
I

PALESTINE POLYTECHNIC UNIVERSITY
College of IT and Computer Engineering
Department of Computer Engineering

Graduation Project

Project Name

Microcontroller-Based Driver Warning System

Project Team:

Oday Bkerat Yousef Ashhab

Supervisors

Eng. Mazen Zalloum Dr. Hashem Tamimi

Hebron-Palestine

May-2015

II

Graduation Project

Project Name

Microcontroller-Based Driver Warning System

Project Team

Oday Bkerat Yousef Ashhab

Supervisors

Eng. Mazen Zalloum Dr. Hashem Tamimi

According to the system of the College of IT and Computer System Engineering, and to the

recommendation of the Project Supervisor, this project is presented to Computer System Engineering

Department as a part of requirements of B.Sc. degree in Computer System Engineering.

Hebron-Palestine

May-2015

III

Signatures:

Project Supervisors signatures

…………………………...

…………………………..

Testing Group signature

………...…..………. ………….……….…….

Department Headmaster signature

………………………………….

Acknowledgment

It is great pleasure for us to acknowledge the assistance and contributions of our teacher,
department staff, college staff, and university staff whom helped us to be here.

We would like to thank our supervisors, Eng. Mazen Zalloum and Dr. Hashem Tamimi,
for their assistance, ideas, and feedbacks during all stages of this project. Without their guidance
and support, this work could not have been completed on time.

We would like to express our special thanks to Dr. Yaqoub Ashhab for his helpful
comments and to Mr. Ameer Al-Qasrawi who helped us to buy the microcontroller from Munich.

Abstract

The problem of pedestrian-vehicle crashes is a major cause of deaths and
injuries in road accidents worldwide. The major factor of such crashes is driver.
However, there is no effective solution for this problem. In this project, we propose a
microcontroller-based pedestrian detection prototype system for this problem. Our
approach is based on image processing and machine learning methodologies to detect
and classify images with or without pedestrians. The prototype contains a camera that
can be installed on the car's dashboard, a microcontroller for computational processes,
and a speaker for alarming the driver. The first phase of this project is building a binary
classifier, which can predict if the analyzed images contain a pedestrian or not. The
Histogram of Gradient (HOG) was used as feature descriptor to encode the processed
images. An initial Support Vector Machine (SVM) classifier was built and trained on 250
positive and 250 negative non-redundant images. A 5 fold cross validation was showed
a very high accuracy of the created classifier. In the second phase, we tested our
trained model on real-time images. Our system achieved a moderate accuracy and a
processing speed of 7 frame per second. The accuracy of the system is dependent on
the number of training images. In conclusion, we have shown that microcontroller can
be used to successfully implement an SVM pedestrian classification system that can be
further optimized to a prototype product. To our knowledge, this is the first attempt to
implement a pedestrian detection system using a Raspberry-Pi microcontroller.

Table of Contents

Chapter One: Introduction..4

1.1 Overview and Motivation..4

1.2 Causes of Traffic Accidents...7

1.3 Project Rationale..8

1.4 Goal and objectives..9

1.5 Project Importance..9

1.6 Short description of the system..10

1.7 Report Structure...10

Chapter Two: System Analysis...11

2.1 General Description...11

2.2 List of Requirements..11

2.3 Expected Results..12

2.4 Constrains...12

Chapter Three: Background..13

3.1 Theoretical Background...13

3.2 Hardware Parts Background..17

Chapter Four: System Design...20

4.1 Hardware Design...20

4.2 Software Design..22

4.2.1 Training Software Design...22

4.2.2 Testing Software Design...24

Chapter Five : System Implementation..26

5.1 Dataset Used..26

5.2 Hardware Implementation...27

5.3 Software Implementation..28

Chapter Six: Validation and Testing...30

6.1 Validation..30

6.2 Testing...31

Conclusion...32

References..33

Appendix..34

2

List of Tables

Table 1: Major causes of deaths..4

Table 2: The most common reasons of traffic accidents………..8

Table 3: Fivefold cross validation results...30

3

List of Figures

Figure 1: Distribution of traffic accidents in governorates of West-Bank…....…………....................5

Figure 2: Comparison of death rates for different road user categories..6

Figure 3: Major causes of road traffic accidents...7

Figure 4: steps of HOG extraction..13

Figure 5: HOG feature visualization...14

Figure 6: Histogram of Oriented Gradient explanation..14

Figure 7: Example of before classification and after classification using SVM.................................15

Figure 8: Optimal hyper-plane..16

Figure 9: Logitech C310 Camera..17

Figure 10: RaspberryPi..18

Figure 11: Audio speaker..19

Figure 12: System diagram...20

Figure 13: Connecting camera with microcontroller..20

Figure 14: Audio Jack port on RaspberryPi board..21

Figure 15: USB car adapter...21

Figure 16: Training algorithm flowchart..22

Figure 17: Testing algorithm flowchart..24

Figure 18: INRIAPerson dataset...26

Figure 19: Hardware implementation...27

Figure 20: Training algorithm implementation...28

Figure 21: Detecting algorithm implementation...29

4

Cause World* United States*

Traffic

Accidents

1,240,000 33,561

Homicide 437,000 16,259

Military

conflicts

55,000 127

Chapter One: Introduction

1.1 Overview and Motivation

While less than 0.5 million people are killed annually due to wars, military

conflicts and homicide, traffic accidents stand behind the loss of 1.24 million lives

worldwide (Table 1). Traffic accidents have devastating consequences on all levels of

society, including the direct accidents’ victims and their families. According to World

Health Organization (WHO), the majority of traffic accidents’ victims are from two age

groups: males of 20-40 years whom are mainly involved in car crashes and children less

than 15 years whom are the victims of vehicle-pedestrians crashes [1]. There is a serious

concern about the economic impact of traffic accidents. In developing countries, the bill

of traffic accidents can reach to a value equivalent to 3% of their Gross National Product

(GNP) [2].

Table1: Major causes of deaths

* 2010 estimates for world, 2012 for the United States [3]

It is interesting to note that while underdeveloped and developing countries have

less than 50% of the global number of vehicles, more than 80% of the world’s road

deaths occur in these countries [1]. The highest chance of dying in a road traffic accident

is for peoples living in Africa where it can reach up to 24.1 deaths/ 100000 inhabitants

per year. Unfortunately, the Eastern Mediterranean countries, including Palestine, come

in the second worst position with 21.3 deaths / 100000 inhabitants per year. It has been

estimated that road traffic accidents costs the economy of Arab countries around 2.5% of

their GNP [1].

5

The figures of road traffic accidents in Palestine are not much better than other

Arab countries. According to the annual report of the Ministry of Transportation-Higher

Council of Traffic, a total of 7827 traffic accidents were reported in the West-Bank,

Palestine during 2013 [4]. Figure 1 shows the distribution of these accidents on the

different governorates. When comparing Palestine with neighboring countries in terms of

road accidents statistics, the most noticeable difference is the high rate of deaths among

pedestrians. For example, in Jordan and Lebanon 33% of road accidents’ deaths are

pedestrians whereas the rate in Palestine is 53% (Figure 2).

Figure 1: Distribution of traffic accidents in governorates of West-Bank [4].

6

Palestine

Jordan

Lebanon

Figure 2: Comparison of death rates for different road user categories: The comparison is mad for

Palestine, Jordan and Lebanon [1].

7

1.2 Causes of Traffic Accidents

Generally speaking, there are 3 major causes for road traffic accidents and they

are: human factors, road design factors, and vehicle factors. Most studies have shown that

around 55-60% of vehicle accidents are due to driver related factors as a primary cause

[5]. On the other hand, the road design factors are responsible for 25-30% and vehicle

factors count for 10-20% (Figure 3).

Figure 3: Major causes of road traffic accidents. The percentages represent estimations of how much deaths

were due to the indicated factors. It is important to recall that certain accidents might be due to a

combination of two or more factors together.

It is important to note that while road design and vehicle safety criteria are

relatively amenable to improvement and optimization, driver associated factors are

difficult to control (Table 2). This means that a lot of effort and creative solutions are

needed in order to minimize the impact of driver associated factors.

8

Table 2: The most common reasons of traffic accidents: The examples shown in the middle column is for

the most frequently reported cases that are associated to the three main factors. The right column shows

how these problems were tackled by traffic authorities.

Type of factor Example Solutions

♦ Distraction (using mobile, Except the law to control

applying make-up, eating…etc) alcohol consumption, the

♦ Sleep deprivation difficult to control.

♦ Passenger physical shock ♦ Seatbelt and airbags

Vehicle ♦ Bad tires

♦ Steering system defects

♦ Periodical vehicle testing

♦ Unmarked crossroad junction ♦ Traffic lights

Road ♦ Over-speed in urban areas ♦ Pedestrians crosswalks,

bridges, or road bumps

1.3 Project Rationale

There is an increasing worldwide concern about the catastrophic societal and

economic impact of road traffic accidents. In contrast to low and middle income

countries, the developed countries have witnessed a significant reduction of the total

number of deaths caused by traffic accidents. Good road design, superior traffic facilities,

implementation of strict traffic laws, and high vehicle-safety-standards were the key

factors behind this success. It is obvious that traffic authorities can tackle factors related

to road design and vehicle safety criteria as they have tangible physical character.

However, factors that are associated to human behavior or human limited abilities are

relatively intractable.

9

An interesting approach to reduce the traffic accidents that result from driver

associated factors is to make smart vehicles that can compensate the limited abilities of

humans. A number of such smart computer-based technologies have been introduced to a

very limited number of luxury classes of vehicles. In addition to their limited availability

and very high cost, these technologies are only useful for ideal streets and highly

sophisticated traffic systems. Therefore there is a great need to develop an affordable

computer-based technology that can warn driver about possible risks such as crashing a

pedestrian or a preceding vehicle. Such solution would be highly valuable if it can be

adapted to new as well as old vehicle models.

1.4 Goal and objectives

Our main goal is to develop and implement a microcontroller-based system that

can warn vehicle driver about possible frontal crashing risks with pedestrians.

Our specific objectives are:

1. To build a support vector machine-based classifier that can detect pedestrians in

a given image using the histogram of oriented gradients (HOG) as a feature descriptor.

2. To adapt and run the trained and validated classifier on RaspberryPi

microcontroller that is connected with a webcam and an audio speaker.

1.5 Project Importance

To the best of our knowledge, our project is the first of its type to implement

a machine learning-based pedestrian detection system using a microcontroller.

The following points demonstrate the importance of our project:

1. It provides an affordable solution for Palestinian drivers and it can be adapted

by other developing countries.

2. It can be mounted on new as well as old vehicle models and this means that a

wider segment of drivers can benefit from this technology.

3. The proposed model will be tested in urban streets of the West-Bank, which

would ensure its validity for streets with poor infrastructure.

10

1.6 Short description of the system

Our system can capture images using an inexpensive camera, yet with high

resolution, which is going to be installed on top of car’s dashboard to capture farms of the

heads-up display. The captured images are continuously transferred to a microcontroller,

which applies a pedestrian detection algorithm to classify input images as “True: a

pedestrian under risk” or “False: no risk to hit a pedestrian”. The “True” result will

activate a warning alarm in order to prevent crashing the pedestrian.

1.7 Report Structure

In chapter two, we will talk about the analysis of our system as an introduction to

make an optimal design. In chapter three, will give a background about the algorithms

that will be used as well as some background information about the hardware parts. In

chapter four, the hardware design and software design of the system will be described. In

chapter five we will present the implementation of the system. Finally, chapter six

contains the validation results of our system.

11

Chapter Two: System Analysis

In this chapter we will talk about the system analysis including general description,

list of requirements, expected results, and constrains.

2.1 General Description

The functional operation of our system can be divided into three main phases:

image acquisition, image processing, and warning. In the following paragraphs we will

analyze the three phases in details.

• Phase 1: Image Acquisition

In this phase, the camera that will be mounted on the dashboard is capturing

images of the head-up display and pass them to the microcontroller.

• Phase 2: Processing

In this phase, the microcontroller apply an algorithm to detect pedestrian in the

risk field.

• Phase 3: Warning

In this phase, the system release a warning signal to alert the driver if there is a

risk to crash a pedestrian. The warning signal be released by an audio speaker connected

to the microcontroller.

2.2 List of Requirements

The requirements of our project can be categorized into two groups: hardware

requirements, and software requirements.

♦ Hardware requirements include:

1. Camera.

2. Microcontroller.

3. Audio alarming system.

4. Power supply.

12

♦ Software requirements include:

1- Be familiar with Linux operating systems.

2- Using open CV (open source Computer Vision library).

3- Be able to write code in C++ programming language.

4- Have an enough image processing background, and its algorithms and

approaches.

5- Have an enough machine learning background, and its algorithms and

approaches.

2.3 Expected Results

The expected results of our project are:

1. Prototype microcontroller-based system that can be further developed to be a real

business idea.

2. The long term expected output of our project is its contribution in solving the problem

of road traffic accidents by minimizing their tragic societal consequences and

economic burdens.

2.4 Constrains

The constrains of our system can be summarized up in the following points:

1. Day time: the system deal with images captured in the day.

2. Visual field: the system is supposed to deal with a clear visual field in front of the

head-up display. That is mean it cannot deal with images captured when the weather

is foggy or rainy.

13

Chapter Three: Background

In this chapter we will talk about the theoretical backgrounds and hardware parts

background.

3.1 Theoretical Background

We will present a general idea about image processing, Histogram of Oriented

Gradients, and Support Vector Machine.

• Image processing: is any form of signal processing for which the input is

an image, such as a photograph or video frame; the output of image processing may

be either an image or a set of characteristics or parameters related to the image. Most

image- processing techniques involve treating the image as a two-dimensional

signal and applying standard signal-processing techniques to it, such as canny edge

detection [6].

• Histogram of Oriented Gradients (HOG): The histogram of oriented gradients

(HOG) is a feature descriptor used in computer vision and image processing for the purpose

of object detection. The technique counts occurrences of gradient orientation in localized

portions of an image. This method is similar to that of edge orientation histograms, scale-

invariant feature transform descriptors, and shape contexts, but differs in that it is computed

on a dense grid of uniformly spaced cells and uses overlapping local contrast normalization

for improved accuracy. Figure 4 shows the HOG steps while Figure 5 shows a

visualization of HOG feature.

Figure 4: steps of HOG extraction[7]

Figure 5

Navneet Dalal and Bill Triggs, researchers for the French National Institute for

Research in Computer Science and Control (INRIA), first described HOG descriptors at the

2005 Conference on Computer Vision and Pattern Recognition (CVPR). In this work they

focused on pedestrian detection in static images, although since then they expanded their

tests to include pedestrian detection in videos, as well as to a variety of common animals

and vehicles in static imagery.

The essential thought behind the histogram

local object appearance and shape within an image can be described by the distribution of

intensity gradients or edge directions. The image is divided into small connected regions

called cells, and for the pixels w

compiled. The descriptor is then the concatenation of these histograms. For improved

accuracy, the local histograms can be contrast

intensity across a larger region of the image, called a block, and then using this value to

normalize all cells within the block. This normalization results in better invariance to

changes in illumination and shadowing.

histogram in HOG

Figure 6: Histogram of Oriented Gradient explanation

Figure 5: HOG feature visualization[7]

Navneet Dalal and Bill Triggs, researchers for the French National Institute for

Research in Computer Science and Control (INRIA), first described HOG descriptors at the

2005 Conference on Computer Vision and Pattern Recognition (CVPR). In this work they

ocused on pedestrian detection in static images, although since then they expanded their

detection in videos, as well as to a variety of common animals

and vehicles in static imagery.

The essential thought behind the histogram of oriented gradients descriptor is that

local object appearance and shape within an image can be described by the distribution of

intensity gradients or edge directions. The image is divided into small connected regions

called cells, and for the pixels within each cell, a histogram of gradient directions is

compiled. The descriptor is then the concatenation of these histograms. For improved

accuracy, the local histograms can be contrast-normalized by calculating a measure of the

region of the image, called a block, and then using this value to

normalize all cells within the block. This normalization results in better invariance to

changes in illumination and shadowing. Figure 6 shows the process of making the

: Histogram of Oriented Gradient explanation[7]

14

Navneet Dalal and Bill Triggs, researchers for the French National Institute for

Research in Computer Science and Control (INRIA), first described HOG descriptors at the

2005 Conference on Computer Vision and Pattern Recognition (CVPR). In this work they

ocused on pedestrian detection in static images, although since then they expanded their

detection in videos, as well as to a variety of common animals

of oriented gradients descriptor is that

local object appearance and shape within an image can be described by the distribution of

intensity gradients or edge directions. The image is divided into small connected regions

ithin each cell, a histogram of gradient directions is

compiled. The descriptor is then the concatenation of these histograms. For improved

normalized by calculating a measure of the

region of the image, called a block, and then using this value to

normalize all cells within the block. This normalization results in better invariance to

shows the process of making the

The HOG descriptor has a few key advantages over other descriptors. Since it

operates on local cells, it is invariant to geometric and photometric transformations, except

for object orientation. Such changes would only appear in larger spatial regions. Mor

as Dalal and Triggs discovered, coarse spatial sampling, fine orientation sampling, and

strong local photometric normalization permits the individual body movement of

pedestrians to be ignored so long as they maintain a roughly upright position. The

descriptor is thus particularly suited for

• Support Vector Machines

are supervised learning models with associated learning algorithms that analyze data and

recognize patterns, used for classification and regression analysis. Given a set of training

examples, each marked as belonging to one of two categories, an SVM training algorithm

builds a model that assigns new examples into one category or the other, making it

probabilistic binary linear classifier. An SVM model is a representation of the examples as

points in space, mapped so that the examples of the separate categories are divided by a

clear gap that is as wide as possible. New examples are then mapped i

and predicted to belong to a category based on which side of the gap they fall on.

shows data before and after classification using SVM

Figure 7: Example of before classification and after classification using SVM

The HOG descriptor has a few key advantages over other descriptors. Since it

operates on local cells, it is invariant to geometric and photometric transformations, except

for object orientation. Such changes would only appear in larger spatial regions. Mor

as Dalal and Triggs discovered, coarse spatial sampling, fine orientation sampling, and

strong local photometric normalization permits the individual body movement of

pedestrians to be ignored so long as they maintain a roughly upright position. The

descriptor is thus particularly suited for pedestrian detection in images.

Support Vector Machines (SVM): In machine learning, support vector machines

are supervised learning models with associated learning algorithms that analyze data and

ze patterns, used for classification and regression analysis. Given a set of training

examples, each marked as belonging to one of two categories, an SVM training algorithm

builds a model that assigns new examples into one category or the other, making it

probabilistic binary linear classifier. An SVM model is a representation of the examples as

points in space, mapped so that the examples of the separate categories are divided by a

clear gap that is as wide as possible. New examples are then mapped into that same space

and predicted to belong to a category based on which side of the gap they fall on.

shows data before and after classification using SVM

: Example of before classification and after classification using SVM[12]

15

The HOG descriptor has a few key advantages over other descriptors. Since it

operates on local cells, it is invariant to geometric and photometric transformations, except

for object orientation. Such changes would only appear in larger spatial regions. Moreover,

as Dalal and Triggs discovered, coarse spatial sampling, fine orientation sampling, and

strong local photometric normalization permits the individual body movement of

pedestrians to be ignored so long as they maintain a roughly upright position. The HOG

In machine learning, support vector machines

are supervised learning models with associated learning algorithms that analyze data and

ze patterns, used for classification and regression analysis. Given a set of training

examples, each marked as belonging to one of two categories, an SVM training algorithm

builds a model that assigns new examples into one category or the other, making it a non-

probabilistic binary linear classifier. An SVM model is a representation of the examples as

points in space, mapped so that the examples of the separate categories are divided by a

nto that same space

and predicted to belong to a category based on which side of the gap they fall on. Figure 7

[12]

In addition to performing linear classification, SVMs can efficiently perform a non

linear classification using what is called the kernel trick, implicitly mapping their inputs

into high-dimensional feature spaces.

More formally, a support vector machine con

planes in a high or infinite

regression, or other tasks. Intuitively, a good separation is achieved by the

has the largest distance to the neare

margin), since in general the larger the margin the lower the generalization error of the

classifier. Figure 8 shows an example of optimal hyper

addition to performing linear classification, SVMs can efficiently perform a non

linear classification using what is called the kernel trick, implicitly mapping their inputs

dimensional feature spaces.

More formally, a support vector machine constructs a hyper-plane or set of

or infinite-dimensional space, which can be used for classification,

regression, or other tasks. Intuitively, a good separation is achieved by the hyper plane

has the largest distance to the nearest training-data point of any class (called functional

margin), since in general the larger the margin the lower the generalization error of the

shows an example of optimal hyper-plane.

Figure 8: optimal hyper-plane

16

addition to performing linear classification, SVMs can efficiently perform a non-

linear classification using what is called the kernel trick, implicitly mapping their inputs

or set of hyper

dimensional space, which can be used for classification,

hyper plane that

called functional

margin), since in general the larger the margin the lower the generalization error of the

17

3.2 Hardware Parts Background

The parts of our project are camera, microcontroller, audio speaker, and power

supply. In the following paragraphs, we will explain the basis of choosing these parts and

their specifications.

• The Camera:

We decided to choose the Logitech C310, since its image quality has enough details

in order to extract the features for pedestrian detection algorithm. In addition, this camera

is cheap, available, robust, and easy to use since it can be connected through a Universal

Serial Bus (USB) connection port

The specifications of the Logitech C310 camera are:

♦ Camera Type: Stationary camera.

♦ Video Frame Rate (Maximum): 30 fps.

♦ Resolution Video: 1280×720 pixel.

♦ Resolution (Still): 5 Megapixels.

♦ Focus Type: Fixed.

♦ Connection: USB.

♦ Mice: Build-in Mice.

Figure 9 shows the Logitech C310 camera.

Figure 9: Logitech C310 Camera [9]

18

• The Microcontroller:

Following a trade-off between cost and performance efficiency, we decided to

choose the microcontroller as it has high specifications enough for image processing. It is

easy to use since it can be operated by many distributions of Linux operating system,

such as Debian, Angstrom, Ubuntu, and Android. It can be programmed by several

languages such as C++, Java, or Python. Moreover, it is relatively a cheap

microcontroller.

The specifications of the microcontroller are:

♦ CPU: 700 MHz (ARM 1176JZF--S core (ARM11 family).

♦ Memory (SDRAM): 512 MB.

♦ Video Outputs: 3,5 mm Klinke, HDMI.

♦ Audio Outputs: 3.5 mm Jack, HDMI.

♦ Onboard Storage: Micro SD, MMC, SDIO card slot.

♦ 10/100 Ethernet RJ45 on board network.

♦ Storage via Micro SD/ MMC/ SDIO card slot.

♦ Ports: HDMI (1 port), Either-net (1 port), USB (4 ports).

♦ Software Compatibility: Debian, Android, Ubuntu.

Figure 10 shows the microcontroller board.

Figure 10: RaspberryPi [10]

19

• Audio Alarming System:

We decided to choose a speaker for alarming purpose in our project, since the

speaker is cheap, efficient, available, and easy to connect.

Figure 11: Audio speaker[11]

20

Chapter Four: System Design

The design of our system can be divided into two phases, which are hardware

phase and software phase. Figure 12 shows the system diagram

Figure 12: System diagram

4.1 Hardware Design

The hardware design of our system has three parts:

1. Connecting the camera with the microcontroller:

This part is done by connecting the Logitech C310 camera to the microcontroller

through the USB connection port at the microcontroller board, as shown in Figure 13.

Figure 13: Connecting camera with microcontroller [10]

21

2. Connecting audio speaker with microcontroller:

This part is done by connecting the audio alarming system to the microcontroller

board through the Jack audio port. Figure 14 shows the jack audio port on the

RaspberryPi.

Figure 14: Audio Jack port on RaspberryPi board[10]

3. Power Supply: the power supply needed to operate the board is 5 volt, or by a USB

cable, we will give it the power by USB cable. Figure 15 shows the power supply.

Figure 15: USB car adapter[11]

22

4.2 Software Design

The software design is based on making an optimum algorithm for pedestrian

detection considering the conditions and constraints that our system is supposed to deal

with. In order to achieve an optimum algorithm the software divided into two parts

training software and testing software.

4.2.1 Training Software Design

This part of the software aiming to train an SVM classifier, on a set of positive

(images including pedestrians), and negative data (images without pedestrians).

The design of this software part is based on an algorithm, which extract the

HOG feature of the training data. Then train an SVM classifier, based on that HOG

features. Figure 16 shows the block diagram of this software part.

Figure 16: Training algorithm flowchart

Read the train data (images)
positive and negative

Extract HOG features of the
training data

Train SVM classifier based on
the HOG features extracted

Have SVM classifier saved in
XML file

23

• The pseudocode of this part is as follow:

start
input: positive images
int NumberOfImages
array PositiveDescriptorsVector[NumberOfImages]

for loop (i = 0 until i = NumberOfImages)
vector ImageDescriptor
extract HOG feature
save HOG in ImageDescriptor
PositiveDescriptorsVector[i] = ImageDescriptor

end loop

input: negative images
array NegativeDescriptorsVector[NumberOfImages]

for loop (i = 0 until i = NumberOfImages)
vector ImageDescriptor
extract HOG feature
save HOG in ImageDescriptor
NegativeDescriptorsVector[i] = ImageDescriptor

end loop

SVMClassifier.train(PositiveDescriptorsVector, 1, NegativeDescriptorsVector, -1)
SVMClassifier.save("TrainedSVM.xml")
end

24

4.2.2 Testing Software Design

This part of the software aiming to produce a software, that uses the trained

SVM from the previous software part. To predict if there is pedestrian , or not in a new

image (given or from camera). That new image the classifier did not trained on it.

This software can work in two ways, either by given (static) images, or by live

images (dynamic) from the camera. Figure 17 shows the block diagram of the two

ways.

Figure 17: Testing algorithm flowchart

• Given images case:

start
SVMClassifier.load(trainedSVM.xml)
int NumberOfImages
int result

for loop(i = 0, until i = NumberOfImages)
vector ImageDescriptor
input: TestImage
extract HOG for TestImage
save HOG feature in ImageDescriptor
result = SVMClassifier.predict(ImageDescriptor)
output the result on the screen

end loop
end

Read the static images
(positive & negative)

Predict if there is human
or not depending on the

trained SVM
Tell the decision

Get images from the
camera (image by image)

Predict if there is human
or not depending on the

trained SVM
Tell the decision

25

• Images from camera case:

start
SVMClassifier.load(trainedSVM.xml)
int result

while(1)
do
{
vector ImageDescriptor
Mat image
image = capture frame from camera
extract HOG for image
save HOG feature in ImageDescriptor
result = SVMClassifier.predict(ImageDescriptor)

if (result == 1)
output: warning sound

}
end while loop

end

26

Chapter Five: System Implementation

In this chapter we will talk about the dataset that we use, hardware implementation,

and software implementation.

5.1 Dataset used

The dataset which we use in training the classifier and testing it, is the INRIAPerson

dataset[8]. Which is a data set published by the National Institute for Research in Computer

Science and Control (French: Institut National de Recherche en Informatique et en

Automatique). This data set have been collected by the French institute while Navneet

Dalal and Bill Triggs were working on their paper. Which its title was " Histograms of

Oriented Gradients for Human Detection". This dataset is the most popular set for human

detection researches in the world. Also there is another set by MIT (Massachusetts Institute

of Technology), but it does not contain negative images. So INRIAPerson dataset is better

for our project. We use 200 positive and 200 negative images from the dataset, for training

purpose the size of these data are 128 pixel × 64 pixel. The positive images are containing

one person only, and with some margin around his body. On the other hand, in the testing

phase we use 100 mixed images (positive and negative), in variable sizes. Figure 18 shows

the content of the dataset.

Figure 18: INRIAPerson dataset[8]

27

5.2 Hardware Implementation

In fact the hardware implemetation of our project is simple. It can be summarized

up by the following points: firstly provide power supply for the microcontroller. Then

connect the Logitech C310 camera to microcontroller through the USB port on the

microcontroller. And the last step is connect the speaker to the microcontroller through the

jack audio port on the microcontroller. There is another step which is connect to the LCD

screen through the HDMI port in order to coding and working comfortably with

microcontroller. Figure 19 shows the hardware implementation.

Figure 19: Hardware implementation

28

5.3 Software Implementation

The software part which is done on the PC, aiming to build SVM classifier by

training over a set of data. This part done by training SVM classifier over the data from

INRIAPerson dataset.

The implemetation of the training algorithm is done by write C++ code and using

openCV software library within. The process is done as shown in the Figure 20.

Figure 20: Training algorithm implementation

As shown in the figure, the first step done in the code is reading the images, this is

done using the following command:

for (int i = 0; i< pFileNum; i++)
{
Mat img;
img = imread(pFullFileName);
}

Then the code will extract the HOG feature for each image, and this is done by the
following command:

HOGDescriptor d(Size(32, 16), Size(8, 8), Size(4, 4), Size(4, 4), 9);
vector< float> descriptorsValues;
vector< Point> locations;
d.compute(img_gray, descriptorsValues, Size(0, 0), Size(0, 0), locations);

After that the code train and save an SVM classifier using the extracted
descriptors, using the following command:

svm.train(PN_Descriptor_mtx, labels, Mat(), Mat(), params);
svm.save("trainedSVM.xml");

29

The other software part which is done on the microcontroller, aiming to take images

captured from the camera connected to, and decide if these images contains pedestrian or

not depending on the SVM classifier trained in the PC software part.

The implemetation of the testing algorithm is done by write C++ code and using

openCV software library within. The process is done as shown in the Figure 21.

Figure 21: Detecting algorithm implementation

As shown in the figure the very first step is to load the XML file. That

contains the trained SVM details, this is done by the following command

svm.load("trainedSVM.xml");

Then the code will capture an image from the camera, this is done by the

following command

std::string arg = "video0";

VideoCapture capture(arg);

capture >> img;

And then compute the HOG descriptor using the same commands that were

used in the training code

HOGDescriptor d(Size(32, 16), Size(8, 8), Size(4, 4), Size(4, 4), 9);

vector< float> descriptorsValues;

vector< Point> locations;

d.compute(img, descriptorsValues, Size(0, 0), Size(0, 0), locations);

Then the code send the descriptor to the SVM to predict the if there is

pedestrian or not

Mat fm = Mat(descriptorsValues);
int result = svm.predict(fm);

30

Chapter Six: Validation and Testing

In this chapter we will talk about the validation of our system and the testing

6.1 Validation

We use fivefold cross validation technique to validate our working approach, and

the results were awesome. Fivefold cross validation done on 500 images (data set), half of

them positive (contain pedestrian) and half negative (does not contain pedestrian). We

divide these images into five groups each group contains 400 images for training (200

positive, and 200 negative) and 100 images for testing. and the results were as shown in

Table 3.

Table 3. Validation Results: This table shows the results of the five-fold cross validation.
In each training round, 4 sets apart from the indicated validation set were used to train the model and the
fifth set was used to calculate the accuracy measures (TP: True Positive, TN: True Negative, FP: False
Positive, FN: False Negative).

Validation Sets Validation Results

Set 1 TP: 49 FP: 1

TN: 47 FN: 3

Set 2 TP: 47 FP: 3

TN: 49 FN: 1

Set 3 TP: 48 FP: 2

TN: 49 FN: 1

Set 4 TP: 49 FP: 1

TN: 50 FN: 0

Set 5 TP: 48 FP: 2

TN: 50 FN: 0

31

6.2 Testing

When running the testing algorithm on a real-time case (images from camera), the
system worked well, however the accuracy was obviously lower. We noticed that the
accuracy of our classifier, using static images, is highly correlated with the number of
images used for training.

We believe that the accuracy of our system on real-time images from camera can be
significantly improved using a large number of training images. In fact, we attempted to
increase the number of training images. However, the memory limitation of our personal
PCs was the major problem to achieve this objective. Therefore, we would recommend using
a more powerful computer for training classifier purposes.

The main problems that we faced in running the project can be summarized up in the
following points:

1- Difficulty of configuring the openCV software library with the RaspberryPi
microcontroller. In order to solve this problem we have contact an Italian openCV expert
who help us configuring it.

2- Accessing the camera in order to obtain images from it. In order to solve this problem we
read about the Raspberry port, and how to access it.

3- Filling the RAM by the images came from the camera. In order to solve this problem we
have use the release command which release each image from the RaspberryPi RAM
immediately after processing it.

32

Conclusion

We implement successfully an SVM based classifier, which used HOG as descriptor
feature to detect pedestrians. The RaspberryPi microcontroller is a very good platform for
such applications, since it gives a satisfied processing speed. The key point to increase the
accuracy of our system, is to expand the number of training images.

We recommend using RaspberryPi microcontroller for such applications, also we
recommend to use FPEG approach for doing this project. And try to use ultrasonic sensor to
detect the distance between the car and the pedestrians.

33

References

1. WHO Report, Global status report on road safety 2013: Supporting a decade of action.

2013, world health organization WHO: Geneva, Switzerland.

2. WHO Fact sheet, Road traffic injuries. Fact sheet N°358 2013.

"http://www.who.int/mediacentre/factsheets/fs358/en/".

3. Gresser, E. Traffic accidents kill 1.24 million people a year worldwide; wars and murders,

0.44 million. Progressive Economy 2014]; Available from: http://progressive-

economy.org/.

4. Jaradat, F., Road traffic accidents in the West-Bank, Palestine. Report of 2013. . 2013,

Ministry of Transportation- the Higher Council of Traffic Ramallah.

5. Lum, H. and J.A. Reagan, Interactive Highway Safety Design Model: Accident Predictive

Module, in Public Roads Magazine. 1995.

6. Wikipedia-page. http://en.wikipedia.org/wiki/Image_processing.

7. Dalal, N. and B. Triggs. Histograms of oriented gradients for human detection. in

Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society

Conference on. 2005: IEEE.

8. INRIAPerson dataset; Available from: http://pascal.inrialpes.fr/data/human/.

9. Logitech Inc.; Available from: http://www.logitech.com/.

10. Raspberry Pi Organization; Available from: https://www.raspberrypi.org/

11. Conrad Electronic Inc; Available from: https:// www.conrad.com

12. Introduction to Support Vector Machines; Available from: http://docs.opencv.org

34

Appendix

This appendix includes the setup of our project

1- We install Visual Studio 2013 IDE on PC, which is an IDE produced by Microsoft. It's

an IDE compatible with C++ programming language and openCV software library.

2- We install openCV 2.4.10 version on PC and make all its configuration to use it in C++

coding. OpenCV (Open Source Computer Vision Library): is an open source computer

vision and machine learning software library. OpenCV was built to provide a common

infrastructure for computer vision applications and to accelerate the use of machine

perception in the commercial products. The library has more than 2500 optimized

algorithms, which includes a comprehensive set of both classic and state-of-the-art

computer vision and machine learning algorithms. These algorithms can be used to detect

and recognize faces, identify objects, classify human actions in videos, track camera

movements, track moving objects, extract 3D models of objects, produce 3D point clouds

from stereo cameras, stitch images together to produce a high resolution image of an entire

scene, find similar images from an image database, remove red eyes from images taken

using flash, follow eye movements, recognize scenery and establish markers to overlay it

with augmented reality, etc. OpenCV has more than 47 thousand people of user community

and estimated number of downloads exceeding 7 million. The library is used extensively in

companies, research groups and by governmental bodies. It has C++, C, Python, Java and

MATLAB interfaces and supports Windows, Linux,

mostly towards real-time vision applications.

3- We install Raspbian operating system on the microcontroller. Which is a distribution

from Debian. This process takes around 2 hours.

4- We install openCV 2.4.10 version on microcontroller and make it's con
process takes around 22 hours.

MATLAB interfaces and supports Windows, Linux, Android and Mac OS. OpenCV leans

time vision applications.

operating system on the microcontroller. Which is a distribution

from Debian. This process takes around 2 hours.

We install openCV 2.4.10 version on microcontroller and make it's configuration. This
process takes around 22 hours.

35

and Mac OS. OpenCV leans

operating system on the microcontroller. Which is a distribution

figuration. This

	Cover letter.pdf
	Acknowledgment.pdf
	abstract.pdf
	Project Documentation.pdf

