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Abstract—Defending against cache pollution attacks, highly
detrimental attacks that are easy to implement in Named-Data
Networking (NDN), currently suffers from the lack of
coordination. Solving cache pollution attacks is a prerequisite
for the deployment of NDN, which is widely considered to be the
basis for the future Internet. We present CoMon++ to this end,
a framework for lightweight coordination that protects from
cache pollution and further attacks in NDN. Our simulation
studies demonstrate that CoMon++ efficiently and effectively
prevents cache pollution, remarkably outperforming a very
notable state-of-the-art solution.

Index Terms—NDN; Cache Pollution; Locality Disruption;
False Locality

I. INTRODUCTION

The basis of the Internet was developed in the 1960s as
a network for connecting hosts, each with a unique address.
Back then, the number of hosts was relatively very small, and
contents were merely static pages and messages. Since then,
the use of the Internet, its population, and types of exchanged
contents have changed dramatically. In particular, billions of
users are connected to the Internet today, mostly distributing
and retrieving massive (and ever increasing) amounts of
dynamic contents [1]. That is to say, the focus of networking
has shifted mostly to the content itself, rather than its producer.

With this change in the way we use the Internet, it would
be more efficient if its architecture was information-centric
rather than host-centric one. Therefore, several architectures
have been proposed in the last years in that direction
[2]. Amongst them, Named-Data Networking (NDN) [3]
is the most researched one. Furthermore, several academic
institutions and major networking manufacturers consider
NDN a potential architecture for the future Internet. Such an
outstanding position of NDN motivated us to study it, aiming
to improve its security before it is implemented in real world.

A key feature of NDN, which promises to significantly
improve the performance of content distribution, is in-network
caching. Nevertheless, it has been shown that the effectiveness
(thus usefulness) of in-network caches can be degraded greatly
by the so-called cache pollution attacks. These attacks has two
main forms: (i) disrupting cache locality by unendingly issuing
interest packets for unpopular contents, and (ii) creating a false

locality of contents in the cache by requesting the same (small)
set of unpopular contents over and over.

Although cache pollution attacks have been widely studied,
the proposed mechanisms are either of limited benefit or costly.
For instance, [4], [5] are effective in IP-based networks, but
are not applicable for NDN. As for the mechanisms that are
designed specially for NDN, some of them detect attacks
but do not counter them [6]. Others are either not highly
effective against realistic attacks [7], [8] or require expensive
computations [9]. In addition to the aforesaid limitations
and drawbacks, prior mechanisms run detection and reaction
algorithms at each node (i.e. router) independently. This makes
early defence against distributed attacks hard to achieve.
Additionally, reacting to potential attacks at each node without
coordination with the others might cause overreactions.

Our main contribution in this paper is CoMon++, a
defence mechanism for cache pollution attacks. CoMon++
is an adaptation of CoMon, our framework for lightweight
coordination in NDN. This choice is motivated by the success
stories of CoMoN in coordinating network-wide decisions in
NDN with a low overhead [10]–[12].

CoMon++ greedily selects a few nodes, located relatively
close to clients, as monitoring nodes. These nodes jointly
are capable to capture a network-wide view of attack-related
information, like content request rates and intra-ISP hit ratios.
This information is aggregated, and then used to proactively
counter against cache pollution attacks in a coordinated, yet
lightweight, way.

We evaluate the effectiveness and overhead of CoMon++
through extensive simulations applying challenging attacks
and realistic network settings. Furthermore, we compare the
effectiveness of CoMon++ to one of the most visible related
works. The results show that CoMon++ is highly effective
and superior. In particular, CoMon++ is able to improve the
overall intra-ISP hit ratio, thus decreasing inter-ISP traffic,
significantly. The results also show that the signalling overhead
resulting from coordination in CoMon++ is tiny.

The remainder of this paper is organized as follows: we give
an overview of NDN and cache pollution attacks in Section II.
Next, we review the related work in Section III. Then, we
describe CoMon++ in Section IV and evaluate it in Section V.
Lastly, we conclude the paper in Section VI.



II. BACKGROUND

In this section, we give an overview of NDN design and
pollution attacks in Subsection II-A and Subsection II-B,
respectively.

A. Named-Data Networking

The Named-Data Networking (NDN) architecture [3] was
started at Xerox PARC as an attempt to tune the host-centric
design of the Internet with its content-centric usage. It
is one of the most researched architectures for the future
Internet. Furthermore, it is supported by the National Science
Foundation’s Future Internet Architecture program in the US,
several universities as well as some of the leading players in
the networking industry.

Design concepts: The communication model in NDN is
user-driven. More particularly, each content is identified by a
unique hierarchical name (e.g. ”/ieeelcn.org/papers/salah.pdf”).
End-users use interest packets to request contents by their
names, rather than locations or host addresses. Each content is
delivered inside a data packet on the same path through which
it was requested, in the opposite way.

Each data packet contains a digital signature or a reference
to it. The content producer calculates the signature over the
content’s name and the content itself, hence linking them
to each other. The data packet contains information through
which the producer’s public key can be retrieved. This way,
the integrity and authenticity of data packets can be verified
regardless from where they are retrieved.

An essential design feature in NDN is in-network caching.
The main point of having a cache is to store the highly
popular contents and/or recently requested ones. This way, it is
likely that legitimate users get their requested contents from
in-network caches rather than going all the way to content
producers. Having the requested contents in the cache would
tremendously cut the time and cost of content retrieval.

Node model: NDN relies on a node model consisting of three
data structures:

1) Cache Store (CS): It tentatively stores data packets
passing through the node. More precisely, when a data
packet is being delivered, a copy of it is cached in the
CS of each node along the path between the content
producer and the requesting node. In case the cache is
full, a replacement algorithm (e.g. LRU or LFU) is used
to replace cached data packets.

2) Pending Interest Table (PIT): It stores recently received
requests in a two-tuple form: one records the content
name and the other records the interfaces through which
the content is requested. A PIT entry is removed either
after satisfying the corresponding interest packet or when
it times out.

3) Forwarding Information Base (FIB): This is a routing
table-like data structure. It holds a list of outgoing
interfaces against different content names or their
prefixes.

Handling interest and data packets: Every time the node
receives an interest packet, it looks for a matching data packet
in its CS. If found, the node forwards the corresponding data
packet to the same interface from which the interest packet
was received.

If no matching data packet is found in the CS, the node
looks for the name of the requested content in its PIT. If found
but the interface from which the interest packet was received
is not listed, the node appends that interface to the same
PIT entry. Otherwise, the node does nothing. Doing so, NDN
nodes avoid forwarding duplicate copies of identical interest
packets. If no matching PIT entry is found, a new one is
created (specifying the content name along with the incoming
interface). The node subsequently looks for a matching entry
in the FIB and forwards the packet accordingly.

As for data packets, the node looks for the content name of
each received data packet in its PIT. If found, the node caches
the packet, then forwards a copy of it to the interfaces through
which it was requested, and finally deletes the corresponding
PIT entry. If no matching PIT entry is found, the node simply
discards the packet.
Security by design: NDN is robust against several types of
traditional DDoS attacks [13]. In particular, prefix hijacking,
bandwidth depletion, black-holing, and reflection attacks are
eliminated or at least mitigated in NDN by design. This is
achieved through four of the above described design features:
in-network caching, PIT-based (i.e. stateful) forwarding,
name-based routing and forwarding, and content-based
security. Furthermore, NDN is not exposed to DNS cache
poisoning because name resolution is not needed.

B. Cache Pollution Attacks

With in-network caches being the core of NDN, they are one
of the primary targets for attackers. Cache pollution attacks
aim at reducing the effectiveness of in-network caches, thus
degrading their usefulness. These attacks are classified into
two main types [5]:

1) Locality-disruption attack: In this type, the attacker
continuously generates interest packets for new or
unpopular contents, thus ruining the cache locality. This
attack type might result in creating a uniform distribution
of content requests. Consequently, the usefulness of
caching is degraded, as popular contents get replaced very
often.

2) False-locality attack: In this type, the attacker repeatedly
requests a small set of unpopular contents. This would
result in creating a false locality of contents in the cache.
That is, the selected set of unpopular contents likely will
take over the caches (replacing popular contents).

As the sole mission of the attackers is to pollute in-network
caches, they would usually request contents at much higher
rates compared to legitimate users. It is also worth to mention
that locality-disruption attacks and false-locality attack are not
mutually exclusive. That is to say, the attacker could perform
an attack that somehow combines both attack types [5].



III. RELATED WORK

NDN and other information-centric architectures are
vulnerable to several types of attacks. These attacks have been
the subject of plenty of studies in the last years (the reader is
referred to [14] for a survey). In this section, we focus only
on prior studies that are highly related to the subject of this
paper – cache pollution attacks and defences designed against
them.

Cache pollution attacks have been widely studied long
before the introduction of NDN, particularly in proxy
caching servers. For instance, the authors in [5] proposed
reactive methods for detecting locality-disruption attacks,
false-locality attacks, and an attack that combines both. For
locality-disruption attacks, the authors analysed the status of
caches while such an attack is ongoing. As for false-locality
attacks, the authors analysed the behaviour of those who
perform such attacks: since attackers repeatedly request
contents from the same unpopular set of contents, it is highly
likely that the same attacker will be requesting the same
content more than once in a short time.

Another study was done by Deng et al. [4]. The authors
studied both types of cache pollution attacks and investigated
their effects on systems that use proxy caching servers. They
showed that a moderate reduction of the cache hit-ratio could
lead to an order of magnitude increase in the network traffic.

The proposed methods for mitigating cache pollution attacks
prior to the introduction of NDN work well against attacks
directed to IP-based networks. However, they are not as
effective in NDN. For example, the proposed detection scheme
for false-locality attacks in [5] is not applicable for NDN since
it is not possible to identify the source of each request (recall
that there are no host identifiers in NDN). That is, it is not
possible to know when an attacker requests the same content
more than once in a short period. Moreover, proxy cache
servers are usually scattered in the network, while a cache
in NDN is a core component in each node in the network.

In [15], Park et al. proposed an approach for detecting
locality-disruption attacks by using randomness checks of the
distribution of contents. The authors suggested this detection
approach for Internet caching in general. Theoretically, their
approach can be extended to NDN as it only depends on the
contents being requested. However, it is challenging to do
so practically as it will be computationally expensive when
applied to many caching nodes (the authors evaluated their
approach with only a single caching node in the network!).
Furthermore, the authors did not study the effectiveness of
their approach against false-locality attacks, and they only
provided a detection technique (with no countermeasure).

Recently, there have been some efforts to study cache
pollution attacks for NDN in particular. To the best of our
knowledge, the first technique for increasing the robustness
of caches against cache pollution attacks in NDN was
introduced by Xie et al. [7]. The authors proposed a technique
called CacheSheild which is a defensive technique that
aims to prevent unpopular contents from being cached. The

authors also showed that their approach works well against
locality-disruption attacks and that it can be implemented
with different cache replacement policies. One disadvantage
of CacheSheild is that a large volume of statistics needs to be
stored by the node, which takes up a large space.

Conti et al. [6] proposed a lightweight mechanism for
detecting cache pollution attacks. Their technique works by
running a learning phase at first, which defines a random
sample set of the requested contents by consumers before the
attack happens. After that, it monitors this set to determine if
an attack is ongoing. The authors showed that their mechanism
is able to detect cache pollution attacks relatively quickly with
various network topologies. However, they did not provide a
reaction technique. Furthermore, as the distribution of contents
popularity might change from time to time in a real-world
network, it is not clear how they could modify their algorithm
to run the learning phase more than once.

The authors of [8] tried to benefit from the techniques used
in [6] to identify a set of prefixes that attackers usually request
their contents from. The motivation for their method was to
reduce the storage requirements by only storing the prefixes
of the contents rather than their full names. Additionally,
their method works as a reactive technique as it defines a
black-list for the prefixes that are identified to be requested
by attackers. We argue that their method may work well
only when an attacker requests contents from a small set
of prefixes that consumers usually do not use. However, its
effectiveness will definitely get degraded when faced by a
smart attacker launching attacks specifically for this method.
For example, an attacker can request contents from a large
set of prefixes. Realistically, the attacker can create a list
of unpopular contents that are part of a prefix that has very
popular contents. By doing so, the attacker can either bypass
their detection technique or degrade the effectiveness of the
cache even more if that prefix gets added to the black-list.

Other contributions defined new replacement algorithms
for caches designed specifically to mitigate cache pollution
attacks. For example, the authors of [9] proposed a new
replacement algorithm based on neural networks and fuzzy
systems. One of the drawbacks of such a replacement
algorithm is that it is computationally very expensive when
compared to traditional replacement algorithms [16].

The aforementioned detection and defence mechanisms, in
addition to the above discussed limitations and problems, work
at node level only. That is to say, each node attempts to detect
cache pollution attacks autonomously, without coordination
with other nodes. As a consequence, early attack detection
and prevention (by the nodes located close to attack sources)
is likely not possible, especially for distributed attacks. This
is because each node alone has only a constrained view
of the features thorough which attacks can be detected
(e.g. content request rates, cache usefulness, or content
request patterns). Furthermore, mitigating potential attacks
autonomously, without coordination among the nodes, might
result in overreactions (which could harm legitimate traffic).



IV. OUR SOLUTION: COMON++

Our goal is to defend against cache pollution (i) effectively
and (ii) efficiently. On the one hand, effectiveness (as we
learned from our experiences in defending against DDoS
attacks [11], [12]) can be achieved if attacks are defended
early (before they cause a high damage) and in a coordinated
way. On the other hand, the defence mechanism is said to
be efficient if it is achieving its security goals with minimum
wasted effort or expense.

Obviously, the aforementioned two requirements contradict
each other. In more details, the first requirement implies that
each node should have up-to-date, network-wide level, view of
attack-related information. This requires coordination among
nodes very frequently. However, coordination at the level of
the Internet, or even at the level of an ISP, causes massive
volumes of network traffic. Additionally, it demands storage
space and processing power which are likely unaffordable by
modern routers [17].

We propose to address the aforementioned conflict by
adapting CoMon, our framework for Coordination with
lightweight Monitoring. This choice is motivated by three
published success stories: we presented CoMon initially in
[10] to coordinate caching-related decisions in NDN. After
that, in [11] and subsequently in [12], we adapted it to defend
against two types of interest flooding attacks (NDN-tailored,
harmful, DDoS attacks). In [10] and [11], we detailed the
design of CoMon and evaluated its performance and overhead
thoroughly. The evaluations have shown that CoMon is capable
to provide network-wide coordination, on ISP level, with a
very low signalling overhead.

We call our solution CoMon++. We give an overview of its
architecture and design principles in Subsection IV-A. After
that, in Subsection IV-B, we detail its defence mechanism.

A. System Overview

CoMon++ works within an ISP consisting of a set V of
nodes connected via a set E of edges. Fig. 1 illustrates the
system architecture which contains three main types of nodes
working together to defend against attacks as follows:
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Fig. 1: System architecture (adapted from [12]): ”IC” stands for ISP Controller, ”NN”
for NDN Node, and ”MN” for Monitoring Node.

1) ISP Controller (IC): Each ISP has a centralized controller
that receives statistics from a predetermined subset of
nodes (hereafter, Monitoring Nodes (MNs)). The IC
aggregates this statistics. It then sends ISP-wide content
request information to the MNs and other nodes.

2) NDN Nodes (NNs): These are similar to regular NDN
nodes [3] with slightly modified routing protocol and
cache replacement algorithm.

3) Monitoring Nodes (MNs): A set M ⊂ V (where
|M | � |V |) of nodes are selected as MNs. In addition
to the tasks of regular NNs, MNs continuously monitor
incoming packets and their caches, and send summaries
of their observations to the IC. MNs also receive ISP-wide
attack-related information from the IC, and subsequently
takes proper actions accordingly.

Avoiding duplication: CoMon++ avoids duplicate packet
monitoring (thus inaccurate decisions) as follows: it adds a
one-bit field called Monitored to each interest packet. The
default value of this field is 0 (meaning it has not been
monitored yet). Once the packet is received by an MN for
the first time, that MN sets the Monitored field to 1. Only that
MN updates its local attack-related statistics accordingly (to
be reported to the IC).

Placement of MNs: CoMon++ selects MNs using a greedy
algorithm called PRCS (Placement based on covered Routes
and Closeness to Sources). PRCS takes as input the cardinality
of M. It then selects MNs such that the number of unique
routes passing through at least one MN is maximized, and
simultaneously gives preference to the nodes located close to
clients (so that attacks could be defended by MNs at an early
stage).

More precisely, for each route r of length l(r), the algorithm
weights each node n located on r as follows: w(n, r) =

1 + P (n,r)
l(r) , where P (n, r) is n’s position on r. In particular,

P (n, r) = 0 for the gateway node (i.e. the closest to the
content producer), and incremented by one for each hop
towards the client.

Maximizing coverage: Although PRCS enables for a high
traffic coverage [11], it does not guarantee a complete one.
Furthermore, interest packets can be filtered by caches and
PITs before they encounter MNs. To achieve a complete traffic
coverage, the following two techniques are implemented:

1) Forward-Till-Be-Monitored (FTBM): This technique aims
to deal with the case when an NN receives an interest
packet with Monitored = 0 (i.e. not monitored) and
that NN can consume the packet (either has a matching
data packet in the CS or a matching PIT entry). In that
case, the NN sets a one-bit Served field (default value is
0), and then forwards the packet to the closest MN.
NNs in the way simply forwards the packet towards the
designated MN. When an MN receives an interest packet
with Served = 1, it updates attack-related statistics
accordingly and drops the packet afterwards.



While adding new fields to the original packets in
general is not desirable, the two fields that CoMon++
adds to interest packets (Monitored and Served) neither
significantly change the structure of the packets (only
one bit each) nor violate NDN’s design principles
(Subsection II-A). We argue that their intended benefit
worth their tiny overhead.

2) MN-Aware Routing (MAR): This technique enforces each
interest packet (thus the corresponding data packet) to
pass through an MN. This is done by modifying the
original routing protocol. More precisely, with MAR
being enabled, each interest packets is first forwarded
from the source to some (e.g. the closest) MN. After
that, the packet is forwarded from the designated MN
to its original destination.

NDN’s name-based routing and forwarding is preserved in
FTBM and MAR by treating IDs of MNs as content names.
The algorithms of PRCS, FTBM, and MAR along with their
evaluations are detailed in [10], [11], [18].

B. Defence Mechanism

Design requirement: The design of the mechanism is guided
by one requirement: maximizing the usefulness of in-network
caches, even when they are under pollution attacks.

We measure the usefulness of in-network caches by the
Intra-ISP Hit Ratio (IHR) of legitimate interests, where

IHR =
#Interests satisfied inside the ISP

#Interests seen inside the ISP
(1)

The higher the IHR of legitimate interests the lower the
fraction of interests that are satisfied from the content
producers, thus the lower the (costly) inter-ISP traffic. That is,
the defence mechanism is said to be effective when it succeeds
to either eliminate the attacks’ impact on the IHR of legitimate
interests or at least keep that impact very low.

Idea: Enhancing the cache robustness against pollution can
be done by either proactively preventing the attacks from
affecting the cache or being able to detect and then mitigate
them. Our defence mechanism follows the first approach. More
precisely, instead of detecting potential attacks, it attempts to
identify a small set of highly popular contents, and then glues
them in the caches of MNs as long as they remain popular.

We chose to use the caches of MNs for that purpose for
two reasons: First, non-served interests are enforced to cross
MNs anyway (via MAR). Second, MNs by design (via PRCS)
are located close to clients. Altogether, this means that no
additional hop count overhead (over that of MAR, which has
been shown to be low)1 is incurred.

1 The hop count overheads of MAR and FTBM are small [18]: in three real
ISP technologies [19], MAR and FTBM, respectively, increased the average
hop count from 3.65 to 4.26 and 4.32, from 4.54 to 5.38 and 5.4, and from
3.83 to 4.16 and 3.86.

The idea of gluing a small set of contents inside the ISP
is based on widely accepted published results. In particular,
measurement studies (e.g. [20]–[22]) showed that popularity
of contents in the Internet has a Zipf-like distribution: Zipf
distribution models the probability of accessing an item at
rank i out of P items as p(i) = K/iα, where

K =

P∑
i=1

1/iα

and the exponent α represents the distribution skewness. With
Zipf, usefulness of in-network caches is high when α > 1,
and very high when α > 2 [10], [23]. With such values of α,
majority of interests request a small set of popular contents.
Our mechanism attempts to identify and glue such a set.

Workflow: The workflow can be summarized as follows:

1) The MNs continuously monitor packets passing through
them. At the end of each observation period, each MN
sends to the IC a list of contents it observed along with
the corresponding number of requests.

2) The IC aggregates the received information.
3) The IC uses the aggregate information to identify

a white-list of |M | × C contents, where C is the
cache capacity per node. Selected contents are likely
to be requested very frequently during the upcoming
observation period (see the selection algorithm below).

4) The IC assigns C unique contents from the white-list to
each MN. It also informs each MN about the contents
assigned to other MNs.

5) The IC sends a copy of the white-list to the NNs.
6) Each MN dedicates its cache to the assigned C contents

over the next observation period (without replacement).
7) When an MN receives an interest for a content cached

by another MN, it reroutes the interest towards that MN.
8) The NNs cache contents similar to ordinary NDN nodes.

The only difference is that they exclude (i.e. do not cache)
the contents registered in the white-list.

Selecting the contents of the white-list: One straightforward
way for selecting the contents of the white-list is to opt the
most |M |×C requested contents at the end of each observation
period (Algorithm 1).

While the selection strategy outlined in Algorithm 1 is
simple, it is not robust against locality-disruption attacks. More
precisely, under a locality-disruption attack, it is likely that
the white-list will contain contents requested frequently by
attackers to disrupt the locality of popular contents. Such
contents should not be selected!

We propose to address the aforementioned problem by
restricting the entrance to the white-list. In particular, the IC
runs Algorithm 2 at the end of each observation period. In
this algorithm, the IC calculates a score (scorec) for each
requested content c (Eq. 3), using an aging-like technique.



Algorithm 1 Basic Selection Algorithm
1: L← ∅ . White-list

2: for each requested named-content c do
3: Calculate the ISP-wide request rate:

RRc =
#Interests requesting c

observation period length (sec.)
(2)

4: end for

5: Sort the contents by their request rates (highest to lowest)
6: L← top |M | × C contents

More precisely, it sums over x consecutive observation periods
the content’s RR-rank multiplied by a

n , where a is a constant
and n is the index of the observation period (n = 1 for the
current observation period, and incremented by 1 each step
backward)2. Lastly, the IC sorts the observed contents by their
scores, and registers the top |M |×C contents in the white-list.

By taking into consideration contents’ ranks during former
observation periods, it is likely that popular contents achieve
high scores. In contrast, contents that got advance RR-ranks
recently only because they have been requested frequently by
locality-disruption attackers will likely achieve lower scores.

Algorithm 2 Advanced Selection Algorithm
1: L← ∅ . White-list

2: for each requested named-content c do
3: Calculate the ISP-wide request rate RRc using Eq. 2
4: end for

5: Sort the contents by their request rates (lowest to highest)

6: for each requested named-content c do
7: Calculate a score:

scorec =

x∑
n=1

rankc ×
a

n
(3)

8: end for

9: Sort the contents by their scores (highest to lowest)
10: L← top |M | × C contents

Robustness against cache pollution attacks: By carefully
selecting contents of the white-list and subsequently gluing
them inside the ISP, the impact of locality-disruption attacks
implicitly is eliminated or at least significantly mitigated.

However, since our mechanism attempts to glue popular
contents in the caches of MNs, one might think that it boosts
false-locality attacks (rather than countering them)! This is not
true. More precisely, these attacks request a very small set κ
of contents (very likely |κ| 6 |M | × C). So, even though
the mechanism might result in gluing fake popular contents
in the caches of MNs, it implicitly protects the remaining
much larger cache space (recall that |V | � |M |). In particular,
assuming |κ| 6 |M |×C, at least (|V |−|M |)×C slots remain
unaffected, i.e. can be used to cache real popular contents.

2 To reduce memory requirements, we use a small value of x (x = 3).

V. EVALUATION

In this section, we present the simulation study that we
performed to evaluate the effectiveness of our solution as well
as its signalling overhead. In Subsection V-A, we introduce the
evaluation parameters. Next, in Subsection V-B, we describe
the evaluation setup. Lastly, we present and discuss the results
in Subsection V-C.

A. Evaluation Parameters

We use the following two metrics in our evaluation:

1) Intra-ISP Hit Ratio (IHR) of legitimate interests: This
metric, as defined and discussed in Section IV-B (Eq. 1),
is used to measure the impact of cache pollution attacks
as well as the effectiveness of our defence mechanism
and CacheSheild. The attack is considered effective if
low IHR of legitimate interests is achieved. The opposite
is true for defence mechanisms.

2) Signalling overhead: The value of the signalling overhead
is calculated by normalizing the total size of control
messages exchanged between the nodes and the IC
(messages marked ”1” and ”2” in Fig. 1) by the total
size of regular data packets.

B. Evaluation Setup

We implemented CoMon++ and the attacks in ndnSIM
[24], a widely used simulator in the NDN community. For
comparison purposes, we also implemented CacheShield [7],
one of the most notable related works.3

We experimented with three real ISP network topologies
measured by the Rocketfuel project [19]. The results of the
three topologies are very similar and lead to equal conclusions.
Due to space constraints, we will discuss the results of one
network topology only: the AS-3967 topology (Fig. 2). This
network consists of 79 nodes, connected via 147 edges. It has
an average degree of 3.72 and a diameter of 10.

  Fig. 2: AS-3967 network topology

3 The source codes along with the configuration files and network
topologies can be found here: https://github.com/fataftamohammad/CoMon-/



At the beginning of each experiment, the simulator
randomly selected 70% of the nodes as access nodes (through
which clients connect to the ISP) and three of the rest as
gateway nodes (through which content providers, outside the
ISP, are accessed). The simulator also randomly selected 25%
of the clients as attackers (unless otherwise mentioned). Only
top d10%e PRCS-ranked nodes acted as MNs.

Each legitimate client issued interest packets at a relatively
slow rate: 0.05 interest packets per second (ipps). Each
attacker issued interest packets nine times faster, i.e. at a rate
of 0.45 ipps. We also experimented with faster attack rates.
However, the impact on the cache effectiveness was marginal.

We fed the servers with 30, 000 contents (i.e. catalogue size
S = 30, 000). Attackers in the locality-disruption attack and in
the false-locality attack sent requests for 0.05×S contents and
0.0005×S contents, respectively. These values were selected
carefully such that the attacks (when no defence is used)
remarkably degrade the usefulness of caches.

In order to increase the competition among the contents
on the available cache space, and simultaneously increase the
effectiveness of the attacks, we used small caches with respect
to the catalogue size. In particular, we used a uniform cache
size of C = 3 contents, i.e. C = 0.0001 × S. The impact
of attacks with larger cache sizes (we also experimented with
C = {9, 45, 145}) was low, thus is not discussed below.

Following the aforementioned measurement results (see
Section IV-B), we modelled the popularity of contents by Zipf
distribution. Since there is no agreement in the literature on
the skewness parameter (α), we performed simulations with
varying values of α = {0.9, 1.5, 2.5}.

To avoid accidental results, each experiment was repeated
20 times. In addition, each experiment lasted for a long time,
particularly for 1, 000, 000 simulation seconds. The attacks
started at second 260, 000 and stopped at 860, 000. The length
of the observation period was set to 20, 000 seconds. These
time durations were long enough to evaluate both the impact
of the attacks and the effectiveness of the defence mechanism.

We used a small data packet size of 1100 bytes (smaller than
the Ethernet’s MTU) to avoid biasing the signalling overhead.

C. Results

Effectiveness of the attacks and defence mechanisms:
We compare the IHR of legitimate interest packets for three
systems: (i) a system with no defence mechanism, (ii) a system
enabling CacheShield, and (iii) a system enabling CoMon++.
We report the IHR of legitimate interests before the start of
the attack, during the attack, and after disabling the attack. We
do so separately for the locality-disruption attack and for the
false-locality attack, once with α = 0.9, once with α = 1.5,
and once with α = 2.5. Altogether, we have 18 different cases.

To not bias to CoMon++, we show the results of the run
in which we obtained the minimum IHR of legitimate interest
packets with CoMon++, and compare them with results of
CacheShield and the No-Defence scenario when each of them
achieved the maximum IHR of legitimate interest packets. It
worth also to mention that the results of repeated runs were

nearly identical. Therefore, we argue that the results are not
only unbiased, but also are representative for all the runs.

We depict the results in Fig. 3: under the locality-disruption
attack (Fig. 3a) and under the false-locality attack (Fig. 3b).
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Fig. 3: IHR of legitimate interest packets

The results can be summarized as follows:

1) Both attacks had a remarkable negative impact on
IHR, thus on the usefulness of in-network caching. In
particular, in the case of α = 0.9, as to be expected, the
usefulness of caching was low (IHR of legitimate interests
was about 5.5%), and it was decreased by both attacks
to about 2.5%. With α = 1.5, the locality-disruption
attack and the false-locality attack lowered the IHR from
about 62% to 42% and 45%, respectively. In the case
of α = 2.5, the IHR was decreased from about 96% to
about 78% by the locality-disruption attack and to about
80% by the false-locality attack.

2) CacheShield had almost no impact on the two attacks in
the case of α = 2.5, and it had a marginal positive impact
in the cases of α = {0.9, 1.5}. That is, CacheShield was
ineffective against such realistic cache pollution attacks.



3) CoMon++ had a notable positive impact on the IHR
results, thus on the cache effectiveness and usefulness.
This is true not only when the network is under attacks,
but also in the absence of attacks. In particular, with
α = 0.9, the IHR of legitimate interests was improved
by CoMon++ in the absence of attacks from about 5.5%
to about 22%. In the presence of locality-disruption, the
value remained around 22%. Under false-locality, the
achieved IHR was about 17%.
With α = 1.5, CoMon++ increased the IHR of legitimate
interests in the absence of attacks from about 62% to
more than 83%. During attacks, it increased the IHR of
legitimate interests under the locality-disruption attack
and the false-locality attack from about 42% to above
82% and from about 45% to above 77%, respectively.
With α = 2.5, CoMon++ raised the IHR of legitimate
interests when no attack exists from about 96% to
more than 99%. As for its effectiveness against cache
pollution attacks, it was able to raise the IHR of legitimate
interests under the locality-disruption attack from about
78% to 94% and more. The obtained improvement under
false-locality attack was even higher: raised from about
80% to more than 98%.

Results under highly aggressive attacks: The results above
showed that the system was simulated under effective attacks,
and also that CoMon++ is effective against them. We
performed further experiments to test the effectiveness of
CoMon++ against much more aggressive attacks. In particular,
we increased the ratio of malicious clients from 25% to 90%.

We plot the results in Fig. 4. They can be summarized as
follows: 4

1) As to be expected, the new attacks had larger negative
impacts on the IHR of legitimate interests. In particular,
in the case of α = 1.5, both the locality-disruption attack
and the false-locality attack decreased the IHR from about
57% to about 23%. With α = 2.5, the two attacks lowered
the value from about 95% to roughly above 50%.

2) Similar to the results of less aggressive attacks,
CacheShield had almost no impact on the two new attacks
except a very small positive impact in the case of α = 1.5.

3) CoMon++ improved the usefulness of caching under such
aggressive attacks remarkably: with α = 1.5, the IHR of
legitimate interests was raised by about 20% and 46%
under locality-disruption and false-locality, respectively.
In the case of α = 2.5, the improvements under the two
attacks were about 8% and 45%.

Over all, the results above demonstrate the effectiveness
of CoMon++. In particular, the impact of cache pollution
attacks (even highly aggressive ones) can be remarkably
mitigated when CoMon++ is enabled. Furthermore, CoMon++
(by gluing the most popular contents inside the network)

4 We omit the results of α = 0.9 because the corresponding attack-free
cache usefulness is very low, as discussed above.
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Fig. 4: IHR of legitimate interests under highly aggressive attacks

can enhance the effectiveness of in-network caches even in
attack-free scenarios.

Signalling overhead: Lastly, we look at the amount of
signalling overhead caused by CoMon++ for coordination
(i.e. for exchanging control messages between the IC and
the nodes at the end of observation periods). The results of
all experiments show that the signalling overhead is tiny.
In numbers, in all the experiments that we performed, the
signalling overhead was always below 0.003%.

The signalling overhead was similar with the two attack
types. This is to be expected because the exchanged
information is the same.

VI. SUMMARY AND FUTURE WORK

The main contribution that we presented in this paper is
CoMon++, a coordinated solution for cache pollution attacks
in NDN. The main feature of CoMon++, which distinguishes
it from state-of-the-art solutions, is relying on a network-wide
(rather than node-level) view of attack-related information.
CoMon++ is designed to capture such a view by a small
fraction of the network nodes.



We evaluated CoMon++ through an intensive simulative
study. The results showed that CoMon++ is highly effective
and remarkably outperforms a notable state-of-the-art solution.
The results also showed that the signalling overhead incurred
by CoMon++ for coordination is very low.

The current design of CoMon++ can be improved in
several ways. For instance, fault tolerance and load balancing
can be enhanced by redesigning the ISP controller in a
distributed way. Furthermore, multiple ISPs could cooperate
in collecting attack-related information and subsequently in
defending against potential attacks.
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