Palestine Polytechnic University

College of Engineering

Design of Mechanical Systems for a Hotel building in Hebron city

By:
Jihad Jamel Khalifeh
Alzopayer Hamad Khalil
Mohammad Hmeedat

Supervisor: Eng. Kazem Osaily

Submitted to the College of Engineering
In partial fulfillment of the requirements for the
Bachelor degree in Refrigeration \& Air Conditioning Engineering

Abstract

The aim of the project is to design a complete mechanical system for a hotel which is located in Hebron city. This building consists of four floors with an area of 7500 . These services are certainly designed to verify human comfort. The project is going to provide an integrating service to that building in regard to the air conditioning, firefighting and plumbing systems ,In this project, air conditioning system type (VRF) is used since it is efficient and economical

List of Contents

List of Contents 1
List of Tables. 3
List of Figures 5
CHAPTER ONE 7
1.1 Introduction 8
1.2 Project overview 8
1.3 Project objectives 8
1.4 Project choice and justifications 9
1.5 Symbols 9
1.6 Time table 10
CHAPTER TWO 11
2.1 Introduction 12
2.2 Human comfort 12
2.3 Calculation of overall heat transfer coefficient (U) 13
2.4 Outdoors and indoors design conditions 17
CHAPTER THREE 26
3.1 Introduction 27
3.2 Cooling load 27
3.3 Sample calculation. 29
CHAPTER FOUR 38
4.1 Introductions 39
4.2 Water system 39
4.3 Pipe size calculations 45
4.4 Water tank volume 48
4.5 pump selection 48
4.6 Sanitary Drainage System 53
4.7 Calculating the volume of tanks for the sanitation system 58
CHAPTER FIVE 61
5.1 Introduction 62
5.2 Types of firefighting system 62
5.3 Select the most effective type 66
5.4 Fire hose cabinet 66
5.5 Flow rate and head calculations 71
5.6 Pump selection 72
References 75
Appendix 76

List of Tables

Table 1.1: Time Table 10
Table 2.1: Construction of external walls 13
Table 2.2: Construction of internal walls 14
Table 2.3: Construction of celling 15
Table 2.4: Construction of floor. 16
Table 2.5: Outdoors design condition 17
Table 2.6: Heating load for each floor in the building 25
Table 3.1: Cooling load for each floor in the building 37
Table 4.1: Total number of fixture units of the first riser in each floor 40
Table 4.2: Total WSFU of the first riser 42
Table 4.3: Fixture unit's number of the fifth riser in each floor 42
Table 4.4: Total WSFU of the fifth riser 44
Table 4.5: Total WSFU of each cold water riser 44
Table 4.6: Total WSFU of each hot water riser 45
Table 4.7: Properties of cold water riser 47
Table 4.8: Properties of hot water riser 48
Table 4.9: Sizing of black water stack 1 56
Table 4.10: Sizing of black water stacks and building drain. 56
Table 4.11: Sizing of gray water stack 1 58
Table 4.12: Sizing of gray water stacks and building drain 58
Table 4.13: Grey water usage breakdown 59
Table 4.14: Grey water volumetric flow rates 59
Table 4.15: Black water usage breakdown 59
Table 4.16: Black water volumetric flow rates 60

List of Figure

Figure 2.1: External wall construction 14
Figure 2.1: Internal wall construction 15
Figure 2.3: Ceiling construction 16
Figure 2.4: Sample room 18
Figure 2.5: Ceiling construction 19
Figure 3.1: Sample room 28
Figure 4.1: Water supply system 39
Figure 4.2: First riser diagram 41
Figure 4.3: Fifth riser diagram 43
Figure 4.4: Static head of the building 46
Figure 4.5: Cold pump data. 49
Figure 4.6: Cold pump characteristic curves 50
Figure 4.7: Hot pump data 51
Figure 4.8: Hot pump characteristic curves 52
Figure 4.9: Sample of black water stack 1 55
Figure 4.10: Sample of gray water stack 1 57
Figure 5.1: Fire extinguishers 63
Figure 5.2: Fire hose reel 64
Figure 5.3: Fire hydrate system 65
Figure 5.4: Fire sprinkler 66
Figure 5.5: Horizontal split case pump 69
Figure 5.6: Inline fire pump 70
Figure 5.7: End suction pump 70
Figure 5.8: Vertical turbine pump 71
Figure 5.9: Pump details 73
Figure 5.10: Pump characteristic curves 74

CHAPTER ONE

INTRODUCTION

1.1 Introduction

1.2 Project overview

1.3 Project objectives
1.4 Project choice and justifications

1.5 Symbols

1.6 Time table

1.1 Introduction:

Throughout the ages the human beings tried to improve their lives to be easier and more comfortable, and as the Wisdom say: "The necessity is the mother of invention" the engineers always try to meet the needs of humans to achieve the welfare of their lives.

So HVAC engineers develop the mechanical services systems and technologies to achieve the comfort, which the humans need in the buildings.

For this reason the mechanical system will be designed and documented in this project for FOURSEASONS hotel in Hebron city in Palestine.

1.2 Project overview:

Due to hot summer and cold winter, and sometimes the extreme weather in Hebron, air conditioning system must be installed in each building in order to people feel comfortable.

Water in Palestine is not abundant and it is vital for every living thing especially human beings. The daily consumption of water is very high and some of it goes useless. So, in this project, the outlet water that goes from all fixture units except water closet and urinal are treated and reused for toilet flushing which consumes is 35% of the total daily consumption.

Because the safety is first in all places. Without fire alarms, a lot of things may be lost like people and expensive things. In this case, fire-fighting system should be installed in the building.

1.3 Project objectives:

The objectives of the project is to study and design the diff erent mechanical systems needed inside the hotel building, and swimming pool, this includes the following main topics:

1) Design the mechanical systems inside the hotel building.
2) Theoretical calculations and design of HVAC system.
3) Theoretical calculations and design of plumping system.
4) Theoretical calculations and design of swimming pool system.
5) To be familiar with the mechanical drawings for diff erent mechanical systems.
6) Firefighting, hot \& cold water system.

1.4 Project choice and justifications:

1. This project will create sufficient experiences for the students, which would assist them to have an employment opportunity after graduation.
2. Such projects provide the opportunity to review what have been studied in the last five years in college of engineering.

1.5 Symbols:

- HVAC: Heating Ventilation and Air Conditioning.
- VRV: Variable Refrigeration Flow.
- WSFU: is water supply fixture unit it's used to calculate the portable maximum water demand for the building.
- Dfu: Drainage fixture unit it's used to calculate the provision of drainage system.
- Gpm: gallon per minute.
- COP: coefficient of performance

1.6 Time table:

Table 1.1: Time Table

Activity Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Selection of the project															
Search about information															
Search for previous projects															
Search for video for the systems in the website															
Heating \& Cooling Load Calculations															
WSFU Calculations															
Studying the Fire Fighting Systems															
Project Documentation															
Project Printing															

CHAPTER TWO

HEATING LOAD CALCULATIONS

2.1 Introduction

2.2 Human comfort
2.3 Calculation of overall heat transfer coefficient (U)
2.4 Outdoors and indoors design conditions

2.1 Introduction

The main objective of the air conditioning is to maintain the environment in enclosed spaces at conditions that induce the feeling of comfort to all occupants of the space. This feeling of comfort is influenced by a number of air related parameters which are the inside temperature, the humidity and the outside design condition.

2.2 Human comfort

Factors Affecting Human Comfort:

1. Dry Air: air that has a low relative humidity.
2. Moist Air: air that is a mixture of dry air and any amount of water vapor generally, air with a high relative humidity.
3. Humidity: is the amount of water vapor in the air.
4. Saturation: the degree or extent to which something is dissolved or absorbed compared with the maximum possible, usually expressed as a percentage. The pressure that would be exerted by one of the gases in a mixture Partial Pressure:
5. If it occupied the same volume on its own.
6. Dry Bulb Temperature: temperature that is usually thought of as air temperature.
7. Wet Bulb Temperature: is the temperature a parcel of air would have if it were cooled to saturation (100% relative humidity) by the evaporation of water into it.
8. Dew-Point Temperature: the temperature at which water vapor starts to condense out of the air (the temperature at which air becomes completely saturated). Above this temperature the moisture will stay in the air.
9. Relative Humidity: The ratio of the amount of water vapor in the air at a specific temperature.

2.3 Calculation of The overall heat transfer coefficient (\mathbf{U}) :

The overall heat transfer coefficient depends on the layers that the walls and roof consist of and the inside and outside convection heat transfer coefficients. So the overall heat transfer coefficient can be calculated by applying the following equation:

$$
\begin{equation*}
\mathrm{U}=\frac{1}{\Sigma \neq}=\frac{1}{\operatorname{Rin}+\sum_{\mathrm{K}}^{ \pm}+\text {Rout }} \tag{2.1}
\end{equation*}
$$

Where:
$\Delta \mathrm{X}$: the thickness of the wall.
$\mathrm{R}_{\text {in }}$: inside film resistance.
$\mathrm{R}_{\text {out: }}$ Outside film resistance.
Calculation of overall heat transfer coefficient for walls, ceiling, floor, glass and door :
1- For external wall
Table 2.1: Construction of external walls

| | Material | $\Delta \mathrm{X}(\mathrm{m})$ | $\mathrm{k}\left(\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)$ | $\mathrm{R}\left(\mathrm{m}^{2} .{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | limestone | 0.05 | 2.2 | 0.022 |
| 2 | Concrete | 0.1 | 1.75 | 0.057 |
| 3 | Polyurethane | 0.03 | 0.04 | 0.750 |
| 4 | Cement break | 0.07 | 0.9 | 0.077 |
| 5 | Plaster | 0.02 | 1.4 | 0.014 |

Figure 2.1: External wall construction
$\mathrm{R}_{\text {in }}$ and $\mathrm{R}_{\text {out }}$ for the external walls as 0.13 and $0.04\left(\mathrm{~m}^{2} / \mathrm{W} .{ }^{\circ} \mathrm{C}\right)$, respectively from table (A-27)

$$
\begin{aligned}
\text { Uout }= & \frac{1}{\text { Rin }+\frac{\Delta \mathrm{x}_{\text {st. }}}{\mathrm{K}_{\text {st. }}}+\frac{\Delta \mathrm{x}_{\text {con. }}}{\mathrm{k}_{\text {con. }}}+\frac{\Delta \mathrm{x}_{\text {poly. }}}{\mathrm{k}_{\text {poly. }}}+\frac{\Delta \mathrm{x}_{\text {Brick }}}{\mathrm{k}_{\text {Brick }}}+\frac{\Delta \mathrm{x}_{\text {plaster }}}{\mathrm{k}_{\text {plaster }}}+\text { Rout }} \\
& =0.13+\frac{0.05}{{ }_{2.2}+{ }_{1.75}^{0.1}+{ }_{0.04}^{0.03}+\frac{0.07}{0.9}+{ }_{1.4}^{0.02}+0.04} \\
& =0.91\left(\mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}\right) .
\end{aligned}
$$

2- For internal wall

Table 2.2: Construction of internal walls

	Material	$\Delta \mathrm{X}(\mathrm{m})$	$\mathrm{k}\left(\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)$	$\mathrm{R}\left(\mathrm{m}^{2} .{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
1	Plaster	0.02	1.4	0.014
2	Brick	0.1	1	0.100
3	Plaster	0.02	1.4	0.014

Figure 2.2: internal wall construction

$$
\begin{aligned}
\text { Uin }= & \frac{1}{\operatorname{Rin}+\frac{\Delta \mathrm{x}_{\text {Brick }}}{\mathrm{k}_{\text {Brick }}}+2 *\left(\frac{\Delta \mathrm{x}_{\text {plaster }}}{\mathrm{k}_{\text {plaster }}}\right)+\operatorname{Rin}} \\
& =0.13+\frac{0.1}{1}+2 *\left(\frac{0.02}{1.4}+0.13\right. \\
& =2.57\left(\mathrm{~W} / m^{2} .{ }^{\circ} \mathrm{C}\right) .
\end{aligned}
$$

3- For celling
Table 2.3: Construction of celling

Material	$\Delta \mathrm{X}(\mathrm{m})$	$\mathrm{k}\left(\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)$	$\mathrm{R}\left(\mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Asphalt mix	0.02	0.70	0.028
Concrete	0.05	1.75	0.028
Reinforced concrete	0.05	1.75	0.028
Plaster	0.02	1.4	0.014
Hollow brick	0.2	0.95	0.210
Polyurethane	0.03	0.04	0.750

Figure 2.3: Ceiling construction
For ceiling:
Because of its construction, the ceiling is divided into two overall heat transfer coefficient one with brick and the other without.
$\mathrm{R}_{\text {in }}$ and $\mathrm{R}_{\text {out }}$ for the ceiling are 0.1 and $0.04\left(\mathrm{~m}^{2} / \mathrm{W} .{ }^{\circ} \mathrm{C}\right)$, respectively from table (A-27).

$$
\begin{aligned}
& =\frac{0.02}{0.1+\frac{0.05}{0.70}+\frac{1}{1.75}+{ }_{0.04}+\frac{0.05}{1.75}+0.2}+\frac{0.02}{0.95}+0.44 \\
& =0.832\left(\mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}\right) \text {. }
\end{aligned}
$$

Similarly, $\mathrm{U}_{2}=1.01\left(\mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}\right)$
4 For floor
Table 2.4: Construction of floor

Material	$\Delta \mathrm{X}(\mathrm{m})$	$\mathrm{k}\left(\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)$	$\mathrm{R}\left(\mathrm{m}^{2}{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Reinforced concrete	0.15	1.75	0.085
ceramic tiles	0.02	1.2	0.016
Aggregates	0.10	1.05	0.095
Mortar	0.02	0.16	0.125
Sand layer	0.1	0.7	0.142

$\mathrm{R}_{\text {in }}=0.15\left(\mathrm{~m}^{2} / \mathrm{W} .{ }^{\circ} \mathrm{C}\right)$, from table (A-27)

$$
\begin{aligned}
& =1.62\left(\mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}\right) \text {. }
\end{aligned}
$$

5- For glass
From table (A-28), $U g=3.2\left(\mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}\right)$ for double glass aluminum frame.
6 For door
From table (A-29) , $U d=3.6\left(\mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}\right)$ for wood door type.

2.4 Outdoors and indoor design conditions:

These conditions include the dry bulb temperature, relative humidity, and the average air speed. These values were obtained from the Palestinian code and the psychometric chart.

Table 2.5: Outdoors design condition

	Inside design condition		outside design condition	
Property	summer	winter	summer	winter
Temperature (${ }^{\circ} \mathrm{C}$)	24	24	30	4.7
Relative humidity (\%)	45	30	57	72
Wind speed $(\mathrm{m} / \mathrm{s})$	\ldots	\ldots	1.4	1.4

2.4.1 Heat loss calculations:

The main resources of heat loss come from the walls, floor, ceiling, doors, windows and also comes from the infiltration. To calculate each one of them the following equations are to be use:

$$
\begin{equation*}
\dot{Q}=A \times U \times\left(T_{i}-T_{o}\right) \tag{2.2}
\end{equation*}
$$

Where:
Q : Is the heat transfer rate. [kW]
A: Is the area of the layer which heat flow through it. $\left[\mathrm{m}^{2}\right]$
ΔT : Is the difference between the inside and outside temperatures
$\left[{ }^{\circ} \mathrm{C}\right]$ U: Is the overall heat transfer coefficient. [W/m. $\left.{ }^{\circ} \mathrm{C}\right]$

2.4.2 Total heat load calculations

Total heat load calculations for the sample room:

Figure 2.4: Sample room

Heat loss through ceiling ($\boldsymbol{Q}_{\mathrm{c}}$):

Because of its construction, the ceiling is divided into two areas which are area A_{1} and area A_{2} as showing n Figure (2.5).

Figure 2.5: Ceiling construction
The area A_{1} is equal to:

$$
\begin{aligned}
& \mathrm{A}_{1}=\frac{4}{5} \mathrm{~A}_{\mathrm{c}} \\
& =\frac{4}{5}(3.5 * 7) \\
& =19.6 \mathrm{~m}^{2}
\end{aligned}
$$

And the area A_{2} is equal to:

$$
\begin{aligned}
& \mathrm{A}_{2}=\frac{1}{5} \mathrm{~A}_{\mathrm{c}} \\
& =\frac{1}{5}(3.5 * 7) \\
& =4.9 \mathrm{~m}^{2}
\end{aligned}
$$

$Q_{\mathrm{c}}=\mathrm{U}_{\mathrm{c}} \mathrm{A}_{\mathrm{c}}\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right)$

$$
=\left(\mathrm{U}_{1} \mathrm{~A}_{1}+\mathrm{U}_{2} \mathrm{~A}_{2}\right)\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right)
$$

$Q_{\mathrm{c}}=(0.832 \times 4.9+1.01 \times 19.6)(24-4.7)$
$Q_{\mathrm{c}}=461.7 \mathrm{~W}$

Heat loss through walls ($\boldsymbol{Q}_{\mathbf{w}}$):

The external wall area is

$$
\begin{aligned}
\mathrm{A}_{\mathrm{w}, \mathrm{ex}} & =(3.5 \times 3.8)-(2 \times 3.8) \\
& =5.7 \mathrm{~m}^{2}
\end{aligned}
$$

The heat loss from external wall is

$$
\begin{aligned}
Q_{\mathrm{w}, \mathrm{e}} & =\left(\mathrm{U}_{\mathrm{w}, \mathrm{ex}} \mathrm{~A}_{\mathrm{w}, \mathrm{ex}}\right)\left(\mathrm{T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right) \\
& =(5.7 \times 0.91)(24-4.7) \\
& =100.10 \mathrm{~W}
\end{aligned}
$$

There are two spaces beside the guest room are unconditioned, so heat loss from unconditioned walls:

$$
Q_{\text {w,un. }}=Q_{\text {w,un. }}
$$

The unconditioned temperature is calculate by equation (2.3)

$$
\begin{align*}
\mathrm{T}_{\text {un. }} & =0.5\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right) \tag{2.3}\\
& =0.5(24-4.7) \\
& =9.65^{\circ} \mathrm{C}
\end{align*}
$$

The unconditioned area is

$$
\begin{aligned}
\mathrm{A}_{\mathrm{w}, \text { un. }} & =(3.5 \times 3.8)-(0.9 \times 2) \\
& =11.5 \mathrm{~m}^{2} \\
Q_{\mathrm{w}, \mathrm{un} .} & =\left(\mathrm{U}_{\mathrm{un} .} \mathrm{A}_{\mathrm{w}, \mathrm{un} .}\right)\left(\mathrm{Ti}-\mathrm{T}_{\mathrm{un} .}\right) \\
& =(2.57 \times 11.5)(24-9.65) \\
& =424.11 \mathrm{~W}
\end{aligned}
$$

Now, the total heat loss from walls is

$$
\begin{aligned}
Q_{\mathrm{w}, \text { tot }} & =Q_{\mathrm{w}, \mathrm{ex}}+Q_{\mathrm{w}, \mathrm{un} .} \\
& =100.10+424.11 \\
& =524.21 \mathrm{~W}
\end{aligned}
$$

Heat loss through windows (Q_{g}):

$$
\begin{aligned}
Q_{\mathrm{g}} & =\mathrm{Ug}_{\mathrm{g}}\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right) \\
& =(3.2)(2 \times 3.8)(24-4.7) \\
& =469 \mathrm{~W}
\end{aligned}
$$

Heat loss through external door $\left(\boldsymbol{Q}_{\mathrm{d}}\right)$:

$$
\begin{aligned}
Q_{\mathrm{d}} & =\mathrm{U}_{\mathrm{d}} \mathrm{~A}_{\mathrm{d}}\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{un} .}\right) \\
& =(3.6)(2 \times 0.9)(24-9.65)=93 \mathrm{~W}
\end{aligned}
$$

Heat loss through infiltration ($Q_{\text {inf }}$):

Infiltration is the leakage of outside air through cracks and clearances around the windows and doors. The amount of infiltration depends mainly on the tightness of the windows and doors on the outside wind velocity or the pressure difference between the outside and inside of the room.

The total heat load due to infiltration is given by the equation
$Q_{\text {iffg }}=\frac{1250}{3600} V f\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{0}\right)$
Where:
T_{in} : inside design temperature $\left({ }^{\circ} \mathrm{C}\right)$.
$\mathrm{T}_{\text {out: }}$ outside design temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\dot{V} f$: The volumetric flow rate of infiltrated air in $\left(\mathrm{m}^{3} / \mathrm{h}\right)$
$V f=\mathrm{K} \times \mathrm{L}\left[0.613\left(S_{1} \times S_{2} \times V_{O}\right)\right] \quad 2 \quad 2 / 3$
Where:

K : the infiltration air coefficient.

L: the crack length in meter.
S_{1} : Factor that depends on the topography of the location of the building
S_{2} : Coefficient that depends on the height of the building.
V : measured wind speed (m / s)

The value of K, S_{1} and S_{2} is obtained from tables (A-13), (A-19) and (A-20) respectively.
$\mathrm{K}=0.43$
$S_{1}=1$
$S_{2}=0.94$
$V_{o}=1.4(\mathrm{~m} / \mathrm{s}) \quad$ from Palestinian code

And the window is sliding, then:

$$
\begin{aligned}
\mathrm{L} & =[(1.5 \times 2)+(2 \times 1)] \\
& =5 \mathrm{~m}
\end{aligned}
$$

Therefore;

$$
\begin{aligned}
\dot{V} f & =(0.43)(5)\left[0.613(1 \times 0.94 \times 1.4)^{2}\right]^{2 / 3} \\
& =2.23 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

The total heat loss due to infiltration is calculated by equation as follows:
Through window

$$
\begin{aligned}
Q_{\text {inf.g }} & =\frac{1250}{3600} \dot{V} f\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right) \\
& =\frac{1250}{3600}(2.23() 24-4.7) \\
& =14.9 \mathrm{~W}
\end{aligned}
$$

Through door

$$
\begin{aligned}
& Q \\
& \text { inf.d }=\frac{1250}{3600} \dot{V f}\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right) \\
& \dot{V} f=\mathrm{K} \times \mathrm{L}\left[0.613\left(S_{1} \times S_{2} \times v_{\mathrm{o}}\right)^{2}\right]^{2 / 3} \\
& \mathrm{~L}=[(2 \times 0.9)+(2 \times 2)] \\
& \quad=5.8 \mathrm{~m}
\end{aligned}
$$

Therefore;

$$
\begin{aligned}
\dot{V f}= & (0.43)(5.8)\left[0.613(1 \times 0.94 \times 1.4)^{2}\right]^{2 / 3} \\
& =2.59 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
Q_{\text {inf.d }}= & \frac{1250}{3600} V \dot{V} f\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right) \\
& =\frac{1250}{3600}(2.59() 24-4.7) \\
& =17.3 \mathrm{~W} \\
Q_{\text {inf.tot }} & =Q_{\text {inf.,g }}+Q_{\text {inf. }, \mathrm{d}} \\
& =14.9+17.3 \\
& =32.25 \mathrm{~W}
\end{aligned}
\end{aligned}
$$

Heat gain due to ventilation

The ventilation is used for maintaining a healthy indoor air by introducing a fresh air from outside of the building. And this kind of heat gain can be calculated by using the following equations:

$$
\begin{equation*}
Q_{a b t}=\dot{\mathrm{m}} \times \mathrm{C}_{p_{a}} \times\left(\Gamma_{0}-T_{i}\right) \tag{2.6}
\end{equation*}
$$

Where:
$\dot{\mathrm{m}} \quad$: mass flow rate of ventilation air $(\mathrm{kg} / \mathrm{s})$.
$\dot{\mathrm{m}}=\underbrace{\text { Rate of ir }}_{\imath}$
Rate of ventilation $=$ Room Area \times Requirement outside ventilation air
$=3.5 \times 7 \times 10=245 \mathrm{~L} / \mathrm{s}=0.245 \mathrm{~m}^{3} / \mathrm{s}$.
$v_{o}=0.791 \mathrm{~m}^{3} / \mathrm{kg}$.
$\dot{\mathrm{m}}=0.309 \mathrm{~kg} / \mathrm{s}$.
$\mathrm{C}_{\mathrm{p}_{\text {air }}}$: Specific heat of air, $\mathrm{C}_{\mathrm{p}_{\text {air }}}=1.005 \mathrm{~kJ} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$.
$Q_{\text {vent. }}=0.309 \times 1.005 \times(24-4.7)=6 \mathrm{~W}$.

The total heat loss from the sample room is

$$
\begin{aligned}
Q_{\text {tot }} & =Q_{\mathrm{w}, \text { tot }}+Q_{\mathrm{c}}+Q_{\mathrm{g}}+Q_{\mathrm{d}}+Q_{\text {inf.tot }}+Q_{\mathrm{vn}} \\
& =524.21+461.7+469+93+32.25+6 \\
& =1586.16 \mathrm{~W}
\end{aligned}
$$

Take a safety factor of 15% for each space of the residence to cover the miscellaneous and emergency heating loads then :

$$
Q_{\text {tot }}=1586.16 \times 1.15=1824.084 \mathrm{~W} .
$$

Heating Load Summary is listed in the following table:

Table 2.6: Heating load for each floor in the building

Floor	$\mathrm{Q}(\mathrm{kW})$
Ground	67.75
First	68.68
Secon	64.32
Third	64.32
Fourth	76.65

CHAPTER THREE

COOLING LOAD CALCULATION

3.1 Introduction
3.2 Cooling load
3.3 Sample calculation

3.1 Introduction

The cooling load is defined as the rate at which heat energy must be removed from a space in order to maintain a given inside design condition.

To achieve the human comfort conditions it is needed to do some calculation to select the proper equipment to have the conditions that it is needed and the cooling load is the most important load that can helps in selecting the equipment's that needed correctly.

3.2 Cooling load

The total cooling load of a structure involves:

1. Sensible heat gain through walls, floors and roof.
2. Sensible heat gain through windows.
3. Sensible heat and latent heat gain from ventilation.
4. Sensible and latent heat due occupancy.
5. Sensible heat gain from the equipment.

3.2.1 Cooling load calculations:

Total cooling load calculations for the sample room:

Figure 3.1: Sample room
Direct and diffused solar radiation that absorbed by walls and roofs result in raising the temperature of these surfaces. Amount of radiation absorbed by walls and roofs depends upon time of the day, building orientation, types of wall construction and presence of shading.

The heat transfer rate through sunlit walls or sunlit roofs is calculated from the following equation:
$\mathrm{Q}=\mathrm{UA}(\mathrm{CLTD})_{\text {corr }}$.
Where:
(CLTD) corr:: corrected cooling load temperature difference, ${ }^{\circ} \mathrm{C}$,
$(\mathrm{CLTD})_{\text {corr. }}=(\mathrm{CLTD}+\mathrm{LM}) \mathrm{k}+\left(25.5-\mathrm{T}_{\mathrm{in}}\right)+\left(\mathrm{T}_{\mathrm{o}, \mathrm{m}}-29.4\right) \mathrm{f}$
Where:

CLTD: cooling load temperature difference, ${ }^{\circ} \mathrm{C}$, from Table (A-3)
LM: latitude correction factor, from Table (A-25)
k : color adjustment factor .
$\mathrm{T}_{\text {in }}$: inside comfort design temperature, ${ }^{\circ} \mathrm{C}$
f : attic or roof fan factor.
$\mathrm{T}_{\mathrm{o}, \mathrm{m}}$: outdoor mean temperature, ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{o}, \mathrm{m}}=\left(\mathrm{T}_{\text {max }}+\mathrm{T}_{\text {min }}\right) / 2$
Where:
$\mathrm{T}_{\text {max }}$: maximum average daily temperature, ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {min }}$: minimum average daily temperature, ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {max }}=35^{\circ} \mathrm{C}$ and $\mathrm{T}_{\min }=13.8^{\circ} \mathrm{C}$ are obtained from Palestinian Code.
Applying these values in equation (3.3) to obtain the outdoor mean temperature $\mathrm{T}_{\mathrm{o}, \mathrm{m}}=24.8^{\circ} \mathrm{C}$.

3.3 Sample Calculation:

Calculation the heat gain from the Guest room in the last floor as a sample :

Heat gain through sunlit roof ($\mathbf{Q}_{\text {Roof }}$):

CLTD $=14{ }^{\circ} \mathrm{C}$
$\mathrm{LM}=0.5$
$\mathrm{k}=0.83$ for permanently light colored roofs.
$\mathrm{f}=1$ there is no attic or roof fan.

$$
\begin{align*}
& (\text { CLTD })_{\text {corr. }}=(14+0.5) 0.83+(25.5-24)+(24.8-29.4) 1 \\
& \quad=8.935^{\circ} \mathrm{C} \\
& Q_{\text {Roof }}=\left(\mathrm{U}_{1} \mathrm{~A}_{1}+\mathrm{U}_{2} \mathrm{~A}_{2}\right)(\mathrm{CLTD})_{\text {corr }} \tag{3.4}\\
& Q_{\text {Roof }}=(0.834 \times 4.9+19.6 \times 1.012)(8.935) \\
& = \\
& =213.74 \mathrm{~W}
\end{align*}
$$

Heat gain through sunlit walls (\mathbf{Q} wall):

CLTD at 14:00 o'clock ... from Table (A-8)
CLTD $=15 \mathrm{c}$
LM $=0$
$\mathrm{N}=0.0$
$\mathrm{k}=0.83$ for permanent medium color walls.
$\mathrm{A}_{\mathrm{E}}=5.7 \mathrm{~m}^{2}$

$$
\begin{aligned}
(\mathrm{CLTD})_{\text {corr. }, \mathrm{E}} & =(15+0) 0.83+(25.5-24)+(24.8-29.4) \times 1 \\
& =9.35^{\circ} \mathrm{C}
\end{aligned}
$$

$$
\mathrm{Q}_{\text {Wall }}=\mathrm{Q}_{\mathrm{E}}=2.94 \times 5.7 \times 9.35
$$

$$
=156.68 \mathrm{~W} \quad=0.2204 \mathrm{~kW}
$$

Heat gain due to glass (\mathbf{Q} Glass):

Solar radiation which falls on glass has three components which are:
1- Transmitted component: it represents the largest component, which is transmitted directly into the interior of the building or the space. This component represents about 42% to 87% of incident solar radiation, depending on the glass transmissibility value.

2- Absorbed component: this component is absorbed by the glass itself and raises its temperature. About 5 to 50% of solar radiation it absorbed by the glass, depending on the absorptive value of the glass.
3- Reflected component: this component is reflected by the glass to the outside of the building. About 8% of the solar energy is reflected back by the glass.

The amount of solar radiation depends upon the following factors:
1- Type of glass (single, double or insulation glass) and availability of inside shading.
2- Hour of the day, day of the month, and month of the year.
3- Orientation of glass area. (North, northeast, east orientation, etc).

4 Solar radiation intensity and solar incident angle.
5- Latitude angle of the location.

The maximum cooling load due to the glass window Q Glass, consists of transmitted $\left(\mathrm{Q}_{\text {tr }}\right)$ and convected (Q conv.) cooling loads as follows:

$$
\begin{equation*}
\mathrm{Q}_{\text {Glass }}=\mathrm{Q}_{\text {tr. }}+\mathrm{Q}_{\text {conv. }} \tag{3.5}
\end{equation*}
$$

Where:
Q_{tr} : transmission heat gain, W
$\mathrm{Q}_{\text {conv. }}$: convection heat gain, W
SHG: Solar heat gain factor: this factor represents the amount of solar energy that would be received by floor, furniture and the inside walls of the room and can be extracted, from Table (A-12)

SC: Shading coefficient: this factor accounts for different shading effects of the glass wall or window and can be extracted from Table (A-10) for single and double glass without interior shading or from Table (A-11)for single and double glass as well as for insulating glass with internal shading .

CLF: Cooling load factor : which Represent the effect of the internal walls, floor, and furniture on the instantaneous cooling load, and extracted from Table (A-8), and (A-9) for glass, and from Table (A-5) and (A-6), for lights and occupants respectively.

The transmitted cooling load is calculated as follows:
$\mathrm{Q}_{\mathrm{tr} .}=\mathrm{A}(\mathrm{SHG})(\mathrm{SC})(\mathrm{CLF})$
SHG in $\mathrm{W} / \mathrm{m}^{2} \ldots$ from Table (A-12)
$\mathrm{A}=7.6 \mathrm{~m}^{2}$
$\mathrm{SHG}=691 \mathrm{~W} / \mathrm{m} \mathrm{m}$
$\mathrm{SC}=0.57 \ldots$ reflective double from Table A (2.14)
CLF $=0.31$ at 14:00 o'clock \ldots from Table A (2.16)

$$
\begin{aligned}
\mathrm{Q}_{\mathrm{tr} . \mathrm{N}} & =7.6 \times 691 \times 0.57 \times 0.31 \\
& =927.95 \mathrm{~W}
\end{aligned}
$$

$\mathrm{Q}_{\text {conv. }}=\mathrm{UA}(\mathrm{CLTD})_{\text {corr }}$
Where:

U : Over all heat transfer coefficient of glass ($\mathrm{W} / \mathrm{m}^{2} . \mathrm{K}$).
A: Out windows Area of heat conduction. $\left(\mathrm{m}^{2}\right)$.
(CLTD) corr:: is calculated as the same of walls and roofs and the CLTD value for glass is obtained from Table (A-7)

CLTD $=7{ }^{\circ} \mathrm{C}$ at 14:00 o'clock
$\mathrm{k}=1$ for glass
$\mathrm{f}=1$ for glass
$\mathrm{Q}_{\text {conv. } \mathrm{N}}=170.24 \mathrm{~W}$
Q $_{\text {Glass }}=927.95+170.24$
$=1098.19 \mathrm{~W}$

Heat gain due to lights (\mathbf{Q}_{Lt}):

Heat gains due to lights are sensible loads and are calculated by the following equation:
$\mathrm{Q}_{\mathrm{Lt} .}=$ light intensity $\times \mathrm{A} \times(\mathrm{CLF})_{\mathrm{Lt}}$.
Where:
light intensity $=10-30 \mathrm{~W} / \mathrm{m}^{2}$ for apartment, so we will take $30 \mathrm{~W} / \mathrm{m}^{2}$
A: floor area $=24.5 \mathrm{~m}^{2}$
$(C L F)_{\text {Lt: }}$ cooling load factor for lights.
$(C L F)_{\mathrm{Lt}}=0.82 \ldots$ from Table (A-5)
$\mathrm{Q}_{\mathrm{Lt} .}=30 \times 24.5 \times 0.82$
$=602.7 \mathrm{~W}$
$=0.708 \mathrm{~kW}$

Heat gain due to infiltration (Q_{f}):

As the same way in heating load

$$
\begin{equation*}
Q_{\text {inf.g }}=\frac{1250}{3600} V f\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{0}\right) \tag{3.9}
\end{equation*}
$$

Where:

> Vif: The volumetric flow rate of infiltrated air in $\left(\mathrm{m}^{3} / \mathrm{s}\right)$
> $V f=\mathrm{K} \times \mathrm{L}\left[0.613\left(S_{1} \times S_{2} \times V_{o}\right)\right] \quad 22 / 3$

Where:

K : the infiltration air coefficient.

L: the crack length in meter.
S_{1} : Factor that depends on the topography of the location of the building
S_{2} : Coefficient that depends on the height of the building.
V : measured wind speed $(\mathrm{m} / \mathrm{s})$

The value of K, S_{1} and S_{2} is obtained from tables (A-13), (A-19) and (A-20) respectively.
$\mathrm{K}=0.43$
$S_{1}=1$
$S_{2}=0.94$
$V_{o}=1.4(\mathrm{~m} / \mathrm{s}) \quad$ from Palestinian code
And the window is sliding , then:

$$
\begin{aligned}
\mathrm{L} & =[(1.5 \times 2)+(2 \times 1)] \\
& =5 \mathrm{~m}
\end{aligned}
$$

Therefore;

$$
\begin{aligned}
& \dot{V f}=(0.43)(5)\left[0.613(1 \times 0.94 \times 1.4)^{2}\right]^{2 / 3} \\
&=2.23 \mathrm{~m}^{3} / \mathrm{h} \\
& \begin{aligned}
& Q_{\text {in } f . \mathrm{g}}= \\
& 3600 \\
& V i f f\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right) \\
&=\frac{1250}{3600}(2.23() 30-24) \\
&=4.6
\end{aligned}
\end{aligned}
$$

Through door
$\underset{\text { inf., }=}{Q} \frac{1250}{3600} \dot{V} f\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right)$
$\dot{V} f=\mathrm{K} \times \mathrm{L}\left[0.613\left(S_{1} \times S_{2} \times v_{\mathrm{o}}\right)^{2}\right]^{2 / 3}$
$\mathrm{L}=[(2 \times 0.9)+(2 \times 2)]=5.8 \mathrm{~m}$

Therefore;

$$
\begin{aligned}
\dot{V f}= & (0.43)(5.8)\left[0.613(1 \times 0.94 \times 1.4)^{2}\right]^{2 / 3} \\
& =2.59 \mathrm{~m}^{3} / \mathrm{h}
\end{aligned}
$$

$$
Q_{\text {inf.d }}=\frac{1250}{3600} \dot{V} f\left(\mathrm{~T}_{\mathrm{i}}-\mathrm{T}_{\mathrm{o}}\right)
$$

$$
=\frac{1250}{3600}(2.59)(30+24)
$$

$$
=16.1 \mathrm{~W}
$$

$$
Q_{\text {inf.tot }}=Q_{\text {inf.g.g }}+Q_{\text {inf., } \mathrm{d}}
$$

$$
=4.6+16.1
$$

$$
=20.7 \mathrm{~W}
$$

Heat gain due to occupants ($\mathrm{Q}_{\text {oc. }}$):

Sensible and latent heat gains from occupants must be removed from the conditioned space. The heat gain due to occupants is the following:
$\mathrm{Q}_{\text {oc. }}=\mathrm{Q}_{\text {sensible }}+\mathrm{Q}_{\text {latent }}$
$Q_{\text {sensible }}=$ heat gain sensible \times No. of people $\times(C L F)$ oc.
Where: (CLF) oc.: cooling load factor due to occupants.
heat gain sensible $=70$ very light work \ldots from Table $\mathrm{A}(2.18)$
No. of people $=2$
$(C L F){ }_{\text {oc. }}=0.84$ at 9 hours after each entry into space is obtained from Table (A-21)
$\mathrm{Q}_{\text {sensible }}=70 \times 2 \times 0.84$
= 117.6 W
$\mathrm{Q}_{\text {latent }}=$ heat gain latent \times No. of people
heat gain latent $=44 \ldots$ very light work from Table (A-21)
$Q_{\text {latent }}=44 \times 2$

$$
=88 \mathrm{~W}
$$

$$
\begin{aligned}
\mathrm{Q}_{\text {oc. }} & =117.6+88 \\
& =205.6 \mathrm{~W}
\end{aligned}
$$

Heat gain due to ventilation (Q_{vn}):

Mechanical ventilation is required for places in which the inside air is polluted due to activities that place in these spaces as factories, restaurants, closed parking areas, etc. The amount of outside fresh air recommended for mechanical ventilation for different applications. The sensible and total cooling loads required to cool the ventilated air to the inside room temperature is calculating by the following equation:
$\mathrm{Q}_{\text {vn. }}=\dot{m} \times \mathrm{Cp}_{\text {air }} \times\left(\mathrm{T}_{\text {out }}-\mathrm{T}_{\text {in }}\right)$

Where:
\dot{m} : mass flow rate of ventilation air, kg / s
Cp air: specific heat of air $=1.005 \mathrm{~kJ} / \mathrm{kg} . \mathrm{k}$
$\dot{m}=\quad \frac{\text { rate of ventilation air }}{\text { vo }}$
rate of ventilation air $=\mathrm{A}_{\text {room }} \times$ requirement outside ventilation air
$\mathrm{A}_{\text {room }}=24.5 \mathrm{~m}^{2}$
requirement outside ventilation air $=10 \mathrm{~L} / \mathrm{s} / \mathrm{m}^{2} \ldots$ from Table (A-26)
rate of ventilation air $=24.5 \times 10$

$$
\begin{aligned}
& =245 \mathrm{~L} / \mathrm{s} \\
& =0.245 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{v}_{\mathrm{o}} & =0.879 \mathrm{~m}^{3} / \mathrm{kg} \\
\dot{m} & =0.245 / 0.879 \\
& =0.278 \mathrm{~kg} / \mathrm{s} \\
\mathrm{Q}_{\text {vn. }} & =0.278 \times 1.005 \times(30-24) \\
& =1.67 \mathrm{~W}
\end{aligned}
$$

The total heat loss from Sample Room is:

$$
\begin{align*}
\mathrm{Q}_{\text {Tot }} & =\mathrm{Q}_{\text {Roof }}+\mathrm{Q}_{\text {Wall }}+\mathrm{Q}_{\text {Glass }}+\mathrm{Q}_{\mathrm{Lt}}+\mathrm{Q}_{\mathrm{f}}+\mathrm{Q}_{\text {oc. }}+\mathrm{Q}_{\mathrm{vn} .} \tag{3.17}\\
& =4299.28 \mathrm{~W}
\end{align*}
$$

Take a safety factor of 15% for each space of the residence to cover the miscellaneous and emergency cooling loads then:

$$
\begin{aligned}
\mathrm{Q}_{\text {Tot }} & =4299.28 * 1.15 \\
& =4944.17 \mathrm{~W}
\end{aligned}
$$

Cooling Load Summary is listed in the following table:

Table 3.1: Cooling load for each floor in the building

Floor	$\mathrm{Q}(\mathrm{kW})$
Ground	105.36
First	108.7
Secon	103.4
Third	103.4
Fourth	143.5

CHAPTER FOUR

PLUMBING SYSTEM

4.1 Introductions
4.2 Water system
4.3 Pipe size calculations
4.4 Water tank volume
4.5 pump selection
4.6 Sanitary Drainage System
4.7 Calculating the volume of tanks for the sanitation system

4.1 Introduction

There are two main functions of using plumping systems:
1- Water supply system; which provides the building with the required amount of water.
2- Sanitary drainage system; which removes all the usable water from the building.

It is the plumbing technologists' responsibility to design the entire water service and distribution systems for all uses, recognizing the pressure and flow limitations.

In the project up feed distribution system will be used for both cold and hot water systems. Fixture units at the building are designed for private and general uses, flush tanks used for water closets because it needs low pressure, steel pipes will be used for hot and cold water systems, seven risers will be used for cold and hot water supply systems, The critical fixture unit in the system is the lavatory fixture unit which is located at the fourth floor of the building.

4.2 Water Supply system

4.2.1 Introduction

The main objective of water supply system is to provide the building with the needed amount of water for daily use, such as drinking, cooking, washing and flushing, fire fighting, bathing, and irrigation.

Figure 4.1: Water supply system

4.2.2 Design procedure

Step1: Determine if the suitable system is up-feed or down-feed.
Step2: Determine the number of riser needed and their location.
Step3: Calculate the total water supply fixture unit (WSFU), and then convert to gallon per minute (gpm). From table (A-16)

Step4: Determine the minimum flow pressure for the critical fixture unit (fu). From table (A-22)
Step5: Calculate the total static head.
Step6: Calculate the pipe friction and equivalent length of the system.
Step7: Use the chart to determine the recommended pipe size.

4.2.3 Calculation of hot and cold water supply system

Water supply fixture units load (WSFU)

The total amount of water required for the building is calculated by using the water supply fixture unit technique (WSFU). This technique is used because there are a large number of fixture units in the system and this makes the technique more accurate.

Total WSFU for the first riser

Tables $(4.1,4.2)$ below show the total number of fixture units and the total water supply fixture unit (WSFU) for the first riser.

Table 4.1: Total number of fixture units of the first riser in each floor

Fixture type Floor	Clothes washer	Lavatory	Water closet	bathtub	Bidet
Ground floor	6.0	0.0	0.0	0.0	0.0
First floor	0.0	3.0	2.0	3.0	1.0
Second floor	0.0	3.0	2.0	3.0	1.0
Third floor	0.0	3.0	2.0	3.0	1.0
Forth floor	0.0	3.0	2.0	3.0	1.0
Total	6.0	12.0	8.0	12.0	4.0

The figure 4.2 shows the first riser diagram .

Figure 4.2: First riser diagram

Table 4.2: Total WSFU of the first riser

Fixture Type	No. OF FU	WSFU	Total WSFU	Cold WSFU	$\begin{aligned} & \text { Hot } \\ & \text { WSFU } \end{aligned}$	Total Cold	Total Hot
Clothes washer	6.0	4.0	24.0	24.0	0.0	24.0	0.0
Lavatory	12.0	1.0	12.0	$1 \times{ }_{\frac{4}{4}}^{3}=0.75$	$1 \times_{\overline{4}}^{3}=0.75$	9.0	9.0
Water closet	8.0	3.0	24.0	24.0	0.0	24.0	0.0
bathtub	12.0	2.0	24.0	$2 \times_{\overline{4}}^{3}=1.5$	$2 \times{ }_{\overline{4}}^{3}=1.5$	18.0	18.0
Bidet	4.0	3.0	12.0	12.0	0.0	12.0	0.0
Total WSFU	-	-	96.0	-	-	87.0	27.0

WSFU at the fifth riser

Tables $(4.3,4.4)$ below show the total numbers of fixture units and the total water supply fixture unit (WSFU) for the fifth riser.

Table 4.3: Fixture unit's number of the fifth riser in each floor

Fixture type Floor	Lavatory (private)	Lavatory (general)	Water closet (private)	Water closet (general)	bathtub	bidet
Ground floor	0	3	0	5	0	2
First floor	4	0	4	0	4	0
Second floor	4	0	4	0	4	0
Third	4	0	4	0	4	0
Forth floor	4	0	4	0	4	0
Total	16	3	16	5	16	2

Figure 4.3 shows the fifth riser diagram.

Figure 4.3: Fifth riser diagram

Table 4.4: Total WSFU of the fifth riser

Fixture Type	$\begin{gathered} \text { No. OF } \\ \text { FU } \end{gathered}$	WSFU	Total WSFU	Cold WSFU	Hot WSFU	Total Cold	Total Hot
Lavatory (private)	16	1	16	$1 \times \frac{3}{4}=0.75$	$1 \times \frac{3}{4}=0.75$	12	12
Lavatory (general)	3	2	6	$2 \times \frac{3}{4}=1.5$	$2 \times \frac{3}{4}=1.5$	4.5	4.5
Water closet (general)	5	5	25	25	0	25	0
Water closet (private)	16	3	48	48	0	48	0
bathtub	16	2	32	$2 \times_{4}^{3}=1.5$	$2 \times_{4}^{3}=1.5$	24	24
bidet	2	3	6	6	0	0.0	0.0
Total WSFU	-	-	133	-	-	119.5	40.5

Table 4.5: Total WSFU of each cold water riser

Riser	Total WSFU
$\mathbf{1}^{\text {st riser section }}$	87
$\mathbf{2}^{\text {nd }}$ riser section	63
$\mathbf{3}^{\text {rd }}$ riser section	84
$\mathbf{4}^{\text {th }}$ riser section	42
$\mathbf{5}^{\text {th }}$ riser section	119.5
$\mathbf{6}^{\text {th }}$ riser section	92.5
7 $^{\text {th }}$ riser section	75
Total	563

Table 4.6: Total WSFU of each hot water riser

Riser	Total WSFU
$\mathbf{1}^{\text {st }}$ riser section	27
$2^{\text {nd }}$ riser section	27
$3^{\text {rd }}$ riser section	36
$\mathbf{4}^{\text {th }}$ riser section	18
$\mathbf{5}^{\text {th }}$ riser section	40.5
$\mathbf{6}^{\text {th }}$ riser section	31.5
$7^{\text {th }}$ riser section	39
Total	219

4.3 Pipe Size calculation

In order to calculate the size of each pipe in the water supply system, friction head must be calculated by using the up-feed distribution system equation:

Main pressure $($ pump pressure $)=$ Static head + Pipe friction + Flow pressure

Where:
Static head: is to overcome the height from the source to the critical fixture unit outlet.
Pipe friction: caused by the friction of the moving water inside pipes.
Flow pressure: to overcome the minimum flow pressure, and to impart kinetic energy to the water.

But, some of the above equation parameters can be determined or estimated as following:
1- It is indicated that the minimum flow pressure required for the critical fixture unit (lavatory) is 8.0 psi.

2- It is indicated that main pressure (pump pressure) is 50.0 psi .
3- The estimated water meter loss is 5.0 psi

Static pressure:

As indicated previously that the building consists of four floors and basement (floor to floor height is 3.8 meters(, then as shown in the figure below it appears that the total vertical length from the pump source to the critical fixture (lavatory) is 18 m .

The figure (4.4) shows the static head of the building

Figure 4.4: Static head of the building

Static pressure $=18 \times \frac{0.433}{0.33}=23.6 \mathrm{psi}$

By using the above equation, the pipe friction can be calculated by moving some terms from right to lift to get the following equation:

Pipe friction $=$ Main pressure $($ pump pressure $)-$ Static head - Flow pressure

$$
\begin{equation*}
=50.0-23.6-8.0=18.4 \mathrm{psi} \tag{4.3}
\end{equation*}
$$

The estimated water meter loss is 5.0 psi , so:

Friction head $=$ Pipe friction - Water meter loss

$$
\begin{equation*}
=18.4-5.0=13.4 \mathrm{psi} \tag{4.4}
\end{equation*}
$$

On the other hand, One more thing must be calculated which is the total equivalent length (TEL). It appears from the mechanical drawings that the length of the first riser is 68 meter.
$\mathrm{TEL}=\frac{\text { Total length }(m) \times 1.5}{0.33}=68 \times 1.5 / 0.304=335.3 \mathrm{ft}$

Uniform design friction loss $=\frac{13.4 \times 100}{335.3}=3.96 \frac{\mathrm{psi}}{100 \mathrm{ft}}$

Table 4.7: Properties of cold water riser

No. of Riser	Total WSFU	Total gpm	Diameter (inch)	Velocity (fps)
First riser	87	41	2	4
Second	63	33	2	3
Third	84	40	2	4
Fourth	42	25	1.5	4
Fifth	119.5	49	2.5	3.4
Sixth	92.5	43	2	4
Seventh	75		2	3.7

Table 4.8: Properties of hot water riser

No. of Riser	Total WSFU	Total gpm	Diameter (inch)
First riser	27	18	1.25
Velocity (fps)			
Second	27	18	1.25
Third	36	24	1.5
Fourth	18	13	1.25
Fifth	40.5	25	1.5
Sixth	31.5	20	1.25
Seventh	39	25	4.2

4.4 Water tank volume

Water tank volume can be determined by multiplying the amount of gpm by 3 as a factor to ensure the availability of water source.

Then, 149.5 gpm are the total demand for the building and two risers.
So: $149.5 \times 3=448.5 \mathrm{gpm}$.
Converting 448.5 gpm the result is 85 cubic meters that will the underground tank volume for water building demand.

4.5 Pump selection

Pumps selection depends on two main properties and these properties are: head (H) and flow rate (Q). Starting selection with:

1) Cold water pump

By converting WSFU to GPM to $\mathrm{m}^{3} /$ hour, the 563 WSFU equal 136 Gpm from all the cold waterrisers equals $30.88 \mathrm{~m}^{3} /$ hour.

Total flow rate $=30.88 \mathrm{~m}^{3} / \mathrm{hour}$.

Head estimation

Height of the building $=21 \mathrm{~m}$ convert to psi equals 29.8 psi
then convert from psi to bar : $29.8 \mathrm{psi}=2.05 \mathrm{bar}$
Adding 1 bar for fittings losses the value is almost 3.05 bar
Head $=3.05$ bar

Using (dp-select) software and with filling data into brackets as follow:-

Figure 4.5: Cold pump data

The pump model selected "DPV40/2-2B"

The characteristic curves of this pump as follow:

DPVCF 40/2-2 B 50Hz IEC 5,5kW 400/690V IE3

Figure 4.6: Cold pump characteristic curves
2) Hot water pump

By converting WSFU to GPM to $\mathrm{m}^{3} /$ hour, the 219 WSFU equal 68 Gpm from all the cold waterrisersequals $15.45 \mathrm{~m}^{3} / \mathrm{hour}$.

Total flow rate $=15.45 \mathrm{~m}^{3} /$ hour.

Head $=3.05$ bar.

Using (dp-select) software and with filling data into brackets as follow:-

Search Hydraulic Medium to be pumped		Water			\checkmark
Flow	*	15.45		m3/h	
Pressure		3.1		bar	
No of duty pumps				Freq. Driven	
No. of poles		2 Poles			\checkmark
Application		Constant pressure System curve			
Frequency		50 Hz	\checkmark		

Search
Suggested standard (pre-configured) models

Available models	Model version (3)
A DPV 15/3 B	DPV 15/3 B IE3
\triangle DPV 25/2 B	DPV 15/3 B IE2
A DPV 40/2-2 B	DPV 15/3 B EXM IEC
- DPV 60/2-2 B	DPVCF 15/3 B IE3
∇ DPV 15/2 B	DPVCF 15/3 B IE2
∇ DPV 40/1 B	DPVCF 15/3 B EXM IEC
∇ DPV 60/1 B	DPVF 15/3 B IE3

15 model(s) listed.
Refine Installation
Select on
Material
Connection
Motor voltage
Connection standard
Efficiency class

Adjust to duty pt. Frequency (Hz)

Figure 4.7: Hot pump data

The pump model selected "DPV40/2-2B"

The characteristic curves of this pump as follow:

DPV 15/3 B 50Hz IEC 3kW 400/690V IE3

Figure 4.8: Hot pump characteristic curves

4.6 Sanitary Drainage System

The main objective of drainage system is to carry the waste water from the fixture unit to manhole and from the manhole to the septic tank or to the municipal sewage system.

The provision of drainage systems:

- Sanitary drainage
- Storm drainage

Drainage system components

The main components of drainage system are:

1) Fixture units
2) Trap
3) Clean out
4) Drainage pipe
5) Stack and vent pipes
6) Manholes
7) Septic tank or municipal sewage system
8) Accessories

Sanitary drainage

Design procedure and pipe sizing

Pipe size is calculated by using a concept of fixture units (DFU) instead of using gpm of drainage water. This unit takes into account not only the fixtures water use but also its frequency of use, which is the DFU has a built-in diversity factor. This enables us, exactly as for water supply to add DFU of various fixtures to obtain the maximum expected drainage flow. Drainage pipes sized for a particular number of drainage fixture units, according to Tables ((A-23),(A-24)) These tables are built into the fill factors, which are:

- 50% fill in branches (horizontal pipes)
- (25-33)\% fills in stack (vertical pipes)
- 50% fill in building and swear drains

The recommended velocity for drainage piping:

- For branches the recommended velocity is $2 \mathrm{ft} / \mathrm{s}$
- For building pipes the recommended velocity is $3 \mathrm{ft} / \mathrm{s}$
- For greasy flow the recommended velocity is $4 \mathrm{ft} / \mathrm{s}$

Velocity of water flow through drainage piping depends on:

- Pipe diameter
- Slope

Minimum slope requirements for horizontal drainage piping:

- For pipes of diameter $\leq 3^{\prime \prime}$ the minimum slope is $1 / 4^{\prime \prime} / \mathrm{ft}(2 \%)$
- For pipes of diameter $\geq 4^{\prime \prime}$ the minimum slope is $1 / 8^{\prime \prime} / \mathrm{ft}(4 \%)$

Design procedure:

1) Calculation of the number of DFU for each branch by using Table (A-23)
2) Calculation of the number of DFU for each stack
3) Choosing the branch pipe diameter by using Table (A-18)
4) Choosing the stack pipe diameter by using Table (A-18)
5) Comparing the stack pipe diameter with branch diameter
6) Choosing the building drain pipe diameter by using Table (A-17)

To achieve the recommended velocities which are 3 fps in building drain, it will be chosen the slope and flow velocity in building drain by using Table (A-17)

The following figure and tables shows the sizing of stacks:

Figure 4.9: Sample of black water stack 1

Table 4.9: Sizing of black water stack 1

Stack 1	Total dfu value	Diameter (inch)
From Fourth floor (branch)	9	4
From Fourth to third floor (stack)	9	4
From third floor (branch)	9	4
From third floor to second floor (stack)	18	4
From second floor (branch)	9	4
From second floor to first floor (stack)	27	4
From first floor (branch)	9	4
From first floor to building drain (stack)	36	4

Table 4.10: Sizing of black water stacks and building drain

\#of stack	Total Dfu	Diameter (in)	Diameter of building drain	Slope \%	Velocity ft/s
Stack 1	36	4	4	$1 / 4$	2.73
Stack 2	32	4	4	$1 / 4$	2.73
Stack 3	32	4	4	$11 / 4$	2.73
Stack 4	32	4	4	$1 / 4$	2.73
Stack 5	32	4	4	$1 / 4$	2.73
Stack 6	32	4	4	$11 / 4$	2.73
Stack 7	32	4	4	$1 / 4$	2.73
Stack 8	16	4	4	$1 / 4$	2.73
Stack 9	16	4	4	$1 / 4$	2.73
Stack 10	32	4	4	$11 / 4$	2.73
Stack 11	32	4	4	$1 / 4$	2.73
Stack 12	16	4	4	$1 / 4$	2.73
Stack 13	16	4	4	$11 / 4$	2.73

Figure 4.10: Sample of gray water stack 1

Table 4.11: Sizing of gray water stack 1

Stack 2	Total dfu value	Diameter (inch)
From Fourth floor (branch)	6	2
From Fourth to third floor (stack)	6	2
From third floor (branch)	6	2
From third floor to second floor (stack)	12	3
From second floor (branch)	6	2
From second floor to first floor (stack)	18	3
From first floor (branch)	6	2
From first floor to building drain (stack)	24	3

Table 4.12: Sizing of gray water stacks and building drain

\#of stack	Total Dfu	Diameter (in)	Diameter of building drain	Slope \%	Velocity ft / s
Stack 1	24	3	4	1/2	3.86
Stack 2	24	3	4	1/2	3.86
Stack 3	24	3	4	1/2	3.86
Stack 4	24	3	4	$1 / 2$	3.86
Stack 5	24	3	4	1/2	3.86
Stack 6	24	3	4	$1 / 2$	3.86
Stack 7	24	3	4	1/2	3.86
Stack 8	12	3	4	1/2	3.86
Stack 9	12	3	4	1/2	3.86
Stack 10	24	3	4	1/2	3.86
Stack 11	24	3	4	1/2	3.86
Stack 12	12	3	4	$1 / 2$	3.86
Stack 13	12	3	4	1/2	3.86

4.7 Calculating the volume of tanks for the sanitation system

Number of bedrooms in each floor $=18$ bedrooms.

Number of bedrooms in the building $=72$ bedrooms.

Note: each bedroom has 2 persons, so number of persons in the building $=144$ person.

Estimated usage per person per day for grey water is:

Table 4.13: Grey water usage breakdown

Water use	Volume (L)	Description
Bathing	20	---
Hand washing	6	1.5 L per wash
		About 4 times a day

Based on these estimated usages for 144 people using the facility, the volumetric flow rate for grey water is:

Table 4.14: Grey water volumetric flow rates

Volumetric flow rates (Q)	Grey water	Total (L/day)	Total (L/hour)
Per person Total into cratem	26	26	1.08

Similarly, the estimated usage per person per day for black water is:
Table 4.15: Black water usage breakdown

Type	Volume (L)
Urine (per person per day)	1.1
Feces (per person per	0.2
Water (per flush)	4.28

Because the facility will only been opened during the day, calculations are based on an estimation of 2 flushes per person per day.

The following volumetric flow rates for black water below is for an estimation of 144 people using the facility

Table 4.16: Black water volumetric flow rates

Volumetric flow rates (\mathbf{Q})	Black water	Total (L/day)	Total (L/hour)
Per person	9.86	9.86	0.41
Total into	1419.84	1419.84	59.04

According to several studies, the hydraulic retention time (HRT) of ten hours is accurate and can be used to calculate the volume of the two tanks needed.
$\mathrm{V}=\mathrm{Q} \times \mathrm{HRT}$
For grey water:
$\mathrm{V}=155.52 \mathrm{~L} /$ hour $\times 10$ hour $=1555.2 \mathrm{~L}=1.552 \mathrm{~m}^{3}$.

For black water:
$\mathrm{V}=59.04 \mathrm{~L} /$ hour $\times 10$ hour $=590.4 \mathrm{~L}=0.5904 \mathrm{~m}^{3}$.

In order to account for any changes in population or an increase in usage, a safety factor will be used.

The original volume calculations are the minimum volume needed to handle the specified flow rates. For these purposes, a minimum of a 45% safety factor will be used. The volume of the tank will be calculated:

For greywater: $1.552 m^{3}+(1.552 \times 0.45)=2.2504 m^{3}$. For
black water: $0.5904 \mathrm{~m}^{3}+(0.5904 \times 0.45)=0.8560 \mathrm{~m}^{3}$.

CHAPTER FIVE

FIRE FIGHTING SYSTEM

5.1 Introduction

5.2 Types of firefighting system

5.3 Select the most effective type
5.4 Fire hose cabinet
5.5 Flow rate and head calculations
5.6 Pump selection

5.1 Introduction

A firefighting system is probably the most important of the building services, as its aim is to protect human life and property, strictly in that order. Firefighting systems and equipment vary depending on the age, size, use and type of building construction.

5.2 Types of firefighting system

1) Fire extinguishers.
2) Fire hose reels.
3) Fire hydrant systems.
4) Automatic sprinkler systems.

1) Fire extinguishers

Fire extinguishers are provided for a 'first attack' firefighting measure generally undertaken by the occupants of the building before the fire service arrives. It is important that occupants are familiar with which extinguisher type to use on which fire.

Most fires start as a small fire and may be extinguished if the correct type and amount of extinguishing agent is applied whilst the fire is small and controllable.

The principle fire extinguisher types currently available include:

1) Water
2) Foam
3) Dry powder
4) CO_{2}
5) Wet Chemical

\int Types of fire extinguisher

	Class A	Class B	Class C	Class D	Electrical	Class F	
TYPE	Combustible materials (e.g. paper \& wood)	Flammable liquids (e.g. paint \& petrol)	Fiammable gases (e.g. butane \& methane)	Flammable metals (e.g. lithium \& potassium)	Elecrical equipment (e.g. computers \& generators)	Deep fat fryers (e.g. chip pans)	Comments
WATER							Do not use on liquid or electric
FOAM							Not suited to domestic use
DRY POWDER							Can be used safely up to 1000 volts
CO_{2}							Safe on both high and low voltage
WET CHEMICAL							Use on extremely high temperatures

Figure 5.1: Fire extinguishers
2) Fire hose reel

Fire hose reel systems consist of pumps, pipes, water supply and hose reels located strategically in a building, ensuring proper coverage of water to combat a fire.

The system is manually operated and activated by opening a valve enabling the water to flow into the hose that is typically 30 meters away. The usual working pressure of a firehouse can vary between 8 and 20 (116 and 290 psi).

Fire hose reels are provided for use by occupants as a first attack firefighting measure but may, in some instances, also be used by firefighters. When stowing a fire hose reel, it is important to first attach the nozzle end to the hose reel valve, then close the hose reel valve, then open the nozzle to relieve any pressure in the wound hose, then close the nozzle.

Figure 5.2: Fire hose reel

3) Fire hydrate system

Fire hydrant systems are installed in buildings to help fire fighters quickly attack the fire. Essentially, a hydrant system is a water reticulation system used to transport water in order to limit the amount of hose that fire fighters have to lay; thus speeding up the firefighting process.

Fire hydrants are for the sole use of trained fire fighters (which includes factory firefighting teams). Because of the high pressures available serious injury can occur if untrained persons attempt to operate the equipment connected to such installations. Fire hydrant systems sometimes include ancillary parts essential to their effective operation such as pumps, tanks and fire service booster connections. These systems must be maintained and regularly tested if they are to be effective when needed.

Figure 5.3: Fire hydrate system

4) Automatic sprinkler system

Time is essential in the control of fire. Automatic sprinkler systems are one of the most reliable methods available for controlling fires. Today's automatic fire sprinkler systems offer state of the art protection of life and property from the effects of fire. Sprinkler heads are now available which are twenty times more sensitive to fire than they were ten years ago.

A sprinkler head is really an automatic (open once only) tap. The sprinkler head is connected to a pressurized water system. When the fire heats up the sprinkler head, it opens at a preset temperature, thus allowing pressurized water to be sprayed both down onto the fire and also up to cool the hot smoky layer and the building structure above the fire. This spray also wets combustible material in the vicinity of the fire, making it difficult to ignite, thereby slowing down or preventing fire spread and growth.

When a sprinkler head operates, the water pressure in the system drops, activating an alarm, which often automatically calls the fire brigade via a telephone connection.

Figure 5.4: Fire sprinkler

5.3 Select the most effective type

After the identification of the fire systems now the best performance for the hotel is hose reel \& extinguisher.

The number of hose reels to be used in hotel is 12 firehouse reels for all floors most fire hose is designed to be stored flat to minimize the storage space required.

5.4 Fire hose cabinet

Fire hose cabinet is located at the following places:

A- Exit stairs.
B- Entrance of buildings.
C- Garages entrance.
D- Wherever travel distance exceeded 36 meter from another fire hose cabinet.
It consists of:

1) Cabinet (wall mounted-recessed), there are three types of cabinets:

A- Exposed: be prominent from the wall and out of it a distance of 25 cm , and Fund riding on the surface of the wall.

B- Semi predated: be prominent from the wall a distance of 10 cm , and inside the wall 15 cm .

C- Recessed: be inside the entire wall.
2) Landing valve, valve to control the water stream, located inside or outside the building.
3) Hose (30 meter).
4) Discharge nozzle.
5) Fire extinguisher (optional).

Fire hose cabinet classes

1) Class 1: standpipe system provides $65-\mathrm{mm}(21 / 2-\mathrm{in}$.) hose connections to supply water for use by fire departments and those trained in handling heavy fire streams.

System limitations are pressure reach 7 bars, flow rate 250 gpm , located at all main entrance and exits of the buildings and garages, around the wall buildings and the travel distance is 45.7 m with throw distance.
2) Class 2: standpipe system provides $38-\mathrm{mm}$ ($11 / 2-\mathrm{in}$.) hose stations to supply water for use primarily by the building occupants or by the fire department during initial response.

System limitations are pressure reach 4.5 bars, flow rate 100 gpm, 30 m travel distance and located corridors, theaters, colleges and near elevators.
3) Class 3:standpipe system provides $38-\mathrm{mm}(11 / 2-\mathrm{in}$.) hose stations to supply water for use by building occupants and $65 \mathrm{~mm}(21 / 2-\mathrm{in}$.) hose connections to supply a larger volume of water for use by fire departments and those trained in handling heavy fire streams.

Class two didn't need any experience to deal with a system for any user on contrast

 with class one, for this reason class 2 is more popular and that is the selected class for cabinet.
Technical specifications of fire hose cabinet

The following specifications are installed according to code NFPA 14 for class 2 F.H.C:

- The maximum pressure at any point in the system at any time shall not exceed 24.1 bar (350 psi).
- Maximum Residual Pressure for (1½-in.) Diameter F.H.C=6.9 Bar.
- Hydraulically designed standpipe systems shall be designed to provide the water flow rate required at a minimum residual pressure of $4.5 \mathrm{bar}(65 \mathrm{psi})$ at the outlet of the hydraulically most remote $38-\mathrm{mm}$ ($11 / 2$-in.) hose station.
- Standpipes size shall be at least 100 mm (4 in.) (Main riser).
- Hose stream demand and water supply duration requirement for hydraulic calculation system as in the NFPA14 code.

Firefighting pumps

A continuous water and pumping station supply should always be available and ready to fight fire, the following three pumps should be connected to a suction header (from water tank), and discharged to a discharge header (to firefighting network).

Pumping stations should include:

1. Electrical firefighting pump.
2. Stand-by Diesel Firefighting Pump (No need if an extra electric pump is connected to an electric generator).

Diesel pump works if:

- The electrical pump is out of service, or if there is a lack of electricity.
- The electrical pump is working but can't satisfy system water requirements.

3. Jockey Pump: works to make up the system pressure in case of leakage or during the first seconds of fire.

Pumps are selected to supply the system demands on the basis of three key points relative to their rated flow and rated pressure most fire pumps are sized to exceed its duty point requirement.

Types of pumps

1- Horizontal split case pumps:

This is also called a double suction fire pump because the water pathways direct water to both sides of the impeller. It is also the most common fire pump on the market partly because of the ratings available in this style of pump 250 GPM through 5000 GPM.

Figure 5.5: Horizontal split case pump

2- Inline fire pumps

These pumps have expanded in use in the last five years for several reasons, space savings, Increase in ratings allowable by NFPA 20 from max of 499 GPM, and then to 750 GPM, to today which is unlimited rating. The largest currently available is 1500 GPM, Cost of installation -these are typically less expensive to install because there is no base plate that requires grouting.

Figure 5.6: Inline fire pump
3- End suction pumps
End suction fire pumps not widely used mostly because they are limited in size per code ,They are also slightly more expensive than inline pumps ,The one pump application where it is used is small diesel driven applications 500 GPM or 1 less.

Figure 5.7: End suction pump

4- Vertical turbine pumps

These are used for water supplies that are below the suction flange of a fire pump; NFPA 20 states that you have to have a positive suction pressure to a fire pump.

Figure 5.8: Vertical turbine pump

5.5 Flow rate and head calculations

There are two main factors in GPM calculations:

1. Area calculation
2. Standpipe calculation

The standpipe calculation is the selected calculation, so according to NFPA 14 states that the GPM required for the first standpipe is 500 GPM

Each additional standpipe requires 250 GPM with a maximum GPM of 1000 GPM
If a building has 2 standpipes the pump GPM would be 750 GPM, 500 GPM for the first and 250 for the second.

If a building has 3 standpipes the pump GPM would be 1000 GPM, 500 GPM, 250 for the second, and 250 for the third.

Any building with more standpipes would be 1000 GPM as that is the maximum allowable by code.

So, this building need 500 GPM according to code, with two standpipes the amount of flow rate equal to 750 GPM.

Flow rate calculation:

$=$ No of FHC * 250 GPM for each FHC
$2 * 250=500 \mathrm{GPM}$

Pressure head calculation:

$H_{f a p}=H_{l}+H_{\text {Re }}+H_{f}$
$H_{\text {Pump }}=$ the pressure of the pump.
$H_{\text {Res. }}=$ the residential building $\mathrm{FHC}=4.5$ bar.
$H_{f}=$ the friction head.

$$
\begin{aligned}
\mathrm{Hf} & =\frac{4.5 * \mathrm{Q}^{1.85}}{\mathrm{C}^{1.85 * \mathrm{D}^{4.85}}}=\frac{4.5 * 500^{1.85}}{120^{1.85} * 0.101^{4.85}} \\
& =1 \mathrm{bar}
\end{aligned}
$$

$H_{S t .}=$ the static head.
$H_{S t}=21 \mathrm{~m}=2.1 \mathrm{bar}$. So:
$H_{\text {Pump }}=4.5+2.1+1=7.6$ bar.

5.6 Pump selection

Total flow rate 500 GPM equal to $113.5 \mathrm{~m}^{3} / \mathrm{h}$ and amount of head 7.6 bars.
Using (dp-select) software and with filling data into brackets as follow:-

Figure 5.9: Pump details

The pump model selected "DPV85/3 B"

The characteristic curves of this pump as follow:

DPVCF 85/3 B 60Hz IEC 45kW 230/400V EFF1/IE2

Figure 5.10: Pump characteristic

CHAPTER SIX

Swimming pool

6.1 introduction

Swimming pools consider as one of the most places that attract human to reduce the daily work pressure, and daily troubles.

Swimming pools in general must have appropriate design for all ages and different level of swimming skills, also it must have a clean ,good water quality.

6.2 swimming pool components

1- Skimmer : machine that separates a liquid from particles floating on it or from another liquid.

Fig 6.1 swimming pool skimmer
2- main drain : are usually located on the lowest point in the pool, Most of the dirt and debris that sinks exits the pool through these drains, he drains are almost always covered with grates or antivortex covers (a cover that diverts the flow of water to prevent a dangerous vortex from forming).

Fig 6.2 swimming pool main drain
3- Pump : pulls water from one or more suction ports (i.e., skimmer \& main drain), and then pushes it through the filter \& heater.

Fig 6.3 swimming pool pump

4- Return inlet : Pool water returns are places in the pool where water comes back in from the circulation system.

Fig 6.4 swimming pool return inlet
5- Filter : Pool water comes from the circulation pump into the filter where small debris particles are removed.

Fig 6.5 swimming pool filters

6- Suction inlet : used primarily as a suction port for vacuuming the pool

Fig 6.6 general swimming pool components

6.3 Pool Capacity Calculations

Fig 6.7 swimming pool top view

$$
\begin{aligned}
\text { Average depth } & =(\text { Shallow end depth }+ \text { deep end depth }) / 2 \\
& =(3+1) / 2=2 \mathrm{~m} .
\end{aligned}
$$

[6.1]

Volume of water $=$ area $*$ average depth

$$
=(144)^{*} 2=288 \mathrm{~m}^{3} .
$$

Turn Over Time:

In Hebron the turn over time is 5 hr in hotel pools.

6.4 Filter Sizing and Selection

Filter flow rate $=$ Total Water Circulation rate $\left(\mathrm{m}^{3} / \mathrm{hr}\right)$

$$
\begin{aligned}
& =\left[\frac{\text { Pool water volume }\left(m^{3}\right)}{\text { Pool turn over period }(\mathrm{hr})}\right] \\
& =288 / 5 \\
& =57.6\left(\mathrm{~m}^{3} / \mathrm{hr}\right)
\end{aligned}
$$

For a filtration velocity of $20 \mathrm{~m} / \mathrm{hr}$, the efficiency is 100%.
For a filtration velocity of $30 \mathrm{~m} / \mathrm{hr}$, the efficiency is 70%.
For a filtration velocity of $40 \mathrm{~m} / \mathrm{hr}$, the efficiency is 50%.
The filter efficiency between $70-100 \%$, so a $25 \mathrm{~m} / \mathrm{hr}$ filtration velocity.
Filter surface area $=\left[\frac{\text { Filtration flow rate }}{\text { Filtration velocity }}\right]$

$$
={ }_{57.6 / 25}
$$

$$
=2.3 \mathrm{~m}^{2}
$$

6.5 Skimmers and main drain selection

- Number of skimmers $=(50 \%$ X Total flow rate $)$ /capacity of each skimmer

$$
\begin{aligned}
& =\text { pool surface area } / 25 \\
& =144 / 25 \\
& =6 \text { skimmers are required } .
\end{aligned}
$$

Flow rate of each skimmer $=(50 \% \times$ flow rate $) /$ number of skimmers

$$
\begin{aligned}
& =(50 \% \times 57.6) / 6 \\
& =4.8 \mathrm{~m}^{3} / \mathrm{hr}=21.2 \mathrm{gpm} .
\end{aligned}
$$

Flow rate of main drain $=50 \% \times$ flow rate

$$
\begin{aligned}
& =50 \% \times 57.6 \\
& =28.8 \mathrm{~m}^{3} / \mathrm{hr}=126.8 \mathrm{gpm} .
\end{aligned}
$$

Number of main drains $=($ flow rate $\times 50 \%) /$ flow rate of main drain

$$
\begin{aligned}
& =(57.6 \times 50 \%) / 28.8 \\
& =1 \text { main drain required. }
\end{aligned}
$$

6.6 Selection of return inlets:

$$
\begin{align*}
\text { Number of required return inlets } & =\left[\frac{\text { Filtration flow rate }}{\text { Flow rate of each inlet }}\right] \tag{6.9}\\
& =\text { pool perimeter } / 5 \\
& =50 / 6 \\
& =9 \text { return inlets. } \tag{6.10}
\end{align*}
$$

Flow rate of each return inlet $=\left[\frac{\text { Filtration flow rate }}{\text { Number of required return inlets }}\right]$

$$
=57.6 / 9
$$

$$
=6.4 \mathrm{~m}^{3} / \mathrm{hr}
$$

$$
=28.2 \mathrm{gpm} .
$$

6.7 swimming pool control room components:

Fig 6.8 swimming pool control room main components

1. Swimming Pool Skimmer Line
2. Swimming Pool Main Drain Line
3. Swimming Pool Slide Line
4. Automatic Pool Cleaner Line
5. Swimming Pool Return Line
6. Swimming Pool Return Line
7. Automatic Pool Cleaner Motor
8. Auto Sanitizer
9. Swimming Pool Heater
10. Swimming Pool Pump
11. D.E. Pool Filter
12. Pool Heater Gas Supply Line

REFREGRATORS

1.1 Cooling Load Calculation for refrigeration
1.2 Cooling Load calculation for freezer
6.1 Cooling Load Calculation for refrigeration Use this law to find Cooling Load Calculation:
$\mathrm{Q}=\mathrm{U} A \Delta \mathrm{~T}$
Q : Cooling Load in [kW].

U : Overall heat transfer coefficient in [$\mathrm{W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$].

$$
\begin{equation*}
U=\frac{1}{\frac{1}{\mathrm{~h} \text { in }}+\sum \frac{X}{K}+\frac{1}{\text { hout }}} \tag{6.1}
\end{equation*}
$$

$\mathrm{h}_{\text {in }}$: is the Inside Convection Coefficient $\left\{9.37 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}\right\}$.
$\mathrm{h}_{\text {out }}$: is the Outside Convection Coefficient $\left\{22.7 \mathrm{~W} / \mathrm{m}^{2}\right.$. $\left.{ }^{\circ} \mathrm{C}\right\}$.
K : is the thermal conductivity for material in $\left[\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right]$.
$\Delta \mathrm{X}$: is the Thickness of the material in [m].
A: Surface area in $\left[\mathrm{m}^{2}\right]$.
A=Length * Width.
$\Delta \mathrm{T}$: The difference in temperature $\left[{ }^{\circ} \mathrm{C}\right]$.
Temperature surrounding \{Tsur\}:
$\mathrm{T}_{\text {sur }}=30^{\circ} \mathrm{C}$
Room Temperature \{TRoom \}:
$\mathrm{T}_{\text {Room }}=\mathrm{T}_{\text {in }}+2 / 3\left(\mathrm{~T}_{\text {sur }}+\mathrm{T}_{\text {in }}\right)$
$\mathrm{T}_{\mathrm{in}:}$ is the storage temperature of product $=5^{\circ} \mathrm{C}$.
$\mathrm{T}_{\text {Room }}=5+2 / 3(30+5)$
$\mathrm{T}_{\text {Room }}=28.3^{\circ} \mathrm{C}$.

6.1.1 The Overall heat transfer coefficient

1. External Wall:

Figure 1:External wall details

Table 1:variable of heat transfer coefficient

Material	\mathbf{K} $(\mathbf{W} / \mathbf{m} . \mathbf{C}$ $)$	Thickness (\mathbf{m})
Concrete	1.750	0.300
Steel Sheet	16.00	0.002
Insulation	0.050	0.070
Steel Sheet	16.00	0.002

Thickness of the wall $=0.37 \mathrm{~m}$.

$$
\begin{gathered}
U=\frac{1}{\frac{1}{9.37}+\frac{0.3}{1.75}+\frac{0.002}{16}+\frac{0.07}{0.05}+\frac{0.002}{16}+\frac{1}{22.7}} \\
=0.58 / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C} .
\end{gathered}
$$

$\Delta \mathrm{T}=\mathrm{T}_{\text {sur }}-\mathrm{T}_{\text {in }}$
$=30-5=25^{\circ} \mathrm{C}$.
$\mathrm{A}_{\text {External Wall }}=3.8 * 4=15.2 \mathrm{~m}^{2}$.
$\mathrm{Q}_{\text {External Wall- } 1}=0.58 * 25 * 15.2=220 \mathrm{~W}=0.220 \mathrm{~kW}$
2. Internal Wall-1:

Figure 2:internal wall details

Table 2: variable of heat transfer coefficient

Material	K $(\mathbf{W} / \mathbf{m} . \mathbf{C})$	Thickness (\mathbf{m})
Plaster	1.200	0.002
Underlay	0.980	0.008
brick	1.00	0.100
Steel Sheet	16.00	0.002
Insulation	0.050	0.10
Steel Sheet	16.00	0.002

Thickness of the wall $=0.214 \mathrm{~m}$.

$$
\begin{aligned}
U= & \frac{1}{\frac{1}{9.37}+\frac{0.002}{1.2}+\frac{0.008}{0.98}+\frac{0.1}{1.00}+\frac{0.002}{16}+\frac{0.1}{0.05}+\frac{0.002}{16}+\frac{1}{9.37}} \\
& =0.43 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C} .
\end{aligned}
$$

$\Delta \mathrm{T}=\mathrm{T}_{\text {Room }}-\mathrm{T}_{\text {in }}$
$=28.3-5=23.3{ }^{\circ} \mathrm{C}$.
$\mathrm{A}=\mathrm{A}_{\text {Internal Wall }}-\mathrm{A}_{\text {Door }}$
$=(2 * 3.8)-(1 * 2)$
$=5.6 \mathrm{~m}^{2}$.
$\mathrm{Q}_{\text {Internal Wall- }-1}=0.43 * 23.3 * 5.6=38 \mathrm{~W}=0.038 \mathrm{~kW}$.
3. Internal Wall-2 :
4. The same propriety of Internal Wall-2 but the aria is deferens
$\mathrm{A}=\mathrm{A}_{\text {Internal Wall }}$
$=(4 * 3.8)=15.2 \mathrm{~m}^{2}$.
$\mathrm{Q}_{\text {Internal Wall- } 1}=0.43 * 23.3 * 15.2=152 \mathrm{~W}=0.152 \mathrm{~kW}$.
5. Internal Wall-3 :

The same propriety of Internal Wall-2 but the aria is deferens

$$
\begin{aligned}
& \mathrm{A}=\mathrm{A}_{\text {Internal Wall-3 }} \\
&=(2 * 3.8 \\
&=7.6 \mathrm{~m}^{2} . \\
& \mathrm{Q}_{\text {Internal Wall-3 }}=0.43 * 23.3 * 7.6=76 \mathrm{~W}=0.076 \mathrm{~kW} .
\end{aligned}
$$

1. Internal Wall-4 :

Consists of :

Figure 3:internal wall -2
Table 3: variable of heat transfer coefficient

Material	K $(\mathbf{W} / \mathbf{m} . \mathbf{C})$	Thickness (\mathbf{m})
Steel Sheet	16.0	0.002
Insulation	0.05	0.070
Steel Sheet	16.0	0.002
Concrete	1.75	0.100
Steel Sheet	16.0	0.002
Insulation	0.05	0.070
Steel Sheet	16.0	0.002

Thickness of the wall $=0.248 \mathrm{~m}$.

$$
\begin{aligned}
& U=\frac{1}{\frac{1}{9.37}+\frac{0.002}{16}+\frac{0.07}{0.05}+\frac{0.002}{16}+\frac{0.1}{1.75}+\frac{0.002}{16}+\frac{0.07}{0.05}+\frac{0.002}{16}+\frac{1}{9.37}} \\
&=0.325 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C} . \\
& \begin{aligned}
\mathrm{T} & =\mathrm{T}_{\text {Room }}-\mathrm{T}_{\text {in }} \\
& =5--18=23^{\circ} \mathrm{C} . \\
\mathrm{A} & =\mathrm{A}_{\text {Internal Wall-2 }} \\
& =(4 * 3.8) \\
& =15.2 \mathrm{~m}^{2} . \\
& \mathrm{Q}_{\text {Internal Wall- } 2}=0.325 * 23 * 15.2=114 \mathrm{~W}=0.114 \mathrm{~kW} .
\end{aligned}
\end{aligned}
$$

2. Ground:

Figure 4:ground details
Table 4: variable of heat transfer coefficient

Material	K $(\mathbf{W} / \mathbf{m} . \mathbf{C})$	Thickness (\mathbf{m})
Insulation	0.05	0.100
Asphalt	0.30	0.002
Bleaching	0.98	0.050
Reinforced Concrete	0.88	0.200
Sand	0.68	0.020
Gravels	0.58	0.050

Thickness of the wall $=0.377 \mathrm{~m}$.
$U=\frac{1}{\frac{1}{9.37}+\frac{0.1}{0.05}+\frac{0.002}{0.3}+\frac{0.05}{0.98}+\frac{0.2}{0.88}+\frac{0.02}{0.68}+\frac{0.05}{0.58}}$ $=0.399 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}$.
$\mathrm{A}=(2 * 2)$
$=4 \mathrm{~m}^{2}$.
$\mathrm{Q}_{\text {ground }}=0.399 * 23.3 * 4=38 \mathrm{~W}=0.020 \mathrm{~kW}$.
3. Ceiling:

Figure 5:ceiling details

Table 5:variable of heat transfer coefficient

Material	K $(\mathbf{W} / \mathbf{m . C})$	Thickness (\mathbf{m})
Tiles	1.10	0.005
Concrete	1.75	0.050
Insulation	0.05	0.096
Concrete	1.75	0.15
Steel Sheet	16.0	0.002

Thickness of the Ceiling $=0.362 \mathrm{~m}$.

$$
\begin{aligned}
& U=\frac{1}{\frac{1}{9.37}+\frac{0.005}{1.1}+\frac{0.05}{1.75}+\frac{0.096}{0.05}+\frac{0.15}{1.75}+\frac{0.002}{16}+\frac{1}{9.37}} \\
& \quad=0.444 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C} . \\
& \Delta \mathrm{T}=28.3-\mathrm{T}_{\text {in }} . \\
& =28.3-5=23.3^{\circ} \mathrm{C} . \\
& \mathrm{A}=2^{*} 2=4 \mathrm{~m}^{2} . \\
& \mathrm{Q} \text { Ceiling }=0.444 * 23.3 * 4=50 \mathrm{~W}=0.050 \mathrm{~kW} .
\end{aligned}
$$

4. Door:
St Steel Sheet

Figure 6:door details
Table 6: variable of heat transfer coefficient

Material	\mathbf{K} $\mathbf{(W / m . C)}$	Thickness (\mathbf{m})
Steel Sheet	16.0	0.002
Insulation	0.05	0.056
Wood	0.16	0.040
Steel Sheet	16.0	0.002

Thickness of the Door $=0.1 \mathrm{~m}$.

$$
\begin{aligned}
& U=\frac{1}{\frac{1}{9.37}+\frac{0.002}{16}+\frac{0.056}{0.05}+\frac{0.04}{0.16}+\frac{0.002}{16}+\frac{1}{9.37}} \\
&=0.631 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C} \\
& \Delta \mathrm{~T}=\mathrm{T}_{\text {Room }}-\mathrm{T}_{\text {in }} \\
&=28.3-5=23.3^{\circ} \mathrm{C} \\
& \mathrm{~A}=1 * 3.8=3.8 \mathrm{~m}^{2} . \\
& \mathrm{Q}_{\text {Door }}=0.631 * 23.3 * 3.8=55 \mathrm{~W}=0.055 \mathrm{~kW} .
\end{aligned}
$$

6.1.2 Cooling Load Calculation For rooms

Use this law to calculate cooling load for rooms:
$\mathrm{Q}_{\text {Total }}=\mathrm{Q}_{\text {Envelope }}+\mathrm{Q}_{\text {Product }}+\mathrm{Q}_{\text {Air }}+\mathrm{Q}_{\text {Service }}+\mathrm{Q}_{\text {Respiration }}$.
For Refrigerator:
Q Envelope Calculation:
$Q_{\text {Envelope: }}$ heat gain from walls, doors, windows, floor and ceiling.
$\mathrm{Q}_{\text {Envelope }}=\mathrm{Q}_{1}+\mathrm{Q}_{\text {Solar }}$.
$\mathrm{Q}_{\text {Wall }}=\mathrm{Q}_{\text {External wall-1 }}+\mathrm{Q}_{\text {Internal Wall-1 }}+\mathrm{Q}_{\text {Internal Wall-3 }}+\mathrm{Q}_{\text {Internal Wall-4 }}$ $=0.022+0.038+0.076+0.114=0.448$.
$\mathrm{Q}_{1}=\mathrm{Q}_{\text {Wall }} \mathrm{S}+\mathrm{Q}_{\text {Door }}+\mathrm{Q}_{\text {Floor }}+\mathrm{Q}_{\text {Ceiling }}$.
$\mathrm{Q}_{1}=0.448+0.055+0.038+.050=0.6 \mathrm{~kW}$.
$\mathrm{Q}_{\text {Solar }}=0$
$Q_{\text {Envelope }}=0+0.6=0.6 \mathrm{~kW}$.

$\mathbf{Q}_{\text {Product }}$ Calculation:

$\mathrm{Q}_{\text {Product }}=\mathrm{Q}_{2}{ }^{*}+\mathrm{Q}_{2}{ }^{* *}+\mathrm{Q}_{\text {Packaging }}$.
$\mathrm{Q}_{2}{ }^{*}=\mathrm{m}^{\mathrm{o}} \mathrm{cp} \Delta \mathrm{T}$.
When:
$\mathrm{m}^{\mathrm{o}}=\left(\mathrm{m}_{\text {Product }} /\right.$ Time Cooling $)$
Time Cooling: Working Time Per a Day .
$\Delta \mathrm{T}=\Delta \mathrm{T}_{\text {sur }}=30^{\circ} \mathrm{C}$.
Table 7:product used

Product	cp	\mathbf{m}	\mathbf{m}^{*}	$\mathbf{Q 2}^{*}$
Apple	3.64	40	0.000694	0.075833
Avocados	3.01	40	0.000694	0.062708
Bananas	3.35	40	0.000694	0.069792
Bass	3.43	30	0.000521	0.053594
Black Barry	3.64	20	0.000347	0.037917
Butter	2.72	30	0.000521	0.0425
Cabbage	3.94	50	0.000868	0.102604
Carrots	3.81	20	0.000347	0.039688
cheese	3.27	40	0.000694	0.068125
Chicken	2.72	80	0.001389	0.113333
cucumber	4.1	100	0.001736	0.213542
eggs	3.18	30	0.000521	0.049688
Eggplant	3.98	50	0.000868	0.103646
Grapes	3.6	50	0.000868	0.09375
Lemons	3.81	60	0.001042	0.119063
Milk	3.81	40	0.000694	0.079375
Tomatoes	3.98	120	0.002083	0.24875
Watermelon	3.94	100	0.001736	0.205208
	\sum			1.653281

$\mathrm{Q}_{2}{ }^{*}=1.65 \mathrm{~kW}$.
$\mathrm{Q}_{2}{ }^{* *}=0 \quad\{$ Used to freeze $\}$
$\mathrm{Q}_{\text {Packaging }}=\left(\mathrm{m}_{\text {Material }} /\right.$ Time Cooling $) * \mathrm{cp} * \Delta \mathrm{~T}$.
When:
$\mathrm{m}_{\text {Material }}=\mathrm{m} * \mathrm{~N}$.
m : is the mass of one pallet $=10 \mathrm{~kg}$.
N : is the number of pallets in the room $=30$.
$\mathrm{m}_{\text {Material }}=10 * 30=300 \mathrm{~kg}$.
cp : is the Specific Heat for Pallet $=0.67 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$.
$\Delta \mathrm{T}=\Delta \mathrm{T}_{\text {sur }}=30^{\circ} \mathrm{C}$.
$\mathrm{Q}_{\text {Packaging }}=(300 /(4 * 16 * 3600)) * 0.67 * 30=0.105 \mathrm{~kW}$.
$\mathrm{Q}_{\text {Product }}=1.65+0+0.105=1.755 \mathrm{~kW}$.

$Q_{\text {Air }}$ Calculation:

$\mathrm{Q}_{\text {Air }}=\mathrm{Q}_{\text {Infiltration }}+\mathrm{Q}_{\text {Ventilation }}$.
$Q_{\text {Infiltration }}=0 \mathrm{~kW}$.
Prove it :
$\mathrm{Q}_{\text {Infiltration }}=(1250 / 3600) * v^{0} *\left(\mathrm{~T}_{\text {Room }}-\mathrm{T}_{\text {in }}\right)$
$\mathrm{v}^{\mathrm{o}}=\mathrm{K} * \mathrm{~L} *\left\{0.613 *\left(\mathrm{~S}_{1} * \mathrm{~S}_{2} * \mathrm{v}_{\mathrm{o}}\right)^{2}\right\}^{(3 / 2)}$
L : Perimeter of the door .
$\mathrm{L}=2 * 3+2 * 3=12 \mathrm{~m}$.
K : The infiltration air coefficient $=0.25$.
S_{1} : Factor that depend on the topography of the location of the building $=0.9$.
S_{2} : Coefficient that depend on the height of the building and the term of its location $=0.74$.
Vo : The wind velocity $=0.5 \mathrm{~mL} / \mathrm{sec}$.
$\mathrm{v}_{\mathrm{o}}=0.25 * 12 * 10^{-3} *\left\{0.613 *(0.9 * 0.74 * 0.5)^{2}\right\}^{(3 / 2)}$
$=5.3 * 10^{-5} \mathrm{~mL} / \mathrm{sec}$.
$\mathrm{Q}_{\text {Infiltration }}=(1250 / 3600) * 5.3 * 10^{-5} *(25.1-0)=0.0004 \approx 0 \mathrm{~kW}$.
$\mathrm{Q}_{\text {Ventilation }}=\mathrm{Q}_{\text {Product }}+\mathrm{Q}_{\text {People }}$
$\mathrm{Q}_{\text {Product }}=\mathrm{m}^{0} *\left(\right.$ hout $\left.-\mathrm{h}_{\mathrm{in}}\right)$
From Psychometric Chart:
$\mathrm{h}_{\text {out }}=72 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C}$ @ $\mathrm{T}_{\text {out }}=30^{\circ} \mathrm{C}$ \& R.H $=56 \%$.
$\mathrm{h}_{\text {in }}=17 \mathrm{~J} / \mathrm{kg} .{ }^{\circ} \mathrm{C} \quad @ \mathrm{~T}_{\text {in }}=5^{\circ} \mathrm{C}$ \& R.H $=85 \%$.
$\mathrm{m}^{\mathrm{o}}=\rho_{\mathrm{Air}} * \mathrm{v}^{\mathrm{o}}$
$\rho_{\text {Air }}$: it is the density of the air $=1.2 \mathrm{~kg} / \mathrm{m}^{2}$.
$\mathrm{Vo}=\mathrm{v} * \mathrm{a}$.
V : Volume of the room in $\left[\mathrm{m}^{3}\right]$.
$\mathrm{V}=2 * 4 * 3.8=30.4 \mathrm{~m}^{3}$.
$\mathrm{a}:$ number of air change each second, it depend for the volume of the room .
from interpolation $\mathrm{a}=11.3 \mathrm{~L} / \mathrm{s}$. [Table 10-7]
$\mathrm{m}^{\mathrm{o}}=1.2 * 30.4 *(11.3 / 1000)=0.5 \mathrm{~m}^{3} / \mathrm{s}$.
$\mathrm{Q}_{\text {Product }}=0.5 *(72-17)=27.5 \mathrm{~W}=0.0275 \mathrm{~kW}$.
$\mathrm{Q}_{\text {People }}=\mathrm{m}^{\circ} *\left(\mathrm{~h}_{\text {out }}-\mathrm{h}_{\text {in }}\right) *($ hour occupied $/ 24) * \mathrm{a}$
When:
a : The number of people inside the room $=2$.
$\mathrm{m}^{\mathrm{o}}=\rho_{\text {Air }} * \mathrm{v}^{\mathrm{o}}$
Vo $=20 \mathrm{~m}^{3} / \mathrm{h}$.
$\mathrm{m}^{\mathrm{o}}=1.2 *(20 / 3600)=6.66 * 10^{-3} \mathrm{~kg} / \mathrm{s}$.
hour occupied: is the time needed to work in the room $=2$ hours .
$\mathrm{Q}_{\text {People }}=6.66 * 10^{-3} * 55^{*}(2 / 24) * 2=0.061 \mathrm{~W}=6.1 * 10^{-5} \mathrm{~kW}$.
$\mathrm{Q}_{\text {Ventilation }}=0.0275+6.1 * 10^{-5}=0.0276 \mathrm{~kW}$.
$\mathrm{Q}_{\text {Air }}=0+0.0276=0.0276 \mathrm{~kW}$.

$Q_{\text {Service }}$ Calculation:

$\mathrm{Q}_{\text {Service }}=\mathrm{Q}_{\text {People }}+\mathrm{Q}_{\text {Light }}$.
$\mathrm{Q}_{\text {People }}=\mathrm{n} * \mathrm{Q}_{\text {Person }} *($ Working hours / 24)
$Q_{\text {Person }}=0.275$. TTable 10-14].
$\mathrm{Q}_{\text {People }}=2 * 0.275 *(2 / 24)=0.046 \mathrm{~kW}$.
$\mathrm{Q}_{\text {Light }}=\mathrm{P}_{\text {Light }}$ * $\mathrm{CLF} * \mathrm{~N}$
$\mathrm{P}_{\text {Light }}=24 \mathrm{~W}$.
CLF: Cooling Load Factor of Lighting $=0.88$.
N : Number of Lights
$\mathrm{N}=2$
$\mathrm{Q}_{\text {Light }}=24 * 0.88 * 2=42.24 \mathrm{~W}=0.0422 \mathrm{~kW}$
$Q_{\text {Service }}=+0.046+0.0422=0.088 \mathrm{KW}$.

$Q_{\text {Respiration }}$ Calculation:

$Q_{\text {Respiration }}=m * q_{\text {Rips }}$
$Q_{\text {Respiration: is the rate of respiration . }}$
m : is the mass of the product in the room in [kg].
$\mathrm{q}_{\text {Rips }}$: Rate of heat given off Breathing product .
$\mathrm{q}_{\text {Rips }}=0.029$. [Table 10-12] .
$Q_{\text {Respiration }}=0.029 * 1000=29 \mathrm{~W}=0.029 \mathrm{~kW}$.
Consequently:

$$
\begin{aligned}
& \mathrm{Q}_{\text {Total }}=0.6+1.755+0.0276+0.088+0.029=2.5 \mathrm{~kW} . \\
& \mathrm{Q}_{\text {Total }}=2.5^{*} \mathrm{~F} . \mathrm{S}=2.5^{*} 1.5=3.75 \mathrm{Kw}
\end{aligned}
$$

From Cool pack:

Figure 7 The cycle in the PH diagram

Table 8: the value from PH diagram

$$
\mathrm{q}_{\mathrm{e}}=\mathrm{h}_{1}-\mathrm{h}_{5}
$$

$$
=400.073-248.748=151.325 \mathrm{k} / \mathrm{kg} .
$$

$$
\mathrm{q}_{\mathrm{c}}=\mathrm{h}_{2}-\mathrm{h}_{4}
$$

$$
=419.252-248.748=170.504 \mathrm{w} .
$$

$$
\begin{aligned}
\mathrm{w}_{\mathrm{c}} & =\mathrm{h}_{2}-\mathrm{h}_{1} \\
& =419.252-400.073=19.179 \mathrm{w}
\end{aligned}
$$

$$
\mathrm{Q}_{\mathrm{e}}=\mathrm{m}_{\mathrm{R}}^{\mathrm{o}} \mathrm{q}_{\mathrm{e}}
$$

$$
\mathrm{m}_{\mathrm{R}}^{\mathrm{o}}=\mathrm{Q}_{\mathrm{e}} / \mathrm{q}_{\mathrm{e}}=3.75 / 151.315=0.02476 \mathrm{~kg} / \mathrm{s} .
$$

$$
\mathrm{Q}_{\mathrm{c}}=\mathrm{m}_{\mathrm{R}}^{\mathrm{o}} \mathrm{q}_{\mathrm{c}}
$$

$$
=0.02476 * 170.504=4.225 \mathrm{~kW} .
$$

$$
\begin{aligned}
\mathrm{P} & =\mathrm{m}^{\mathrm{o}} \mathrm{w}_{\mathrm{c}} \\
& =0.02476 * 19.179 \\
& =0.474 \mathrm{~kW}=0.62 \mathrm{hp}\{\mathrm{hp}: \text { horsepower }\} .
\end{aligned}
$$

Coefficient of performance $(\mathrm{cop})=\mathrm{q}_{\mathrm{e}} / \mathrm{w}=151.315 / 19.179=7.889$

6.1.3 Compressor selection

By Using BITZER-Software

Semi-hermetic Reciprocating Compressors		V
Mode	Refrigeration and Air con v	
Refrigerant	R134a	v
Reference temperature	Dew point temp.	V
Compressor type	Single Compressor	-
Series	Standard	v
Motor version	all	v
Compressor selection		, ${ }^{\text {a }}$
Cooling capacity	4,25	
(2) Compressor model	2KES-05Y	v
Incl. former types		
Operating point		,
Evaporating SST	$5{ }^{\circ} \mathrm{C}$	
Condensing SDT	$35 \sim{ }^{\circ} \mathrm{C}$	
Operating conditions		,
Liq. subc. (in condenser) \boldsymbol{V}	5 K	
Suction gas temperature V	$5 \quad{ }^{\circ} \mathrm{C}$	

Figure 8:compressor data sheet
For more about data sheet go to appendix B

6.1.4 Condensers selection:

By Using BITZER-Software

Dimensions and Connections

Condensing Units		V
Series	Standard	-
Refrigerant	R134a	v
Reference temperature	Dew point temp.	-
Compressor type	Single Compressor	v
Compressor selection		츳
Cooling capacity	4,25	
- Unit type	LH32E/2KES-05Y	v
	\square Incl. former types	
Operating point		슷
Evaporating SST	$5 \quad{ }^{\circ} \mathrm{C}$	
Ambient temperature	$30 \times{ }^{\circ} \mathrm{C}$	
Operating conditions		슨
Suction gas temperature v	$20 .{ }^{\circ} \mathrm{C}$	
\square Useful superheat	100 \%	(1)
Operating mode	Auto	v
Capacity Control	100\%	V

Figure 9:condenser data sheet

6.2 Cooling Load Calculation for freezer

6.2.1 Use this law to find Cooling Load Calculation:

$\mathrm{Q}=\mathrm{U}$ A $\Delta \mathrm{T}$
When:
Q : Cooling Load in [kW] .
U: Overall heat transfer coefficient in [W/m $\left.{ }^{2} .{ }^{\circ} \mathrm{C}\right]$
$U=\frac{1}{\frac{1}{\text { hin }}+\sum \frac{\Delta X}{K}+\frac{1}{\text { hout }}}$
$\mathrm{h}_{\text {in }}$: is the Inside Convection Coefficient $\left\{9.37 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}\right\}$.
$\mathrm{h}_{\text {out }}$: is the Outside Convection Coefficient $\left\{22.7 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}\right\}$.

K : is the thermal conductivity for material in $\left[\mathrm{W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right]$.
$\Delta \mathrm{X}$: is the Thickness of the material in [m].
A: Surface area in $\left[\mathrm{m}^{2}\right]$.
A=Length * Width.
$\Delta \mathrm{T}$: The difference in temperature $\left[{ }^{\circ} \mathrm{C}\right]$.

1. Internal Wall-1 :

$$
\begin{aligned}
& \Delta \mathrm{T}=\mathrm{T}_{\text {Room }}-\mathrm{T}_{\text {in }} \\
& \quad=28--18=46^{\circ} \mathrm{C} . \\
& \mathrm{A}=\mathrm{A}_{\text {Internal Wall }}-\mathrm{A}_{\text {Door }} \\
& \quad=(2 * 3.8)-(2 * 1) \\
& =5.6 \mathrm{~m}^{2} . \\
& \mathrm{Q}_{\text {Internal Wall- }-1}=0.038 * 46 * 5.6=0.015 \mathrm{~kW} .
\end{aligned}
$$

2. Internal Wall-2 :

$$
\begin{aligned}
& \Delta \mathrm{T}=\mathrm{T}_{\text {Room }}-\mathrm{T}_{\text {in }} \\
& =24--18=42^{\circ} \mathrm{C} . \\
& \mathrm{A}=\mathrm{A} \text { Internal Wall-2 } \\
& =(4 * 3.8) \\
& =15.2 \mathrm{~m}^{2} . \\
& \mathrm{Q} \text { Internal Wall-2 }=0.152 * 42 * 15.2=97 \mathrm{~W}=0.97 \mathrm{~kW} . \\
& \quad 3 \text {-Internal Wall-3: } \\
& \begin{array}{l}
\Delta \mathrm{T}
\end{array}=\mathrm{T}_{\text {Room }}-\mathrm{T}_{\mathrm{in}} \\
& =24--18=42^{\circ} \mathrm{C} . \\
& \mathrm{A}=\mathrm{A}_{\text {Internal Wall-2 }} \\
& =(2 * 3.8) \\
& =7.6 \mathrm{~m}^{2} . \\
& \mathrm{Q}_{\text {Internal Wall-2 }}=0.076 * 42 * 7.6=64 \mathrm{~W}=0.064 \mathrm{~kW}
\end{aligned}
$$

4-Internal Wall-4 :
$\Delta \mathrm{T}=\mathrm{T}_{\text {Room }}-\mathrm{T}_{\text {in }}$
$=5--18=23{ }^{\circ} \mathrm{C}$.
$\mathrm{A}=\mathrm{A}_{\text {Internal Wall-2 }}$

$$
=(4 * 3.8)
$$

$$
=15.2 \mathrm{~m}^{2} \text {. }
$$

$\mathrm{Q}_{\text {Internal Wall-2 }}=0.114^{*} 23^{*} 15.2=88 \mathrm{~W}=0.088 \mathrm{~kW}$

1. Ground:

$$
\begin{aligned}
& \Delta \mathrm{T}=\mathrm{T} \text { ground }-\mathrm{Tin} \\
& \quad=24-18=42^{\circ} \mathrm{C} . \\
& \mathrm{A}=(2 * 4) \\
& \quad=8 \mathrm{~m}^{2} . \\
& \mathrm{Q}_{\text {ground }}=0.399 * 42 * 8=0.134 \mathrm{~kW} .
\end{aligned}
$$

2. Ceiling:

$$
\begin{aligned}
\Delta \mathrm{T} & =28-\mathrm{T}_{\mathrm{in}} \\
& =24--18=42^{\circ} \mathrm{C} .
\end{aligned}
$$

$A=2 * 4=8 \mathrm{~m}^{2}$.
$Q_{\text {Ceiling }}=0.55 * 42 * 8=0.184 \mathrm{~kW}$.

3. Door:

$$
\begin{aligned}
& \Delta \mathrm{T}=\mathrm{T}_{\text {Room }}-\mathrm{T}_{\text {in }} \\
&=24--18=42{ }^{\circ} \mathrm{C} . \\
& \mathrm{A}=2 * 1=2 \mathrm{~m}^{2} . \\
& \mathrm{Q}_{\text {Door }}=0.345 * 42 * 2=0.087 \mathrm{~kW} .
\end{aligned}
$$

Use this law to calculate cooling load for rooms:
$\mathrm{Q}_{\text {Total }}=\mathrm{Q}_{\text {Envelope }}+\mathrm{Q}_{\text {Product }}+\mathrm{Q}_{\text {Air }}+\mathrm{Q}_{\text {Service }}+\mathrm{Q}_{\text {Respiration }}$.
$\mathrm{Q}_{\text {Envelope }}$: heat gain from walls, doors, windows, floor and ceiling .
$\mathrm{Q}_{\text {Envelope }}=\mathrm{Q}_{1}+\mathrm{Q}_{\text {Solar }}$.
$Q_{\text {Envelope }}=Q_{\text {Wall }}+Q_{\text {Door }}+Q_{\text {ground }}+Q_{\text {Ceiling }}+Q_{\text {Solar }}$
$Q_{\text {Envelope }}=0.015+0.074+0.088+0.134+0.184+0.087+0=0.6 \mathrm{~kW}$.
$\mathrm{Q}_{\text {Product }}$ Calculation :
$\mathrm{Q}_{\text {Product }}=\mathrm{Q}_{2}{ }^{*}+\mathrm{Q}_{2}{ }^{* *}+\mathrm{Q}_{\text {Packaging }}$.
$\mathrm{Q}_{2}{ }^{*}=\mathrm{m}^{\mathrm{o}} \mathrm{cp} \Delta \mathrm{T}$.
$\mathrm{m}^{\mathrm{o}}=\left(\mathrm{m}_{\text {Product }} /\right.$ Time Cooling $)$
Time Cooling: Working Time Per a Day.
$\Delta \mathrm{T}=\Delta \mathrm{T}_{\text {sur }}=30^{\circ} \mathrm{C}$.
Table 9:product used

Product	$\mathbf{c p}$	\mathbf{m}	\mathbf{m}^{*}	$\mathbf{Q 2}^{*}$				
Beef	$\mathbf{1 . 5 9}$	$\mathbf{1 2 0}$	$\mathbf{0 . 0 0 2 0 8 3}$	$\mathbf{0 . 0 9 9 3 7 5}$				
Chicken	$\mathbf{1 . 6 3}$	$\mathbf{1 2 0}$	$\mathbf{0 . 0 0 2 0 8 3}$	$\mathbf{0 . 1 0 1 8 7 5}$				
Clams	$\mathbf{1 . 5 1}$	$\mathbf{4 0}$	$\mathbf{0 . 0 0 0 6 9 4}$	$\mathbf{0 . 0 3 1 4 5 8}$				
Codfish	$\mathbf{1 . 6 3}$	$\mathbf{7 0}$	$\mathbf{0 . 0 0 1 2 1 5}$	$\mathbf{0 . 0 5 9 4 2 7}$				
Halibut	$\mathbf{1 . 6 7}$	$\mathbf{8 0}$	$\mathbf{0 . 0 0 1 3 8 9}$	$\mathbf{0 . 0 6 9 5 8 3}$				
Ice cream	$\mathbf{1 . 6 7}$	$\mathbf{3 0}$	$\mathbf{0 . 0 0 0 5 2 1}$	$\mathbf{0 . 0 2 6 0 9 4}$				
lamp	$\mathbf{1 . 5 5}$	$\mathbf{5 0}$	$\mathbf{0 . 0 0 0 8 6 8}$	$\mathbf{0 . 0 4 0 3 6 5}$				
Oysters	$\mathbf{1 . 7 2}$	$\mathbf{6 0}$	$\mathbf{0 . 0 0 1 0 4 2}$	$\mathbf{0 . 0 5 3 7 5}$				
Reindeer	$\mathbf{1 . 5 5}$	$\mathbf{4 0}$	$\mathbf{0 . 0 0 0 6 9 4}$	$\mathbf{0 . 0 3 2 2 9 2}$				
salmon	$\mathbf{1 . 5 5}$	$\mathbf{8 0}$	$\mathbf{0 . 0 0 1 3 8 9}$	$\mathbf{0 . 0 6 4 5 8 3}$				
Sausage	$\mathbf{1 . 3 4}$	$\mathbf{1 0 0}$	$\mathbf{0 . 0 0 1 7 3 6}$	$\mathbf{0 . 0 6 9 7 9 2}$				
sword fish	$\mathbf{1 . 6 7}$	$\mathbf{8 0}$	$\mathbf{0 . 0 0 1 3 8 9}$	$\mathbf{0 . 0 6 9 5 8 3}$				
tripe	$\mathbf{1 . 7 2}$	$\mathbf{5 0}$	$\mathbf{0 . 0 0 0 8 6 8}$	$\mathbf{0 . 0 4 4 7 9 2}$				
veal	$\mathbf{1 . 5 9}$	$\mathbf{5 0}$	$\mathbf{0 . 0 0 0 8 6 8}$	$\mathbf{0 . 0 4 1 4 0 6}$				
whitefish	$\mathbf{1 . 6 3}$	$\mathbf{6 0}$	$\mathbf{0 . 0 0 1 0 4 2}$	$\mathbf{0 . 0 5 0 9 3 8}$				
	\sum							$\mathbf{0 . 8 5 5 3 1 3}$

$\mathrm{Q}_{2}^{*}=0.855 \mathrm{~kW}$
$\mathrm{Q}^{* * 2}=(\mathrm{m} / \mathrm{time})^{*} \Delta \mathrm{~h}+(\mathrm{m} / \text { time })^{*} \mathrm{cp} * \Delta \mathrm{~T}$
$=(1000 / 11 * 3600) * 47+\left(1000 / 16^{*} 3600\right) * 1.6^{*}(0--18)$
$\quad=1.18 \mathrm{KW}+0.5 \mathrm{KW}=1.68 \mathrm{KW}$
$\mathrm{Q}_{\text {Packaging }}=\left(\mathrm{m}_{\text {Material }} /\right.$ Time Cooling $) * \mathrm{cp} * \Delta \mathrm{~T}$.
$\mathrm{m}_{\text {Material }}=\mathrm{m} * \mathrm{~N}$.
m : is the mass of one pallet $=15 \mathrm{~kg}$.
N : is the number of pallets in the room $=20$.
$\mathrm{m}_{\text {Material }}=15 * 20=300 \mathrm{~kg}$.
cp : is the Specific Heat for Pallet $=0.67 \mathrm{~kJ} / \mathrm{kg} . \mathrm{K}$.
$\Delta \mathrm{T}=\Delta \mathrm{T}_{\text {sur }}=30^{\circ} \mathrm{C}$.
$\mathrm{Q}_{\text {Packaging }}=(300 /(4 * 16 * 3600)) * 0.67 * 30=0.105 \mathrm{~kW}$.
$Q_{\text {Product }}=0.855+1.68+0.105=2.535 \mathrm{~kW}$.
$Q_{\text {Air }}$ Calculation :
$Q_{\text {Air }}=Q_{\text {Infiltration }}+Q_{\text {ventilation }}$.
$Q_{\text {Infiltration }}=0 \mathrm{~kW}$.
$\mathrm{Q}_{\text {Ventilation }}=\mathrm{Q}_{\text {Product }}+\mathrm{Q}_{\text {People }}$
$\mathrm{Q}_{\text {Product }}=\mathrm{m}^{0} *\left(\right.$ hout $\left.-\mathrm{h}_{\text {in }}\right)$.
$Q_{\text {Product }}=1.293$ * $(72-10)=80.16 \mathrm{~W}=0.08 \mathrm{~kW}$.
$\mathrm{Q}_{\text {People }}=\mathrm{m}^{0} *\left(\mathrm{~h}_{\text {out }}-\mathrm{h}_{\text {in }}\right) *($ hour occupied $/ 24) * \mathrm{a}$
$\mathrm{Q}_{\text {People }}=6.66 * 10^{-3} * 55 *(2 / 24) * 2=0.061 \mathrm{~W}=6.1 * 10^{-5} \mathrm{~kW}$.
$Q_{\text {Ventilation }}=0.08+6.1 * 10^{-5}=0.08 \mathrm{~kW}$.
$\mathrm{Q}_{\text {Air }}=0+0.08=0.08 \mathrm{~kW}$.

$Q_{\text {Service }}$ Calculation:

$Q_{\text {Service }}=\mathrm{Q}_{\text {People }}+\mathrm{Q}_{\text {Light }}$.
$\mathrm{Q}_{\text {People }}=\mathrm{n} * \mathrm{Q}_{\text {Person }} *($ Working hours / 24)
$Q_{\text {People }}=2$ * 0.275 * $(2 / 24)=0.046 \mathrm{~kW}$.
$\mathrm{Q}_{\text {Light }}=\mathrm{P}_{\text {Light }} * \mathrm{CLF}^{*} \mathrm{~N}$
$Q_{\text {Light }}=24 * 0.88 * 2=42.24 \mathrm{~W}=0.0422 \mathrm{~kW}$
$Q_{\text {Service }}=+0.046+0.0422=0.088 \mathrm{KW}$.

$Q_{\text {Respiration }}$ Calculation :

$Q_{\text {Respiration }}=m * q_{\text {Rips }}$
$Q_{\text {Respiration: is the rate of respiration. }}$. m : is the mass of the product in the room in [kg].
$\mathrm{q}_{\text {Risp }}$: Rate of heat given off Breathing product.
$q_{\text {Risp }}=0.029$. [Table 10-12] .
$\mathrm{Q}_{\text {Respiration }}=0.029 * 1000=29 \mathrm{~W}=0.029 \mathrm{~kW}$.

Consequently:

$\mathrm{Q}_{\text {Total }}=0.9+2.535+0.08+0.088+0.029=4.3 \mathrm{~kW}$.
$\mathrm{Q}_{\text {Total }}=4.3 * \mathrm{~F} . \mathrm{S}=4.3 * 1.5=6.5 \mathrm{KW}$

From Cool pack:

Table 10: The cycle in the PH diagram

Table 11 the value from PH diagram

Point	T	P	v	h	s
	$\left[{ }^{\circ} \mathrm{C}\right]$	$[\mathrm{bar}]$	$\left[\mathrm{m}^{\wedge} 3 / \mathrm{kg}\right]$	$[\mathrm{kJ} / \mathrm{kg}]$	$[\mathrm{kJ} /(\mathrm{kg} \mathrm{K}]]$
1	-17.916	3.260	0.060907	357.822	1.6236
2	40.469	16.065	0.012189	389.924	1.6236
3	40.469	16.065	0.012189	389.924	1.6236
4	34.676	16.065	$\mathrm{~N} / \mathrm{A}$	254.208	$\mathrm{~N} / \mathrm{A}$
5	$\mathrm{~N} / \mathrm{A}$	3.260	$\mathrm{~N} / \mathrm{A}$	254.208	$\mathrm{~N} / \mathrm{A}$
6	-17.916	3.260	0.060907	357.822	1.6236
15	$\mathrm{~N} / \mathrm{A}$	16.065	$\mathrm{~N} / \mathrm{A}$	254.208	$\mathrm{~N} / \mathrm{A}$

$\mathrm{q}_{\mathrm{e}}=\mathrm{h}_{1}-\mathrm{h}_{5}$

$$
=357.822-254.208=103.14 \mathrm{kj} / \mathrm{kg} .
$$

$$
\mathrm{q}_{\mathrm{c}}=\mathrm{h}_{2}-\mathrm{h}_{4}
$$

$$
=389.924-254.208=135.716 \mathrm{kj} / \mathrm{kg} .
$$

$$
\begin{aligned}
\mathrm{w}_{\mathrm{c}} & =\mathrm{h}_{2}-\mathrm{h}_{1} \\
& =389.924-357.822=32.102 \mathrm{kj} / \mathrm{kg}
\end{aligned}
$$

$$
\mathrm{Q}_{\mathrm{e}}=\mathrm{m}_{\mathrm{R}}^{\mathrm{o}} \mathrm{q}_{\mathrm{e}}
$$

$$
\mathrm{m}_{\mathrm{R}}^{\mathrm{o}}=\mathrm{Q}_{\mathrm{e}} / \mathrm{q}_{\mathrm{e}}=6.5 / 103.14=0.063 \mathrm{~kg} / \mathrm{s} .
$$

$$
\mathrm{Q}_{\mathrm{c}}=\mathrm{m}_{\mathrm{R}}^{\mathrm{o}} \mathrm{q}_{\mathrm{c}}
$$

$$
=0.063 * 135.716=8.55 \mathrm{~kW} .
$$

$$
\begin{aligned}
\mathrm{P} & =\mathrm{m}^{\mathrm{o}} \mathrm{~W}_{\mathrm{c}} \\
& =0.063 * 32.102
\end{aligned}
$$

$$
=2.02 \mathrm{~kW}=2.7 \mathrm{hp}\{\mathrm{hp}: \text { horsepower [electric }]\} .
$$

Coefficient of performance $($ cop $)=\mathrm{q}_{\mathrm{e}} / \mathrm{w}=103.14 / 32.102=3.212$

6.2.2 compressor selection By Using BITZER-Software

For more about data sheet go to appendix B

Figure 10:compressor data sheet

6.2.3 Condensers selection:

By Using BITZER-Software

Compressor Selection: Condensing Units
Input Values

Cooling capacity	6.50 kW
Series	Standard
Refrigerant	R404A
Reference temperature	Dew point temp.
Evaporating SST	$-18.00^{\circ} \mathrm{C}$
Ambient temp.	$30.0^{\circ} \mathrm{C}$
Suction gas temperature	$20.00{ }^{\circ} \mathrm{C}$
Useful superheat	100%
Operating mode	Auto
Power supply	$400 \mathrm{~V}-3-50 \mathrm{~Hz}$
Capacity Control	100%

Result

Unit type	LH53E/2DES-2Y-40SLH64E/2DES-3Y-40SLH64E/2CES-3Y-40SLH84E/2CES-4Y-40S			
Capacity steps	100%	100%	100%	100%
Cooling capacity	5.22 kW	5.62 kW	6.72 kW	7.11 kW
Evaporator capacity	5.22 kW	5.62 kW	6.72 kW	7.11 kW
Power input *	2.79 kW	2.88 kW	3.56 kW	3.43 kW
Current (400V)	4.74 A	5.09 A	5.98 A	5.95 A
Voltage range	$380-420 \mathrm{~V}$	$380-420 \mathrm{~V}$	$380-420 \mathrm{~V}$	$380-420 \mathrm{~V}$
Mass flow	$144.5 \mathrm{~kg} / \mathrm{h}$	$148.6 \mathrm{~kg} / \mathrm{h}$	$182.3 \mathrm{~kg} / \mathrm{h}$	$185.9 \mathrm{~kg} / \mathrm{h}$
Condensing SDT	$43.2^{\circ} \mathrm{C}$	$39.5{ }^{\circ} \mathrm{C}$	$41.6^{\circ} \mathrm{C}$	$38.5^{\circ} \mathrm{C}$
Liquid subcooling	3.00 K	3.00 K	3.00 K	3.00 K
Operating mode	Standard	Standard	Standard	Standard

Figure 11:condenser data sheet
For more about data sheet go to appendix B

To see all Refrigeration systems go to drawings from (M16).

References

[1] Palestinian code.
[2] J. A. D. W. A.Beckman, Solar Engineering of Thermal Processes, John Wiley \& Sons, 2006.
[3] M. A. A. M. Ashamed, Heating and Air Conditioning for Residential Buildings, National Library Department, Jordan, 2007.
[4] J. F. Krieger, Handbook of Heating, Ventilation, and Air Conditioning, Boca Raton, CRC.Press LLC, Florida, 2001.
[5] B. Stein, Building Technology Mechanical and Electrical Systems, John Wiley \& sons, Canada, 1997.
[7] Internet.

Appendix

A-1: Description of wall construction groups

A-2: Approximate CLTD values for light, medium, and heavy weight construction walls
TABLE 9-6 Approximate CLTD values for light, medium, and heavy weight construction walls, ${ }^{\circ} \mathrm{C}$.

Solar Time	Wall construction											
	Light				Medium				Heavy			
	N	E	S	W	N	E	S	W	N	E	S	W
8:00	-	16	-	-	-	-	-	-	-	-	-	-
9:00	-	20	-	-	-	6	-	-	-	-	-	-
10:00	-	21	2	-	-	11	-	-	-	-	-	-
11:00	-	18	7	-	-	14	-	-	-	3	-	-
12:00	-	12	12	-	-	15	-	-	-	5	-	-
13:00	2	9	15	5	-	14	5	-	-	7	-	-
14:00	3	7	16	13	-	12	9	1	-	8	-	-
15:00	3	7	14	21	1	10	11	6	-	8	1	-
16:00	4	6	11	27	2	9	12	12	-	8	3	-
17:00	4	5	7	30	2	8	11	17	-	8	5	3
18:00	5	3	4	27	3	7	9.	22	-	8	6	7
19:00	2	1	1	17	3	5	7	23	-	7	6	10
20:00	-	-	-	6	3	3	5	20	1	7	6	12

A-3: Approximate CLTD values for sunlit roofs

TABLE 9-3 Approximate CLTD values for sunlit roofs, ${ }^{\circ} \mathrm{C}$.

Solar Time	Roof Construction		
	Light	Medium	Heavy
$\mathbf{1 0 : 0 0}$	5	-	-
$\mathbf{1 1 : 0 0}$	12	-	-
$\mathbf{1 2 : 0 0}$	19	3	0
$\mathbf{1 3 : 0 0}$	25	8	2
$\mathbf{1 4 : 0 0}$	29	14	5
$\mathbf{1 5 : 0 0}$	31	19	8
$\mathbf{1 6 : 0 0}$	31	23	10
$\mathbf{1 7 : 0 0}$	29	25	12
$\mathbf{1 8 : 0 0}$	24	26	14
$\mathbf{1 9 : 0 0}$	19	25	15
$\mathbf{2 0 : 0 0}$	11	22	16

A-4: Inside design temperature

A-5: cooling load factor (CLF), for lights

Table (A-8) Cooling load factor (CLF) $\angle t$, for lights. ${ }^{3}$

Number of hours after lights are turned On	Fixture $\mathbf{X}^{\mathbb{C}}$ hours of operation		Fixture $\mathbf{Y}^{\mathbb{C}}$ hours of operation $\mathbf{1 0}$ $\mathbf{1 6}$ $\| \mathbf{1 0}$	
	0.08	0.19	0.01	$\mathbf{1 6}$
2	0.62	0.72	0.76	0.79
3	0.66	0.75	0.81	0.83
4	0.69	0.77	0.84	0.87
5	0.73	0.80	0.88	0.89
6	0.75	0.82	0.90	0.91
7	0.78	0.84	0.92	0.93
8	0.80	0.85	0.93	0.94
9	0.82	0.87	0.95	0.95
10	0.84	0.88	0.96	0.96
11	0.85	0.89	0.97	0.97
12	0.32	0.90	0.22	0.98
13	0.29	0.91	0.18	0.98
14	0.26	0.92	0.14	0.98
15	0.23	0.93	0.12	0.99
16	0.21	0.94	0.09	0.99
17	0.19	0.94	0.08	0.99
18	0.17	0.40	0.06	0.24

${ }^{3}$ Adapted from Stoecker and Jones, 1982, "Refrigeration and Air Conditioning", $2^{\text {nd }}$ ed., MacGraw Hill. (Fixture $\mathrm{X}=$ not vented recessed lights and Fixture $\mathrm{Y}=$ vented or free-hanging light.)
${ }^{4}$ Adapted from Jones, 1979 "Air Conditioning applications and Design", Edward Arnold.

A-6: Cooling load factor due to occupants (CLF), for sensible gain

Table (A-6-2) Cooling load factor due to occupants (CLF) occ., for sensible heat gain. ${ }^{5}$

Hours after each entry into space	Total hours in space							
	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6}$
1	0.49	0.49	0.50	0.51	0.53	0.55	0.58	0.62
2	0.58	0.59	0.60	0.61	0.62	0.64	0.66	0.70
3	0.17	0.66	0.67	0.67	0.69	0.70	0.72	0.75
4	0.13	0.71	0.72	0.72	0.74	0.75	0.77	0.79
5	0.10	0.27	0.76	0.76	0.77	0.79	0.80	0.82
6	0.08	0.21	0.79	0.80	0.80	0.81	0.83	0.85
7	0.07	0.16	0.34	0.82	0.83	0.84	0.85	0.87
8	0.06	0.14	0.26	0.84	0.85	0.86	0.87	0.88
9	0.05	0.11	0.21	0.38	0.87	0.88	0.89	0.90
10	0.04	0.10	0.18	0.30	0.89	0.89	0.9	0.91
11	0.04	0.08	0.15	0.25	0.42	0.91	0.91	0.92
12	0.03	0.07	0.13	0.21	0.34	0.92	0.92	0.93
13	0.03	0.06	0.11	0.18	0.28	0.45	0.93	0.94
14	0.02	0.06	0.10	0.15	0.23	0.36	0.94	0.95
15	0.02	0.05	0.08	0.13	0.20	0.30	0.47	0.95
16	0.02	0.04	0.07	0.12	0.17	0.25	0.38	0.96
17	0.02	0.04	0.06	0.10	0.15	0.21	0.31	0.49
18	0.01	0.03	0.06	0.09	0.13	0.19	0.26	0.39

A-7: Cooling load temperature differences (CLTD) for convection heat gain for glass windows

A-8: Cooling load factor (CLF) for glass windows without interior shading

GlassFacing	Building Construction	Solar Time, h														
		$1 \begin{array}{lll}1 & 2 & 3\end{array}$	4	5	6	7	8		10	11	12	13	14	15	16	17
N Shaded	L															
	M	$\begin{array}{llllllllllllllllllllllllllll}0.23 & 0.20 & 0.18 & 0.16 & 0.14 & 0.34 & 0.14 & 0.46 & 0.53 & 0.59 & 0.65 & 0.70 & 0.73 & 0.75 & 0.76 & 0.74 & 0.75\end{array}$														
	H															
NNE	L	$\begin{array}{lllllllllllllllllllllllll}0.06 & 0.05 & 0.04 & 0.03 & 0.03 & 0.26 & 0.43 & 0.47 & 0.44 & 0.41 & 0.40 & 0.39 & 0.39 & 0.38 & 0.36 & 0.33 & 0.30\end{array}$														
	M	$\begin{array}{lllllllllllllllllllllllllllll}0.09 & 0.08 & 0.07 & 0.06 & 0.06 & 0.24 & 0.38 & 0.42 & 0.39 & 0.37 & 0.37 & 0.36 & 0.36 & 0.36 & 0.34 & 0.33 & 0.30\end{array}$														
	H	$\begin{array}{llllllllllllllllllllllllllllllllllll}0.11 & 0.10 & 0.09 & 0.09 & 0.08 & 0.26 & 0.39 & 0.42 & 0.39 & 0.36 & 0.35 & 0.34 & 0.34 & 0.33 & 0.32 & 0.31 & 0.28\end{array}$														
NE	L	$\begin{array}{lllllllllllllllllllllllll}0.04 & 0.04 & 0.03 & 0.02 & 0.02 & 0.23 & 0.41 & 0.51 & 0.51 & 0.45 & 0.39 & 0.36 & 0.33 & 0.31 & 0.28 & 0.26 & 0.23\end{array}$														
	M	0.070 .060 .060 .050 .040 .210 .360 .440 .450 .400 .360 .330 .310 .300 .280 .260 .24														
	H	0.090 .080 .080 .070 .070 .230 .370 .440 .440 .390 .340 .310 .290 .270 .260 .240 .22														
ENE	L	$\begin{array}{llllllllllllllllllllll}0.04 & 0.03 & 0.03 & 0.02 & 0.02 & 0.21 & 0.40 & 0.52 & 0.57 & 0.53 & 0.45 & 0.39 & 0.34 & 0.31 & 0.28 & 0.25 & 0.22 \\ 0.07 & 0.06 & 0.05 & 0.05 & 0.04 & 0.20 & 0.35 & 0.45 & 0.49 & 0.47 & 0.41 & 0.36 & 0.33 & 0.30 & 0.28 & 0.26 & 0.23\end{array}$														
	M															
	H	$\begin{array}{lllllllllllllllllllllllllllllllllllll}0.09 & 0.09 & 0.08 & 0.07 & 0.07 & 0.22 & 0.36 & 0.46 & 0.49 & 0.45 & 0.38 & 0.31 & 0.30 & 0.27 & 0.25 & 0.21\end{array}$														
E	L	0.040 .030 .030 .020 .020 .190 .370 .510 .570 .570 .500 .420 .370 .320 .290 .250 .22														
	M	$\begin{array}{llllllllllllllllllllllllllll}0.07 & 0.06 & 0.06 & 0.05 & 0.05 & 0.18 & 0.33 & 0.44 & 0.50 & 0.51 & 0.46 & 0.39 & 0.35 & 0.31 & 0.29 & 0.26 & 0.23\end{array}$														
	H	0.090 .090 .080 .080 .070 .200 .340 .450 .490 .490 .430 .390 .320 .290 .260 .240 .22														
ESE	L	0.050 .040 .030 .030 .020 .170 .340 .490 .580 .610 .570 .480 .410 .360 .320 .280 .24														
	M	0.080 .070 .060 .050 .050 .160 .310 .430 .510 .540 .510 .440 .390 .350 .320 .290 .26														
	H	0.100 .090 .090 .080 .080 .190 .320 .430 .500 .520 .490 .410 .360 .320 .290 .260 .24														
SE	L	0.050 .040 .040 .030 .030 .130 .280 .430 .550 .620 .630 .570 .480 .420 .370 .330 .28														
	M	$\begin{array}{llllllllllllllllllllllllll}0.09 & 0.08 & 0.07 & 0.06 & 0.05 & 0.14 & 0.26 & 0.38 & 0.48 & 0.54 & 0.56 & 0.51 & 0.45 & 0.40 & 0.36 & 0.33 & 0.29\end{array}$														
	H	$\begin{array}{llllllllllllllllllllllllllllllllllll}0.11 & 0.10 & 0.10 & 0.09 & 0.08 & 0.17 & 0.28 & 0.40 & 0.49 & 0.53 & 0.53 & 0.48 & 0.41 & 0.36\end{array}$														
SSE	L	$\begin{array}{lllllllllllllllllllllllll}0.07 & 0.050 .04 & 0.04 & 0.03 & 0.06 & 0.15 & 0.29 & 0.43 & 0.55 & 0.63 & 0.64 & 0.60 & 0.25 & 0.45 & 0.40 & 0.35\end{array}$														
	M	$\begin{array}{lllllllllllllllllllllllllllll}0.11 & 0.09 & 0.08 & 0.07 & 0.06 & 0.08 & 0.16 & 0.26 & 0.38 & 0.58 & 0.55 & 0.57 & 0.54 & 0.48 & 0.43 & 0.39 & 0.35\end{array}$														
	H															
S	L	$\begin{array}{lllllllllllllllllllllllllll}0.08 & 0.07 & 0.05 & 0.04 & 0.04 & 0.06 & 0.09 & 0.14 & 0.22 & 0.34 & 0.48 & 0.59 & 0.65 & 0.65 & 0.59 & 0.50 & 0.43\end{array}$														
	M	0.120 .110 .090 .080 .070 .080 .110 .140 .210 .310 .420 .520 .570 .580 .530 .470 .41														
	H	0.130 .120 .120 .110 .100 .110 .140 .170 .240 .330 .430 .510 .560 .550 .500 .43 .0 .37														
SSW	L	0.100 .080 .070 .060 .050 .060 .090 .110 .150 .190 .270 .390 .520 .620 .670 .650 .58														
	M	0.140 .120 .110 .090 .080 .090 .110 .130 .150 .180 .250 .350 .460 .550 .590 .590 .53														
	H	0.150 .140 .130 .120 .110 .120 .140 .160 .180 .210 .270 .370 .460 .530 .570 .550 .49														
SW	L	$\begin{array}{lllllllllllllllllllll}0.12 & 0.10 & 0.08 & 0.06 & 0.05 & 0.06 & 0.08 & 0.10 & 0.12 & 0.14 & 0.16 & 0.24 & 0.36 & 0.49 & 0.60 & 0.66 & 0.66\end{array}$														
	M	0.150 .140 .120 .100 .090 .090 .100 .120 .130 .150 .170 .230 .330 .440 .530 .580 .59														
	H	0.150 .140 .130 .120 .110 .120 .130 .140 .160 .170 .190 .250 .340 .440 .520 .560 .56														
Wsw	L	$\begin{array}{lllllllllllllllllllllllll}0.12 & 0.10 & 0.08 & 0.07 & 0.05 & 0.06 & 0.07 & 0.09 & 0.10 & 0.12 & 0.13 & 0.17 & 0.26 & 0.40 & 0.52 & 0.62 & 0.66\end{array}$														
	M	0.150 .130 .120 .100 .090 .090 .100 .110 .120 .130 .140 .170 .240 .350 .460 .540 .58														
	H															
	L	0.120 .100 .080 .060 .050 .060 .070 .080 .100 .110 .120 .140 .200 .320 .450 .570 .64														

A-9: cooling load factors for glass windows with interior shading

Table (A-5-2) Cooling Load factors (CLF) for glass windows with interior shading, North latitude.

Fenestration	Solar Time, h																
Facing	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
N	0.08	0.07	0.06	0.06	0.07	0.73	0.66	0.65	0.73	0.80	'0.86	0.89	0.89	0.86	0.82	0.75	0.78
NNE	0.03	0.03	0.02	0.02	0.03	0.64	0.77	0.62	0.42	0.37	0.37	0.37	0.36	0.35	0.32	0.28	0.23
NE	0.0	0.02	0.02	0.02	0.02	0.56	0.76	0.74	0.58	0.37	0.29	0.27	0.26	0.24	0.22	0.20	0.1
ENE	0.03	0.02	0.02	0.02	0.02	0.52	0.76	0.80	0.71	0.52	0.31	0.26	0.24	0.22	0.20	0.18	0.
E	0.03	0.02	0.02	0.02	0.02	0.47	0.72	0.80	0.76	0.62	0.41	0.27	0.24	0.22	0.20	0.17	0.14
ESE	0.03	0.03	0.02	0.02	0.02	0.41	0.67	0.79	0.80	0.72	0.54	0.34	0.27	0.24	0.21	0.19	0.15
SE	0.03	0.03	0.02	0.02	0.02	0.30	0.57	0.74	0.81	0.79	0.68	0.49	0.33	0.28	0.25	0.22	0.1
SSE	0.04	0.03	0.03	0.03	0.02	0.12	0.31	0.54	0.72	0.81	0.81	0.71	0.54	0.38	0.32	0.27	0.22
S	0.0	0.04	0.03	0.03	0.03	0.09	0.16	0.23	0.38	0.58	0.75	0.83	0.80	0.68	0.50	0.35	0.2
SSW	0.05	0.04	0.04	0.03	0.03	0.09	0.14	0.18	0.22	0.27	0.43	0.63	0.78	0.84	0.80	0.66	0.4
SW	0.05	0.05	0.04	0.04	0.03	0.07	0.11	0.14	0.16	0.19	0.22	0.38	0.59	0.75	0.83	0.81	0.69
wsw	0.05	0.05	0.04	0.04	0.03	0.07	0.10	0.12	0.14	0.16	0.17	0.23	0.44	0.64	0.78	0.84	0.78
W	0.05	0.05	0.04	0.04	0.03	0.06	0.09	0.11	0.13	0.15	0.16	0.17	0.31	0.53	0.72	0.82	0.8
WNW	0.05	0.05	0.04	0.03	0.03	0.07	0.10	0.12	0.14	0.16	0.17	0.18	0.22	0.43	0.65	0.80	0.8
NW	0.05	0.04	0.04	0.03	0.03	0.07	0.11	0.14	0.17	0.19	0.20	0.21	0.22	0.30	0.52	0.73	0.82
NNW	0.05	0.05	0.04	0.03	0.03	0.11	0.17	0.22	0.26	0.30	0.32	0.33	0.34	0.34	0.39	0.61	0.82
HORIZ.	0.06	0.05	0.04	0.04	0.03	0.12	0.27	0.44	0.59	0.72	0.81	0.85	0.85	0.81	0.71	0.58	0.42

A-10: Shading coefficient for glass with interior shading

Type of Glass	Nominal Thickness, mm	Type of Interior Shading				
		Venetian Blinds		Roller Shade		
				Opaque		Translucent
		Medium	Light	Dark	White	Light
		Simgle Glass				
Clear, regular	2.5-6.0	-	-	-	-	-
Clear, plate	6.0-12.0	-	-	-	-	-
Clear Pattern	3.0-12.0	0.64	0.55	0.59	0.25	0.39
Heat Absorbing	3	-	-	-	-	-
Pattern or Tinted(gray sheet)	5.0-5.5	-	-	-	-	-
Heat Absorbing, plate	5.0-6.0	0.57	0.53	0.45	0.30	0.36
Pattern or Tinted, gray sheet	3.0-5.5	-	-.	-	-	-
Heat Absorbing Plate or Pattern Heat Absorbing	10	0.54	0.52	0.40	0.82	0.32
Heat Absorbing or Pattern	-	0.42	0.40	0.36	0.28	0.31
Reflective Coated Glass	-	0.30	0.25	0.23	-	-
	-	0.40	0.33	0.29	-	-
	-	0.50	0.42	0.38	-	-
	-	0.60	0.50	0.44	-	-
	Double Glass					
Regular	3	0.57	0.51	0.60	0.25	-
Plate	6	0.57	0.51	0.60	0.25	-
Reflective	6	$\begin{aligned} & 0.20- \\ & 0.40 \end{aligned}$	-	-	-	-
Clear Heat Absorbing Reflective Coated		Insulating Glass				
	2.5-6.0	0.57	0.51	0.60	0.25	0.37
	5.0-6.0	0.39	0.36	0.40	0.22	0.30
	-	0.20	0.19	0.18	-	-
	-	0.30	0.27	0.26	-	-
	-	0.40	0.34	0.33	-	-

A-11: Shading coefficient for glass windows without interior shading

Table (A-4-1) Shading coefficient (SC) for glass windows without interior shading. ${ }^{1}$				
Type of Glass	Nominal Thickness, mm	Solar Trans.	Shading Coefficient, $\mathrm{W} / \mathrm{m}^{2} \cdot \mathrm{~K}$	
			$h_{o}=22.7$	$h_{o}=17.0$
3ax	Stingle Glass		Smera	
Clear	3	0.84	1.00	1.00
	6	0.78	0.94	0.95
	10	0.72	0.90	0.92
	12	0.67	0.87	0.88
Heat absorbing	3	0.64	0.83	0.85
	6	0.46	0.69	0.73
	10	0.33	0.60	0.64
	12	0.42	0.53	0.58
15\%				
Regular	3	-	0.90	-
Plate	6	-	0.83	-
Reflective	6	-	0.20-0.40	-
WVay				
Clear	3	0.71	0.88	0.88
	6	0.61	0.81	0.82
Heat absorbing*	6	0.36	0.55	0.58

A-12: Solar heat gain factor for sunlit glass

Month	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
N	76	85	101	114	120	139	126	117	104	88	76	69
NNE/NNW	76	85	117	252	350	385	350	249	110	88	76	69
NE/NW	91	205	338	461	536	555	527	445	325	199	91	69
ENE/WNW	331	470	577	631	656	656	643	615	546	451	325	265
E/W	552	647	716	716	694	675	678	691	678	615	546	511
ESE/WSW	722	764	748	691	628	596	612	663	716	738	710	688
SE/SW	786	782	716	590	489	439	473	571	688	754	773	776
SSE/SSW	789	732	615	445	213	262	303	429	596	710	776	795
S	776	697	555	363	233	189	227	350	540	678	767	795
Horizontal	555	685	795	855	874	871	861	836	770	672	552	498

A-13: Values of infiltration air coefficient for windows

TABLE 6-2 Values of infiltration air coefficient K. ${ }^{(2)}$ for windows.

Window Type	Infiltration Air Coefficient \boldsymbol{K}		
	Average	Minimum	Maximum
Iron	0.36	0.25	0.40
Aluminum	0.43	0.25	0.70
Hung			
Iron	0.25	0.10	0.60
Aluminum (side pivoted)	0.36	0.07	0.70
Aluminum (horizontal pivoted)	0.30	0.07	0.50
PVC	0.10	0.03	0.15

A-14: Infiltration rates due to door opening

TABLE 6-5 Infiltration rates due to door opening, m^{3} per passage. ${ }^{4}$

	Doors in One Wall Only			Doors in more than One Wall		
No of Passage per Hour	Single Swing	Vestibule Swinging Doors	Revolving Doors	Single Swing	Vestibule Swinging Doors	Revolving Doors
$\mathbf{3 0 0}$	4.757	3.540	1.359	3.115	2.350	0.850
$\mathbf{5 0 0}$	4.757	3.540	1.303	3.115	2.350	0.821
$\mathbf{7 0 0}$	4.757	3.540	1.218	3.115	2.322	0.765
$\mathbf{9 0 0}$	4.757	3.540	1.104	3.087	2.322	0.708
$\mathbf{1 , 1 0 0}$	4.757	3.540	0.935	3.087	2.322	0.651
$\mathbf{1 , 2 0 0}$	4.757	3.540	0.850	3.058	2.322	0.595
$\mathbf{1 , 3 0 0}$	4.757	3.540	0.793	3.058	2.322	0.538
$\mathbf{1 , 4 0 0}$	4.757	3.540	0.708	3.058	2.294	0.510
$\mathbf{1 , 5 0 0}$	4.757	3.540	0.651	3.058	2.294	0.481
$\mathbf{1 , 6 0 0}$	4.729	3.540	0.595	3.058	2.294	0.453
$\mathbf{1 , 7 0 0}$	4.616	3.511	0.538	3.030	2.294	0.425
$\mathbf{1 , 8 0 0}$	4.502	3.455	0.510	2.973	2.265	0.396
$\mathbf{1 , 9 0 0}$	4.418	3.398	0.481	2.945	2.265	0.368
$\mathbf{2 , 0 0 0}$	4.304	3.341	0.453	3.832	2.237	0.340

A-15: Table for estimating demand

Table (P-1): Table for Estimating Demand

A-16: fixture units

Water supply outlets not listed above shall be computed at their maximum demand, but in no case less than the Eollowing values:

A-17: Approximate discharge rates and velocities in sloping drains flowing half full

Actual Inside Diameter of Pipe, im.	ti/s in./ft Slope		$1 / \mathrm{sin} / \mathrm{ff}$ Slope		$1 / \mathrm{in}$ ift Slope		1/2 in.lft Slope	
	Discharge, gpm	Velocity, fps	Discharge, gpm	Velocity, fop 5	Discharge, gpm	Velociiy, fps.	Discharge, gpin.	Velocity. fis
$\begin{aligned} & 11 / 4 \\ & 13 / 8 \\ & 11 / 2 \\ & 15 / 8 \end{aligned}$	\cdots				$\begin{aligned} & 3.13 \\ & 3.91 \\ & 4.81 \end{aligned}$	$\begin{aligned} & 1.34 \\ & 1.42 \\ & 1.50 \end{aligned}$	$\begin{aligned} & 3.40 \\ & 4.44 \\ & 5.53 \\ & 6.80 \end{aligned}$	$\begin{aligned} & 1.78 \\ & 1.90 \\ & 2.01 \\ & 2.12 \end{aligned}$
$\begin{aligned} & 2 \\ & 21 / 2 \\ & 3 \\ & 4 \end{aligned}$	26.70	1.36	$\begin{array}{r} 10.8 \\ 17.6 \\ 37.8 \end{array}$	$\begin{array}{r} 1.41 \\ 1.59 \\ 1.93 \\ \hline \end{array}$	$\begin{gathered} 8.42 \\ 15.3 \\ 24.8 \\ 53.4 \end{gathered}$	$\begin{aligned} & 1.72 \\ & 1.99 \\ & 2.25 \\ & 2.73 \end{aligned}$	$\begin{aligned} & 11.9 \\ & 216 \\ & 35.1 \\ & 75.5 \end{aligned}$	$\begin{aligned} & 2.43 \\ & 2.82 \\ & 3.19 \\ & 3.86 \end{aligned}$
5 6 8 10 12	48.3 78.5 170. 308. 500.	1.58 1.78 2.17 2.52 2.83.	68.3 111. 240. 436. 707.	$\begin{aligned} & 2.23 \\ & 2.52 \\ & 3.07 \\ & 3.56 \\ & 4.01 \end{aligned}$	$\begin{aligned} & 96.6 \\ & 157 . \\ & 340 . \\ & 616 . \\ & 999 . \end{aligned}$	$\begin{aligned} & 3.16 \\ & 3.57 \\ & 4.34 \ldots \\ & 5.04 \\ & 5.67 \end{aligned}$	$\begin{gathered} 137 . \\ 222 . \\ 480 . \\ 872 . \\ 141.3 \end{gathered}$	$\begin{aligned} & 4.47 \\ & 5.04 \\ & 6.13 \\ & 7.12 \\ & 8.02 \end{aligned}$

${ }^{a}$ Computed from the Manning Formula for $1 / x$-kull pipe, $i=0.015$.
${ }^{6}$ Half full means filled to a depth equal to one-bale the inside diameter.
Note: For $1 / 4$ full, multiply discharge by 0.274 and multiply velocity by 0.701 . For $1 / 3$ full, multiply discharge by 0.44 and multiply velocity by 0.80 . For $3 / 4$ full, multiply discharge by 1.82 and multiply velocity by 1.13 . For full, multiply discharge by 2.00 and multiply velocity by 1.00 . For smoother pipe, multiply discharge and velocity by 0.015 and divide by n value of smoother pipe.
Source. Reprinted with permission from the National Standard Plumbing Code, Published by The National Association of Plumbetas Eipenting Cooling Contractors.

A-18: Horizontal fixture branches and stacks

Table (P-3) Horizontal Fixture Branches and Stacks.

[^0]A-19: Values of the factor S1

TABLE 6-3 Values of the factor S_{1} of Eq. (6-7).

№	Topography of Location	Value of S_{1}
1	Protected locations by hills or buildings (wind speed $=0.5 \mathrm{~m} / \mathrm{s}$)	0.9
2	Unprotected locations such as sea shores, hill tops, etc.	1.1
3	Locations other than that listed in item (1) or (2) of this table.	1.0

A-20: Values of the factor $S 2$
TABLE $6-4$ Values of the facior S_{2} of Eq. ($6-77$).

| Location Class | Class 1 | | Class 2 | | | Class 3 | | | Class 4 | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Building Height,
 m | A | B | C | A | B | C | A | B | C | A | B | C |
| 3 | 0.47 | 0.52 | 0.56 | 0.55 | 0.60 | 0.64 | 0.63 | 0.67 | 0.72 | 0.73 | 0.78 | 0.83 |
| 5 | 0.50 | 0.55 | 0.60 | 0.60 | 0.65 | 0.70 | 0.70 | 0.74 | 0.79 | 0.78 | 0.83 | 0.88 |
| 10 | 0.58 | 0.62 | 0.67 | 0.69 | 0.74 | 0.78 | 0.83 | 0.88 | 0.93 | 0.90 | 0.95 | 1.00 |
| 15 | 0.64 | 0.69 | 0.74 | 0.780 .83 | 0.88 | 0.91 | 0.95 | 1.00 | 0.94 | 0.99 | 1.03 | |
| 20 | 0.70 | 0.75 | 0.79 | 0.85 | 0.90 | 0.95 | 0.94 | 0.98 | 1.03 | 0.96 | 1.01 | 1.06 |
| 30 | 0.79 | 0.85 | 0.90 | 0.92 | 0.97 | 1.01 | 0.98 | 1.03 | 1.07 | 1.00 | 1.05 | 1.09 |
| 40 | 0.89 | 0.93 | 0.97 | 0.95 | 1.00 | 1.05 | 1.01 | 1.06 | 1.10 | 1.03 | 1.08 | 1.12 |
| 50 | 0.94 | 0.98 | 1.02 | 1.00 | 1.04 | 1.08 | 1.04 | 1.08 | 1.12 | 1.06 | 1.10 | 1.14 |
| 60 | 0.98 | 1.02 | 1.05 | 1.02 | 1.06 | 1.10 | 1.06 | 1.10 | 1.14 | 1.08 | 1.12 | 1.15 |
| 80 | 1.03 | 1.07 | 1.10 | 1.06 | 1.10 | 1.13 | 1.09 | 1.13 | 1.17 | 1.11 | 1.15 | 1.18 |
| 100 | 1.07 | 1.10 | 1.13 | 1.09 | 1.12 | 1.16 | 1.12 | 1.16 | 1.19 | 1.13 | 1.17 | 1.20 |
| 120 | 1.10 | 1.13 | 1.15 | 1.11 | 1.15 | 1.18 | 1.14 | 1.18 | 1.21 | 1.15 | 1.19 | 1.22 |
| 140 | 1.12 | 1.15 | 1.17 | 1.13 | 1.17 | 1.12 | 1.16 | 1.19 | 1.22 | 1.17 | 1.20 | 1.24 |
| 160 | 1.14 | 1.17 | 1.19 | 1.15 | 1.18 | 1.21 | 1.18 | 1.21 | 1.24 | 1.19 | 1.22 | 1.25 |
| 180 | 1.16 | 1.19 | 1.20 | 1.17 | 1.20 | 1.23 | 1.19 | 1.22 | 1.25 | 1.20 | 1.23 | 1.26 |
| 200 | 1.18 | 1.21 | 1.22 | 1.18 | 1.21 | 1.24 | 1.21 | 1.24 | 1.26 | 1.21 | 1.24 | 1.27 |

A-21: Instantaneous heat gain from occupants

TABLE 4-2 Instantaneous heat gain from occupants in units of Watis(ia),

Type of Activity	Typical Application	Total Heat Dissipation Adult Male	Total Adjusted ${ }^{(6)}$ Heat Dissipation	Sensible Heat, W	Latent Heat, W
Seated at rest	Theater:				
	Matinee	111.5	94.0	64.0	30.0
	Evening	111.5	100.0	70.0	30.0
Seated, very light work	Offices, hotels, apartments, restaurants	128.5	114.0	70.0	44.0
Moderately active office work	Offices, hotels, apartments	135.5	128.5	71.5	57.0
Standing, light work, walking	Department store, retail store, supermarkets	157.0	143.0	71.5	71.5
Walking, seated	Drug store	157.0	143.0	71.5	71.5
Standing, walking slowly	Bank	157.0	143.0	71.5	71.5
Sedentary work	Restaurant	168.5	157.0	78.5	78.5
Light bench work	Factory	238.0	214.0	78.0	136.0
Moderate work	Small-Parts assembly	257.0	243.0	87.0	156.0
Moderate dancing	Dance halls	257.0	243.0	87.0	156.0
Walking at 1.5 m / s	Factory	286.0	285.0	107.0	178.0
Bowling (participant)	Bowling alley	428.5	414.0	166.0	248.0
Heavy work	Factory	428.5	414.0	166.0	248.0

(a) Adjusted heat dissipation is based on the percentage of men, women and children for the application.

A-22: Minimum pressure required by typical plumbing fixtures

Fixture Type	Minimixm Pressurs, psi
Sint and tub faucets	8
Shower	8
Water closet-itank fush	8
Flush valve-urina!	13
Flush valve-siphorsjer-bowl	- is
floor-mounted,	is
wall-mounted ${ }^{\text {z }}$, .	20
Flush valve-blowout bowl	
floor-mounted	- 20
wall-mounted	25
Garden hase	
3/2-in. sill cock	15
3 W-in. sill cock	30
Drinking fountain	15

Table 9.5 Demand at Jndividual Water Outlets

Type of Outiet	Dearand, 37 mm
Ordinnry la vatory faucet	2.0
Self-closing lavatory laycet	25
Sirak faucet, T / or $1 / 2 \mathrm{is}$.	4.5
Sink, faucet, ye in.	6.9
Beth faucet, $1 / 1 \mathrm{in}$.	5.0
Shower head, 1/2 in. .	5.0
Laundry faucet, $1 /$ icio:	5.0
Balleock in water closet Dusht tank	3.0
1-in. flush valve (25 psi flow pressure)	35.0
1-in. flush valve (15-psi flow pressure)	27.0
Ko -in. flush valve (15 -psi flow pressure)	15.0
Drinking fountain jet	0.75
Disfrwashiog machine (domestic)	4.9
Laundry machine (8 or 16 lb)	4.0
Aspirator (operating room or laboratory)	2.5
Hese bibb or sill cock (c_{2} in.)	5.0

Table 9.2 Recommended Flosk
Rates for Typical Plumbing
Eixtures

Fixure Type	Flow, epan
Layatory	3
Sink	- 4.5
Bathtub	\%
Laundry tray	5
Shower	3-10
Water closets	
tank, type	3 15
flush valve ${ }^{\text {e }}$ Urins! flush valve	$15-40$ 15
Garden hose	
3/2-in. sill oock	31/2
χ_{1}-in. sill cock	5
Drinking fountsin	\%

Source. Dats extracted from various sources.
eWide range of flows, depends on flow pressuta

Table 9.4 Table for Estimating Demand

Supply Systems Predominantly for Fhush Tanks		Supply Systems Predominantly for Flushomaters	
Land, WSFU $=$	Demand, spin	load, WSPU	Demand. gpm
6.	5	-	-
10 *	8	10	27
15	11	15	31
20	14	20	35
25	17	25	38
30	20	30	41
40	25	40	47
+ 30	29	50	51
60	33	60	55
80	39	80	62
100. .	-14	100	68
120	49	120	74
150	- 53	140	78
160	- 57	160	83
180	- 61	180	$8 f$
260	65	200	91
235	70	225	95
250	75	230	100
300	85	100	110
100	105	100	125
500	125	500	140
	170	750	175
1000	2111	1000	218
1250	240	1250	240
1800	270	isuo	$2 \% 0$
1750	300	1750	300
7200	325	2000	325
2500	380	2500	380
300%	435	3000	435
4000	\$25	4000	525
5000	600	5000	600
6000	650	6000	650
7000	760	7000	700
som	730	8800	730
nex	(i)	- 50	760
Tasin	"00	reme	790

[^1]warce. Reproduced with permission from The Na多! Standard Plumbing Code, published by The Na

A-23: Drainage fixture unit values for various plumping fixtures

A-24: Horizontal fixture branches and stacks, building drains and sewers

5% / DPARVAGE AND WAEREV/ATER DSSPOSAL

Table 10.4 Horizontal Fixture Branches and Stacks

Dianeter of Pipg, in.	Maxinson Number of Fiature Units That May Be Connected to			
		Ore Stack of - Three Branch Intervals or Less, dfu	Stacks with More Than Three Branch Intervals	
	Any Horizontal Fixture Brartch," dit		Total for Stack, dfu:	Total al Oite Branteh Interval, dfes
$11 / 2$	- 3	- 4	8	2
2	6	10	24	6
21/2	12	20	42	9
3	20°	$48^{\text {b }}$	$72{ }^{8}$	20^{6}
4	160	240	500	90
5	360	540	1100	200
6	620	960.	1900	350
8	1400	... $2200{ }^{\circ}$	3600	600
10	2500	3800	5600	1000
+12	3900	6000	8400	.. 1500
¢ 15	- 7000			*.

"Does not include branches of the building drain.
${ }^{6}$ Not more than two water cleasts or bathroom groups within each branch interval nor more than six water clogets or bathroom groups on the stack.
Note: Stacks shall be sized according to the total accumulated connected Ioad at each story or branch interval and may be reduced in size as this load decreases to a minimum diameter of half of the largest size required.
Source. Reprinted with permission of The National Standard Plumbing Code, published by The National Association of Plumbing Heating Copling Contractors.

Table 10.3 Building Drains and Sewers ${ }^{\text {a }}$

On site sewers that serve mone than one building may be sized according to the

${ }^{6}$ Nor over two water closets or fwo bathroom groupa, except that in singia farnily dwellings, not over three water closets or three bathroorn groups may be installed
Sourcs. Reprinted with permission from The National Standard Plumbing Code, published by The National Association of Plumbing Heating Cooling Contrectors.

A-25: Latitude- month correction factor LM

Lat.	Month	N	$\begin{gathered} \hline \text { NNE } \\ \text { NNW } \end{gathered}$	$\begin{gathered} \hline \mathrm{NE} \\ \mathrm{NW} \end{gathered}$	$\begin{gathered} \text { ENE } \\ \text { WNW } \end{gathered}$	$\begin{gathered} \mathrm{E} \\ \mathrm{~W} \end{gathered}$	ESE SE WSW SW	$\begin{aligned} & \hline \text { SSE } \\ & \text { SSW } \end{aligned}$	S	Horizontal Roofs
16	December	-2.2	-3.3	-4.4	-4.4	-2.2	$\begin{array}{ll}-0.5 & 2.2\end{array}$	5.0	7.2	-5.0
	Jan./Nov.	-2.2	-3.3	-3.8	-3.8	-2.2	$\begin{array}{lll}-0.5 & 2.2\end{array}$	4.4	6.6	-3.8
	Feb./Oct.	-1.6	-2.7	-2.7	-2.2	-1.1	0.01 .1	2.7	3.8	-2.2
	Mar/Sept.	-1.6	-1.6	-1.1	-1.1	-0.5	$\begin{array}{ll}-0.5 & 0.0\end{array}$	0.0	0.0	-0.5
	Apr./Aug.	-0.5	0.0	-0.5	-0.5	-0.5	-1.6-1.6	-2.7	-3.3	0.0
	May/July	2.2	1.6	1.6	0.0	-0.5	-2.2-2.7	-3.8	-3.8	0.0
		3.3	2.2	2.2	0.5	-0.5	$-2.2-3.3$	-4.4	-3.8	0.0
24	December	-2.7	-3.8	-5.5	-6.1	-4.4	$-2.71 .1$	5.0	6.6	-9.4
	Jan./Nov.	-2.2	-3.3	-4.4	-5.0	-3.3	-1.6-1.6	5.0	7.2	-6.1
	Feb./Oct.	-2.2	-2.7	-3.3	-3.3	-1.6	-0.5 1.6	3.8	5.5	-3.8
	Mar/Sept.	-1.6	-2.2	-1.6	-1.6	-0.5	$\begin{array}{ll}-0.5 & 0.5\end{array}$	1.1	2.2	-1.6
	Apr./Aug.	-1.1	-0.5	0.0	-0.5	-0.5	$-1.1-0.5$	-1.1	-1.6	0.0
	May/July	0.5	1.1	1.1	0.0	0.0	-1.6-1.6	-2.7	-3.3	0.5
	June.	1.6	1.6	1.6	- 0.5	0.0	$-1.6-2.2$	-3.3	-3.3	0.5
32	December	-2.7	-3.8	-5.5	-6.1	-4.4	$-2.71 .1$	5.0	6.6	-9.4
	Jan./Nov.	-2.7	-3.8	-5.0	-6.1	-4.4	$\begin{array}{ll}-2.2 & 1.1\end{array}$	5.0	6.6	-8.3
	Feb./Oct.	-2.2	-3.3	-3.8	-4.4	-2.2	$\begin{array}{lll}-1.1 & 2.2\end{array}$	4.4	6.1	-5.5
	Mar/Sept.	-1.6	-2.2	-2.2	-2.2	-1.1	$\begin{array}{ll}-0.5 & 1.6\end{array}$	2.7	3.8	-2.7
	Apr./Aug.	-1.1	-1.1	-0.5	-1.1	0.0	$-0.50 .0$	5.0	0.5	-0.5
	May/July	0.5	0.5	0.5	0.0	0.0	-0.5 -0.5	-1.6	-1.6	0.5
	June	0.5	1.1	1.1	0.5	0.0	-1.1-1.1	-2.2	-2.2	1.1
40	December	-3.3	-4.4	-5.5	-7.2	-5.5	-3.8 0.0	3.8	5.5	-11.6
	Jan./Nov.	-2.7	-3.8	-5.5	-6.6	-5.0	$\begin{array}{ll}-3.3 & 0.5\end{array}$	4.4	6.1	-10.5
	Feb./Oct.	-2.7	-3.8	-4.4	-5.0	-3.3	$\begin{array}{ll} -1.6 & 1.6 \end{array}$	4.4	6.6	-7.7
	Mar/Sept.	-2.2	-2.7	-2.7	-3.3	-1.6	$\begin{array}{lll}0.5 & 2.2\end{array}$	3.8	5.5	-4.4
	Apr./Aug.	-1.1	-1.6	-1.6	-1.1	0.0	$\begin{array}{ll} 0.0 & 1.1 \end{array}$	1.6	2.2	1.6
	May/July	0.0	0.0	0.0	0.0	0.0	$\begin{array}{lll}0.0 & 0.0\end{array}$	0.0	0.5	0.5
	June	0.5	0.5	0.5	0.5	0.0	$0.5 \quad 0.0$	0.0	-0.5	1.1
48		-3.3	-4.4	-6.1	-7.7	-7.2	-5.5-1.6	1.1	3.3	-13.8
	Jan./Nov.	-3.3	-4.4	-6.1	-7.2	-6.1	-4.4-0.5	2.7	4.4	-13.3
	Feb./Oct.	-2.7	-3.8	-5.5	-6.1	-4.4	$-2.70 .5$	4.4	6.1	-10.0
	Mar/Sept.	-2.2	-3.3	-3.3	-3.8	-2.2	$\begin{array}{ll}-0.5 & 2.2\end{array}$	4.4	6.1	-6.1
	Apr./Aug.	-1.6	-1.6	-1.6	-1.6	-0.5	$\begin{array}{lll}0.0 & 2.2\end{array}$	3.3	3.8	-2.7
	May/July	0.0	-0.5	0.0	0.0	0.5	0.51 .6	1.6	2.2	0.0
	June	0.5	0.5	1.1	0.5	1.1	$0.5 \quad 1.1$	1.1	1.6	1.1

A-26: mechanical ventilation

TABLE $A(2.20)$ Minimum outside air requirements for mechanical ventilation

	Maximum Occupancy Per $100 \mathrm{~m}^{2}$	Ventilation Air Requirements	
Application		$\mathrm{L} / \mathrm{s} /$ Person	$\mathrm{L} / \mathrm{s} / \mathrm{m}^{2}$
Bath, toilets ${ }^{(0)}$	-	-	-
Hotels and motels:	-	-	$7.5-15$
Bedrooms	-	-	$\mathrm{L} / \mathrm{s} / \mathrm{room}$
Living rooms	-	$5-10$	
	-	-	$\mathrm{L} / \mathrm{s} / \mathrm{room}$
Bathes		$15-25$	
	30	$2.5-7.5$	$\mathrm{~L} / \mathrm{s} / \mathrm{room}$
Lobbies	50	$3.5-17.5$	-
Conference rooms	120	$3.5-17.5$	-
Assembly rooms	20	8.0	-
Dormitory sleeping areas	120	15.0	-
Gambling casinos			-

A-27: inside \& outside film resistance

Table Inside film resistance, R :				
A(2.2)				$\begin{gathered} R_{i} \\ \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Walls	Horizontal	Construction	aterials	0.12
		Metals		0.31
Ceilings and floors	Upward	Construction	aterials	0.10
		Metals		0.21
	Downward	Construction m	aterials	0.15
Table Outside film resistance, Ro_{0}.				
A(2.3) Wind Speed		$\begin{gathered} \text { Less than } 0.5 \\ \mathrm{~m} / \mathrm{s} \end{gathered}$	$0.5-5.0 \mathrm{~m} / \mathrm{s}$	More than $5.0 \mathrm{~m} / \mathrm{s}$
Element	Material Type	Outside Resistance $R_{0}, \mathrm{~m}^{2} \cdot{ }^{\circ} \mathrm{C} / \mathrm{W}$		
Walls	Construction materials	0.08	0.06	0.03
	Metals	0.10	0.07	0.03
Ceilings	Construction materials	0.07	0.04	0.02
	Metals	0.09	0.05	0.02
Exposed floors	Construction materials	0.09	-	-

A-28: overall heat coefficient for windows

Overal Heat Transfer Coefficient for Windows, W/m². ${ }^{\circ} \mathrm{C}$						
	Wind Speed, m/s					
Material Type and	Single Glass			Double Glass, 6 mm air gap		
Frames	<0.5	0.5-5.0	>5.0	<0.5	0.5-5.0	>5.0
Wood	3.8	4.3	5.0	2.3	2.5	2.7
Aluminum	5.0	5.6	6.7	3.0	3.2	3.5
Steel	5.0	5.6	6.7	3.0	3.2	3.5
PVC	3.8	4.3	5.0	2.3	2.5	2.7

A-29: overall heat coefficient for wood and metals door

${ }_{\text {A }}^{\text {TABLE }}$ (2.5)	coefficient for	vood and metal	bors. W/m. ${ }^{2} \mathrm{C}$.
	Without Storm Door	With Wood Storm Door	With Metal Storm Door
25 mm -wood	3.6	1.7	2.2
35 mm -wood	3.1	1.6	1.9
40 mm -wood	2.8	1.5	1.8
45 mm -wood	2.7	1.5	1.8
50 mm -wood	2.4	1.4	1.7
Aluminum	7.0	-	-
Steel	5.8	-	-
Steel with:			
Fiber core	3.3	-	-
Polystyrene core	2.7	-	-
Polyurethane core	2.3	-	-

Palestinian code

							الآيم التصقيمية الخارجيهِ
${ }^{\text {a }}$ ¢ غ $\varepsilon^{\text {chab }}$		الضفـة الغربية					
2ualu	Zutil	2untal		2いいい	年	الإلا	
$\begin{gathered} 9 \\ 31 \end{gathered}$	$\begin{gathered} 5 \\ 32 \end{gathered}$	$\begin{gathered} 8 \\ 34 \end{gathered}$	$\begin{gathered} 4 \\ 30 \end{gathered}$	$\begin{gathered} 5 \\ 32 \end{gathered}$	$\begin{gathered} 7 \\ 39 \end{gathered}$	$\begin{gathered} 7 \\ 39 \end{gathered}$	درجةء الحرارة（＇C）
62	60	63	62	60	60	60	الرطوية
69	72	78	72	72	70	70	النسيبة（\％）
65	49	55	44	49	43	43	صیفاً：إلذى
77	67	66	57	67	54	54	إفصى
2.8	1.5	1.1	1.4	1.5	1	1	سرعغا الرياع（m／s）
（18／3）و（19／3）تيمأ تصميمية لكافة اللناطق المناخية							（W／m²）
لا تكوفر ملوماك عن هنه الڤيم حالياً							درجّ يو تسخْيز（C．day＂）

12	11	10	9	8	7	6	5	4	3	2	1	daval
16.0	14.1	13.0	17.0	18.6	20.4	19.4	18.0	18.5	18.4	18.0	16.3	cricl
7.7	78	7.7	10.3	11.7	12.4	12.0	10.7	10.2	10.0	9.5	8.7	ثابلـس
7.5	6.1	5.4	7.2	8.6	9.7	9.4	9.0	7.9	7.9	7.9	7.5	Sis
4.0	3.8	2.9	2.6	27	2.9	2.9	3.3	3.4	3.8	4.1	4.3	Cs，
7.6	7.9	9.4	12.5	14.8	16.0	15.3	15.8	16.2	13.1	10.4	8.9	land
10.1	8.8	8.0	8.1	8.7	9.2	9.3	9.3	11.5	12.6	12.8	12.4	delat
7.9	5.8	5.8	5.1	5.4	5.1	5.1	6.5	9.7	10.8	10.1	8.6	ألع冖⿻⿻一𠃋十冖
2.1	2.5	2.5	5.0	6.5	6.8	3.6	3.3	3.6	6.1	6.5	4.6	ickelat

catalogue of VRF:

4 -way cassette in door unit and dimensional drawing:

4-4 . Dimensional drawing

No.	Name	Description			
		4.5/5.6kW	7.1/9.0kW	11.2kW	12.8/14.0kW
(1)	Liquid pipe connection	¢6.35 Fare	09.52 Fare		
(2)	Gas pipe connection	Ø12.70 Flare	015.88 Flare		
(3)	Drain pipe connection	ID25 Hose(OD 32, ID 25)			
(4)	Conduit for power supply \& cormmunication wiring	-			
(5)	Air inlet grille	-			
(6)	Air outlet louver	-			
(7)	Fresh air intake	-			
(8)	Drainage testing hole	-			

		Description			
		$4.5 / 5.6 \mathrm{~kW}$	7.1/9.0kW	11.2 kW	$12.8 / 14.0 \mathrm{~kW}$
A	mm	204		246	288
B	mm	253		295	337

1) Technical specifications

Wall mounted in door unit and dimensional drawing:

10 Neo Forte \& Neo-Forte E
 (AVAMNH***E*/ND***QHXE*)

10-4. Dimensional drawing

1) AVXWNH022/028/036E* , ND022/028/036QHXE*

Unit:mm

No.	Name	Description		
		2.2 kW	2.8kW	3.6 kW
(1)	Liquid pipe connection	Ø6.35 Flare		
(2)	Gas pipe connection	Ø12.70 Flare		
(3)	Drain pipe connection	ID18 Hose		
(4)	Conduit for power supply \& communication wing	-		
(5)	Air inlet grile	-		
(6)	Air outlet lower	-		

1) Technical specifications

Model				$\begin{aligned} & \hline \text { AVXWNH022E*, } \\ & \text { NDOR2OHXE* } \end{aligned}$	$\begin{aligned} & \text { AVXWNHO28E*, } \\ & \text { ND028C.HXE*, } \end{aligned}$	$\begin{aligned} & \text { AVXWNH036E*, } \\ & \text { NDCOB6OHXE** } \end{aligned}$	NDO450-KX*	AVXWNH066E*, NDO560.HXE*	AVXWNH071E*, ND071QHXE*
Power Supply			Ø, 4, V, Hz	1,2,220-240,50	1,2,220-240,50	1,2,220-240, 50	1,2,220-240,50	1, 2, 220-240,50	1,2,220-240,50
Mode ${ }^{\text {i }}$.	HP/HR	HP/HR	HP/HR	HP/HR	HP/HR	HP/HR
	Capacity (Nomina)	Cooling ${ }^{2 / 2}$	kW	2.2	2.8	3.6	4.5	5.6	6.8
			Btu/h	7,500	9,600	12,300	15,300	19,100	23,200
		Heating ${ }^{3}{ }^{\text {a }}$	kW	25	3.2	4.0	5.0	6.3	7.0
			Btuh	8,500	10,900	13,600	17,000	21,500	23,900
Power	Powar Inout (Nomina)	Cooling ${ }^{2}$	W	25	25	30	40	45	50
		Heating ${ }^{3}$)		25	25	30	40	45	50
	Current Input (Nomina)	Cooing ${ }^{4}$	A	0.16	0.16	0.18	0.18	027	0.30
		Heating ${ }^{\text {³) }}$		0.16	0.16	0.18	0.18	0.27	0.30
Fan	Motor	Type	-	$\begin{gathered} \text { Crosiflow Fan/ } \\ \text { SSR } \end{gathered}$	$\begin{aligned} & \text { Crossflow Fan/ } \\ & \text { SSR } \end{aligned}$	$\begin{gathered} \hline \text { Cossflow Fan/ } \\ \text { SSR } \end{gathered}$	Crossflow Fan/ SSR	$\begin{gathered} \hline \text { Crosstiow Fan/ } \\ \text { SSR } \end{gathered}$	$\begin{gathered} \text { Crocsilow Fan/ } \\ \text { SSR } \end{gathered}$
		Ouput	W	23	23	23	40	40	40
		Number of unit	EA	1	1	1	1	1	1
	Air How Rale	H/ML (UL)	CMM	7.8/6.8/5.8	8.2/7.2/62	9.3/8.3/7.3	11.7/10.2/8.7	12/10.5/9	14/12.5/11
			CFM	280/240/200	290/250/220	330/290/260	410/360/310	420/370/320	490/440/390
	Extomal Prossure	Mn/Std/Max	mmAq	-	-	-	-	-	-
			Pa	-	-	\square	-	-	*
			WG	-	-	-	-	-	-
Oplion Code			-	$02760 R-1120 F A$ $200000-300000$	O27602-1320FA $200000-300000$	$\begin{aligned} & 027602 \text {-15224d- } \\ & 200000-300000 \end{aligned}$	$\begin{array}{l\|} \hline 026602-18223 F- \\ 200000-300000 \end{array}$	$\begin{aligned} & 0268002 \text {-1A226F- } \\ & 200000-300000 \end{aligned}$	$\begin{aligned} & 026602-1 \mathrm{C228F}- \\ & 200000-300000 \end{aligned}$
Pping Connections	Liquid Pipe		\emptyset, mm	6.35	635	6.35	6.35	6.35	9.52
			\square, inch	1/4	1/4	1/4	1/4	1/4	3/8
	Gas Pipe		$0, \mathrm{~mm}$	12.7	12.7	12.7	12.7	12.7	15.88
			Ø, inch	1/2	1/2	1/2	1/2	1/2	5/8
	Drain Pipe		$0, \mathrm{~mm}$	D18 Hose (OD, [D)	D18 Hose (00, D)	ID18 Hoce (OD, 1D)	D18 Hose (O0, 10)	ID18 Hose (OD, ID)	1D18 Hoce (00, [D)
Find Wring	Power Source Wire	$\begin{aligned} & \text { Below } 20 \mathrm{~m} / \\ & \text { over } 20 \mathrm{~m} \end{aligned}$	mrm^{2}	1.5/25	1.5/2.5	1.5/2.5	$1.5 / 25$	1.5/2.5	1.5/2.5
	Transmission	Cable	$m m m^{2}$	$0.75 / 1.5$	$0.75 / 1.5$	$0.75 / 1.5$	$0.75 / 1.5$	0.75/1.5	$0.75 / 1.5$
Retrigerant	Type		-	R410A	R410A	R410A	R410A	R410A	R410A
	Control Method		-	EEV (Extema) EV (Internal)	ETV (External) EEV (interna)	EVV (External) EEV (Internal)	EEV(hternal)	EEV (External) EEV (Internal)	EVV(Extenal) EEV (Internal)
Sound	Sound Pressure	High/Low ${ }^{4}$)	dBA	$\begin{aligned} & 32 / 23, \\ & 35 / 26 \end{aligned}$	$\begin{aligned} & 32 / 23, \\ & 35 / 26 \end{aligned}$	$\begin{aligned} & 36 / 23, \\ & 39 / 26 \end{aligned}$	39/33	$\begin{aligned} & 40 / 30, \\ & 42 / 33 \end{aligned}$	$\begin{aligned} & 41 / 30, \\ & 44 / 33 \end{aligned}$
Dimensions	Not Woight		kg	8	8	8	13	13	13
	Shipping Weight		kg	9	9	9	16	16	16
	Net Dimensioris ($\mathrm{W} \times \mathrm{H} \mathrm{H}$ [D)		mm	$825 \times 285 \times 189$	$825 \times 285 \times 189$	$825 \times 285 \times 189$	1,065 x 2088×218	1,055 x 298×218	1,065 $\times 298 \times 218$
	Shipping Dimensions ($\mathrm{W} \times \mathrm{HX} \mathrm{CD}$)		mm	$900 \times 349 \times 252$	$900 \times 349 \times 252$	$900 \times 349 \times 252$	1,137 $\times 377 \times 298$	1,137 $\times 377 \times 299$	$1,137 \times 377 \times 299$
	Pand model		-	-	-	-		.	-
	Panel Net Weight		kg	-	-	-		-	-

ş̣un ıoopu|

Out door unit :

1) Compact (Single)

COP	Nominal Cooling		-	3.73	3.21	3.29
	Nominal Heating		-	4.46	4.40	4.34
FAN	Air Flow Rate		CMM	250	270	275
Piping Connections	Liquid Pipe		\varnothing, mm	12.70	15.88	15.88
	Gas Pipe		\varnothing, mm	28.58	28.58	28.58
	Discharge Gas Pipe		\varnothing, mm	-	-	-
	Oil Equalizing Pipe		\varnothing, mm	-	-	-
	Installation Limitation	Max. Length	m	200	200	200
		Max. Height	m	$50(40)^{*}$	50 (40)*	$50(40)^{*}$
Field Wiring	Power cable		mm^{2}	CV6	CV6	CV 10
	Communication cable		mm^{2}	0.75~1.5	0.75~1.5	0.75~1.5
Refrigerant	Type		-	R-410A	R-410A	R-410A
	Factory Charging		kg	7.0	8.5	8.5
Sound ${ }^{\text {® }}$	Sound Pressure		dB(A)	60	60	61
External Dimension	Net Weight		kg	329	340	349
	Shipping Weight		kg	350	361	370
	Net Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)		mm	$1295 \times 1695 \times 765$	$1295 \times 1695 \times 765$	$1295 \times 1695 \times 765$
	Shipping Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)		mm	$1363 \times 1912 \times 832$	$1363 \times 1912 \times 832$	$1363 \times 1912 \times 832$

[^0]: * Does not include branches of the building drain.
 ${ }^{2}$ Not more than two water closets of bathroom groups within each branch interval nor more than six water closets or bathroom groups on the stack.
 Note: Stacks shall be sized according to the total accumulated connected Joad at each story or branch interval and may be reduced in size as this load decreases to a minimum diameter of half of the largest size required.
 Source. Reprinted with permission of The National Standard Plumbing Code, published by The National Association of Plumbing Heating Cooling Contractors.

[^1]: Woter Supply Eiazure Unit

