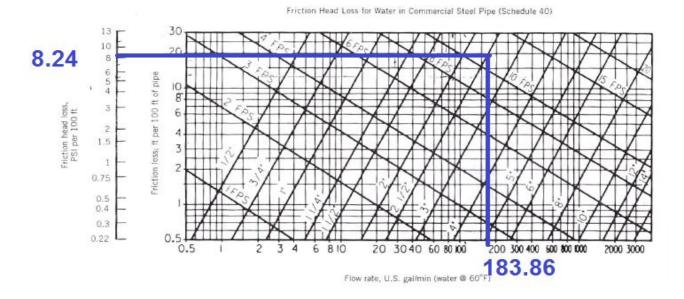


Figure 8: Friction Head loss in black steel pipe.

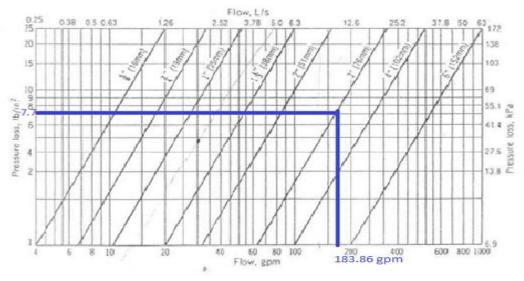


Figure 9: Pressure loss in disk-type water meter.

Pump Selection:

Final step calculate the pressure we supply this network.

From the code there for each plumbing fixture usage pressure flow, and the pressure loss in the pipe and gravity weight of water from elevation.

The tank of cold water Placed on the roof of the building.

The tank of hot water placed on the basement of the building.

The tank of fire fitting placed on the roof of the building.

This calculation shows the head of pumps for three system.

The cold water and by reference the Auto cad drawing.

First step calculate the pressure loss in the pipe:

Cold Water Pressure:

Section A-B = 30 pa /m * 8 = 240 pa Section B-C = 13 pa/m * 6.7 = 87.1 pa Section C-D = 28pa/m*4.45 = 124.6 pa Section D-F = 18 pa/m * 3.47 = 62.46 pa Section F-M = 15pa/m * 5.51 = 82.65paSection M-G = 30pa/m * 5.11 = 153.3 pa Section G-L = 41 pa /m *8.83 = 362.03paSection L-H = 200 pa/m *3.49 = 698 pa The total pressure loss * 1.8 = 1810.14*1.8 = 3258.25pa The gravity weight = -3*9.81 = -29.43 kpa Pressure flow = 81.6 kpa The head of pump = 81.6 + 3.26 - 29.34 = 55.86 kpa

Tank capacity:

We assume the pump will work 1 hour per day, so the tank capacity can determined by use the following equation:

The capacity of tank = $\frac{\text{flow rate } * \text{ # hour } * 3600}{1000} = \text{m}^3 = \frac{11.6 * 1 * 3600}{1000}$ = 42 m³

Boiler Selection:

To select boiler we use the number of fixture method in the room:

The following table show the quantity of consumption for every fixture:

Fixture	Fixture	
	Hand	2
Lavatory	clean	2
	Hair clean	6
Shower		13
Bathtub		15
Sink		5

Table 8: Water quantity consumption for every fixture.

To determine the capacity volume for electrical boiler:

The consumption for every fixture = capacity * # of fixture * # of use

Lavatory = (2+6) * 2 * 2 = 32 litter.

Sink = 5 * 1 * 1 = 5 litter.

Bathtub = 15 * 1 * 2 = 30 litter.

Total capacity = 32 + 5 + 30 = 67 litter.

We use electrical boiler with 80 litter capacity, produced by Ariston company;

model VLS PLUS 80.

(التعليم، 2011)

4.5 Sanitary Drainage system:

The main object of drainage system is to carry the waste water from the fixture unit to manhole and from the manhole to the septic tank or to the municipal sewage system.

The provision of drainage systems: Sanitary drainage.

4.5.1 Drainage system components:

The main components of drainage system are:

- Fixture units .
- Trap.
- Clean out .
- Drainage pipe.
- Stack and vent pipes .
- Manholes
- Septic tank or municipal sewage system
- Accessories.

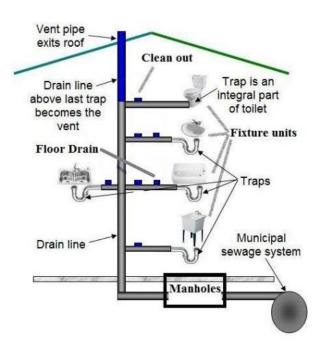


Figure 4.4: Drainage system components.

This project deals with two types of wastewater which is gray and black water, the separation of waste water will rationalize consumption of water and reuse it in irrigation and in flushing water closet.

4.5.2 Design & pipe sizing:

Pipe size is calculated by using a concept of fixture units (DFU) instead drainage water. This unit takes into account not only the fixtures water use but also its frequency of use, which is the DFU has a built–in diversity factor. This enables us, exactly add DFU of various fixtures to obtain the maximum expected drainage flow.

for a particular number of drainage fixture units, according to Tables (10.1), (10.2), (10.3), (10.5) in Appendix B.

These tables are built into the fill factors, which are:

- 50% fill in branches (horizontal pipes)
- (25-33)% fills in stack (vertical pipes)
- 50% fill in building and swear drains

The recommended velocity for drainage piping:

- For branches the recommended velocity is 2 ft/s
- For building pipes the recommended velocity is 3 ft/s
- For greasy flow the recommended velocity is 4 ft/s

Velocity of water flow through drainage piping depends on:

- Pipe diameter
- Slope
- Minimum slope requirements for horizontal drainage piping:
- For pipes of diameter ≤ 3 " the minimum slope is 1/4"/ft (2%)

Design procedure:

- 1. Calculation of the number of DFU for each branch by using Table (10.3).
- 2. Calculation of the number of DFU for each stack.
- 3. Choosing the branch pipe diameter by using Table (10.2).
- 4. Choosing the stack pipe diameter by using Table (10.2).
- 5. Comparing the stack pipe diameter with branch diameter.
- 6. Choosing the building drain pipe diameter by using Table (10.2).

To achieve the recommended velocities which are 3 fps in building drain, it will be chosen the slope and flow velocity in building drain by using Appendix

B. (10.1).(10.5)

Sample calculation:

From Table 10.2, take the fixture unit of every type fixture, and from table 10.3 we take the size of every fixture; as shown in the following table:

Fixture	DFU	Size
Water Closet	6	3"
Lavatory	2	$1\frac{1}{2}$ "
Shower	2	$1\frac{1}{2}$ "
Floor drain 2"	3	2"
Floor drain 4"	6	4"
Trap 2"	3	2"
Trap 2" Trap 4"	6	4"

Table 9: Sizing & DFU for every fixture.

But the general sizes that used in Palestine work since not produce this size like $1\frac{1}{2}$ " are; the size are shown in the following table:

Fixture	Size
Water Closet	4"
Lavatory	2"
Shower	2"
Floor drain 2"	2"
Floor drain 4"	4"
Trap 2"	2"
Trap 4"	4"

Table 10: General size use in Palestine Shops & works.

To select the suitable pipe size of the branch, stack & building stake; We follow the following steps (The following size for stack #1):

- 1. From Table 10.3; we select the require size for any fixture.
- 2. From Table 10.2:

- Under (any Horizontal) select the size of branch; for stack 1 pipe branch size =4".
- Under (Stack more than 3 total at one story) select the size of stack; for stack 1 pipe branch size =4".
- 3. From Table 10.2select the size of building drain pipe.

Fixture type	DFU	size
Third branch	23	4"
Third to second floor stake	23	4"
Second branch	23	4"
Second to First floor branch	46	4"
First branch	23	4"
First to Ground stake	69	4"
Ground Branch	23	4"
Ground to building drain	92	4"

Table 11: Sizing of stack1.

# of stake	Total DFU	Diameter	Slope%
1	128	4"	1/4
2	256	5"	1/4
3	256	5"	1/4
4	256	5"	1/4
5	256	5"	1/4
6	128	4"	1/4
8	230	5"	1/4
9	200	5"	1/4
11	256	5"	1/4
12	256	5"	1/4
14	128	4"	1/4
15	288	6"	1/4
16	256	5"	1/4
17	128	4"	1/4

Table 12: Sizing of black water stacks and building drain.

4.5.3 Manhole Design:

The main purpose of the manholes is to carry the water from stacks to various drainage points.

The design of the manholes depend on the ground and its nature around the building, and so as the first manhole height should not be less than 60 cm, and the depth of the other manholes will depend on the distance between the manholes and the slope of the pipe that connecting them.

According to the table below, it will be estimated the diameter of the manhole according to their depth. (Stein, 1997)

Depth(cm)	Diameter(cm)
70-80	60
80-140	80
140-250	100
250- ∞	125

Table 13: Diameter of the manhole according to their depth.

Manhole Calculation:

The depth of the first manhole is 50 cm, the calculation of the second manhole done according to the first manhole and so on. Using these equations does the calculations:

- Depth: $(M2=M1+(Slope \times Distance)+5+Level Difference)$ cm
- Top level: Manholes face level on the ground
- (Invert level = Top level Depth) in m
- Outlet level = (Depth 0.05) in m

The figure below shows the details of the manholes:

(sewerhistory.org, 2004)

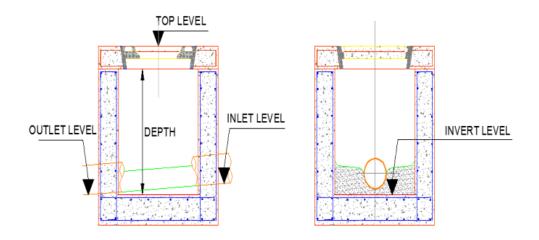


Figure 10 : Manholes details

Manhole	Top Level	Invert	Outlet	Depth	Diameter	Cover
Number	(M)	Level (M)	Level (M)	(Cm)	(Cm)	Туре
1	+0.00	-0.6	-0.55	60	60	Concrete
2	+0.00	-0.72	-0.67	72	60	Concrete
3	+0.00	-0.85	-0.80	85	80	Concrete
4	+0.00	-1.03	-0.98	103	80	Concrete
5	+0.00	-1.16	-1.11	116	80	Concrete
6	+0.00	-1.28	-1.23	128	80	Concrete
7	+0.00	-1.51	-1.46	151	100	Concrete
8	+0.00	-1.74	-1.69	174	100	Concrete
9	+0.00	-1.90	-1.85	190	100	Concrete
10	+0.00	-2.13	-2.08	213	100	Concrete
11	+0.00	-0.6	-0.55	60	60	Concrete
12	+0.00	-0.76	-0.71	76	60	Concrete
13	+0.00	-0.99	-0.94	99	80	Concrete
14	+0.00	-1.22	-1.17	122	80	Concrete
15	+0.00	-1.38	-1.33	138	80	Concrete
16	+0.00	-1.66	-1.61	166	100	Concrete
17	+0.00	-1.71	-1.66	171	100	Concrete

The result calculation manholes is listed in the tables below:

Table 14: the depth of manholes & Pipe diameter. (sewerhistory.org, 2004)

4.6 Storm Drainage:

The design of the rain collection piping, whether exterior gutters, and leaders, or interior conductors and drain depends upon three factors:

- The amount of rain fall in a specified period of time.
- The size of the area being drained.
- The degree of pipe fill, that is whether a pipe or gutter runs 50%, 33% or 100% fill

The general rule for the distribution of floor drains (FD):

- Every 100 m² from roof area needs one 4" FD.
- The roof area of this building is 1200m², and therefore needs Sixteenth 4" FD.

Chapter Five: Fire Protection System:

- **5.1 Introduction.**
- **5.2 Types of firefighting system:**
- **5.2.1 Fire extinguishers.**
- 5.2.2 Fire hose reel.
- 5.2.3 Fire hydrant system.
- 5.2.4 Automatic sprinkler system.
- **5.3 Pump selection.**

5.1 Introduction:

Firefighting or fire protection system is another important service in the building you live in. It protects your life, your home and your property. In order to design the suitable firefighting system, we should be familiar with its components. Fire protection system consists of main component such as:

1. Firefighting water storage tank, this may be a large tank, or a large well near the building.

2. Pumping system, the pumping system for firefighting consist mainly of three types of pumps. The first is the primary, this is usually an eclectic pump. The second pump is diesel powered and it is used directly when there is no electricity. The last one is the jokey pump; this pump used to keep the suitable pressure in the pipeline. However, the pump size usually depends on the area covered by the cabinet and the number of cabinet.

3. Piping system. Piping system extends from the storage tank to the water supplier through the pump.

The previous component of firefighting system is variable and can be determined based on the class of hazard of the building. These classes of hazard are three: 1. Low (light) hazard: this type is used when no flammable materials exist. And the fire is expected to release low amount of heat. This is common in offices, classrooms, meeting rooms, residential, dorms...etc.

2. Ordinary (moderate) hazard: this is used when the amount of combustible materials is moderate. Moderate amount of heat is expected to release. This can be used in malls, light manufacturing or research operations, parking garages, workshops.

3. Extra (high) hazard: high flammable material is present. High quality and quick expanded fire is expected. This usually used in air craft, laboratory, car repaid garages, coating, storage areas.

Due to these requirements and equipment, we note that the firefighting system is too expensive, and the building standard in Palestine is lower than this. So the fire protection system in the dorms will be limited in a main pipe line, extended from the main water tank for protection, and fire cabinet furnished with foam fire extinguisher.

5.2 Types of firefighting system:

- Fire extinguishers.
- Fire hose reels.
- Fire hydrant systems.
- Automatic sprinkler systems.

5.2.1 Fire Extinguishers:

Fire extinguishers are provided for a 'first attack' firefighting measure generally undertaken by the occupants of the building before the fire service arrives. It is important that occupants are familiar with which extinguisher type to use on which fire.

Most fires start as a small fire and may be extinguished if the correct type and amount of extinguishing agent is applied whilst the fire is small and controllable.

5.2.2 Fire Hose reel:

Fire hose reel systems consist of pumps, pipes, water supply and hose reels located strategically in a building, ensuring proper coverage of water to combat a fire. The system is manually operated and activated by opening a valve enabling the water to flow into the hose that is typically 30 meters away. The usual working pressure of a firehouse can vary between 8 and 20 (116 and 290 psi). Fire hose reels are provided for use by occupants as a first attack firefighting measure but May, in some instances, also be used by firefighters. When stowing a fire hose reel, it is important to first attach the nozzle end to the hose reel valve,

then close the hose reel valve, then open the nozzle to relieve any pressure in the wound hose, then close the nozzle.(2016 (منقوش)

Figure 11: Fire hose reel

5.2.3 Fire Hydrate System:

Fire hydrant systems are installed in buildings to help fire fighters quickly attack the fire.

Essentially, a hydrant system is a water reticulation system used to transport water in order to limit the amount of hose that fire fighters have to lay; thus speeding up the firefighting process.(2016 (منقوش)

Fire hydrants are for the sole use of trained fire fighters (which includes factory firefighting teams). Because of the high pressures available serious injury can occur if untrained persons attempt to operate the equipment connected to such installations. Fire hydrant systems sometimes include ancillary parts essential to their effective operation such as pumps, tanks and fire service booster connections. These systems must be maintained and regularly tested if they are to be effective when needed. (K.Y.Tao, 2009)

Figure 12: Fire Hydrate System (normteknik, 2015)

5.2.4 Automatic Sprinkler System:

Time is essential in the control of fire. Automatic sprinkler systems are one of the most reliable methods available for controlling fires. Today's automatic fire sprinkler systems offer state of the art protection of life and property from the effects of fire. Sprinkler heads are now available which are twenty times more sensitive to fire than they were ten years ago.

A sprinkler head is really an automatic (open once only) tap. The sprinkler head is connected to a pressurized water system. When the fire heats up the sprinkler head, it opens at a preset temperature, thus allowing pressurized water to be sprayed both down onto the fire and also up to cool the hot smoky layer and the building structure above the fire. This spray also wets combustible material in the vicinity of the fire, making it difficult to ignite, thereby slowing down or preventing fire spread and growth. When a sprinkler head operates, the water pressure in the system drops, activating an alarm, which often automatically calls the fire brigade via a telephone connection. (K.Y.Tao, 2009)

Figure 13: Sprinkler. (normteknik, 2015)

5.2.5 Landing valve:

A firefighting landing valve is a core part of the hose system that acts as a manual stop valve giving you complete control over your firefighting system. By rotating the landing valve handle anti-clockwise, you can simply activate the water flux in the firefighting system.

Everybody can benefit from our top notch and non-stop supply of the landing valve with many different connectors (including but not limited to). Our company's top priority is satisfying your needs and even above that. Keeping all our standards intact, we yet focus on keeping these priorities of our customers in mind at every step of the manufacturing process of the landing valve. And this is not limited to just the production itself, it also encompass the continuous improvement processes that we employ to make our landing valves, and products in general, better and safer. (K.Y.Tao, 2009)

Figure 14: Landing valve. (normteknik, 2015)

5.3 Pump Selection:

In our project we use landing valve & cabinet, the Flow rate for this type is 250Gpm & 100Gpm.

Pressure loss in the pipe:

We divide the pipe in the building to section, as shown in the Auto Cad planes, to calculate the Pressure loss, the following steps is show how to calculate the pressure loss:

Section 1-2 = .234psi/ Ft* 9.51 Ft = 2.22 psi

Section 2-3-4 = .05 psi /Ft* 114.83 Ft = 5.74 psi

Section 4-5 = .445psi /Ft *7 Ft = 3.115 psi

The total pressure loss = 10.8*1.8 = 19.44 psi = 133 Kpa

The gravity weight of water = -3 m * 9.81 Kpa/m = -29.34 Kpa

Pressure flow 6.9 bar

The total head = 6.9 + 1.33 - 0.29 = 8 bar

Jokey pump connected series with the main pump and the head of jokey pump = 8.4 bar and flow rate = 10 Gpm And the main function of jokey pump support the main pump, if the shortage has become the pressure network From Ebara Catalog company: Electrical Pump×2: Model: 64_FSPA, Q= 500 Gpm, Head: 126 psi. Jockey Pump: Model: SFP 50 – 20EH , Q= 50 Gpm, Head= 129 Psi. Hint: Review the catalog in appendix B.

(K.Y.Tao, 2009)

Chapter Six: Bill of quantity (BOQ):

Item No.	Description	Unit	QTY.	Unit Rate \$	Total \$
	Mechanical works				
	Preamble:				
	Water Tanks, Sanitary Fixtures and sanitary				
	fixture accessories shall all be measured per				
	piece and paid for according to their unit rates.				
	All pipes, whether domestic and firefighting,				
	supply pipes, sewage drainage UPVC pipes				
	from sanitary fixture to the final disposing				
	point (including vent and stack pipes), storm				
	water UPVC drain pipes, measured at actual	•			
	and paid for in linear meters according to the				
	corresponding bill item. Floor drains and traps,				
	roof drains, as well as, clean-outs, and the like,				
	shall be measured per piece and paid for				
	accordingly and in line with the corresponding				
	unit rate. Manholes, gullies and the like shall be				
	measured in numbers. Rates of all fitting, fixtures appliances, and pipe laying shall				
	include supply of material; workmanship;				
	installation; testing; adjusting; balancing and				
	instantion, testing, aufusting, balancing and				
	commissioning. Rates to include also all pieces				
	and fittings including bypasses, floats,				
	automatic vents, vent and stack mesh covers,				
	and non-return valves, all needed to complete				
	the works according to specifications and				
	Engineer's satisfaction. This shall also bedding,				
	backfilling and benching and all works				
	connected with pipe laying; all ties, sleeves,				
	joint, tie bolts and rods, hangers and brackets,				

	and the like.				
	HVAC system	m			
	Air conditioning Chiller system: Supply and				
	installation testing and commissioning of the				
	following spilt unit, ceiling mounted cassette				
1	and wall mounted type indoor unit, complete				
	with electrical connections				
1.1	Outdoor unit (Chiller) Alberta Company				
A.		Unit	1	20000	20000
	model number (APSa270-3S, Lwt=50) Chiller				
1.2	Indoor unit (Fan Coil Unit)				
Α.	PCC/PFC5-L-85-65-27	Unit	13	1000	13000
В.	PCC/PFC6-M-76-63-26	Unit	10	1000	10000
C.	PCC/PFC6-M-78-6-3-26	Unit	2	1000	2000
D.	PCC/PFC3-H-76-67-27	Unit	4	1000	4000
E.	PCC/PFC4-H-85-67-27	Unit	2	1000	2000
F.	PCC/PFC6-M-85-63-26	Unit	5	1000	5000
G.	PCC/PFC8-M-80-63-26	Unit	19	1000	19000
H.	PCC/PFC6-H-78-65-26	Unit	14	1000	14000
I.	PCC/PFC4-L-76-63-27	Unit	4	1000	4000
J.	PCC/PCF5-L-80-63-27	Unit	4	1000	4000

К.	PCC/PCF5-L-80-63-27	Unit	2	1000	2000
L.	PCC/PFC6-H-85-63-26	Unit	2	1000	2000
M.	PCC/PFC4-H-78-63-27	Unit	6	1000	6000
N.	PCC/PFC8-L-78-63-26	Unit	35	1000	35000
O.	PCC/PFC5-M-76-63-27	Unit	1	1000	1000
Ρ.	PCC/PFC12-M85-67-26	Unit	6	1000	6000
Q.	PCC/PFC3-M-80-63-27	Unit	1	1000	1000
R.	PCC/PFC3-H-76-65-27	Unit	1	1000	1000
S.	PCC/PFC8-L-78-67-26	Unit	4	1000	4000
Т.	PCC/PFC5-M-85-67-26	Unit	3	1000	3000
U.	CB/CBP12-H-76-67-16	Unit	7	1000	7000
V.	PCC/PFC3-H-85-67-27	Unit	6	1000	6000
W.	PCC/PFC4-H-8063-27	Unit	15	1000	15000
X.	PCC/PFC5-H-80-65-27	Unit	6	1000	6000
Y	PCC/PCF5-H-85-65-27	Unit	3	1000	3000
Z.	PCC/PFC5-H-78-67-27	Unit	15	1000	15000
AA.	PCC/PFC4-H-78-67-27	Unit	6	1000	6000
AB.	PCC/PFC5-L-85-67-27	Unit	3	1000	3000
AC.	PCC/PFC4-M-76-63-27	Unit	3	1000	3000
AD.	PCC/PFC5-M-76-67-27	Unit	6	1000	6000
AE.	PCC/PFC5-L-76-67-27	Unit	6	1000	6000
AF.	PCC/PFC4-L76-67-27	Unit	3	1000	3000
AG.	PCC/PFC5-M-76-65-27	Unit	3	1000	3000
AH.	PCC/PFC12-M-80-6526	Unit	3	1000	3000
	ed Forward	I	<u> </u>		225000

otal Price for previous calculations(tables)					
Item No.	Description	Unit	QTY.	Unit Rate	Total
1.3	Connection Duct: Insulated Galvanized duct to move				
	chilled air from the chiller to F.C.U				
A.	Supply, install, test and commission galvanized air ducts of	430	M ²	35	15050
	various thicknesses FOR ventilation as required in				
	(ASHRAE) and as described and detailed on drawings,				
	including hanging, digging, sleeves, and all fittings needed				
	as drawings and supervision engineer approval.				
	Ventilation: Supply, install, and connect, testing and				
4.4	commissioning of, inline centrifugal fan, Shall include all				
1.4	required electrical connections as per specifications,				
	drawings and related codes.				
Α.	CFM in wall fan	Unit	4	1200	4800
B.	CFM in wall fan	Unit	4	1300	5200
C.	CFM in wall fan	Unit	4	1600	6400
D.	CFM in wall fan	Unit	4	1700	6800
2	Water supply				
	Supply, install, test and commission water supply				
	pump set (factory assembled), one duty, one stand-by,				
	IP54 protection, diaphragm type. The unit price shall				
	include pressure vessel, electric control panel,				
	electrical wiring, galvanized steel frame, inertia base,				
	vibration isolators, concrete base and all required				
	valves and fittings as detailed on the drawings.				

2.1	Distribution pipes Supply: install, test and commission ML 2280121 Cross-linked polyethylene (PEX) pipes to DIN 16892/3, 20 bar working pressure, for cold and hot water distribution from metal water pipes to sanitary fixtures, complete with sleeves and service valve for each connection. The unit price shall include rubber ring seal, brass elbow/adapter inside PVC termination box built in wall for connection with the sanitary fixtures, dielectric unions, excavation, bedding, backfilling, chasing in wall and all works required as shown on drawings, specifications and P.M. instructions. 16 mm O.D. x 2.2mm thick, sleeve 25 mm diameter.				
Α.	1/2" Diameter	2050	MI	0.8	1640
В.	3/4" Diameter	132	MI	1	132
2.2	Galvanized Steel Pipes: install, test and commission galvanized steel pipe work to ASTMA53 grade "A", schedule (40) for the domestic hot and cold water supply pipe work up to the water outlet. The unit price shall include valves, expansion joints, pressure regulators, air vents, fittings and all accessories and works required to complete the work as shown on drawings, specifications and P.M. instructions.				
A.	1" Diameter	365	MI	25	9125
B.	1 1/4" Diameter	260	MI	30	7800
C.	1 1/2" Diameter	260	MI	38	9880
2.3	Supply and installation of collector complexes and pipesFor hot and cold waterTo connect to sanitary cutting sitesAnd the proposed boilers and washing machines16 mm diameter pipesThe quality of PAL PEX is certifiedPalestinian specificationsCoated with PVC outer shell 32mm and25 mm diameter with all necessaryOf brass elbow and copper eyesItalian-made toast firstEquipped with a padlock on each outletAnd a metal cabinet of painted ironThermally and white color is final and soAs requiredThe price includes all necessary gaskets				

	Automatic Italian Record and air relief valve				
	Make the first toast on each collector				
	The price includes all that is needed for installation				
	Installation, testing and operation				
	Specifications and instructions of the supervisor				
	engineer				
	Price per eye 1 "/ 16 mm and 1.25"/16mm				
Α.	1.25" two out late	Unit	0	0	0
В.	1.25" three outdate	Unit	154	12	1848
C.	1.25" Four out late	Unit	12	12	144
D.	1" two outdate	Unit	4	10	40
E.	1" three out late	Unit	316	10	3160
F.	1" Four outdate	Unit	12	10	120
J	metal cabinet	unit	90	15	1350
2.4	Air vents 1/2"	Unit	200	5	1000
2.5	Supply and install hot water cylinder electrical heater, of 80 liter capacity, (approved by Palestine Standards Institution) located as shown on drawings with pressure not less than 3 bar and electrical capacity 2KW price include, valves, fitting, electrical connections, automatic air vent, connection from and to collectors and drain line pipe to the nearest floor drain and any other necessary parts and accessories to complete works per specifications and as directed by Engineer.	Unit	90	400	36000
Total Price for	previous calculations(tables)	<u> </u>		1	2360489
					1

2.6	Fittings:				
	Supply, install, test and commission, water tank, water pump, including air vent, check valve, strainer, connection to municipality's potable water supply network, fittings, and all accessories and works required to complete the work as shown on the drawings and as per the preamble, specifications and the supervision engineer's requirements.				
A.	1" strainer	No.	14	7	98
В.	Check valve	No.	1	6	6
C.	25mm*1" copper nipple record	No.	14	6	84
D.	¹ / ₂ " copper elbow	No.	1500	1.5	2250
2.7	Water tank:	No.	90	114	10260
	. Supply and installation of cold water tanks				
	On the plastic surface				
	According to the drawings and specifications				
	Capacity 500 liters and price includes rules				
	Ferried iron also has all the pieces				
	Necessary for the grid with water supply				
	For apartments with all necessary connections				
	Ventilation and taps, and connecting and also numbering				
	Per tanks by plastic plates and so on				
	Schemes and instructions of the supervisor.				
2.8	WATER METER:	NO	90	400	36000
	Supply and install Water meter inside steel box, as per specification, drawings and supervisor engineer.				
	Price includes all galvanized steel main water pipes (Ø 1") or more, (Class A and approved by Palestine Standards Institution) with asphalt protection (factory covered), laid underground with all necessary fittings				
	e.g. elbows, T's, unions, stop valves, non-return valves, automatic air vents, of best quality (Class A				

	and approved by Palestine Standards Institution).				
3	Rain Water pipes: -U.P.V.C rain(storm) water pipes down to a freedischarge with wired mesh above ground level, withall required hanging accessories, fittings and ventcaps, all as shown in drawings, specifications, andapproval of supervisor engineer.U.P.V.C Pipe of Æ 4 -inch diameter.	NO	12	15	180
	Waste and Drainage System				
3.1	Vertical and Horizontal UPVC Pipe Supply: install UPVC pipes and fittings similar to local made P.S SN 8.The rate shall include all needed connections and all types of fittings caps, all done according to drawings, specifications and the approval of the supervision engineer.				
Α.	4" Diameter	540	ML	80	43200
B.	5" Diameter	310	ML	90	27900
C.	6" Diameter	85	ML	100	8500
D.	8" Diameter	90	ML	120	10800
E.	10" Diameter	60	ML	140	8400
F.	12" Diameter (As Request)	0	ML	0	0
3.2	Floor Drain Supply, install, testing and commissioning of, 4"chrome plated threaded 15x15cm cast brass cover, multi inlet adjustable with trap floor drain. Including, floor clean out plug, HDPE siphon or equivalent and necessary accessories, connections with fixtures and main drain pipes. As be drawings, specifications and related codes.	NO	226	80	18080
Total Price fo	r previous calculations(tables)	<u> </u>	1		2517567

0.0			000	70	45000
3.3	$\frac{\text{Clean Out}}{\text{Supply, install, testing and commissioning of the}}$ Supply, install, testing and commissioning of the following, HDPE or equivalent, non-adjustable 15x15 cm stainless steel cover, and floor clean out with gas and water tightness ABS plug and necessary accessories as per drawings, specifications and related codes. (Ø 4")	NO	226	70	15820
3.4	Manholes Supply and install PRE- CAST concrete manholes of 15 cm thick walls and base with heavy duty cast iron covers and frames of 25 tons load strength with all necessary excavation back filling as specified to the required depth with steps of galvanized pipe of 1/2" benching and connecting it to main city manholes as shown in drawing and in accordance to specifications and approval engineers.				
А.	Manholes Ø 60 cm clear size	NO	4	350	1400
В.	Manholes Ø 80 cm clear size	NO	7	450	3150
C.	Manholes Ø 100 cm clear size	NO	6	550	3300
	Sanitary Fixture and Their Accessories				
4	Lavatory Supply and installation of porcelain wash basin glazed white (from creavit or equivalent) with chrome plated mixer adoption of the supervising engineer) half leg measuring 56×42 cm and isolate it from the wall using the Sika Anti-gray color of the rot with water mixer (of the finest international standards, according to the supervising engineer adoption) and Siphon and all chrome-plated The price includes valves angle 13 mm chrome holder soap of the finest varieties mirror 40×60 cm with aluminum frame and providing sink series and rubber stopper and all necessary for installation, operation and drainage to the nearest packet assembly floor drain , and P.V.C Trap1.1/2" to floor drain . according to the supervising engineer.	NO	190	400	76000

	or previous calculations(tables)				26172
4.1	Water Closet	NO	115	600	6900
	Supply, install, testing and commissioning of, floor mounted, white color, Porcelain, siphon jet water closet/toilet with an elongated bowl, seat with open front and check hinge, and carrier. or equivalent including necessary accessories, 9-lt capacity cistern, valves, fittings, 13mm stop angle valves, chrome plated 13mm hose, heavy duty side 1 m length 13mm Chrome plated hand shower, connection to drainage and water systems as per drawings, specifications and				
4.2	Paper Holder	NO	115	20	230
	Supply and installing of: surface mounted satin finish stainless steel, sanitary napkin disposal or equivalent. Disposal features a flip-up cover, secured to the container by a heavy duty stainless steel piano-hinge. Disposal secured to wall or toilet partition. As per drawings, specifications and the approval of the Engineer				
4.3	Sink : Supply, install, testing and commissioning of glazed porcelain basin sink white size $20 \times 40 \times 60$ cm excellent water mixer chrome the price shall include plastic Siphon and the drain to the nearest floor drain and all that is required for installation and installation according to plans and specifications and instructions of the supervising engineer. Counter top Kitchen sink	NO	100	450	4500
4.4	Faucet	NO	290	200	5800
	Supply, install, testing and commissioning of, Chrome plated cast brass construction, washer less ceramic disc mixing cartridge, gooseneck spout, with elbow/ wrist/ gear blade control handles or equivalent. including, sockets, copper adaptors, 3/8" angle valves and all necessary accessories, as per drawings, specifications and related codes and RE approval. Single lever Gear control handle faucet.				

4.5		NO	4	500	500
4.5	Water Pump Supply, install, test and commission	NO	1	500	500
	water pump for gray water system with cast iron body				
	and stainless steel impeller Grundfos factory assembly				
	or E.A. The rate shall include bolts, nuts, concrete				
	slab, foot valve, ball valves, electrical float, check				
	valve and any accessories needed in the suction and				
	discharge line to connect with the network as shown in				
	pump details				
	Q - 11.86 L/sec				
	H - 20.89 m				
	Model no : NKG 80-50-250/263 A2-F-A-E-				
4.6	Shower	NO	90	72	6480
	Supply and install Porcelain shower , white color, type Roca or E.A, of size 80X80cm, complete with chrome plated mixers, plug and chain, 1.5m flexible hose with chrome lever handle and stand, and all associated water supply pipes, and brackets screwed to concrete or block work, sealing joint to worktop or wall with mastic sealant.				
	Fire Fighting system				
5	Fire Hose Reel Cabinets	NO	12	645	7740
	Supply, install, test and commission fire hose reel &				
	landing valve cabinets to, complete with 30 meters				
	long 2 $\frac{1}{2}$ " diameter rubber hose of 16 bar working				
	pressure. The unit price shall include hose cabinet,				
	pressure reducing valve, globe valve and automatic				
	swinging recessed type cabinet as detailed on				
	drawings and as per the specifications and the				
5 4	supervision engineer's requirements				
5.1	Fire fightingPipes to ASTM-A53grade " A"schedule-40 for firefighting system pipe work, insidebuilding. The unit price shall include valves, fittings,				

	and all accessories and works required to complete the work and as per preambles, specifications, and the supervision of engineer's requirements.				
Α.	Galvanized Sch - 40 Pipe 2.5"	ML	230	50	11500
В.	Galvanized Sch - 40 Pipe 4"	ML	58	80	4640
C.	Galvanized Sch - 40 Pipe 1.5"	ML	55	40	2200
5.2	 The price includes all the necessary pieces For operation and connection with proposed fire engines On the surface and the pallets are connected and clamped Electrical and electrical panel for control and protection With the possibility of operation and shutdown By pressure regulator and pressure tank So that it is proportional to the capacity of the pump Specifications and instructions of the supervisor engineer Q- 500gpm H - 80 m 	NO	2	500	1000
5.3	 The supply and installation of the Jockey pump to maintain the pressure inside the pipes and compensating the infusion including all the requirements of operation including the electric motor and the joints and operating system Model no : SFP 50 – 20EH RPM- 3500 Q- 50gpm H - 89 m 	NO	1	500	500
otal Price fo	or previous calculations(tables)		1		283635

Bibliography

Asaad, M., & Hammad, M. *Heating & air conditioning for residential building*. Jordan: The Hashemite kingdom of jordan.

K.Y.Tao, R. R. (2009). *Mechannical and Electrical systems in buildings fourth Edition*. New Jersey: Vernon R.Anthony.

normteknik. (2015). *Fire Protection Systems*. Retrieved 5 20, 2017, from normteknik Fire Protection Systems: http://www.normteknik.com.tr/en/homepage

sewerhistory.org. (2004). *Manholes, Lampholes, Grit Basins*. Retrieved 4 23, 2017, from mholes1.htm: http://www.sewerhistory.org/grfx/components/mholes1.htmhttp://www.sewerhistory.org/grfx/components/mholes1.htm

Stein, B. (1997). *Building Technology Mechanical & Electrical System Second edition*. Newyork: United State Publisher.

.وزارة التربية و التعليم :رام الله *تمديدات صحيه و التدفئه المركزيه* .(2011) .ا .و ,التعليم

منقوش, ع. ا. (2016). *Wiki MEB*. Retrieved 4 12, 2017, from مدونات: http://www.wikimep.com/search/label/fire%20alarm

Appendix A

HVAC and duct Tables

HUMAN COMFORT

.

			Total		
Type of Activity	Typical Application	Total Heat Dissipation Adult Male	Adjusted ^(a) Heat Dissipation	Sensible Heat, W	Latent Heat, W
Seated at rest	Theater :				
	Matinee	111.5	94.0	64.0	30.0
	Evening	111.5	100.0	70.0	30.0
Seated, very light work	Offices, hotels, apartments, restaurants	128.5	114.0	70.0	44.0
Moderately					
active office work	Offices, hotels, apartments	135.5	128.5	71.5	57.0
	Department store, retail		r		
Standing, light	store,	157.0	142.0	71.5	71 5
work, walking	supermarkets	157.0	143.0		71.5
Walking, seated	Drug store	157.0	143.0	71.5	71.5
Standing, walking					
slowly	Bank	157.0	143.0	71.5	71.5
Sedentary work	Restaurant	168.5	157.0	78.5	78.5
Light bench					
work	Factory	238.0	214.0	78.0	136.0
	Small-Parts				
Moderate work	assembly	257.0	243.0	87.0	156.0
Moderate					
dancing	Dance halls	257.0	243.0	87.0	156.0
Walking at 1.5		2010	005.0	105.0	150.0
m/s	Factory	286.0	285.0	107.0	178.0
Bowling (participant)	Bowling alley	428.5	414.0	166.0	248.0
Heavy work	Factory	428.5	414.0	166.0	248.0

 Heavy work
 Factory
 428.5
 414.0
 106.0
 248.0

 (a) Adjusted heat dissipation is based on the percentage of men, women and children for the application.

HUMAN COMFORT

	Maximum Occupancy Per	Ventilation Air Requirements		
Application	100 m^2	L/s/Person	L/s/m ²	
Offices:				
Office space	7	10.0	2.5-10.0	
Reception areas	60	8.0	3.5-7.5	
Telecomm. Centers	60	10.0		
Conference rooms	50	10.0		
Public spaces:				
Corridors	I		0.25	
Public restrooms	100	25.0		
Locker and dressing rooms	50	7.5-17.5	5-2.5	
Smoking lounge	70	30.0		
Elevators:		7.5	5.00	
Laundries:	1		5.00	
Commercial laundry	10	13.0		
Commercial dry cleaner	30	15.0		
Coin-operated laundries	20	8.0	-	
Coin operated dry cleaner	20	8.0		
Food and beverage services:		0.0		
Dining rooms	70	10.0		
Cafeteria	100	10.0		
Bars	100	15.0		
Kitchens	20	8.0		
Garages, service stations:	20	. 8.6		
Enclosed parking garage		5L/s/car	7.50	
Auto repair rooms		SE/ s/ car	7.50	
Factories:			0.80	
Retail stores:			0.80	
Basement and street stores	30	2.5-12.5	1.50	
Jpper floors	20	2.5-12.5		
Storage rooms	15	2.5-12.5	1.00	
Dressing rooms	15	3.5-12.5	0.75	
Malls	20	2.5-5.0	1.00	
Varehouses	5	2.5-5.0	1.00	
moking lounge	70	30.0	0.25	
Specialty shops:	70	30.0		
Barbers	25			
	25	8.0		
eauty saloons	25	13.0		
educing saloons lorist	20	8.0		
	8	8.0		
upermarkets	8	8.0	·	
lardware, drugs, fabrics	8	8.0		
et shops			5.00	
urniture stores			1.50	
ports:				
pectator areas	70-150	3.5-17.5		

⁴ Adapted from "ASHRAE Handbook of Fundamentals," 1993.

HUMAN COMFORT

, ,	Maximum Occupancy Per	Ventilation Air Requirements		
Application	100 m ²	L/s/Person	L/s/m ²	
Bath, toilets ⁽³⁾		10.0		
Hotels and motels:				
Bedrooms			7.5-15	
			L/s/room	
Living rooms			5-10	
			L/s/room	
Bathes		—	15-25	
			L/s/room	
Lobbies	30	2.5-7.5		
Conference rooms	50	3.5-17.5		
Assembly rooms	120	3.5-17.5	*errain	
Dormitory sleeping areas	20	8.0		
Gambling casinos	120	15.0		

⁽¹⁾ or 0.35 air change/hour ⁽²⁾ or 50 L/s intermittent or openable window. ⁽³⁾ or 25 L/s intermittent or openable window.

Type of Room or Building	No. of Air Change per Hour
Rooms with no windows or exterior doors	0.5
Rooms with windows or exterior doors on one side only	1.0
Rooms with windows or exterior doors on two sides	1.5
Rooms with windows or exteriors doors on three sides	2.0
Entrance halls	2.0-3.0
Factories, machine shops	1.0-1.5
Recreation rooms, assembly rooms, gymnasium	1.5
Homes, apartments, offices	1.0-2.0
Classrooms, dining rooms, lounges, hospital rooms, kitchens, laundries, ballrooms, bathrooms	2.0
Stores, public buildings	2.0-3.0
Toilets, auditorium	3.0

(1) For rooms with weather stripped windows or storm sash, use 2/3 of these values.

Element	Heat Direction	Material Type	<i>R_i</i> m².⁰C/W
Walls	Horizontal	Construction materials	0.12
	11011201141	Metals	0.31
· · · · · · · · · · · · · · · · · · ·		Construction materials	0.10
Ceilings and	Upward		0.10
floors	*	Metals	0.21
	Downward	Construction materials	0.15

Wind Speed		Less than 0.5 m/s	0.5 - 5.0 m/s	More than 5.0 m/s
Element	Material Type	Outside Resistance R_{o} , m ² .°C/W		
Walls	Construction materials	0.08	0.06	0.03
	Metals	0.10	0.07	0.03
Ceilings	Construction materials	0.07	0.04	0.02
	Metals	0.09	0.05	0.02
Exposed floors	Construction materials	0.09		

ABLE 5-4 Ove	rall Heat Transfer Coefficient for Windows, W/m ^{2.}					
	Wind Speed, m/s					
Material	1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			Doub	le Glass, 6m	ım air
Type and		Single Glass			gap	
Frames	< 0.5	0.5 - 5.0	> 5.0	< 0.5	0.5 - 5.0	> 5.0
Wood	3.8	4.3	5.0	2.3	2.5	2.7
Aluminum	5.0	5.6	6.7	3.0	3.2	3.5
Steel	5.0	5.6	6.7	3.0	3.2	3.5
PVC	3.8	4.3	5.0	2.3	2.5	2.7

ten Mindaue Milmo 200

TABLE 5-5 Overall heat trans	fer coefficients for	wood and metal d	oors, W/m ^{2.} °C.
Door Type	Without Storm Door	With Wood Storm Door	With Metal Storm Door
25 mm-wood	3.6	1.7	2.2
35 mm-wood	3.1	1.6	1.9
40 mm-wood	2.8	1.5	1.8
45 mm-wood	2.7	1.5	1.8
50 mm-wood	2.4	1.4	1.7
Aluminum	7.0		
Steel	5.8		
Steel with:			
Fiber core	3.3		
Polystyrene core	2.7	-	
Polyurethane core	2.3		

TABLE 5–7 Overall heat transfer coefficients for typical ceiling constructions, $W/m^{2.0}C$, for $R_o = 0.03 m^{2.0}C/W$.

No.	Construction	R _{th} m²⋅°C/W	Thickness	Layer
	Asphalt Mix	0.028	0.02 m	1
	Concrete	0.029	0.05 m	
	Insulation	0.750	0.03 m	3 -
(1)	Reinforced Concret	e 0.034	0.03 m	4 - ***********************************
	Cement Block	0.147	0.14 m	
	Plaster	0.017	0.02 m	<u>6</u>
	<i>U</i> =0.88		ت 	······································

	Infiltrat	ion Air Coe	fficient K
Window Type	Average	Minimum	Maximum
Sliding			
Iron	0.36	0.25	0.40
Aluminum	0.43	0.25	0.70
Hung			
Iron	0.25	0.10	0.60
Aluminum (side pivoted)	0.36	0.07	0.70
Aluminum (horizontal pivoted)	0.30	0.07	0.50
PVC	0.10	0.03	0.15

TABLE 6-2 Values	of infiltration	air coefficient K.(2)	for windows.

_	№	Topography of Location	Value of S ₁
:	1	Protected locations by hills or buildings (wind speed = 0.5 m/s)	0.9
	2	Unprotected locations such as sea shores, hill tops, etc.	1.1
l.	3	Locations other than that listed in item (1) or (2) of this table.	1.0

Class (1)	Locations having very high and close obstacles such as capital cities, down
	town of large cities, etc.

- Class (2) Locations having numerous and close obstacles such as small cities, suburbs of large cities, etc.
- Class (3) Locations having obstacles whose height less than 10 m such as airports, villages, etc.
- Class (4) Locations with obstacles whose height is less than 1.5 m such as desert areas, plains without trees, etc.

Catagory A Structures and buildings whose maximum horizontal or vertical dimension is more than 50 m.

- Catagory B Structures and buildings whose maximum dimension (horizontal or vertical) is less than 50 m.
- Catagory C Individual structures.

Location Class Class 1 Class 2 Class 3 Class 4 Building Height, Α В С Α В С Α В С Α В С m 3 0.47 0.52 0.56 0.55 0.60 0.640.63 0.67 0.72 0.73 0.78 0.83 5 0.50 0.55 0.60 0.60 0.65 0.70 0.74 0.79 0.78 0.83 0.88 0.70 10 0.58 0.62 0.67 0.69 0.74 0.78 0.83 0.88 0.93 0.90 0.95 1.00 0.64 0.69 0.74 0.78 0.83 15 0.91 0.95 1.00 0.880.94 0.99 1.03 20 0.70 0.75 0.79 0.85 0.90 0.94 0.98 1.03 0.95 0.96 1.01 1.06 30 0.79 0.85 0.90 0.92 0.97 0.98 1.03 1.07 1.011.00 1.05 1.09 40 0.89 0.93 0.97 1.01 1.06 1.10 0.95 1.00 1.05 1.03 1.08 1.12 50 0.94 0.98 1.02 1.00 1.04 1.081.04 1.08 1.12 1.06 1.10 1.14 60 0.98 1.02 1.05 1.02 1.06 1.10 1.06 1.10 1.14 1.08 1.12 1.15 80 1.03 1.07 1.10 1.06 1.10 - 1.13 1.09 1.13 1.17 1.11 1.15 1.18 100 1.07 1.10 1.13 1.09 1.12 1.161.12 1.16 1:19 1.13 1.17 1.20 120 1.10 1.13 1.15 1.11 1.15 1.18 1.14 1.18 1.21 1.15 1.19 1.22 140 1.12 1.15 1.17 1.13 1.17 1.12 1.16 1.19 1.22 1.17 1.20 1.24 160 1.14 1.17 1.19 1.15 1.18 1.18 1.21 1.24 1.211.19 1.22 1.25 180 1.16 1.19 1.20 1.17 1.20 1.23 1.19 1.22 1.25 1.20 1.23 1.26 200 1.18 1.21 1.22 1.18 1.21 1.21 1.24 1.26 1.21 1.24 1.27 1.24

TABLE 6-4 Values of the factor S₂ of Eq. (6-7).

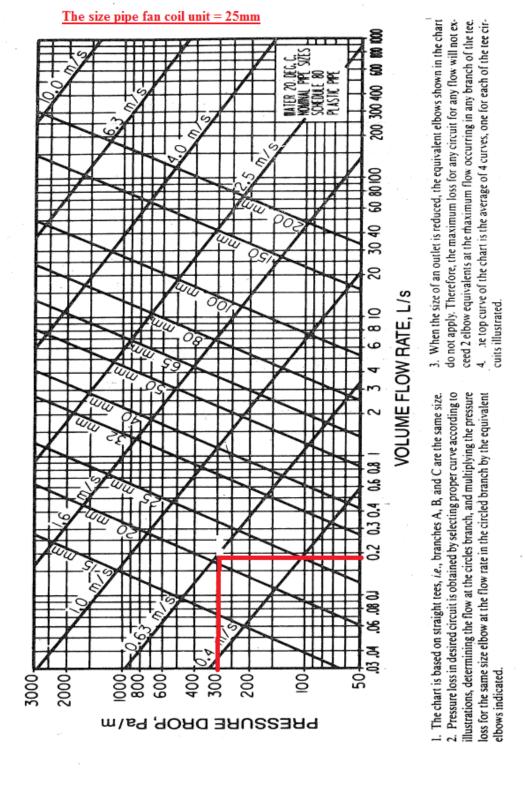


FIGURE 7-15(a) Pressure drop per unit pipe length for water flowing in standard plastic pipes.

COOLING LOAD CALCULATIONS

			NNE	NE	ENE	E	ESE	SE	SSE		Horizonta
Lat.	Month	N	NNW	NW	WNW	w	wsw	\mathbf{sw}	SSW	S	Roofs
16	December	-2.2	-3.3	-4.4	-4.4	-2.2	-0.5	2.2	5.0	7.2	-5.0
	Jan./Nov.	-2.2	-3.3	-3.8	-3.8	-2.2	-0.5	2.2	4.4	6.6	-3.8
	Feb./Oct.	-1.6	-2.7	-2.7	-2.2	-1.1	0.0	1.1	2.7	3.8	-2.2
	Mar/Sept.	-1.6	-1.6	-1.1	-1.1	0.5	-0.5	0.0	0.0	0.0	-0.5
	Apr./Aug.	-0.5	0.0	-0.5	-0.5	-0.5	-1.6	-1.6	-2.7	-3.3	0.0
	May/July	2.2	1.6	1.6	0.0	-0.5	-2.2	-2.7	-3.8	-3.8	0.0
	June	3.3	2.2	2.2	0.5	-0.5	-2.2	-3.3	-4.4	-3.8	0.0
24	December	-2.7	-3.8	-5.5	-6.1	-4.4	-2.7	1.1	5.0	6.6	-9.4
	Jan./Nov.	-2.2	-3.3	-4.4	-5.0	-3.3	-1.6	-1.6	5.0	7.2	-6.1
	Feb./Oct.	-2.2	-2.7	-3.3	-3.3	-1.6	-0.5	1.6	3.8	5.5	-3.8
	Mar/Sept.	-1.6	-2.2	-1.6	-1.6	-0.5	-0.5	0.5	1.1	2.2	-1.6
	Apr./Aug.	-1.1	-0.5	0.0	-0.5	-0.5	-1.1	-0.5	-1.1	-1.6	0.0
	May/July	0.5	1.1	1.1	0.0	0.0	-1.6			-3.3	0.5
	June.	1.6	1.6	1.6	. 0.5	0.0	-1.6	-2.2		-3.3	0.5
32	December	-2.7	-3.8	-5.5	-6.1	-4.4	-2.7	1.1	5.0	6.6	-9.4
	Jan./Nov.	-2.7	-3.8	-5.0	-6.1	-4.4	-2.2	1.1	5.0	6.6	-8.3
	Feb./Oct.	-2.2	-3.3	-3.8	-4.4	-2.2	-1.1	2.2	4:4	6.1	-5.5
	Mar/Sept.	-1.6	-2.2	-2.2	-2.2	-1.1	-0.5	1.6	2.7	3.8	-2.7
	Apr./Aug.	-1.1	-1.1	-0.5	-1.1	0.0	-0.5	0.0	5.0	0.5	-0.5
	May/July	0.5	0.5	0.5	0.0	0.0	-0.5			-1.6	0.5
	June	0.5	1,1	1.1	0.5	0.0	-1.1			-2.2	1.1
40	December	-3.3	-4.4	-5.5	-7.2	-5.5	-3.8	0.0	3.8	5.5	-11.6
	Jan./Nov.	-2.7	-3.8	-5.5	-6.6	-5.0	-3.3	0.5	4.4	6.1	-10.5
	Feb./Oct.	-2.7	-3.8	-4.4	-5.0	-3.3	-1.6	1.6	4.4	6.6	-7.7
	Mar/Sept.	-2.2	-2.7	-2.7	-3.3	-1.6	0.5	2.2	3.8	5.5	-4.4
	Apr./Aug.	-1.1	-1.6	-1.6	-1.1	0.0	0.0	1.1	1.6	2.2	1.6
	May/July	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.5	0.5
	June	0.5	0.5	0.5	0.5	0.0	0.5	0.0	0.0	-0.5	1.1
	December	-3.3	-4.4	-6.1	-7.7	-7.2	-5.5	-1.6	1.1	3.3	-13.8
	Jan./Nov.	-3.3	-4.4	-6.1	-7.2	-6.1	-4.4		2.7	4.4	-13.3
	Feb./Oct.	-2.7	-3.8	-5.5	-6.1	-4.4	-2.7	0.5	4.4	6.1	-10.0
	Mar/Sept.	-2.2	-3.3	-3.3	-3.8	-2.2	-0.5	2.2	4.4	6.1	6.1
	Apr./Aug.	-1.6	-1.6	-1.6	-1.6	-0.5	0.0	2.2	3.3	3.8	-2.7
	May/July	0.0	-0.5	0.0	0.0	0.5	0.5	1.6	1.6	2.2	0.0
	June	0.5	0.5	1.1	0.5	1.1	0.5	1.1	1.1	1.6	1.1

COOLING LOAD CALCULATIONS

	Ro	of Construct	ion
Solar Time	Light	Medium	Heavy
10:00	5		
11:00	12		
12:00	19	3	0
13:00	25	8	2
14:00	29	14	: 5
15 :0 0	31	19	8
16:00	31	23	10
17:00	29	25	12
18 :0 0	24	26	14
19 :0 0	19	25	15
20:00	11	22	16

		00	UIII	y 10a	10 16	emp	bera	ture	ann	erer	ices		_ I L	<i>i</i>) ic	or va	Inol	IS C	ons	Iruc	tion	gro	ups	OIS	uni	it walls,	чС.		
North												ar]													Hour			
Latitude Wall Facing		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Max.	Min.	Max. I	Difference CLTD
		1				S.						Sec. 19	10.10	17	1				1			1	1.		CLID	CLID	CLID	CLID
Ν	0	8	8	7	7	1211	7	6	6			<u>тр</u> / 6				6	6	6	7	7	7	7	8	0	2	6	8	2
NE	0	Ŭ	Ŭ	10	10	9	9	9	0 8	-	8	0 9	.0 9	9		-	-		•	1	/	11	0 11	-	22	6 8	o 11	3
E						-	-		-	-	-	-											14		22	8 10	11	4
E SE																							14		22	10	14	4 3
S																							11		22	8	11	3
sw																							14		23	9	14	5
W														-	-								14		1	10	15	5
NW																							11		-1	8	12	4
1, 1,			11							G			Contraction of the										11		1	0		1
Ν	8	8	8	7	7	6	6	6	5	5	Contraction of the			1000	1000	6	6	7	7	8	8	8	8	8	24	5	8	3
	11	-	-	-	-	8	-	7	7	7	8	8	-	_	-	-	-	-	-	-	-		11	11	21	7	12	5
				-	-	-	9	, 8	•	•													14	- 1	20	8	15	7
							9	-	8	-	8												14		21	8	14	6
	12										6	6	6	7	8								12		23	6	12	6
					-		11	•	•	-	8	8	7	7	8								16		24	7	16	9
							12			-	9	8	8	8	8	8							16		24	8	17	9
	· ·						9				-	7			7								13	- 1	24	6	13	7
1										3:46-56	Skine.	ip C	1287.23	100.002												,U	10	
Ν	9	8	7	7	6	5	5	4	4	4	4		66977777	12,000,000	6	6	7	8	9	9	9	10	9	9	22	4	10	6
	10	-	-	-	-	-	-	6	6	7	-							-	-	-	-		12	-	20	6	13	7
	~ ~		-	10	•	-	•	7	8	•													14		18	7	17	10
				10			-		7	7													14		19	6	16	10
				9	-	-		6	, 5	5	5		6										13		20	5	14	9
				12	-		•	8	7	7	-	6	6	7	-								13		22	6	18	.12
							10		•	-	-		7	•									19		22	7	20	13

TABLE 9-4 Cooling load temperature differences (CLTD) for various construction groups of sunlit walls, °C.

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Ν	76	85	101	114	120	139	126	117	104	88	76	69
NNE/NNW	76	85	117	252	350	385	350	249	110	88	76	69
NE/NW	91	205	338	461	536	555	527	445	325	199	91	69
ENE/WNW	331	470	577	631	656	656	643	615	546	451	325	265
E/W	552	647	716	716	694	675	678	691	678	615	546	511
ESE/WSW	722	764	748	691	628	596	612	663	716	738	710	688
SE/SW	786	782	716	590	489	439	473	571	688	754	773	776
SSE/SSW	789	732	615	445	213	262	303	429	596	710	776	795
S	776	697	555	363	233	189	227	350	540	678	767	795
Horizontal	555	685	795	855	874	871	861	836	770	672	552	498

	Nominal	Solar	Shading Coefficien	nt, W/m ² ·K
Type of Glass	Thickness, mm	Trans.	$h_o = 22.7$	$h_o = 17.0$
	Sin	gle Glass		
Clear	3	0.84	1.00	1.00
	6	0.78	0.94	0.95
	10	0.72	0.90	0.92
	12	0.67	0.87	0.88
Heat absorbing	3	0.64	0.83	0.85
	6	0.46	0.69	0.73
	10	0.33	0.60	0.64
p.	12	0.42	0.53	0.58
	Dou	ble Glass		
Regular	3		0.90	
Plate	6		0.83	Automation and a
Reflective	6		0.20-0.40	
	Insula	ating Glas	SS	
Clear	3	0.71	0.88	0.88
	6	0.61	0.81	0.82
Heat absorbing [*]	6	0.36	0.55	0.58

TABLE 9-8 Shading coefficient (SC) for glass windows without interior shading.¹

¹ Heat absorbing glas is gray, bronze, and green tinted heat absorbing glass.

TABLE 9-9 Shadin	g coefficient (SC)) for glass win				
	Nominal			f Interior		
		Venetia	n Blinds		Roller Sh	
	Thickness,				ique	Translucent
Type of Glass	mm	Medium	Light	Dark	White	Light
		Single	Glass			
Clear, regular	2.5-6.0					
Clear, plate	6.0-12.0 3.0-12.0	0.64	0.55	0.59	0.25	0.39
Clear Pattern Heat Absorbing	3.0-12.0	0.04	0.55	0.59	0.25	0.39
Pattern or	5.0-5.5					
Tinted(gray	5.0-5.5					
sheet)						
Heat	5.0-6.0	0.57	0.53	0.45	0.30	0.36
Absorbing,						
plate Detter	3.0-5.5					
Pattern or Tinted, gray	3.0-3.5					
sheet						
Heat Absorbing	10	0.54	0.52	0.40	0.82	0.32
Plate or Pattern						
Heat Absorbing		14				
Heat Absorbing		0.42	0.40	0.36	0.28	0.31
or Pattern		0.12	0.10	0.00	0.20	0.01
Reflective		0.30	0.25	0.23		
Coated Glass						
		0.40	0.33	0.29		
		0.50 0.60	0.42 0.50	0.38 0.44		
	sitter and the state	Double		0.44	17.15.100.000	
Regular	3	0.57	0.51	0.60	0.25	
Plate	6	0.57	0.51	0.60	0.25	
Reflective	6	0.20-				
		0.40				
Clear	2.5-6.0		ng Glass 0.51	0.60	0.25	0.27
Heat Absorbing	2.3-6.0 5.0-6.0	0.57 0.39	0.31	0.60 0.40	0.25	0.37 0.30
Reflective	5.0-0.0	0.20	0.30	0.40	0.22	0.50
Coated		0.20	0.12	0.10		
		0.30	0.27	0.26		
		0.40	0.34	0.33		

Note: Shading coefficient SC, for other shading types and shading devices that are not included in Table 9–9 are as follows:

Dark venetian blinds		0.72
Canva awning		0.25
Roof overhang		0.25
Outside shading scree	en	0.30
Wood sash		0.85

Glass	Building								Sola	r Tin	ne, h							
Facing	Construction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	1
	L	0.17	0.14	0.11	0.09	0.08	0.33	0.24	0.48	0.56	0.61	0.71	0.76	0.80	0.82	0.82	and the second se	
\mathbf{N}	\mathbf{M}	0.23	0.20	0.18	0.16	0.14	0.34	0.14	0.46	0.53	0.59	0.65	0.70	0.73	0.75	0.76	0.74	0.
Shaded	н	0.25	0.23	0.21	0.20	0.19	0.38	0.45	0.49	0.55	0.60	0.65	0.69	0.72	0.72	0.72	0.70	0.
	L	0.06	0.05	0.04	0.03	0.03	0.26	0.43	0.47	0.44	0.41	0.40	0.39	0.39	0.38	0.36	0.33	0.
NNE	\mathbf{M}						0.24											
	н	1					0.26											
	L	0.04	0.04	0:03	0.02	0:02	0.23	0.41	0.51	0.51	0.45	0.39	0.36	0.33	0.31	0.28	0.26	0
NE	M						0.21											
112	H						0.23											
	L	0.04	0.03	0.03	0.02	0.02	0.21	0.40	0.52	0.57	0.53	0.45	0.30	0.34	0.31	0.28	0.25	0
ENE	M						0.20											
	H						0.22											
	L	0.04	0.02	0.03	0.02	0.02	0.19	0 37	0.51	0 57	0.57	0.50	0.42	0 37	0 33	0.20	0.25	0
Е	M						0.19											
Ľ	H						0.20											
	-	0.05			,					0.50			0.40		0.04	0.00		~
TOT							0.17											
ESE	M H						0.16 0.19											
	L	0.05	0.04	0.04	0.03	0.03	0.13	0.28	0.43	0.55	0.62	0.63	0.57	0.48	0.42	0.37	0.33	0.
SE	\mathbf{M}	0.09	0.08	0.07	0.06	0.05	0.14	0.26	0.38	0.48	0.54	0.56	0.51	0.45	0.40	0.36	0.33	0
	н	0.11	0.10	0.10	0.09	0.08	0.17	0.28	0.40	0.49	0.53	0.53	0.48	0.41	0.36	0.33	0.30	0
	L	0.07	0.05	0.04	0.04	0.03	0.06	0.15	0.29	0.43	0.55	0.63	0.64	0.60	0.25	0.45	0.40	0.
SSE	\mathbf{M}	0.11	0.09	0.08	0.07	0.06	0.08	0.16	0.26	0.38	0.58	0.55	0.57	0.54	0.48	0.43	0.39	0.
	н	0.12	0.11	0.11	0.10	0.09	0.12	0.19	0.29	0.40	0.49	0.54	0.55	0.51	0.44	0.39	0.35	0.
	L	0.08	0.07	0.05	0.04	0.04	0.06	0.09	0.14	0.22	0.34	0.48	0.59	0.65	0.65	0.59	0.50	0.
S	M	0.12	0.11	0.09	0.08	0.07	0.08	0.11	0.14	0.21	0.31	0.42	0.52	0.57	0.58	0.53	0.47	0.
	н	0.13	0.12	0.12	0.11	0.10	0.11	0.14	0.17	0.24	0.33	0.43	0.51	0.56	0.55	0.50	0.43	0.
	L	0.10	0.08	0.07	0.06	0.05	0.06	0.09	0.11	0.15	0.19	0.27	0.39	0.52	0.62	0.67	0.65	0.
\mathbf{ssw}	M	0.14	0.12	0.11	0.09	0.08	0.09	0.11	0.13	0.15	0.18	0.25	0.35	0.46	0.55	0.59	0.59	0.
	н	0.15	0.14	0.13	0.12	0.11	0.12	0.14	0.16	0.18	0.21	0.27	0.37	0.46	0.53	0.57	0.55	0.
	L	0.12	0.10	0.08	0.06	0.05	0.06	0.08	0.10	0.12	0.14	0.16	0.24	0.36	0.49	0.60	0.66	0.
\mathbf{sw}	M	0.15	0.14	0.12	0.10	0.09	0.09	0.10	0.12	0.13	0.15	0.17	0.23	0.33	0.44	0.53	0.58	0.
	н	0.15	0.14	0.13	0.12	0.11	0.12	0.13	0.14	0.16	0.17	0.19	0.25	0.34	0.44	0.52	0.56	0.
	L	0.12	0.10	0.08	0.07	0.05	0.06	0.07	0.09	0.10	0.12	0.13	0.17	0.26	0.40	0.52	0.62	0.
wsw	м	0.15	0.13	0.12	0.10	0.09	0.09	0.10	0.11	0.12	0.13	0.14	0.17	0.24	0.35	0.46	0.54	0.
		0.15	0.14	0.13	0.12	0.11	0.11	0.12	0.13	0.14	0.15	0.16	0.19	0.26	0.36	0.46	0.53	0.

Glass	Building			and a second					Sola	r Tin	ne, h							
Facing	Construction	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
				10.0.0000202														
\mathbf{W}	Μ	0.15	0.13	0.11	0.10	0.09	0.09	0.09	0.10	0.11	0.12	0.13	0.14	0.19	0.29	0.40	0.50	0.56
	н	0.14	0.13	0.12	0.11	0.10	0.11	0.12	0.13	0.14	0.14	0.15	0.16	0.21	0.30	0.40	0.49	0.54
-	L	0.12	0.10	0.08	0.06	0.05	0.06	0.07	0.09	0.10	0.12	0.13	0.15	0.17	0.26	0.40	0.53	0.63
WNW	Μ	0.15	0.13	0.11	0.10	0.09	0.09	0.10	0.11	0.12	0.11	0.14	0.15	0.17	0.24	0.35	0.47	0.55
	н	0.14	0.13	0.12	0.11	0.10	0.11	0.12	0.13	0.14	0.15	0.16	0.17	0.18	0.25	0.36	0.46	0.53
•	L	0.11	0.09	0.08	0.06	0.05	0.06	0.08	0.10	0.12	0.14	0.16	0.17	0.19	0.23	0.33	0.47	0.59
\mathbf{NW}	Μ	0.14	0.12	0.11	0.09	0.08	0.09	0.10	0.11	0.13	0.14	0.16	0.17	0.18	0.21	0.30	0.42	0.51
	$\mathbf{H}_{\mathbf{i}}$	0.14	0.12	0.11	0.10	0.10	0.10	0.12	0.13	0.15	0.16	0.18	0.18	0.19	0.22	0.30	0.41	0.50
	L	0.12	0.09	0.08	0.06	0.05	0.07	0.11	0.14	0.18	0.22	0.25	0.27	0.29	0.30	0.33	0.44	0.57
NNW	м	0.15	0.13	0.11	0.10	0.09	0.10	0.12	0.15	0.18	0.21	0.23	0.26	0.27	0.28	0.31	0.39	0.51
	н	0.14	0.13	0.12	0.11	0.10	0.12	0.15	0.17	0.20	0.23	0.25	0.26	0.28	0.28	0.31	0.38	0.49
	L	0.11	0.09	0.07	0.06	0.05	0.07	0.14	0.24	0.16	0.48	0.58	0.66	0.72	0.74	0.73	0.67	0.59
HORIZ.	м	0.16	0.14	0.12	0.11	0.11	0.11	0.16	0.24	0.13	0.43	0.52	0.59	0.64	0.67	0.66	0.62	0.56
	H	0.17	0.16	0.15	0.14	0.13	0.15	0.20	0.28	0.16	0.45	0.52	0.59	0.62	0.64	0.62	0.58	0.51

TABLE 9-11	Coolir	ng Loa	d fact	ors (C	LF) fo	r glass	s wind	ows w	ith inte	erior s	hadin	g, Nor	th latit	ude.			
Fenestration								Sola	ır Tin	ne, <i>h</i>							
Facing	1	2	3	4	5	6	7	. 8	. 9	10	11	12	13	14	15	16	17
N	0.08	0.07	0.06	0.06	0.07	0.73	0.66	0.65	0.73	0.80	0.86	0.89	0.89	0.86	0.82	0.75	0.78
NNE	0.03	0.03	0.02	0.02	0.03	0.64	0.77	0.62	0.42	0.37	0.37	0.37	0.36	0.35	0.32	0.28	0.23
NE	0.03	0.02	0.02	0.02	0.02	0.56	0.76	0.74	0.58	0.37	0.29	0.27	0.26	0.24	0.22	0.20	0.16
ENE	0.03	0.02	0.02	0.02	0.02	0.52	0.76	0.80	0.71	0.52	0.31	0.26	0.24	0.22	0.20	0.18	0.15
Е	0.03	0.02	0.02	0.02	0.02	0.47	0.72	0.80	0.76	0.62	0.41	0.27	0.24	0.22	0.20	0.17	0.14
ESE	0.03	0.03	0.02	0.02	0.02	0.41	0.67	0.79	0.80	0.72	0.54	0.34	0.27	0.24	0.21	0.19	0.15
SE	0.03	0.03	0.02	0.02	0.02	0.30	0.57	6.74	0.81	0.79	0.68	0.49	0.33	0.28	0.25	0.22	0.18
SSE	0.04	0.03	0.03	0.03	0.02	0.12	0.31	0.54	0.72	0.81	0:81	0.71	0.54	0.38	0.32	0.27	0.22
S	0.04	0.04	0.03	0.03	0.03	0.09	0.16	0.23	0.38	0.58	0.75	0.83	0.80	0.68	0.50	0.35	0.27
SSW	0.05	0.04	0.04	0.03	0.03	0.09	0.14	0.18	0.22	0.27	0.43	0.63	0.78	0.84	0.80	0.66	0.46
SW	0.05	0.05	0.04	0.04	0.03	0.07	0.11	0.14	0.16	0.19	0.22	0.38	0.59	0.75	0.83	0.81	0.69
wsw	0.05	0.05	0.04	0.04	0.03	0.07	0.10	0.12	0.14	0.16	0.17	0.23	0.44	0.64	0.78	0.84	0.78
w	0.05	0.05	0.04	0.04	0.03	0.06	0.09	0.11	0.13	0.15	0.16	0.17	0.31	0.53	0.72	0.82	0.81
WNW	0.05	0.05	0.04	0.03	0.03	0.07	0.10	0.12	0.14	0.16	0.17	0.18	0.22	0.43	0.65	0.80	0.84
NW	0.05	0.04	0.04	0.03	0.03	0.07	0.11	0.14	0.17	0.19	0.20	0.21	0.22	0.30	0.52	0.73	0.82
NNW	0.05	0.05	0.04	0.03	0.03	0.11	0.17	0.22	0.26	0.30	0.32	0.33	0.34	0.34	0.39	0.61	0.82
HORIZ.	0.06	0.05	0.04	0.04	0.03	0.12	0.27	0.44	0.59	0.72	0.81	0.85	0.85	0.81	0.71	0.58	0.42

Note: Values of the cooling load factors (CLF) of Tables 9–10 and 9–11 for the hours 18:00 to 24:00 may be obtained from McQuiston and Parker, 1994, "*Heating, Ventilating, and Air Conditioning*", 4th ed., Wiley.

TABLE 9)-12	Co	oling	loa	d te	mpe	ratu	ire c	liffe	renc	es (CLT	D) f	or c	onve	ectio	n he	eat g	jain	for g	glas	s wi	ndo	ws.	
Solar Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21.	22	23	24	
CLTD °C	1	0	-1	-1	-1	-1	-1	0	1	2	4	5	7	7	8	8	7	7	6	4	3	2	2	1	

	V	Vithout Hoo	od	With Hood
Appliances	Sensible	Latent	Total	All Sensible
Hair dryers (Blower type)	675	120	795	
Hair dryers (Helmet type)	550	100	650	
Coffee brewer (electrical)	225	65	290	95
Coffee brewer (gas)	490	210	700	415
Water heater	1,130	335	1,465	· · · · · · · · · · · · · · · · · · ·
Coffee urn (electrical)	1,075	350	1,425	440
Coffee urn (gas)	1,460	625	2,085	415
Deep fat fryer (electrical)	820	1,930	2,750	730
Deep fat fryer (gas)	2,080	2,080	4,160	830
Toaster	1,055	705	1,760	440
Domestic gas oven	2,430	1200	3,630	
Roasting oven	500	320	820	
Food warmer (gas)	1,550	400	1,950	400
Egg boiler	335	220	555	
Frying griddle	13,600	7,200	20,800	4,150
Hotplate	1,550	1,060	2,610	780
Neon sign, per meter length	56		56	
Sterilizer	190	350	540	
Laboratory burner	470	120	590	
Small copy machine	1,760		1,760	
Large copy machine	3,515		3,515	
Motors:				
400–2,000 W	1,100	-	1,100	
2,000–15,000 W	2,430		2,430	

Hours after	-		T	'otal hou	rs in spa	ce		
each entry into space	2	4	6	8	10	12	14	16
1	0.49	0.49	0.50	0.51	0.53	0.55	0.58	0.62
2	0.58	0.59	0.60	0.61	0.62	0.64	0.66	0.70
3	0.17	0.66	0.67	0.67	0.69	0.70	0.72	0.75
4	0.13	0.71	0.72	0.72	0.74	0.75	0.77	0.79
5	0.10	0.27	0.76	0.76	0.77	0.79	0.80	0.82
6	0.08	0.21	0.79	0.80	0.80	0.81	0.83	0.85
7	0.07	0.16	0.34	0.82	0.83	0.84	0.85	0.87
8	0.06	0.14	0.26	0.84	0.85	0.86	0.87	0.88
9	0.05	0.11	0.21	0.38	0.87	0.88	0.89	0.90
10	0.04	0.10	0.18	0.30	0.89	0.89	0.9	0.91
11	0.04	0.08	0.15	0.25	0.42	0.91	0.91	0.92
12	0.03	0.07	0.13	0.21	0.34	0.92	0.92	0.93
13	0.03	0.06	0.11	0.18	0.28	0.45	0.93	0.94
14	0.02	0.06	0.10	0.15	0.23	0.36	0.94	0.95
15	0.02	0.05	0.08	0.13	0.20	0.30	0.47	0.95
16	0.02	0.04	0.07	0.12	0.17	0.25	0.38	0.96
17	0.02	0.04	0.06	0.10	0.15	0.21	0.31	0.49
18	0.01	0.03	0.06	0.09	0.13	0.19	0.26	0.39

TABLE 9-16 Cooling load factor due to occupants (CLF)_{occ.}, for sensible heat gain.⁵

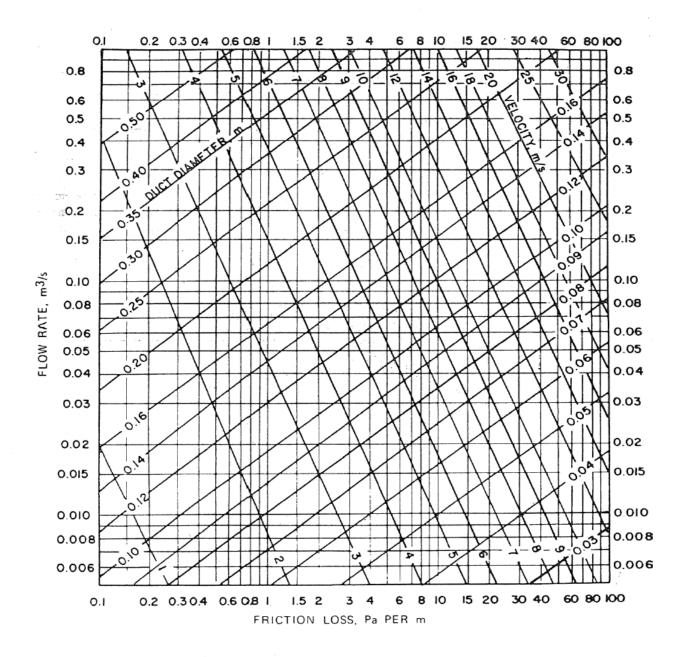
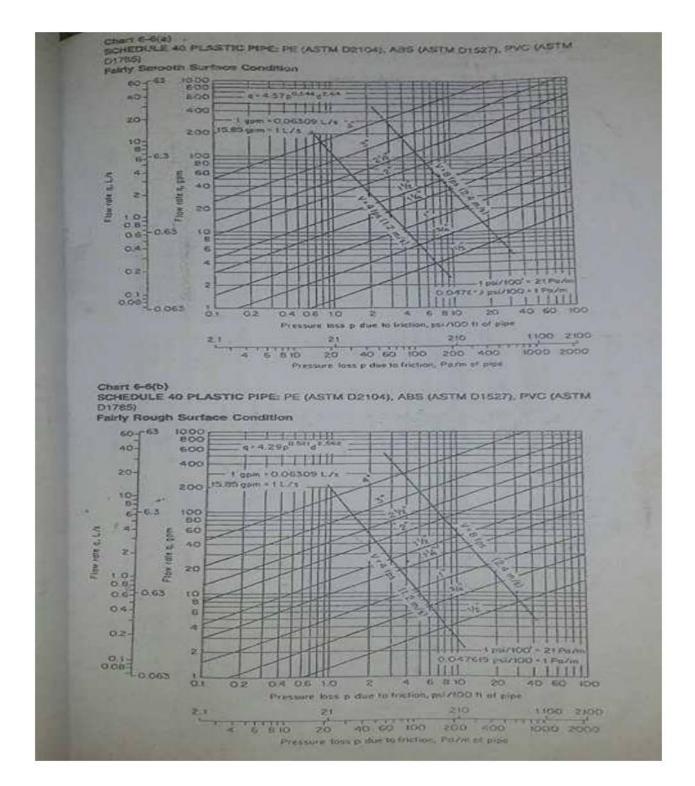
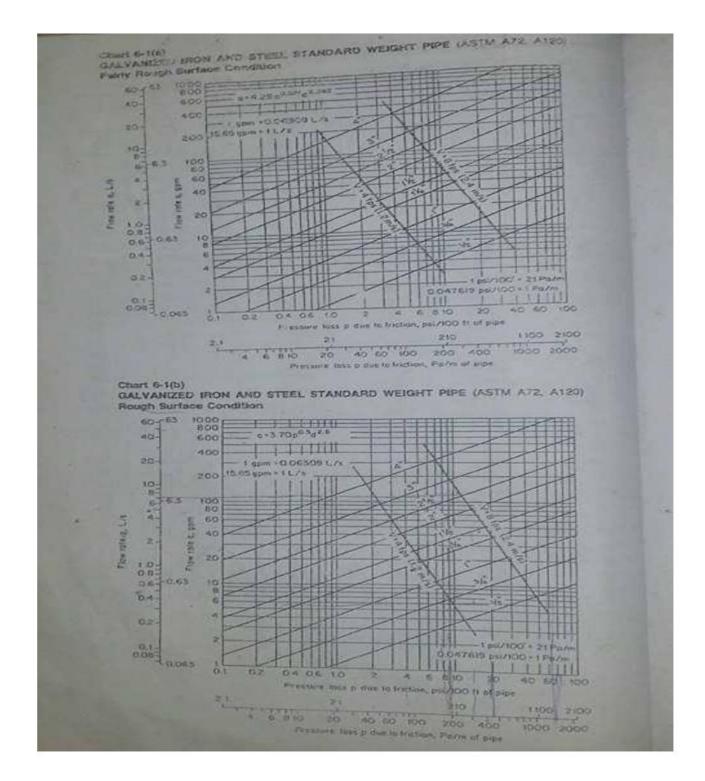


FIGURE 10-5 (a) Pressure drop (ΔP /EL), for low flow rates of air in galvanized steel ducts, based on round duct


TABLE 10-2 Circular equivalent diameters of rectangular ducts for equal pressure drop and flow rate³.


Lgth.							Len	gth of	One Si	de of I	Rectang	ular D	uct ,	mm						
Adj.	100	125	150	175	200	225	250	275	300	350	400	450	500	550	600	650	700	750	800	900
100	109																			
150	133	150	164																	
200	152	172	189	204	219															
250	169	190	210	228	244	259	273													
300	183	207	229	248	266	283	299	314	328											
400	207	235	260	283	305	325	343	361	378	409	437									
500	227	258	287	313	337	360	381	401	420	455	488	518	547							
600	245	279	310	339	365	390	414	436	457	496	533	567	598	628	656					
700	261	298	331	362	391	418	443	467	490	533	573	610	644	677	708	737	765			
800	275	314	350	383	414	442	470	496	520	567	609	649	687	722	755	787	818	847	875	
900	289	330	367	402	435	465	494	522	548	597	643	686	726	763	799	833	866	897	927	984
1000	301	344	384	420	454	486	517	546	574	626	674	719	762	802	840	876	911	944	976	1037
1200	324	370	413	453	490	525	558	590	620	677	731	780	827	872	914	954	993	1030	1066	1133
1400	344	394	439	482	522	559	595	629	662	724	781	835	886	934	980	1024	1066	1107	1146	1220
1600	362	415	463	508	551	591	629	665	700	766	827	885	939	991	1041	1088	1133	1177	1219	1298
1800	379	434	485	533	577	619	660	698	735	804	869	930	988	1043	1096	1146	1195	1241	1286	1371
2000	395	453	506	555	602	646	688	728	767	840	908	973	1034	1092	1147	1200	1252	1301	1348	1438
2200	410	470	525	577	625	671	715	757	797	874	945	1013	1076	1137	1195	1251	1305	1356	1406	1501
2400	424	486	543	597	647	695	740	784	826	905	980	1050	1116	1180	1241	1299	1355	1409	1461	1561
2600	437	501	560	616	668	717	764	810	853	935	1012	1085	1154	1220	1283	1344	1402	1459	1513	1617
2800	450	516	577	634	688	738	787	834	879	964	1043	1119	1190	1259	1324	1387	1447	1506	1562	1670

Lgth.							Ler	igth of	One Si	de of R	lectang	ular Du	ıct (a),	mm						
Adj.	1000	1100	1200	1300	1400	1500	1600	1700	1800	1900	2000	2100	2200	2300	2400	2500	2600	2700	2800	2900
1000	1093																			
1100	1146	1202																		
1200	1196	1256	1312																	
1300	1244	1306	1365	1421																
1400	1289	1354	1416	1475	1530															
1500	1332	1400	1464	1526	1584	1640														
1600	1373	1444	1511	1574	1635	1693	1749													
1700	1413	1486	1555	1621	1684	1745	1803	1858												
1800	1451	1527	1598	1667	1732	1794	1854	1912	1968											
1900	1488	1566	1640	1710	1778	1842	1904	1964	2021	2077										
2000	1523	1604	1680	1753	1822	1889	1952	2014	2073	2131	2186									
2100	1558	1640	1719	1793	1865	1933	1999	2063	2124	2183	2240	2296								
2200	1591	1676	1756	1833	1906	1977	2044	2110	2173	2233	2292	2350	2405							
2300	1623	1710	1793	1871	1947	2019	2088	2155	2220	2283	2343	2402	2459	2514						
2400	1655	1744	1828	1909	1986	2060	2131	2200	2266	2330	2393	2453	2511	2568	2624					
2500	1685	1776	1862	1945	2024	2100	2173	2243	2311	2377	2441	2502	2562	2621	2678	2733				-
2600	1715	1808	1896	1980	2061	2139	2213	2285	2355	2422	2487	2551	2612	2672	2730	2787	2842			
2700	1744	1839	1929	2015	2097	2177	2253	2327	2398	2466	2533	2598	2661	2722	2782	2840	2896	2952		
2800	1772	1869	1961	2048	2133	2214	2292	2367	2439	2510	2578	2644	2708	2771	2832	2891	2949	3006	3061	
2900	1800	1898	1992	2081	2167	2250	2329	2406	2480	2552	2621	2689	2755	2819	2881	2941	3001	3058	3115	3170

Table based on $D_e = 1.30(ab)^{0.623}/(a + b)^{0.23}$. ^b Length of adjacent side of rectangular duct , mm.

Appendix B **plumbing** tables

	Si	Size
Fixture or device	ij	mm
Bathtub	3/2	12.7
Combination sink and laundry tray	1/2 .	12.7
Drinking fountain	3/8	9.5
Dishwashing machine (domestic)	1/2	12.7
	1/2 -	12.7
Kitchen sink (commercial)	3/4 .	19.
Lavatory	3%8	9.5
Laundry tray (1, 2, or 3 compartments)	1/2	12.7
	1/2	12
Sink (service, slop)	1/2	12.7
Sink (flushing rim)	3/4	19.0
Urinal [1" (25.4 mm) flush valve]	1	25.4
1% " (19.0 mm	3/4 :	19.
(flus	1/2	12.7
closet	3/8	9
closet (flush	- 1-	25.4
bib	1/2	12
Wall hydrant or sill cock	1/2	12

Table	(6-	14)	
1 4010	<u>۱</u>	0	± • /	

			Lon	values and scaler supp fixture uni	ły.
Fixture	Оссиранку	Type of supply control	Cold	Not	Total
Water closet Water closet Urinal Urinal Urinal Lavatory Bathtub Showerhead Service sink Nitchen sink Drinking fountain Water closet Water closet Lavatory Bathtub Shower stall Nitchen sink Laundry trays (4 to 3) Combination fixture Dishwashing machine Laundry machine [8 lb (3.6 kg)] Laundry machine [8 lb (3.6 kg)] Laundry machine [8 lb (3.6 kg)]	Public Public Public Public Public Public Public Public Public Offices, etc. Hotel, restaurant Offices, etc. Private	Plush valve Plush tank 1" (25.4 mm) flush valve W" (10 mm) flush valve Flush tank Faucet Faucet Faucet Faucet Faucet Plush tank Plush tank Plush tank Plush tank Plush tank Plush tank Plush tank Plush tank Faucet Faucet Faucet Faucet Faucet Faucet Faucet Faucet Faucet Faucet Faucet Faucet Faucet Faucet Faucet Automatic Automatic Automatic	10 5 10 5 3 1.5 1 5 2 5 1.5 1 5 2 2 5 1.5 1 5 2 2 5 1.5 2 2 5 1.5 2 2 5 1.5 2 2 5 1.5 2 2 5 1.5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.5 3.5 3.2,25 9 0.75 1.5 2.25 1.5 2.25 1.5 2.25 1.5 2.25 1.5 2.25 1.5 2.25 1.5 2.25 1.5 2.25 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	10 5 10 5 2 4 4 5 4 10 5 1 2 2 5 4 5 4 5 4 5 4 5 5 1 2 5 4 5 4 5 4 5 5 1 2 5 4 5 5 1 2 5 4 5 5 1 2 5 4 5 5 1 2 5 4 5 5 1 2 5 4 5 5 1 2 5 4 5 5 1 2 5 4 5 5 1 2 5 4 5 5 1 2 5 4 5 5 1 2 5 4 5 5 1 2 5 5 1 2 5 4 5 5 1 2 5 5 1 2 5 4 5 1 2 5 1 2 5 4 5 1 2 5 1 2 5 4 5 1 2 5 1 2 5 1 2 5 4 5 1 2

Note: For fatures not listed, loads should be assumed by comparing the fature with one flated using water in similar quantities and a similar rares. The satigned loads for fatures with both hot and cold stater supplies are given for separate hot and cold stater loads and for multical, the separate hot and cold stater loads being three-fourths of the total load for the fature in each case.

Table(6-8)

	Actority = 8 tos	Velaci	100	and a second	Velocity = 4 fps	belsv			-
bervion Ut Liciton V	(cor 11)+ M2EA Four	(col. V).a M3EA Forq	Khur How V	A aoiniri ti 001/leq	(cor B) M2ED Poeq	(cor y)a M2EA I'osq	Elon, è	hetsh	lanino//
5M2		P.8	7.6	8.8		13	3.8	0.622	N
X 61	IIT	52.3	31.6	3.1		13	8.01	1.048	1
11.6	Titt	112	31.5	2.8	0.0	112	2.8	1.480	- IN
N.B.	25.0	135.3	8.05	23	9.9	0.72	P.62	018.1	111
D.I	1110	293.0	3.88	11	8.05	93.0	8.14	130.9	200
3.0	201.0	0.010	0.102	1 2	0.07	0.471	20.8	5.409	215
2.2	1040.0	1030.0	6414	9.0	0.210 2.02.0	0.005	AX.O	2008	~~~
	193010	132010	2016	8.0	0.518	0.888	0.821	4.026	+

Table 6-3b

SIZING TABLE BASED ON VELOCITY LIMITATION-SI UNITS Galvanized iron and Steel Pipe, Standard Pipe Size

		1	Velocit	y = 1.2 m/s			Velocit	y = 2.4 m/s	- 100
Nominal size, mm	Actual ID, mm	Flow q. L/s	Load WSFU (col. A)*	Load WSFU (col. B)†	Friction p, Pa/m‡	Flow q, L/n	Lond WSFU (col. A)*	Lond WSFU (col. B)†	Friction p, Pa/m‡
12.7	15.8	0.23	1.5	Contraction of the	172.3	0.47	3.7	1	651.5
19.0	20.9	0.42	3.0		126.1	0.84	8.4		472.8
25.4	26.6	0.68	6.1		96.7	1.36	25:3	7.7	361.5
31.8	35.1	1.17	17.5	6.0	71.5	2.34	77.3	23.7	269.0
38.1	40.9	1.60	37.0	9.3	60.9	3.20	132.3	52.0	227.0
50.8	52.5	2.63	93.0	29.8	46.2	5.27	293.0	171.6	176.5
63.5	62.7	3.77	174.0	75.6	37.8	7.54	477.0	361.0	142,9
76.2	77.7	5.80	335.0	209.0	29.4	11.60	842.0	806.0	113.5
102.0	102.3	10.00	688.0	615.0	23.1	20.01	1930.0	1930.0	86,2

* Col. A applies to piping which does not supply flush valves.

t Col. B applies to piping which supplies fluth valves.

1 Friction loss p, corresponding to flow rate q, for piping having fairly smooth surface condition after extended rervice applying the formula

y = 4.57 pass dass

		110	· Veloc	Velocity = 4 fps			Veloci	Velocity = 8 fps	
Nominal size, in	Actual ID, in	Flow q, gpm	Lond WSFU (col. A)*	Load WSFU (col. B)†	Friction p, psi/100 ft;	Flow q, gpm	Load WSFU	Load WSFU (col. B)†	Friction A, psi/100 ft
1/2	0.622	- 3.8	15		8.2	7.6	3.7		31.0
3/4	0.824	6.7	3.0		6.0	13.4	8.4		22.5
1	1.049	10.8	6.1		4.6	21.6	25,3	1.7	17.2
114	1.380	18.6	17.5	6.0	3.4	37.2	77.3	23.7	12.8
11/2	1.610	25.4	87.0	9.3	2.9	50.8	132.3	52.0	10.8
2	2.067	. 41.8	93.0	29.8	2.2	83.6	293.0	171.6	8.4
21/2	2.469	59.8	174.0	75.6	1.8	119.6	477.0	361.0	6.8
-	3.068	92.0	335.0	209.0	1.4	184.0	842.0	806.0	5.4
	4.026	158.6	688.0	615.0	11	317.0	1930.0	1930.0	4,1

Table(6-3a)

	Demand	
Type of outlet	Clara	La
17]V G C	2.0	0.126
Ordinary lavatory faucet	2.5	0.158
C. M. desing Invotory GUCCI	4.5	0.284
Sink faucet, 34" (9.52 min) or 52 (12.17 min)	6.0	0.378
Sink faucet, % (19 mm)	5.0	0.315
Bath faucet, 1/4" (12.7 mm)	5.0	0.315
Shower head, 1/4" (12.7 mm)	5.0	0.315
Laundry faucet, 1/2 * (12.7 mm)	3.0	0.189
Ball cock in water closet flush tank	35.0	2.210
1º (25.4 mm) flush valve [25 psi (172 kPa) flow pressure]	27.0	1.703
1 A 105 A must Brach value [15 DSI (103 Kra) 100 Press	15.0	0.945
% * (19.0 mm) flush valve [15 psi (103 kPa) flow pressure]	0.75	0.047
Drinking fountain jet	4.0	0.752
Dishwashing machine (domestic)	4.0	0.259
Laundry machine [8 lb (3.6 kg) or 16 lb (7.8 kg)]	2.5	0,15
Aspirator (operating room or laboratory) liose bib or sill cock. ½ " (12.7 mm)	5.0	0.313

TABLE FOR ESTIMATING DEMAND

Supply systems predominantly for flush tanks			Supply systems predominantly for Flushometer valves				
Load	Demand		Load	Domand			
Water supply fixture units (WSFU)	gpm	1./s	Water supply fixture units (WSFU)	Kbur .	L/s		
. 1.	5.0	0.19			-		
2	5.0	0.32					
. 3	6.5	0.41					
4	8.0	0.51					
5	9.4	0.59	5	, 15.0	0.9		
6	10.7	0.68	6	17.4	1.1		
- 7	11.8	0.74	7	19.8	1.2		
8	12.8	0.81	8	22.2	1.4		
8 9	13.7	0.86	9	24.6			
10	14.6	0.92	10	27-0	1.5		
12	16.0	1.01	12	28.6	1.8		
14	17.0	1.07	14				
16	18.0	1.14	16	30.2	1.9		
18	18.8	1.19	18	\$1.8	2.0		
20	19.6	1.24		33.4	2.1		
		*-L'A	20	\$5.0	2.5		

drainage tables

Actual Inside Diameter of Pipe, in.	4116 in.1ft Slope		4/₂ in.lft Slope		4 in.lft Slope		¹ /2 in./ft Slope	
	Discharge, gpm	Velocity, fps	Discharge, gpm	Velocity, fps	Discharge, gpm	Velocity, fps	Discharge, gp111	Veloci fps
14		040 (00000 NOC					3.40	1.78
13/8					3.13	1.34	4.44	1.90
14z					3.91	1.42	5.53	2.01
1¥8				×	4.81	1.50	6.80	2.12
2					8.42	1.72	11.9	2.43
21/2			10.8	1.41	15.3	1.99	21.6	2.82
3.	<i>a</i>		17.6	1.59	24.8	2.25	35.1	3.19
4	26.70	1.36	37.8	1.93	53.4	2.73	75.5	3.86
5	48.3	1.58	68.3	2.23	96.6	3.16	137.	4.47
6	78.5	1.78	111.	- 2.52	157.1	3.57	222.	5.04
8	170.	2.17	240.	3.07	340.	4.34.	480.	6.13
10	308.	2.52	436.	3.56	616.	5.04	872.	7.12
12	500.	2.83	707.	4.01	999.	5.67	1413	8.02

、

 Table 10.1 Approximate Discharge Rates and Velocities^a in Sloping Drains Flowing Half Full^b

drainage tables

			One stack				Building drai drain branch	n, and buildin es from stack
Pipe		hori-	2036 20.70		Stacks more than 3 stories in height		Slope, in/ft (mm/m)	
diam	eter mm	zontal fixture branch	or less in height	Total for stack	Total at one story	3/10 (5.2)	5% (10.4)	1/4 (20.8)
1/4*	37.5	3	4	8	2	np	np	np
2*	50	6	10	24	6	np	np	21
21/**	62.5	12	20	42	9	np	np	-24
S	75	201	48‡	7.21	20+	np	np†	421
4	100	160	240	- 500	90	np	180	216
5	125	360	540	1100	200	np	390	480
6	150		960	1900	350	np	700	840
8	200			3600	600	1400	1600	1920
10	250			5600	1000	2500	2900	3500
12	300					3900	4600	5600

* No water closets permitted.

* Not-over two water closets permitted.

I Not over six water closets permitted.

drainage tables

Type of Fixture or Group of Fixtures	Drainage Fixture Unit Value, dfu
Automatic clothes washer	
(2-in, standpipe and trap required, direct	
connection)	3
Bathtub group consisting of a water closet;	
lavatory and bathtub or shower stall:	6
Bathtub (with or without overhead shower)"	2
Bidet	1
Clinic sipk	6
Clothes vasher	2
Combination sink-and-tray with food waste	
grinder	4
Combination sink-and-tray with one 1-in.	
trap	2
Combination sink-and-tray with separate 1-	
in. trap	3
Dental unit or cuspidor	1
Dental lavatory	1
Drinking fountain	1/2
Dishwasher, domestic	2
Floor drains with 2-in, waste	3
Kitchen sink, domestic, with one	
1-in, trap	2
Kitchen sink, domestic, with food waste -	
grinder	2
Kitchen sink, domestic, with food waste grinder and dishwasher	
l-in. trap	3
Kitchen sink, domestic, with dishwasher 1-in	
trap	3
Lavatory with 1-in. waste	1
Laundry tray (1 or 2 compartments)	2
Shower stall, domestic	2
Showers (group) per head	2
Sinks	
surgeon's	3
flushing rim (with valve)	6
service (trap standard)	3
service (P trap)	2
pot, scullery, etc.	4
Urinal, syphon jet blowout	6
Urinal, wall lip	4
Wash sink (circular or multiple) each set of	
faucets	2
Water closet, private	4
Water closet, general use	6
Fixtures not already listed	2.57
trap size 11/4 in. or less	1
trap size 1 1/2 in.	2
trap size 2 in.	3
trap size 21/2 in.	4
trap size 3 in.	5
trap size 4 in.	6

A S. Standburght S. S.

Table 103 Drainage Fixture Unit Values for

"A shower head over a bathtub does not increase the fixture unit value. Source. Reprinted with permission from The National Standard Plumbing Code, Published by The National Association of Plumbing Heating Cooling Contractors.

14

drainage tables

Table 10.5 Building Drains and Sewers^a

Maximum Number of Fixture Units That May Be Connected to Any Portion of the Building Drain or the Building Sewer

Diameter	t	Slope per Foot							
of Pipe, in.	Ilis in.	JIs in.	. <i>"la</i> rin.	<i>1/₂̀ in.</i>					
2	1		21	26					
21/2		1 ° * *	24	31					
3			42 ^b	50 ^b					
4	en seen a se li siin. Maa siin.	180	216	250					
5	2	390	480 .	575					
6		700	840	1000					
8 .	1400	1600	1920	2300					
10	2500	2900	3500	4200					
12	2900	4600	5600	6700					
15	7000	8300	10,000	12,000					

Firefighting Table

		WATER PL	Table 3F Wi OWDEG IN 3 INC LO. = 31	rter Hew Tab H SCHEDULE 964 Inchrs	AD STEEL P	IPE		W	USER FLOWER	10 - 40000	Contraction of the local distance	SSPEEL PIPE
									and the second second	Pf(psi	(=120	(fps)
G.	P1	(psv/ft)	Velocity	0	Prop	si/it)	Velocity	-	Q (qpm)		0.004	2.52
ini.	C=10	0 Car120		(map)	(=100	G=120	(fps]		100	0.005	0.006	3,15
	3.007	0.001	1.30	285	0.179	0.092	12.15		175	800.0	0.000	3.78
	0.004	0.003	1.74	285	0.134	0.075	17.37		150	0.011	0.010	4.41
	0.005	0.004	2.17	290	0.138	820.0	12.59		175	0.014	0.013	5.04
	0.007	0.005	2.60	295	0.747	0.107	12.80		200	0.018	0.016	5.67
	0.010	0.007	3.04	300	0.147	0.105	13.02		225	0.023	0.020	6.30
_	0.013	0.009	3.47	305	0.151	0.108	13.24		250	0.033	0.024	6.93
-	0.016	0.011	3.91	310	0,156	0.111	13.45		275	0.039	0.028	7.55
1	10.019	0.014	4.34	315	0.161	0.115	13.67		300	0.045	0.032	8.19
-	0.073	0.016	4.77	320	0.165	0.118	and the state of the		350	0.052	0.037	8.87
	0.027	0,019	\$21	375	0,170	0.122	14.11			0.059	0.042	9.45
-	0.031	0.077	5.64	330	0.175	0.125	14.32		375	0.057	0.048	10.08
	0.036	0.025	6.08	335	0,120	0.129	14.76		400	0.074	0.053	10.71
	0.041	0.029	6.51	340	0.185	0.136	14.97		450	0.083	0.059	11.34
-	0.943	0.031	6.73	345	0.190	0.135	15.19		475	0.091	0.065	11.97
-	0.046	0.033	7.16	350	0.195	0.137	15.41		500	0.101	0.072	12.60
	0.057	0.035	and the state of t	355	and the local division of the local division	0.147	15.62		510	0.104	0.074	12.85
	0.054	0.039	17.38	360	0.205	0.157	15.84		520	0.108	0.077	13.11
-	0.057	0.041	7.60	370	0,716	0.154	16.06		\$30	0.112	0.080	13.36
	0.060	0.043	8.03	375	0.222	0.158	15.28		540	0,116	0.083	13.61
-	0.063	0.045	8.25	380	0 777	0.162	16.49		550	0.120	0.086	13.86
-	0.066	0.047	a star a ball the same star and star	and the second s	0.233	0.166	16.71		550	0.120	0.089	14.11
-	0.069	0.049	8.68	385	0.239	0.136	16.93		And in case of the local division of the loc	0.128	0.091	14.37
	0.073	0.052	8.90	395	0.244	0.174	17.14		570	0.132	0.094	14.62
	0.076	0.054	9.11	400	0.250	0 178	17.36		590	0.137	0.097	14.87
	0.079	0.057	9.33	405	0.256	0.183	17.58		600	0.141	0.101	15.12
_	6.083	0.059	9.55	410	0.262	0.187	17.79		610	0.145	0.104	15.37
	0.035	0.067	9.77	415	0.768	0.191	18.01			0.150	0.107	15.63
_	0.090	0.064	9.98	420	0.274	0.195	18,73		620	0.150	0.110	15.88
	0.093	0.067	10.20	425	0.280	0.200	118.45		and the second s	0.159	0.113	16.13
	0.097	0.069	10.42	430	0.285	0.204	18.66		640		0.117	16.38
	0,191	0.072	10.63	435	0.292	0.208	15.83		650	0.153	0.120	16.63
	0.011	0.075	10.85	440	0.298	0.713	19.10		660	0,168	0.123	16.89
	0.109	0.078	11.07	445	0.305	0.217	19.31		670	0.173	0.123	17.14
_	0.113	0.030	11.28	450	0.311	0.222	19.53		630	0.178	0.130	17.39
_	2.197	0.083	11.50	455	0.317	0.225	19.75		690	0.133	and the second s	17.53
_	2.121	0.086	11.72	460	0.324	0.231	19.96		700	0.187	0.134	the second se
_	1.125	0.089	11.94	465	0.330	0.236	20.18		710	0.192	0.137	17.89
13	113	20002	11.24	(30)	4.3.90	10.630	120.10		720	0.197	0.141	18,15
									730	0.203	0.145	18,40
									740	0.208	0.148	18,65
									750	0.213	0.152	18.90
									760	0.218	0.156	
									770	0.224	0.160	
									780	0.229	0.163	19.60
									(790)	(0.234)		

Appendix C

Room Number	Q total Kw	Room Number	Q total Kw	Room Number	Q total Kw	
1	3.7	2	4.2	3	3.6	
4	4.2	5	3.56	6	4.3	
7	3.8	8	4.3	9	3.6	
10	4.2	11	3.77	12	4.2	
13	4.35	14	4.2	15	3.87	
16	4.41	17	4.87	18	24.9	
19	5.62	20	2.84	21	3.06	
22	4.5	23	4.5	24	5	
25	4.54	26	3.88	27	4.2	
28	5.35	29	3.73	30	4.2	
31	3.6	32	4.2	33	3.84	
34	4.23	35	3.31	36	4.26	
37	3.1	38	4.22	39	3.8	
40	4.2	41	10.67	42	10.67	
43	5	44	2.21	45	24.35	
46	3.41	47	10.73	48	5.87	
49	5.66	50	4.8	51	4.73	
52	14.5	53	4.8	54	3.66	

Table C1:	Cooling	load for	ground floor.

Room Number	Q total	Room Number	Q total	Room Number	Q total
1	3.67	2	4.22	3	4.1
4	4.23	5	4	6	4.32
7	4.41	8	4.32	9	4.06
10	4.22	11	3.77	12	4.21
13	5.55	14	4.22	15	3.86
16	5	17	5	18	5
19	5	20	5.24	21	4.26
22	5.62	23	2.8	24	3.42
25	4.62	26	5.25	27	5.45
28	4.9	29	5	30	5
31	3.86	32	4.22	33	5.45
34	3.82	35	4.22	36	3.82
37	4.22	38	4.1	39	4.89
40	3.79	41	4.22	42	10.56
43	4	44	4.1	45	5
46	4.85	47	14.84	48	14.88
49	9	50	3.68	51	5.77
52	4.55	53	19	54	3.7
55	4.21	56	4.11	57	4.85

Table C2: Cooling load for first floor.

Room Number	Q total	Room Number	Q total	Room Number	Q total
1	3.67	2	4.22	3	4.07
4	4.22	5	4	6	4.31
7	4.4	8	4.32	9	4.06
10	4.22	11	3.77	12	4.21
13	5.55	14	4.22	15	3.86
16	5	17	5	18	5
19	5	20	5.24	21	4.26
22	2.8	23	2.8	24	3.4
25	4.71	26	5.16	27	5.45
28	5	29	5	30	5
31	3.86	32	4.22	33	5.45
34	3.82	35	4.23	36	3.82
37	4.22	38	4.1	39	5
40	3.8	41	4.22	42	10.56
43	4.13	44	4.16	45	5
46	4.85	47	14.8	14.48	14.88
49	9	50	3.68	51	5.77
52	4.55	53	19	54	3.7
55	4.2	56	4.11	57	4.85

Table C3:	Cooling	load for	second floor.
-----------	---------	----------	---------------

Room Number	Q total	Room Number	Q total	Room Number	Q total	
1	3.68	2	4.22	3	4.1	
4	4.22	5	4	6	4.32	
7	4.22	8	4.32	9	4.1	
10	4.22	11	3.78	12	4.22	
13	5.61	14	4.22	15	3.87	
16	5	17	5	18	5	
19	5	20	5.26	21	2.27	
22	5.71	23	2.8	24	4.43	
25	4.73	26	5.16	27	5.47	
28	5	29	5	30	5	
31	3.87	32	4.22	33	5.51	
34	3.83	35	4.22	36	3.83	
37	4.22	38	4.12	39	5	
40	3.81	41	4.22	42	10.6	
43	4.14	44	4.16	45	5	
46	4.86	47	14.87	48	15	
49	9	50	3.7	51	5.77	
52	4.57	53	19.01	54	3.72	
55	4.22	56	4.12	57	4.86	
	The total load	for all building		1192.33	3 KW	

Table C4: Cooling loa	d for third floor.
-----------------------	--------------------

Room	fcu selection	cfm	Room	fcu selection	cfm	Room	fcu selection	cfm
G1	PCC/PFC5-L-85-65-27	677.20	G2	PCC/PFC6-M-76-63-26	769.90	G3	PCC/PFC5-L-85-65-27	652.74
G4	PCC/PFC6-M-76-63-26	769.90	G5	PCC/PFC5-L-85-65-27	652.74	G6	PCC/PFC6-M-78-63-26	786.66
G7	PCC/PFC3-H-76-67-27	695.06	G8	PCC/PFC6-M-78-63-26	786.66	G9	PCC/PFC5-L-85-65-27	658.65
G10	PCC/PFC6-M-76-63-26	769.90	G11	PCC/PFC3-H-76-67-27	691.96	G12	PCC/PFC6-M-76-63-26	769.90
G13	PCC/PFC4-H-85-67-27	980.75	G14	PCC/PFC6-M-76-63-26	769.90	G15	PCC/PFC3-H-76-67-27	711.16
G16	PCC/PFC6-M-85-63-26	825.78	G17	PCC/PFC8-M-80-63-26	893.81	G18		4567.13
G19	PCC/PFC6-H-78-65-26	1029.68	G20	PCC/PFC4-L-76-63-27	521.26	G21	PCC/PCF5-L-80-63-27	562.55
G22	PCC/PFC6-M-85-63-26	824.79	G23	PCC/PFC6-H-85-63-26	905.20	G24	PCC/PFC6-M-85-63-26	821.78
G25	PCC/PFC6-H-85-63-26	916.58	G26	PCC/PFC6-M-85-63-26	832.28	G27	PCC/PFC4-H-78-63-27	712.47
G28	PCC/PFC6-M-76-63-26	769.90	G29	PCC/PFC4-H-85-67-27	981.65	G30	PCC/PFC3-H-76-67-27	684.83
G31	PCC/PFC6-M-76-63-26	769.90	G32	PCC/PFC5-L-85-65-27	660.33	G33	PCC/PFC6-M-76-63-26	769.90
G34	PCC/PFC4-H-78-63-27	703.74	G35	PCC/PFC8-L-78-63-26	776.57	G36	PCC/PFC5-M-76-63-27	607.62
G37	PCC/PFC8-L-78-63-26	781.47	G38	PCC/PCF5-L-80-63-27	564.21	G39	PCC/PFC6-M-76-63-26	774.80
G40	PCC/PFC4-H-78-63-27	695.44	G41	PCC/PFC6-M-76-63-26	769.90	G42	PCC/PFC12-M-85-67-26	1956.90
G43	PCC/PFC12-M-85-67-26	1956.90	G44	PCC/PFC6-M-85-63-26	824.99	G45	PCC/PFC2-M-80-63-27	406.09
G46	·	4464.44	G47	PCC/PFC3-H-76-65-27	626.01	G48	PCC/PFC12-M-85-67-26	1967.91
G49	PCC/PFC8-L-78-67-26	1077.26	G50	PCC/PFC6-H-78-65-26	1038.68	G51	PCC/PFC5-M-85-67-27	880.59
G52	PCC/PFC5-M-85-67-27	867.83	G53	CB/CBP12-H-76-67-16	2655.98	G54	PCC/PFC5-M-85-67-27	879.46

C5: Ground floor F.C.U selection & quantity of air in rooms.

Room	FCU selection	CFM	Room	FCU selection	CFM	Room	FCU selection	CFM
1	PCC/PFC5-L-85-65-27	672.43	2	PCC/PFC8-L-78-63-26	773.84	3	PCC/PFC3-H-85-67-27	747.34
4	PCC/PFC8-L-78-63-26	773.84	5	PCC/PFC4-H-80-63-27	721.01	6	PCC/PFC5-H-80-65-27	791.93
7	PCC/PCF5-H-85-65-27	808.27	18	PCC/PFC5-H-80-65-27	791.93	9	PCC/PFC3-H-85-67-27	746.13
10	PCC/PFC8-L-78-63-26	773.84	11	PCC/PFC4-H-78-63-27	691.03	12	PCC/PFC8-L-78-63-26	772.58
13	PCC/PFC6-H-78-65-26	1018.01	14	PCC/PFC8-L-78-63-26	773.84	15	PCC/PFC4-H-80-63-27	708.53
16	PCC/PFC5-H-78-67-27	908.89	17	PCC/PFC8-M-80-63- 26	897.76	18	PCC/PFC5-H-78-67-27	912.79
19	PCC/PFC8-M-80-63-26	897.76	20	PCC/PFC4-H-78-67-27	961.18	21	PCC/PFC5-L-85-67-27	782.53
22	PCC/PFC6-H-78-65-26	1030.83	23	PCC/PFC4-L-76-63-27	511.52	24	PCC/PFC4-M-76-63-27	628.05
25	PCC/PFC5-M-76-67-27	848.12	26	PCC/PFC4-H-78-67-27	962.96	27	PCC/PFC6-H-78-65-26	1000.05
28	PCC/PFC5-H-78-67-27	898.63	29	PCC/PFC5-H-78-67-27	913.32	30	PCC/PFC8-M-80-63-26	897.76
31	PCC/PFC4-H-80-63-27	708.53	32	PCC/PFC8-L-78-63-26	773.84	33	PCC/PFC6-H-78-65-26	1000.59
34	PCC/PFC4-H-80-63-27	701.15	35	PCC/PFC8-L-78-63-26	773.84	36	PCC/PFC4-H-80-63-27	701.15
37	PCC/PFC8-L-78-63-26	773.84	38	PCC/PFC5-L-76-67-27	752.67	39	PCC/PFC8-M-80-63-26	897.76
40	PCC/PFC4-L-76-67-27	695.67	41	PCC/PFC8-L-78-63-26	773.84	42	PCC/PFC12-M-85-67-26	1937.56
43	PCC/PFC5-M-76-65-27	732.06	44	PCC/PFC8-L-78-63-26	763.30	45	PCC/PFC5-H-78-67-27	917.66
46	PCC/PFC8-M-80-63-26	890.17	47	CB/CBP12-H-76-67-16	2721.91	48	CB/CBP12-H-76-67-16	2728.82
49	PCC/PFC12-M-80-65-26	1634.90	50	PCC/PFC5-L-85-65-27	676.02	51	PCC/PFC8-L-78-67-26	1058.17
52	PCC/PFC5-M-76-67-27	835.03	53		3476.58	54	PCC/PFC5-L-85-65-27	679.56
55	PCC/PFC8-L-78-63-26	773.42	56	PCC/PFC5-L-76-67-27	753.87	57	PCC/PFC8-M-80-63-26	890.17

C6: First & second floor F.C.U selection & quantity of air in rooms.

Room	FCU selection	CFM	Room	FCU selection	CFM	Room	FCU selection	CFM
1	PCC/PFC5-L-85-65-27	674.93	2	PCC/PFC8-L-78-63-26	774.71	3	PCC/PFC3-H-85-67-27	750.2109
4	PCC/PFC8-L-78-63-26	774.71	5	PCC/PFC4-H-80-63-27	723.509	6	PCC/PFC5-H-80-65-27	792.796
7	PCC/PCF5-H-85-65-27	810.77	8	PCC/PFC5-H-80-65-27	792.796	9	PCC/PFC3-H-85-67-27	748.9467
10	PCC/PFC8-L-78-63-26	774.71	11	PCC/PFC4-H-78-63-27	693.529	12	PCC/PFC8-L-78-63-26	773.4415
13	PCC/PFC6-H-78-65-26	1028.3	14	PCC/PFC8-L-78-63-26	774.706	15	PCC/PFC4-H-80-63-27	711.028
16	PCC/PFC5-H-78-67-27	912.52	17	PCC/PFC8-M-80-63-26	898.621	18	PCC/PFC5-H-78-67-27	916.7288
19	PCC/PFC8-M-80-63-26	898.62	20	PCC/PFC4-H-78-67-27	964.803	21	PCC/PFC5-L-85-67-27	783.3928
22	PCC/PFC6-H-78-65-26	1046.5	23	PCC/PFC4-L-76-63-27	512.127	24	PCC/PFC4-M-76-63-27	628.9453
25	PCC/PFC5-M-76-67-27	868.24	26	PCC/PFC4-H-78-67-27	947.324	27	PCC/PFC6-H-78-65-26	1003.986
28	PCC/PFC5-H-78-67-27	899.54	29	PCC/PFC5-H-78-67-27	916.943	30	PCC/PFC8-M-80-63-26	898.6215
31	PCC/PFC4-H-80-63-27	711.03	32	PCC/PFC8-L-78-63-26	774.706	33	PCC/PFC6-H-78-65-26	1010.95
34	PCC/PFC4-H-80-63-27	703.65	35	PCC/PFC8-L-78-63-26	774.706	36	PCC/PFC4-H-80-63-27	703.6488
37	PCC/PFC8-L-78-63-26	774.71	38	PCC/PFC5-L-76-67-27	755.483	39	PCC/PFC8-M-80-63-26	898.6215
40	PCC/PFC4-L-76-67-27	698.17	41	PCC/PFC8-L-78-63-26	774.706	42	PCC/PFC12-M-85-67-26	1941.683
43	PCC/PFC5-M-76-65-27	759.86	44	PCC/PFC8-L-78-63-26	764.165	45	PCC/PFC5-H-78-67-27	921.2866
46	PCC/PFC8-M-80-63-26	891.03	47	CB/CBP12-H-76-67-16	2727.9	48	CB/CBP12-H-76-67-16	2734.728
49	PCC/PFC12-M-80-65-26	1638	50	PCC/PFC5-L-85-65-27	678.106	51	PCC/PFC8-L-78-67-26	1059.029
52	PCC/PFC5-M-76-67-27	839.21	53		3485.13	54	PCC/PFC5-L-85-65-27	682.0595
55	PCC/PFC8-L-78-63-26	774.28	56	PCC/PFC5-L-76-67-27	756.747	57	PCC/PFC8-M-80-63-26	891.0315

C7: Third floor F.C.U selection & quantity of air in rooms.

(Grou	nd floor)
Room	KW
1	1.06
2	0.78
3	1.66
4	1.66
5	1.6
6	1.012
7	1.012
8	1.6
9	1.66
10	1.66
11	1.6
12	1.012
13	1.6
14	1.6
15	3.25
16	1.6
17	0.97
18	1.6
19	1.6
20	1.6
21	1.6
22	3.56
23	1.19
24	1.6
25	1.6
26	1.6
corridor	7.913
Total	50.169Kw

Table C.8: Heating loads for ground floor.

First	floor
Room	kW
1	0.62
2	0.47
3	0.79
4	0.46
5	0.43
6	0.43
7	0.62
8	0.43
9	0.79
10	0.46
11	0.46
12	0.62
13	0.40
14	0.48
15	0.42
16	0.779
17	0.779
18	0.42
19	0.48
20	0.4
21	0.4
22	0.4
23	0.63
24	0.69
25	0.69
26	0.63
27	0.4
28	0.4
29	0.548
corridor	2.33
Total	18 Kw

 Table C.9: Heating loads for First floor.

Secon	d floor
Room	kW
1	0.62
2	0.47
3	0.79
4	0.46
5	0.43
6	0.43
7	0.62
8	0.43
9	0.79
10	0.46
11	0.46
12	0.62
13	0.40
14	0.48
15	0.42
16	0.779
17	0.779
18	0.42
19	0.48
20	0.4
21	0.4
22	0.4
23	0.63
24	0.69
25	0.69
26	0.63
27	0.4
28	0.4
29	0.548
corridor	2.33
Total	18 Kw

Table C.10: Heating loads for Second floor.

Third	l floor
Room	kW
1	1.48
2	1.25
3	1.63
4	1.63
5	1.25
6	1.48
7	1.48
8	1.25
9	1.63
10	1.63
11	1.25
12	1.48
13	1.74
14	1.72
15	1.8
16	2.15
17	1.72
18	1.8
19	1.72
20	1.74
21	1.85
22	1.74
23	1.93
24	2.76
25	2.765
26	1.93
27	1.74
28	1.85
29	1.06
corridor	14.7
Total	64.305 Kw

Table C.11: Heating	loads for	Third floor.

Ground floor	
bathroom	Watt
1	403.26
2	469
3	473.6
4	473.6
5	469
6	403.26
7	403.26
8	469
9	473.6
10	473.6
11	469
12	403.26
13	469
14	469
15	0
16	469
17	469
18	469
19	469
20	0
21	469
22	469
23	469
24	0
25	0
26	0
Total	9.604 Kw

Table C.12: Heating loads for Ground floor bathrooms.

First and Second floo)r
Bathroom	Watt
1	184.5
2	0.49
3	252.05
4	252.05
5	0.49
6	184.5
7	184.5
8	0.49
9	252.05
10	252.05
11	0.49
12	184.5
13	0.49
14	0.49
15	0.49
16	252.05
17	0.49
18	0.49
19	0.49
20	0.49
21	0
22	0.49
23	0.49
24	0
25	0
26	0.49
27	0.49
Total	2Kw

Table C.13: Heating loads for First and second floor bathrooms.

Third Flo	oor
Bathroom	Watt
1	673.2
2	491.9
3	743.5
4	743.5
5	491.95
6	673.23
7	673.23
8	491.95
9	743.5
10	743.5
11	491.95
12	673.23
13	491.95
14	491.95
15	491.95
16	743.51
17	491.95
18	491.95
19	491.95
20	491.95
21	0
22	491.95
23	491.95
24	0
25	0
26	491.95
27	491.95
Total	13.78 Kw

Table C.14: Heating loads for Third floor bathrooms

<u>Catalogue</u>

selection of jockey pump

. .

	select joc	key pump (a	0 <u>50 gpm an</u>	<u>d 129psi</u>			
		BARE SHAFT PUM	PS		MOTOR DRIVEN DETAILS	DIESEL DRIVEN DETAILS	JOCKEY PUMP
Flow (GPM)	Model Dag.	APPROX SPEED Head Bar (PSI) Head Bar (RPM) UL Listing FM APPR			POWER RANGE (HP)	POWER RANGE (HP)	Motor Rating (HP)
	SFP 50-20 EM	2900	4.69 (65) 4.69 (55) 2500 5 5 6 (87) 6.07 (38) 15-30		15-20	255	
GPM	3FP 60-20 EH	3500	6.97 (101) 7.03 (102) 7.5 8 8 9 (129)	7.03 (102) 7.5 8 8.9 (129)	15-20	NOT POSSIBLE WITH DESEL ENGINE ARRANGEMENTS	375
50 G	SFP 50-28 EM	2900	7.93 (115) 9 9.17 (133) 9.66 (140)	9 9.17 (133)	15-20	15-20	265
	8FP 60-28 EH	3500	11.24 (163) 11.59 (168) 12 13 13.45 (195) 14.2 (206)	11.59 (168) 12 13 13.45 (195)	20-30	NOT POSSIBLE WITH DESEL BNOINE ARRANCEMENTS	3-7.5
	SFP 100-28 EH	3500	10.97 (159) 12 13 13.45 (195)		30-40	NOT POSSIBLE WITH DESEL ENGINE ARRANGE/ENTS	3-7.5
GPM	8FP 100-50 IBH	3500	7.17 (104) 7.31(105) 8: 8.83 (128)	7.31(105) 8 8.83 (128) 8.95 (130)	223	NOT POSSIBLE WITH DESEL ENGINE ARRANGEMENTS	3-7.5
00 G	8FP 100-28 EM	2900	7.52 (109) 8 9 9.24 (134)	Ż	20-25	20-30	26.5
1	8FP 100-42 EH	3000	8 (116) 9 9.86 (143)		20-25		265
	SFP 100-40 EH	3500	11.17 (162) 12 13 13.65 (198)		40-50	NOT POSSIBLE WITH DESEL ENGINE ARRANCE/JENTS	3-7.5
N	8FP 160-42 EH	3000	7.38 (107) 8 9 9.31 (135)		25-30	20-30	255
50 GPM	SFP 160-28 BH	3500	10.76 (156) 11 12 13.17 (191)	X	50-60	NOT POSSIBLE WITH DESEL ENGINE ARRANGEMENTS	3-7.5
	8FP 160-20 EH	3500	7.03 (102) 7.17 (104) 7.5 8 8.69 (125)	7.17 (104) 7.5 8 8.69 (125) 8.89 (129)	25-30	NOT POSSIBLE WITH DESEL ENGINE ARRANGEMENTS	375
0 GPM	8FP 200-20 BH	3500	6.52 (96) 6.76 (98) 7 8 8.28 (120)	6.76 (98) 7 8 8.28 (120) 8.55 (124)	25-40	NOT POSSIBLE WITH DESEL ENGINE ARRANDEMENTS	3-7.5
200	8FP 200-86 EM	2900	7.93 (115) 9 9.38 (136)	7.93 (115) 9 9.38 (136)	30-40	30-57	25.5
GPM	8 FP 260-28 EM	2900	7.79 (113) 8 9 9.24 (134)	7.72(112) 7.79 (113) 8 9 9(24 (134)	40-50	30-57	24.5
250 (SFP 260-20 IBH	3500	7.1 (103) 7.24(105) 8 8.55 (124)	7.24(105) 8 8.55 (124) 8.52 (125)	40-50	NOT POSSIBLE WITH DESEL ENGINE ARRANGEMENTS	3-7.5
GPM	8FP 300-28 EM	2900	7.59 (110) 8 8.97 (130) 9.1 (132)	7:45 (108) 7:59 (110) 8 8:97 (130)	40-50	30-57	24.5
300 (8FP 300-20 IBH	3500	6.97 (101) 7.03 (102) 7.5 8 8.48 (123)	7.03 (102) 7.5 8 8.48 (123)	40-50	NOT POSSIBLE WITH DESEL ENGINE ARRANGEMENTS	3-7.5

050 1.5 d 120

NOTES

DORNATEC CONTROLLERS

ELECTRIC MOTOR - GPX Series (Alternatively GPL for 30 HP and below)
ESEL ENGINE- GPD
DCKEY PUMP - JP3

© 2015. SFFECO FIRE PUMPS & SYSTEMS

PERFORMANCE DATA TABLES [60 Hz] [Cont.]

APSa PETRA

select chiller 348.7 ton

	AMBIENT TEMPERATURE [°F]																				
Model	LWT	85 95							105 115 125												
		CAP	GPM	PI	WPD	CAP	GPM	PI	WPD	CAP	GPM	PI	WPD	CAP	GPM	PI	WPD	CAP	GPM	PI	WPD
	40	179.1	429.8	171.6	4.2	167.2	401.3	189.9	3.7	155.3	372.7	210.1	3.2	143.4	344.2	232.4	2.8	131.4	315.4	257.1	2.3
	42	185.8	445.9	174.4	4.5	173.4	416.2	192.9	3.9	161.1	386.6	213.4	3.4	148.7	356.9	236.1	2.9	136.3	327.1	261.2	2.5
	44	192.5	462.0	177.1	4.8	179.7	431.3	196.0	4.2	166.8	400.3	216.8	3.7	154.0	369.6	239.8	3.1	141.2	338.9	265.3	2.7
APSa 160-2S	45	195.8	469.9	178.5	4.9	182.8	438.7	197.5	4.3	169.7	407.3	218.5	3.8	156.7	376.1	241.7	3.2	143.7	344.9	267.4	2.8
AF 54 100-25	46	199.1	477.8	179.9	5.1	185.9	446.2	199.0	4.5	172.6	414.2	220.2	3.9	159.4	382.6	243.6	3.4	146.1	350.6	269.5	2.9
	48	205.8	493.9	182.6	5.4	192.1	461.0	202.1	4.7	178.4	428.2	223.5	4.1	164.7	395.3	247.3	3.6	151.0	362.4	273.6	3.0
	50	212.5	510.0	185.4	5.7	198.3	475.9	205.1	5.0	184.2	442.1	226.9	4.4	170.0	408.0	251.0	3.8	155.9	374.2	277.7	3.2
	40	188.0	451.2	186.6	4.6	175.5	421.2	206.4	4.0	163.0	391.2	228.3	3.5	150.5	361.2	252.6	3.0	138.0	331.2	279.5	2.6
	42	194.8	467.5	189.6	4.9	181.8	436.3	209.7	4.3	168.9	405.4	232.0	3.7	155.9	374.2	256.7	3.2	142.9	343.0	284.0	2.7
	44	201.6	483.8	192.6	5.2	188.2	451.7	213.1	4.6	174.8	419.5	235.7	4.0	161.3	387.1	260.7	3.4	147.9	355.0	288.5	2.9
APSa 165-3S	45	205.0	492.0	194.1	5.4	191.4	459.4	214.7	4.7	177.7	426.5	237.5	4.1	164.1	393.8	262.8	3.5	150.4	361.0	290.7	3.0
	46	208.4	500.2	195.6	5.5	194.5	466.8	216.4	4.9	180.7	433.7	239.4	4.2	166.8	400.3	264.8	3.7	152.9	367.0	293.0	3.1
	48	215.2	516.5	198.6	5.9	200.9	482.2	219.7	5.2	186.5	447.6	243.1	4.5	172.2	413.3	268.9	3.9	157.9	379.0	297.5	3.3
	50	222.0	532.8	201.6	6.2	207.2	497.3	223.0	5.5	192.4	461.8	246.7	4.8	177.7	426.5	273.0	4.1	162.9	391.0	302.0	3.5
	40	212.8	510.7	183.8	5.8	198.7	476.9	203.4	5.1	184.5	442.8	225.0	4.5	170.3	408.7	248.9	3.8	156.2	374.9	275.4	3.3
	42	220.5	529.2	186.6	6.2	205.9	494.2	206.4	5.5	191.2	458.9	228.3	4.8	176.5	423.6	252.6	4.1	161.8	388.3	279.5	3.5
	44	228.2	547.7	189.3	6.6	213.1	511.4	209.4	5.8	197.9	475.0	231.7	5.1	182.7	438.5	256.3	4.4	167.5	402.0	283.6	3.7
APSa 185-2S	45	232.1	557.0	190.7	6.9	216.7	520.1	211.0	6.0	201.2	482.9	233.4	5.2	185.8	445.9	258.2	4.5	170.3	408.7	285.6	3.8
	46	236.0	566.4	192.1	7.1	220.3	528.7	212.5	6.2	204.5	490.8	235.1	5.4	188.8	453.1	260.0	4.6	173.1	415.4	287.7	3.9
	48	243.7	584.9	194.8	7.5	227.5	546.0	215.5	6,6	211.2	506.9	238.4	5.7	195.0	468,0	263.7	4.9	178.8	429.1	291.8	4.2
	50	251.4	603.4	197.5	8.0	234.7	563.3	218.5	7.0	217.9	523.0	241.8	6.1	201.2	482.9	267.5	5.2	184.5	442.8	295.9	4.5
	40	225.1	540.2	214.8	4.2	210.1	504.2	237.6	3.7	195.2	468.5	262.9	3.2	180.2	432.5	290.8	2.8	165.2	396.5	321.8	2.3
	42	233.5	560.4	218.0	4.5	218.0	523.2	241.2	3.9	202.4	485.8	266.8	3.4	186.9	448.6	295.2	2.9	171.3	411.1	326.6	2.5
	44	241.9	580.6	221.2	4.8	225.8	541.9	244.8	4.2	209.7	503.3	270.8	3.7	193.6	464.6	299.5	3.1	177.5	426.0	331.4	2.7
APSa 200-48	45	246.1	590.6	222.8	4.9	229.7	551.3	246.5	4.3	213.3	511.9	272.7	3.8	196.9	472.6	301.7	3.2	180.6	433.4	333.8	2.8
	46	250.3	600.7	224.5	5.1	233.6	560.6	248.3	4.5	217.0	520.8	274.7	3.9	200.3	480.7	303.9	3.4	183.6	440.6	336.2	2.8
	48	258.7	620.9	227.7	5.4	241.4	579.4	251.9	4.8	224.2	538.1	278.6	4.1	200.5	496.8	308.2	3.6	189.8	455.5	341.0	3.0
	50	258.7	640.8	230.9	5.8	249.3	598.3	255.4	5.1	231.5	555.6	282.6	4.4	213.7	512.9	312.6	3.8	195.9	470.2	345.8	3.2
	40	243.0	583.2	252.3	4.8	249.5	544.3	279.1	4.2	210.7	505.7	308.8	3.7	194.5	466.8	341.6	3.2	178.3	470.2	377.9	2.7
	40	243.0	604.1	256.6	5.1	235.0	564.0	283.9	4.5	210.7	523.7	314.1	3.9	201.5	483.6	347.4	3.4	178.5	443.3	384.4	2.9
	44	260.5	625.2	250.0			583.4	285.9	4.8		541.9			201.5	500,4	353.3				390.8	3.1
APSa 220-48	44	264.8	635.5	260.9	5.5	243.1	593.3	288.7	4.8	225.8 229.6	551.0	319.3 322.0	4.2	208.5	508.8	356.2	3.6	191.1 194.3	458.6 466.3	390.8	3.2
AF5a 220-45	45	269.2		265.2	5.8	247.2		291.0	5.1	233.4	560.2			212.0	517.0	359.1	3.8	194.5	466.3	394.0	3.3
			646.1				603.1					324.6	4.5								
	48	277.9	667.0	269.5	6.2	259.4	622.6	298.2	5.4	240.9	578.2	329.9	4.7	222.4	533.8	364.9	4.1	203.9	489.4	403.7	3.5
	50	286.7	688.1	273.8	6.6	267.6	642.2	302.9	5.8	248.5	596.4	335.1	5.0	229.4	550.6	370.7	4.3	210.3	504.7	410.1	3.7
	40	271.9	652.6	258.8	5.8	253.8	609.1	286.3	5.1	235.7	565.7	316.7	4.4	217.6	522.2	350.3	3.8	199.5	478.8	387.6	3.2
	42	282.0	676.8	262.9	6.2	263.2	631.7	290.9	5.5	244.5	586.8	321.8	4.8	225.7	541.7	356.0	4.1	206.9	496.6	393.8	3.5
180	44	292.1	701.0	267.1	6.6	272.6	654.2	295.5	5.8	253.2	607.7	326.9	5.1	233.7	560.9	361.7	4.4	214.3	514.3	400.1	3.7
APSa 250-3S	45	297.1	713.0	269.2	6.9	277.3	665.5	297.8	6.0	257.5	618.0	329.5	5.2	237.8	570.7	364.5	4.5	218.0	523.2	403.2	3.8
	46	302.1	725.0	271.3	7.1	282.0	676.8	300.1	6.2	261.9	628.6	332.0	5.4	241.8	580.3	367.3	4.7	221.7	532.1	406.4	4.0
	48	312.2	749.3	275.5	7.5	291.4	699.4	304.8	6.6	270.6	649.4	337.2	5.7	249.8	599.5	373.0	4.9	229.1	549.8	412.6	4.2
	50	322.2	773.3	279.7	8.0	300.8	721.9	309.4	7.0	279.3	670.3	342.3	6.1	257.9	619.0	378.7	5.3	236.4	567.4	418.9	4.5
	40	316.9	760.6	275.0	7.7	295.8	709.9	304.2	6,8	274.7	659.3	336.6	5.9	253.6	608,6	372.3	5.1	232.5	558.0	411.9	4.3
	42	328.2	787.7	279.0	8.3	306.4	735.4	308.6	7.3	284.5	682.8	341.5	6.3	262.7	630,5	377.7	5.4	240.8	577.9	417.9	4.6
	44	339.6	815.0	283.0	8.8	317.0	760.8	313.1	7.7	294.4	706.6	346.3	6.7	271.8	652.3	383.2	5.8	249.1	597.8	423.9	4.9
APSa 270-3S	45	345.2	828.5	285.0	9.1	322.3	773.5	315.3	8.0	299.3	718.3	348.8	6.9	276.3	663.1	385.9	6.0	253.3	607.9	426.9	5.1
	46	350.9	842.2	287.0	9.4	327.5	786.0	317.5	8.2	304.2	730.1	351.2	7.2	280.8	673.9	388.6	6.2	257.5	618.0	429.9	5.2
	48	362.3	869.5	291.0	9.9	338.1	811.4	321.9	8.7	314.0	753.6	356.1	7.6	289.9	695.8	394.0	6.5	265.8	637.9	435.9	5.6
	50	373.6	896.6	295.0	10.5	348.7	836.9	326.4	9.3	323.9	777.4	361.0	8.1	299.0	717.6	399.4	6.9	274.1	657.8	441.9	5.9

Legend:

- LWT: Leaving Chiller Water Temperature [°F]

- CAP : Capacity [T.R]

- PI: Power Input (Compressor only) [T.R.]

Note:

- All cooling capacities are based on 10°F water temperature difference between inlet and outlet water temperature.

- GPM : Water flow rate

- WPD: Water Pressure Drop [Psi]

•SELECTION DATA

End Suction Pump

Flow Rate	Head	Pump Model	Max. Power at 2900 rpm	Electric motor		
	PSI (kPa)		HP	RPM	HP	
	87 (600)		25		25	
250 USGPM	105 (724)	43 FSPA	32	2900	40	
(57 m [¥] /h)	122 (841)	45 F5PA	38	2900	40	
	139 (958)		44		50	
	85 (586)		27		30	
300 USGPM	102 (703)	43 FSPA	34	2900	40	
(68 m [¥] /h)	121 (834)	43 FSPA	42	2900	50	
	138 (951)	1	48		50	
	82 (565)		29		30	
350 USGPM	100 (689)	42 5504	37	2900	40	
(80 m ^³ /h)	119 (820)	43 FSPA	45	2900	50	
	136 (937)		52		60	
	78 (538)		31		40	
400 USGPM (91 m [≇] /h)	97 (669)	42 5604	38	2000	40	
	117 (806)	43 FSPA	47	2900	50	
	133 (917)		55	-	60	
450 USGPM (102 m ^{3/} /h)	73 (503)		30		40	
	93 (641)	43 5604	40	2000	40	
	113 (779)	43 FSPA	49	2900	50	
	129 (889)		57	1	60	
500 USGPM (113 m ³ /h)	74 (510)		49		50	
	86 (593)	E4 ECDA	60	2000	60	
	101 (696)	54 FSPA	74	2900	75	
	116 (800)		85		100	
	126 (869)		71		75	
	144 (993)		82		100	
	162 (1117)	64 FSPA	93	2900	100	
	183 (1262)		115		125	
	205 (1413)		131		150	
	68 (469)		53		60	
	82 (565)	E4 ECDA	63	2900	75	
	97 (669)	54 FSPA	85	2900	100	
750 USGP	112 (772)		98		100	
(170 m³/h)	113 (779)		70		75	
	132 (910)		98		100	
	152 (1048)	64 FSPA	115	2900	125	

Selection fan coil

_	_							_	_	_	_			_	
			B / CI	SP U	nits										
Cooling 4	-Row	5													
Ceiling Basic / Ceiling Basic with Plenum [CB/CBP]			63			Entering Wet Bulb Temperature (F			67						
MODEL	Fan Speed	Air Flow Data	DBT	Total Cap.	Sens. Cap.	GPM	WPD	Total Cap.	Sens. Cap.	GPM	WPD	Total Cap.	Sens. Cap.	GPM	w
-		Rate	76	19371	14703	3.87	5.35	22623	14572	4.53	7.15	26338	14560	5.27	9.4
	н	603	78	19525	15899	3.91	5.43	22923	15835	4.59	7.32	26611	15803	5.32	9.
			80 85	19795 20160	17148 20125	3.96	5.57 5.77	23082 23710	17030 20118	4.62	7.42	26646 27052	16946 19943	5.33 5.41	9.0 9.9
			76	17787	13469	3.56	4.57	20761	13360	4.15	6.09	23988	13283	4.80	7.
CB/CBP 6	м	539	78 80	17984 18147	14581 15683	3.60 3.63	4.67	21082 21167	14522 15589	4.22	6.27 6.31	24241 24432	14423 15533	4.85 4.89	8.
			85	18315	18315	3.66	4.83	21502	18304	4.30	6.50	24778	18247	4.96	8.4
			76	15130 15232	11430 12342	3.03	3.39	17715 17906	11379 12331	3.54 3.58	4.54	20404 20624	11311 12276	4.08	5.
	L	441	80	15426	13294	3.09	3.51	18089	13274	3.62	4.72	20694	13171	4.14	6.0
			85	15665	15561	3.13	3.61	18334	15548	3.67	4.83	21091	15510	4.22	6.1
		H 700	76	22980 23373	17287 18763	4.60	7.89 8.14	26952 27200	17214 18627	5.39 5.44	10.61	31342 31421	17224 18571	6.27 6.28	14 14
	н		80	23444	20107	4.69	8.19	27510	20073	5.50	11.02	31659	19987	6.33	14
			85 76	24079 20373	23656 15304	4.82	8.60 6.31	27878 23979	23511 15293	5.58 4.80	11.29 8.54	32223 27614	23498 15215	6.45 5.52	14
CB/CBP 8	М	601	78	20633	16565	4.13	6.46	24227	16554	4.85	8.70	27884	16484	5.58	11.
CD/CDF 8	IVI		80	20763	17778 20918	4.15	6.54	24278 24639	17732	4.86	8.74 8.98	27961 28483	17674	5.59 5.70	11 11
			85 76	21354 17981	13422	3.60	6.89 5.01	24639	20772 13369	4.93	6.67	28483	20782 13337	5.70 4.84	8.
	L	509	78	18048	14452	3.61	5.04	21198	14467	4.24	6.79	24227	14354	4.85	8.
			80 85	18244 18629	15542 18215	3.65	5.15	21270 21684	15499 18180	4.25	6.84 7.09	24478 24767	15463 18091	4.90 4.95	8. 9.
		1037	76	34381	25791	6.88	7.59	40353	25713	8.07	10.22	46516	25585	9.30	13
	н		78	34931 35273	27984	6.99	7.81	40657 40854	27793	8.13	10.36	46980	27736	9.40	13
			80 85	35275	30078 35237	7.06	7.96	40854	29832 35062	8.17 8.34	10.46 10.86	47344 47855	29836 34920	9.47 9.57	13. 14
			76	31056	23317	6.21	6.28	36444	23258	7.29	8.45	41975	23137	8.40	11.
CB/CBP 10	М	916	78	31468 31659	25245 27090	6.29 6.33	6.44	36820 37131	25174 27072	7.36	8.62 8.75	42394 42800	25069 27010	8.48 8.56	11.
L			85	32578	31880	6.52	6.86	37910	31799	7.58	9.10	43607	31750	8.72	11.
		741	76	26333 26611	19658 21248	5.27 5.32	4.62	30935 30982	19677 21162	6.19 6.20	6.23 6.25	35486 35865	19567 21190	7.10	8.
	L		80	26878	22833	5.38	4.80	31163	22701	6.23	6.32	35926	22683	7.19	8.
			85	27300	26674	5.46	4.94	31693	26598	6.34	6.52	36327	26522	7.27	8.4
н СВ/СВР 12 М L		76	38058 38369	28576 30885	7.61	9.16 9.30	44494 44732	28399 30673	8.90 8.95	12.26 12.38	51453 51957	28279 30656	10.29 10.39	16. 16.	
	н	1177	80	38845	33256	7.77	9.52	45262	33061	9.05	12.65	52443	33026	10.49	16
			85 76	39612 33521	39011 25189	7.92	9.87	46111 39435	38839 25144	9.22	13.10 9.79	53057 45491	38722	10.61	17
	м	1010	78	33973	25189	6.70 6.80	7.24	39435	27232	7.89 7.97	9.79	45491 45931	25040 27132	9.10 9.19	12
	м	M 1010	80	34499	29426	6.90	7.63	40140	29269	8.03	10.12	46359	29216	9.27	13
			85 76	35243 30220	34520 22627	7.05 6.04	7.94 5.97	40846 35360	34340 22547	8.17 7.07	10.45 7.99	47173 40724	34338 22440	9.44 8.15	13
	L	880	78	30410	24412	6.08	6.04	35722	24409	7.14	8.14	41107	24312	8.22	10
		880	80 85	30778 31241	26273 30717	6.16 6.25	6.18 6.35	36070 36521	26253 30699	7.21	8.29 8.49	41238 41991	26066 30640	8.25 8.40	10.

- DBT : Entering Dry Bulb Temperature in Degree Fahrenheit $[\ensuremath{\sc {\rm P}}]$
- Total Cap. : Total Cooling Capacity in [BTUH]
- Sens. Cap. : Sensible Cooling Capacity in [BTUH]
- ° GPM : Water Flow Rate in U.S Gallon Per Minute $\left[\text{GPM}\right]$
- WPD : Water Pressure Drop in [ft of water]

Entering water temperature 45 F° 0.1" External Static Pressure [E.S.P]

Interpolation is permissible but not extrapolation

16

selection Boiler

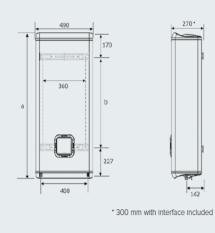
WALL-HUNG ELECTRIC STORAGE WATER HEATER 50 / 80 / 100

VELIS PLUS

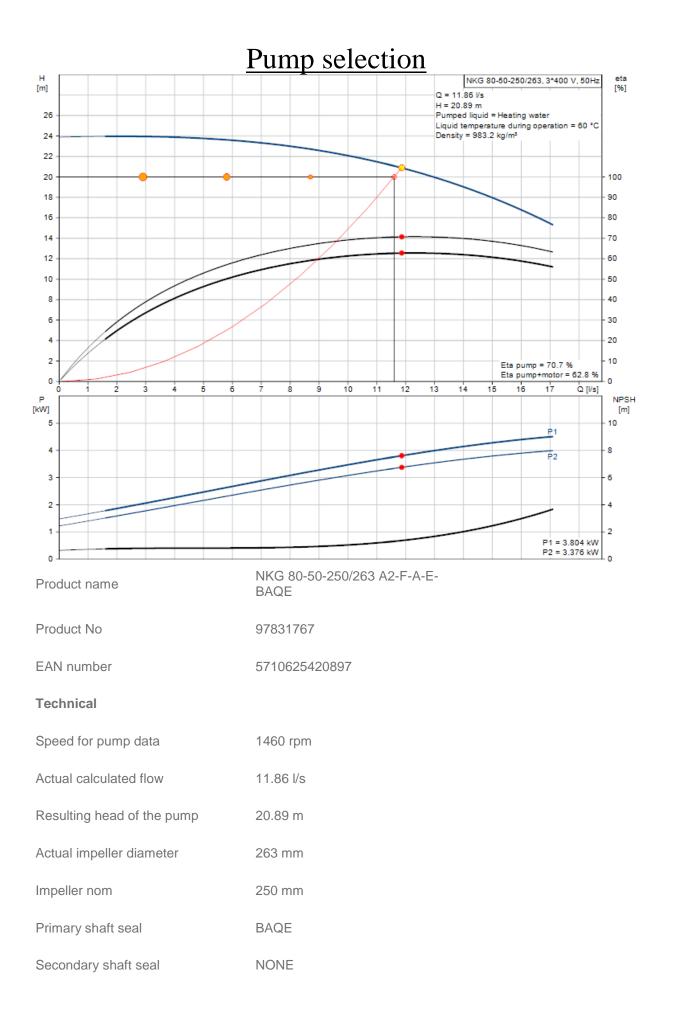
COMFORT

- Shower ready logic
 Digital temperature regulation
 High precision NTC temperature
- sensors
- EFFICIENCY&ENERGY SAVING
- Eco function Daily programming
- Ecological polyurethane insulation
- QUALITY
- Titanium glasslined inner tank tested at 16 bar
- Two magnesium anodes
- Two 5-bolts flanges
- · Pressure safety valve tested at 8 bar
- ABS safety package

DESIGN


- New exclusive metal brushed panel
 Soft touch display
 Multiposition installation
 Only 27 cm deep
 Exclusive Italian design
 Well burge

- Wall-hung


innovation and style

علامة الجودة الإماراتية Emirates Quality Mark

TECHNICAL DATA		VLS PLUS 50	VLS PLUS 80	VLS PLUS 100
Capacity	I	50	80) 100
Installation		Multiposition (V/H)	Multiposition (V/H)	Multiposition (V/H)
Power	kW	1,5	1,5	1,5
Voltage	V	230	230	230
Heating time (ΔT=45°C)	h,min	2,02	2,56	3,42
Max working pressure	bar	8	8	8
Max working temperature	°C	80	80	80
Weight	kg	20	26	30
Class	IP	IPX4	IPX4	IPX4
OVERALL DIMENSIONS				
а	mm	800	1090	1275
b	mm	405	695	880
CODE				
With Plug and Cable (PL)		3623262	3623263	3623264

