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Abstract 

We introduce a new approach for enhancing the performance of predic­ 

tion of biological attributes based on protein sequences using a combination 

of classification algorithms and clustering analysis. Before applying classifi­ 

cation, we use clustering analysis in order to find clusters of similar proteins. 

A classification algorithm is then applied on each cluster. The proposed ap­ 

proach is suitable for large datasets, when high classification accuracy and 

fast convergence are required. 

Different descriptors based on the physicochemical properties of amino 

acids are used, some of them are native properties and the others are de­ 

rived properties. Two encoding methods are used to represent the protein 

sequences using the descriptors. These descriptors and encoding methods 

are analyzed to enhance the performance of the proposed approach. 

Three standard benchmark datasets, Caspase, Major Histocompatibility 

Complex class II (MHC-II) and the membrane proteins are used to examine 

the proposed approach. Many experiments with different parameters are 

performed and the results are cross validated. 

The results show that applying clustering prior to classification gives 

higher prediction accuracy than using the classification without clustering, es­ 

pecially when using the membrane proteins dataset and the Caspase dataset. 

In addition, the result of time performance, especially when using the MHC-II 
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dataset, shows that the proposed approach succeeds in reducing the train­ 

ing time of the classification algorithm significantly while maintaining the 

accuracy of prediction. That means our approach can handle large datasets, 

without the need to reduce the data. 
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Chapter 1 

Introduction 

Proteins represent an important component in living cells. They perform 

most biological functions inside and outside them and determine the overall 

body status in health and disease [28]. Each protein within a given organism 

has a specific role. Without proteins, the organisms would be unable to 

reform, adjust or protect themselves [61]. 

In the field of Bioinformatics, prediction of biological attributes such as 

function, structure and localization, based on protein sequences is gaining 

more attention[53]. Using machine learning algorithms, predication is used 

to identify the family or the functional class to which a newly discovered 

protein belongs, and it helps the researcher to identify the functions and 

structures of unknown proteins in a faster, more accurate, and more cost 

effective manner [53]. 

Recently, several researchers have focused on using different classifica­ 

tion techniques to solve various protein prediction problems, such as assign­ 

ing function, structure, sub-cellular location, and role in interaction net­ 

works ... etc. 

In bioinformatics, proteins are represented as strings of characters of vari­ 
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able lengths as follows: Let s = TL,rg,···+T, be a protein sequence of length 

[s] == n over an alphabet >, where r, represents the i, residue in the se­ 

quence, and 3 = {G,A,V,L,I,P,F,Y,W,S,T,N,Q,C,M,D,E,H,K,R}. 
Each element in Eis called amino acid. Usually when n < 50 we refer to the 
protein sequence as a peptide[39]. 

When we wish to apply machine learning techniques, such as classifica­ 

tion or clustering, to protein sequences or peptides, we are faced with two 

facts. 1) the proteins are represented as characters and as not numeric values 

and 2) the proteins have different lengths. Since machine learning techniques 

usually require that all input data be numeric and fixed length, we need to 

encode the proteins into a new representation. 

Formally an encoding method can be considered as a transform x = 

E(s,,p), where s; is the protein sequence of arbitrary length n, and z is 

the encoded vector of length p. This means that the encoding transform E 

unifies the length of the protein sequences to a given length p, which makes 

the classification process possible. The values in s are also changed by the 

encoding method accordingly with minimum loss of information. 

The evaluation process of any classification method is usually performed 

by first dividing the data of interest into training and testing set. Then, the 

classifier is trained to map each element of the training set to a given class. 

After that, the classifier is evaluated by measuring its ability to correctly pre­ 

dict (classify) the elements of the testing set based on the gained knowledge 

through training. 

A binary classifier is a special classifier which can recognize two classes. 

The formal definition of binary classification is as followes, we are given a 

training dataset, D = {(a1,91),(a,a)·+(@,)} where z, represents a 

high dimensional feature vector of a given length m and Yi E {-11} is 
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1.1. THESIS OBJECTIVE 

its corresponding label. In the case of protein prediction, z, is an encoded 

protein sequence and Yi is its corresponding biological binary propriety. Now, 

Let r be a classification method defined as r(D) = ), where is the learnt 

experience through the classification function r. Once we obtain , we can 

apply it to further classification of novel elements. 

Usually classification leads to very good to excellent results, when the 

data of interest can be easily separable. This is not always the case. therefore 

sometimes we need to process the data prior to classification as explained 

below. 

1.1 Thesis objective 

In this thesis, we propose a method to enhance the performance of prediction 

( training time and accuracy )for protein attributes using a combination of 

classification algorithms and clustering analysis. We apply clustering prior 

to classification. A separate classifier for each cluster is used for protein 

prediction. This will make the classifiers work with easily separable data 

inside each cluster and will eventually enhance the prediction power of the 

classifiers. 

1.2 Contributions 

The following summarise the main contributions to the thesis: 

• We propose a new approach that will enhance the prediction accuracy 

and computation time of protein attribute prediction by applying clus­ 

tering prior or classification. 

• We study the effect of different encoding methods on the performance 
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1.3. THESIS ORGANIZATION 

of the proposed approach. 

• We verify the results using different data sets in order to ensure general 

applicability of the approach regardless of the protein problem 

1.3 Thesis Organization 

The remaining parts of the thesis are organized as follows: chapter 2 describes 

the theories and basic concepts that are needed to understand the rest of the 

thesis. Chapter 3 contains a summary of some previous works related to our 

work. Chapter 4 covers the methodology used in this thesis to enhance the 

accuracy of the prediction, and the description of the benchmarks. Chapter 5 

demonstrates experiments and the results achieved by the work, and results 

discussion. Finally, Chapter 6 concludes the work and propose some new 

direction for the future work. 
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Chapter 2 

Background 

This chapter gives a theoretic background needed for understanding the rest 

of the thesis. The first section explains the physicochemical properties of 

amino acids. The second section explains the encoding methods for pro­ 

tein sequences. In the third section of this chapter, the machine learning 

techniques needed in this thesis are explained, such as K-mean clustering al­ 

gorithm and the SVM classifier. The final section covers the main techniques 

for feature selection and extraction. 

2.1 Physicochemical properties of amino acids 

Amino acids that form the proteins determine the properties of proteins, each 

amino acid has a set of physicochemical properties (PCPs), these PCPs can 

be used to study protein sequence profiles, folding and function [37]. 

The amino acid properties can be represented by the set of numerical 

values which are known as the amino acid indices [57]. 
' 

A few databases of amino acid indices have been constructed and regularly 

maintained. The most important ones are: AAindex and APDbase [30] [37]. 

AAindex contains 544 properties [30], where APDbase contains 242 proper- 
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2.2. ENCODING THE PROTEIN SEQUENCES 

ties [37]. In this thesis, we refer to these properties as native properties. In 

addition, researchers have generated new properties from the native proper­ 

ties which we refer to as derived properties (see Section 4.3). 

Table 2.1 presents an example of 3 physicochemical properties of 10 amino 

acids, the properties are size, charge and hydrophobic (a measure of how 

strongly the side chains are pushed out of the water) [18]. 

Table 2.1: Examples of physicochemical properties. An example of three 
physicochemical properties(size ,charge and Hydrophobic) for 10 amino acids, 
these values are taken from AAindex database 
Amino acid R K D Q N E H S T P 
Size 156 128 115 128 114 129 137 87 101 97 
Charge 10.8 9.7 2.8 5.7 5.4 3.2 7.6 5.7 5.9 6.5 
Hydrophobic -7.5 -4.5 -3 -2.9 -2.7 -2.6 -1.7 -1.1 -0.8 -0.3 

2.2 Encoding the protein sequences 

In order to apply machine learning algorithms to investigate protein se­ 

quences, the protein sequences need to be represented numerically. As defined 

previously in Section 1.1 the encoding is a transform function X = E(s,,p). 

The two major encoding methods of protein sequences are: encoding methods 

based on the amino acid sequence and encoding methods based on physico­ 

chemical properties of the amino acids [43]. This section consists description 

of some of these methods. 

2.2.1 Encoding methods using the amino acid sequence 

Different methods have been developed to encode the sequences using the 

amino acids characters. Some of these methods are: 
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2.2. ENCODING THE PROTEIN SEQUENCES 

Amino acid composition (AC) 

This is a simple encoding method. It finds the frequency of each amino acid 

in the protein sequence. Therefore , the encoded vector contains 20 numerical 

features regardless of the length of the protein sequence [ 10]. Figure 2 .1 shows 

an example of AC encoding. 

Peptide sequence [RQANFLGKIWPSHKGR ] 

Amino Acid A C D E F G B I KL MIN P Q R S T V 
ACencoding 1 0 0 0 2 1 1 2 1 0 1 2 i 0 o 

Length = 20 

Figure 2.1: An example of AC encoding 

The dipeptide composition 

The dipeptide is a component that contains two amino acids. Given that 

we have twenty amino acids, we can have a combinations of 400 dipeptides. 

The dipeptide composition calculates the frequency of each dipeptide in the 

sequence, this method has an advantage of taking into account the order of 

amino acids in the sequence [10]. Figure 2.2 shows an example of dipeptide 

composition encoding. 

Orthonormal Encoding 

Orthonormal Encoding (OE) is also called distributed encoding or sparse 

encoding. In OE, each amino acid is represented by a 20-bit vector with 19 

bits set to zero and one bit set to one, the exist of amino acid at a given 

residue is encoded as 1 [43]. Figure 2.3 shows an example of OE encoding. 
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2.2. ENCODING THE PROTEIN SEQUENCES 

Peptide sequence[RQACFLGKY WPSHKAR ] 

Total number of allpossible peptides in the protein sequence=15. 

First line: 20 components of dipeptidecompositionbeginningwith_amino acidA 

Dipeptide AA AC AD AE AF -- AQ AR AS AT AV AW A¥ 
Dipeptide 0 l/15 0 0 0 gg# 0 l/15 0 0 0 0 0 composition 

. 
Length=20 , 

Second line: 20 components of dipeptide composition beginning with amino acid C 

Di "de CA cc CD CE CF -· co CR cs CT CV cw 
Dipeptide 0 0 0 0 1/lS ...... 0 0 0 0 0 0 composition 

Length=20 

CY 
0 

c -. 
~ s 
~ c 
< r ... 
= 7 
ta c 

Third line: 20 components of dipeptide composition beginning with amino acidD 

Twenty-One: 20 componetts of dipeptide composition beginning with amino acid Y 

- 
Figure 2.2: An example of the dipeptide composition 

Peptide sequence RQANFLGKIWPSHKGR 
Length of the sequence =16 

OE for R amino acid 
l 

OE for Q amino acid 

Figure 2.3: An example of the OE encoding 
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2.2. ENCODING THE PROTEIN SEQUENCES 

2.2.2 Encodings using PCPs of amino acids 

The PCPs of amino acids help to determine the structure and function of the 

protein sequence [34]. There are different methods used to encode sequences 

based on physicochemical properties of amino acids, some of these methods 
are: 

Concatenating method 

This is a simple method used to represent each amino acid numerically as a 

set of different physicochemical properties. For example if the length of the 

sequence is N and each amino acid represent by 5 properties, then the length 

of the feature vector will be N x 5 [48]. So in this method, the length of the 

feature vector depends on the length of the protein sequence and the number 

of selected PCPs. Figure 2.4 shows an example of this encoding method. 

Peptide sequence 
Length= 11 

A\A'c'v/A 

F.,..meV<ctM /56 T •'\ ··-··- 
Size Charge Hydrophobic 

[a7.s.7 -1.1 [.....-] 

«- Length= ]] "3 

Figure 2.4: An example of encoding using concatenating methods, Three 
PCPs were used (size, charge, and hydrophobicity) 

The average physicochemical encoding 

This encoding is simple, and it invariant to the length of the sequence, thus 

mainly suited for proteins. Each feature is represented by the average value 

of a physicochemical property with respect to the amino acid in the sequence, 

therefore the feature vector is composed by F features where Fis the number 

10 



2.2. ENCODING THE PROTEIN SEQUENCES 

of selected PCPs [43]. Figure 2.5 shows an example of an average physico­ 
chemical encoding method. 

Peideseauece A]a_v]AA,E]A_y] 
€- Length=8 > 

[o.s ] o.6 [o.s] o.6 [o.s] o.5 [o.s] o.6 I o.8 I o.6 I o.s I o.3 J o.8 I o.6 [o.7] o.5 I 
/ \ 

Hydrophobic Charge 

Hydrophobic Charge 
Feature Vector j 0.77 I o.SS I 

e- F=25> 

Figure 2.5: An example of average physicochemical encoding. Two PCPs 
were used (hydrophobic and charge) after normalized it to be between O and 
1 

Autocorrelation 

Autocorrelation describe the level of correlation between two objects based 

on their specific structural or physicochemical property, which are defined 

based on the distribution of amino acid properties along the sequence [44]. 

Eight amino acid properties are used for deriving the autocorrelation descrip­ 

tors, these properties are: (hydrophobicity scale, average flexibility index, 

polarizability parameter, free energy of amino acid solution in water, residue 

accessible surface areas, amino acid residue volumes steric parameters, and 

relative mutability [44]. 

There exist mainly three types of autocorrelation descriptors: Moreau­ 

Broto Moran and Geary autocorrelation descriptors. All PCPs values of 
' 

amino acids should be normalized before applying these encodings, the nor­ 

malization process describes in Equation 2.1. 

P- P 
P,= 

G 
(2.1) 
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2.2. ENCODING THE PROTEIN SEQUENCES 

where P, is the PCP after normalized, P is the PCP before normalized, 

P is the mean of the PCP of the 20 amino acids and is defines in Equation 
2.2. 

\20 P2as' 
20 

and a is the standard deviation of the PCP, see Equation 2.3. 

1 20 

• 2­ i=l 

(2.2) 

(2.3) 

1. Normalized Moreau-Broto autocorrelation descriptors 

The normalized Moreau-Broto autocorrelation descriptors [44] can be 

defined as follows: 

W-d pp 
ATS(d)== Zr=1 ii+d 

N d d = 1, 2, 3, ...,nlag (2.4) 

where: 

• d is called the lag of the autocorrelation ( e.g: lag 1 means corre­ 

lating between the variable Xi and X, ;). 

• ~ and P,,a are the properties of the amino acids at position i and 

i + d, respectively. 

• nlag is the maximum value of the lag. 

2. Moran autocorrelation descriptors 

The Moran autocorrelation descriptors [44] can be defined as follows: 

d =1,2, 3, ... , 30 (2.5) 

3. Geary autocorrelation descriptors 
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2.2. ENCODING THE PROTEIN SEQUENCES 

The Geary autocorrelation descriptors [44] can be defined as: 

1 w-a]. ,° I(d)= ~ L..-i=l P,- Pa 
I ..._,.N - 1 2a1(P,- P)? d=1,2,3,... ,30 (2.6) 

The quasi-sequence-order descriptors 

The quasi-sequence-order descriptors are proposed by KC.Chou, et.al (2000). 

They are derived from the distance matrix between the 20 amino acids. The 

physicochemical properties computed include hydrophobicity, polarity, and 

side-chain volume [14]. 

1. Sequence-order-coupling Number The d--th rank sequence-order-coupling 

number is defined as [14]: 

N-d 

T- 2 6 
i=l 

f, 

d= 1,2,3, ... ,nlag 

where di,i+d is the distance between the two amino acids at position i 

and i + d. 

2. Quasi-sequence-order Descriptors: In this case, for each amino acid 

type a quasi-sequence-order descriptor can be defined as [14]: 

X, = r,4.5@@p 
L...,r=l r U 2d=1 d 

r=1,2,3,... ,20 

(2.7) 

(2.8) 

where Jr is the normalized occurrence for amino acid, and w is a weight­ 

ing factor (often w =0.1). 
These are the first 20 quasi-sequence-order descriptors. The other 

13 



2.2. ENCODING THE PROTEIN SEQUENCES 

quasi-sequence-order descriptors are defined as: 

Xa= wTa ao 
320 r_ rilag 
LJr=l r + W LJd=l Td 

d = 21, 22, .., 20 + nlag (2.9) 

The pseudo amino acid composition 

The pseudo amino acid composition (PseAAC) is similar to the quasi-sequence 

order descriptor, it proposed by Chou (2001) [15]. The pseudo amino acid 

descriptor is made up of a (20+k) vector in which the first 20 components re­ 
flect the effect of the amino acid composition and the remaining components 

reflect the effect of sequence order by the correlation factors of the different 

ranks. The last K features are obtained based on a given physicochemical 

property [15]. 

The PseAAC can be described as follow: 

If the protein sequence have L amino acids residues: R1R2R3 .... RL-2RL-1RL 

Sequence order effect can be approximately reflected with a set of se­ 

quence order-correlated factors as defined below: 

h,= r'; >;' eR, Rs) 
0,= rs 2'o, Rs) 
hs =r's >,'eR, Rs) 

(X < L) 

(2.10) 

The 0, is called the first-tier correlation factor that reflects the sequence 

order correlation between all the most contiguous residues along a protein 

chain, 02 the second-tier correlation factor that reflects the sequence order 

correlation between all the second most contiguous residues, and 0, is the 

X- th tier correlation factor [15]. 

14 



2·2· ENCODING THE PROTEIN SEQUENCES 

The correlation factor can defined as: 

(2.11) 

where F(R,) is the feature (e.g. size) value of the amino acid R,. The 

value is converted from the original feature value of the amino acid according 

to the following equation: 

2 5320,,p,(R,). 5320 o(@,) 
Zvi==] 'O\,Fi Zvi=l 20 

20 

where F,(R,) is the original feature value of the amino acid R,. So, the 

feature vector (V) of the protein can be represented by a (20 + .X) vector as 
follows: 

(1 <z<20) 

(21 <a<20+X) 

(2.12) 

(2.13) 

where fx(x = l, 2, .,20) represents the amino acid composition (AC), 

which was described earlier. 

Composition, Transition and Distribution(CTD) 

This method depending on distributing amino acids into groups based on 

their PCPs, it was developed by Dubchak et al. (1995). I this method the 

amino acids are divided into three classes according to its attribute and each 

amino acid is encoded by one of the indices 1, 2 and 3 according to which 

class it belonged. The amino acids distributed into three classes based on 7 

physicochemical properties [17], see Table 2.2. 

15 



2.2. ENCODING THE PROTEIN SEQUENCES 
-----=--------------- 

Table 2.2: Distribution the amino acids into groups based on their PCPS [r] 
Attributes Group 1 Group 2 Group 3 Hydrophobicity Polar Neutral Hydrophobicity 

(R,K,E,D Q.N) (G,A,S,T,P,H,Y) (C,L,V,I,M,F,W) Normalized van 0-2.78 2.95-4.0 4.03-8.08 der Waals Vol- (G,A,S,T ,P,D,C) (N,V,E,Q,I,L) (M,H,K,F,R,Y,W) ume 
Polarity 4.9-6.2 8.0-9.2 10.4-13.0 

(L,I,F,W, C,M,V,Y) (P,A,T,G,S) (H,Q,R,K,N,E,D) 
Polarizability 0-1.08 0.128-0.186 0.219-0.409 

(G,A,S,D ,T) (C,P,N,V,E,Q,I,L) (K,M,H,F,R,Y,W) 
Charge Positive (K,R) Neutral Negative (D,E) 

(A,N,C,Q,G,H,I,L, 
M,F,P,S,T,W,Y,V 

Secondary Helix Strand Coil (G,N,P,S,D) 
Structure (E,A,L,M Q,K,R,H) (V,I,Y,C,W,F,T) 
Solvent Accessi­ Buried Exposed Intermediate 
bility (A,L,F,C ,G,I,V,W) (R,K,Q,E,N,D) (M,S,P,T,H,Y) 

Each sequence converted into a new sequence where each amino acid is 

represented by a number of a group depended on each previous attribute. 

Then, we can find three values for each sequence, these values represents the 

composition (C), transition (T) and distribution (D). 

Example: For a sequence: FAKITAAMCQEIDESSGHGA and accord­ 

ing to the hydrophobicity division in Table2.2, the sequence is encoded as: 

32132223311311222222 

1. Composition: Composition can be defined as: 

i = 1,2,3 (2.14) 

where n, is the number of i in the encoded sequence and N is the length 
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2.2. ENCODING THE PROTEIN SEQUENCES 

of the sequence [41], for each sequence we can find 21 values represent 

the composition for 7 attributes, and for each attributes three groups. 

Based on the previous example, the composition values of the sequence 

are: C, = 5/20, C» = 10/20 and C, = 5/20 Where 20 is the length of 
the protein sequence. 

2. Transition: The transition represent the transition from one group to 

another for the same attribute [41], e.g.: transition from class 1 to 2 is 

the percent frequency with which 1 is followed by 2 or 2 is followed by 

1 in the encoded sequence. The transition can be defined as: 

T,,_Ty + ny 
u N- 1 ij = [1, 2], [1, 3], [2, 3] (2.15) 

Also, for each sequence we can find 21 values represent the transition. 

Based on the previous example the transition values of the sequence 

are: T» = 2/19, T%% = 3/19 and Ts = 4/19 

3. Distribution: The distribution descriptor describes the distribution of 

each attribute in the sequence. There are five distribution descriptors 

for each group and they are the position percents in the sequence for 

the first residue, 25% residues, 50% residues, 75% residues and 100% 

residues [41]. For each sequence we can find 105 values represent the 

distribution for 7 attributes, and for each attributes three groups, where 

5 values (residues) for each group. 

Based on the previous example the distribution values of the group 2 in 
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of the sequence [41], for each sequence we can find 21 values represent 
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2.3. MACHINE LEARNING TECHNIQUES 

the sequence are: There are 10 amino acids encoded as 2 in the above 

example, the residues for the group 2 in the encoded sequence are 2 (for 

the first position), 5 (for 25% from the 10), 15 (for 50% from the 10), 17 

(for 75% from the 10) and 20 (for 100% from the 10), so the distribution 

descriptors for group 2 are: 10.0 (2/20x 100), 25.0 (5/20 x 100), 75.0 

(15/20 x 100), 85.0 (17/20 x 100) and 100.0 (20/20 x 100), respectively. 

2.3 Machine Learning Techniques 

Machine learning is concerned with the development of algorithms and tech­ 

niques that allow computers to learn, it can be defined as a science of al­ 

gorithmic methods of learning from experience with the goal of improving 

performance on selected tasks [40]. 

Mainly there are two types of machine learning, these types are [25]: 

• Supervised learning: where both input and target pairs should be pro­ 

vided during the learning process, such as classification 

• Unsupervised learning: where only input and no target is required 

during learning, such as clustering 

This section introduces a description of classification and clustering. 

2.3.1 Cluster Analysis 

Clustering is a very common technique in unsupervised machine learning to 

d. s of data that behave similarly based on features describes the 1scover group 

b · t Th lt of cluster analysis is a number of heterogeneous groups o1.jects. e resu 

· h h contents inside each group, where there are substantial wit) omogeneous 

d·a b t the groups but the individuals within a single group are lllerences erween 
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2.3. MACHINE LEARNING TECHNIQUES 

similar [56]. One advantage of the clustering is that it can be used to reduce 

the data, by replacing all of the elements in a cluster with a single repre­ 

sentative element. Formally, the aim of clustering is to automatically collect 

the data into groups (clusters) based on their similarities. A clustering al­ 

gorithms re-arrange a dataset 21,22,···,4, into the clusters {cr, cg,···+c}, 

where k <n, such that the elements , and a, € c,, iff A(a,,1,) <. oth­ 

erwise z, and ; belong to different clusters, where A is a distance function 
and E is predefined distance. 

A good clustering method will produce high quality clusters in which the 

similarity in the intra-class is high, and the inter-class is low, see Figure 2.6 

• 
Intra-cluster 
distances are 
minimized 

distances are 
maximized 

Figure 2.6: An example of clustering showing intra and inter distances. The 
distances between the instances within the same cluster should be minimized, 
and between the clusters should be maximized 

There are different clustering approach such as K-mean [56], hierarchical 

clustering [56] and SOM clustering[60]. Here we explain the most common 

and simplest one, which is the K-mean. 

K-mean 

1 • h · ne of the simplest clustering algorithms that solve the K-means a gont m 1s 0 

well-known clustering problem. The k-mean algorithm classify a given data 

19 



2.3. MACHINE LEARNING TECHNIQUES 

based on a certain number of clusters (assume k clusters), for each cluster 

the centroid should be defined [56]. K-mean is described by Algorithm 1. 

First, the number of clusters and the initial centroids (points representing 

the centers of the clusters) should be determined, then each point in the 

sample assigned to the nearest cluster centroid using the Euclidean distance 

in Equation 2.16, where n represents the dimension. 

(2.16) 

The cluster centroids are updated based on the mean of the data points 

in its cluster, the algorithm stops when the centroids do not change. 

The K-mean algorithm is sensitive to the initial selected cluster centroids, 

so the k-means algorithm should run multiple times to reduce this effect [25]. 

The K-mean algorithm also is sensitive to the number of clusters, the number 

of clusters can be determined as a fix based on previous knowledge, or by 

trying to find a suitable number of clusters experimentally [25]. 

Algorithm 1 K-mean algorithm 
select K points as initial centroids 
for all centroid not change do 

Determine the distance of each object to the centroids. 
Group the object based on minimum distance. 
Recompute the centroids of new clusters. 

end for 

2.3.2 Classification 

Cl 'fi t' · very common technique in supervised machine learning ass1 ca 1on 1s a 

t · t utput mapping relations from a set of labeled training to genera e mpu -o 

[ ] Fl·gure 2_ 7 illustrates the concept of classification. data 140\. 
: ch; learning methods can be used to solve classification Different macline + 
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Testing data 

Training data 
with label 

Classification 
Algorithm 

l. 
» Testing Model 

.I, 
Classification 
result {labels of 
testing data) 

Figure 2.7: Diagram of classification method. The training data is inserted 
mto the classification algorithm and after the training is done, the system 
can predicate the label of the testing data. 

problem. In the following, support vector machine is explained as an exam­ 

ple of classification tool. 

Support Vector Machine 

Support Vector Machine (SVM) is a supervised learning technique that gen­ 

erates input-output mapping relations from a set of labeled training data. 

SVM is a linear classifier that can separate the data, so that it can maxi­ 

mize the margin defined (maximizes the distance between it and the nearest 

data point of each class); the result is a hyperplane that separate the two 

classes. The SVM can be applied for classification and regression [23]. In 

this subsection the SVM for classification will be described. 

To use the SVM, the input data should be transformed into a high­ 

dimensional feature space using the nonlinear kernel functions. In order 

to make input data more separable [23].Figure 2.8 illustrates the mapping to 

higher dimensional space. 

SVM is a binary classier. The data for a two class learning problem con- 

sists of objects labeled with one of the two labels corresponding to the two 
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Mapping to higher 
dimension 

O O 0 
0 

0 

Input space 

Feature space 

Figure 2.8: Mapping data into a higher dimensional feature space. The 
mappmg IS done using a kernel, so the data can be separated linearly. 

classes; for suitability we assume the labels are +1 (r =iti: 5f,,) positive examples or -l 
(negative examples) [23]. 

Let L is a training points, where each input xi has D attributes (D­ 

dimensions) and is in one of two classes Yi ==l or Yi = + 1. In general the 
linear classifier can be defined as the dot product between two vectors as 

' 
follows: 

M 

o,) =2e 
j=1 

(2.17) 

A linear classifier is based on a linear discriminant function of the form 

J(x) = (w,) + b (2.18) 

where w is weight vector, and b is the bias, f (x) assigns score for each 

point ( x) in order to classify the point according to this score. 

The hyperplane can be described by J(x) = 0, this hyperplane divides the 
space into two half spaces according to the sign of f(x), that indicates on 

which side of the hyperplane a point is located, if f(x) >0, then one decides 

for the positive class, otherwise for the negative. The boundary between 

regions classified as positive and negative is called the decision boundary of 
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the classifier [23]. 

Linear separable data 

For the linear separable d t th . a a, ere exists many of the hyperplane that cor- 
rectly classifies data poi t b t h n s: u we s ould choose the optimal hyperplane, 
that maximizes the margi [9] F" 2 · n · 1gure .9 illustrates the possible separating 
hyperplanes for a set of data. 

0 ~ \/ 6 
o / A 
0 A 

0 / \ 6. 6. 6. 
o /'\AA 

/ \ 
Figure 2.9: Many possible separating hyperplanes 

To find the optimal hyperplanes all points should confirm the following 

constraint 

[,a) +b] > 1 "i/i=l,2, .. ,n 

Also we should find the optimal b and w corresponding to the maximum 

margin hyperplane; one has to solve the following optimization problem [9]. 

•. [lo\f manmze». , 

(2.19) 

(2.20) 

where the minimizing process in the previous equation means maximizing 

the margin. 

The classifier that is applicable to the linearly separable data is called a 

hard margin SVM [9]. See Figure 2.10. 
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Support vectors ~­ 
\· 

=b 
[w] l / / 
~ 

Origin 

O: z 
AO ' sw 

Figure 2.10: Maximum Margin 

Non-linear separable data 

In, practice, data are not linearly separable, so SVM provides a soft margin 

SVM for this type of data, that provides a greater margin that allows the 

classifier to mis-classify some data, by allowing errors, so the constraint on 

points will be changed to the following [9]. 

Vi = 1, 2, ..,n (2.21) 

where ~ > are slack variables that allow data to be in the margin or 

misclassied, and, the optimization problem will be as follows [9]. 

.... elf", 5832 manamze». , ZS 
i=l 

(2.22) 

The constant C >0 sets the relative importance of maximizing the mar­ 

gin and minimizing the amount of slack [9]. 

To solve the previous optimization problem the method of Lagrange mul­ 
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Support vectors ~- 

-b 
[w] 

l / 
~ 

Origin 

0 0\ ;;f 

A ' aw 
Figure 2.10: Maximum Margin 

Non-linear separable data 

In, practice, data are not linearly separable, so SVM provides a soft margin 

SVM for this type of data, that provides a greater margin that allows the 

classifier to mis-classify some data, by allowing errors, so the constraint on 

points will be changed to the following [9]. 

Vi= 1,2, .. ,n (2.21) 

where ~ > are slack variables that allow data to be in the margin or 

misclassied, and, the optimization problem will be as follows [9]. 

... elf, 553% manamze. o, ZS® 
i=l 

(2.22) 

The constant c > o sets the relative importance of maximizing the mar­ 

gin and minimizing the amount of slack [9]. 

rp ] th ious optimization problem the method of Lagrange mul- 
.1 o so ve e prev 
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tipliers are used it reform 1 t th . . . ' u a es e original primary problem into dual for- 
malization; it is expressed in terms of . . O; as. 

n n n 
. . ""' i ""'L mam1zea 29%= 2 viu; ( ,) i Ti7;"·®5 @4,3, 

under the following constraint: 

n 

«= o, 
i=] 

Then the weight vector w can be expressed as 

n 

o=2a, 
i=l 

(2.23) 

(2.24) 

(2.25) 

The xi, for which o; > 0 are called support vectors, see Figure 2.10. 

The data that relate to non-linearly separable should be mapped to higher 

vector space using the mapping function ( ¢), then the discriminant function 

expressed as [9]. 

f(x) = (w,¢(x)) +b (2.26) 

In Equation 2.26 f(x) is linear function that because it defined using the 

mapping function. 

The mapping can be done using kernels, the weighting vector w is updated 

using the kernel as follows [9]. 

n 

w=3as(@) 
i=l 

(2.27) 
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Then the new w substituti ·· the di s%,,, u mg m e tuscriminant function as follows , 

n 

f )=3or (#@).#) + 
i=] 

(2.28) 

where the (¢ (x), ¢ (xi)) is a kernel function, that defined as follows [9]. 

(2.29) 

Kernel Functions 

Different kernel functions can be used with SVM, the common kernel func­ 

tions are [8]: 

1. Linear kernel: it is the simplest kernel function. It is computed by the 

inner product plus an optional constant as follows 

(2.30) 

2. Polynomial kernel: it is suitable for problems where all the training 

data is normalized. 

( 
llx-yll2) 

k(r,y)=exp g,2 

(2.31) 

where a is the slope that is an adjustable parameter and d is the degree 

of the polynomial. 

• l· ·t · example of a radial basis function kernel. 3. Gaussian kernel. it is an 

(2.32) 

. ter that controls the width of the Gaussian, it where a> 0 1s a parame 
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plays a similar role as the degree of the polynomial kernel. 

2.4 Feature selection and reduction techniques 
When data objects that will be used by machine learning techniques are 

described by a large number of features (i.e. The data is high dimerision),.it 

is often beneficial to reduce the dimension of the data [16, 20]. 

Dimensionality reduction is the transformation of high-dimensional data into 

a meaningful representation of reduced dimensionality [35]. 

Dimensionality reduction is an important task in machine learning for 

different reasons [3] as follows: 

• Facilitates classification, compression, and visualization of high-dimensional 

data. 

• When an input is unnecessary (e.g. redundant), we save the cost of 

extracting it. 

• Reduced both the time and space complexity. 

After using a dimentional reduction techniques some information will be lost, 

but this information is considered the less important and have a weak ability 

to represent the data ( unimportant features). There are two main methods 

: :.3 litv feature selection and feature extraction. for reducing dimensionality: 

2.4.1 Feature selection 

. f D dimensions that give us the most information In feature selection, a set o 
• · ( unimportant features) are discarded. is selected and the other dimensions 
r feature selection: forward and backward selec­ There are two approaches fo 

tion [3]. 
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In forward selection, we st: rt ith 
, s ar' wi an empty set and add features one by 

one, at each step adding the one that decreases the error to the most until 
' 

any further addition does not decrease the error. In backward selection, we 

start with all features and remove them one by one, at each step removing 

the one that decreases the error the most ( or increases it only slightly), until 

any further removal increases the error significantly [3]. 

2.4.2 Feature extraction 

In feature extraction, a new set of k dimensions that are extracted from the 

original D dimensions is generated. These methods may be supervised or un­ 

supervised depending on whether or not they use the output information [3]. 

Three methods of feature extraction are discussed below, these methods 

are: Principal Components Analysis, Factor Analysis and Multidimensional 

Scaling. 

Principle Component Analysis 

Principle Component Analysis (PCA) is the dimension reduction technique 

that is widely used in many applications due to its simplicity and effi­ 

ciency [12]. The PCA can be calculated as follows: Let {D = xi}(i=l) is 

1 d t d ·bed by a set of p features. This data can be represented a samp e a a escn 

b c b. t trix X[p l where each column represents an object, y a feature-ol.:ject ma rxn]; 

the covariance of these data defined as [12] 

Xx X? 
('== n- l 

(2.33) 

· c capture the variances in the individual where the diagonal terms m 
. 1 t s quantify the covariances between the features and the off-diagonal erm 
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corresponding pairs of features [12]. 

For this covariance matri C th . x , e e1gen-vectors V and eigen-values /A can 
be calculated. There exist p · 1 · e1genvalues and eigen-vectors. The process of 

dimension reduction is started by selecting k eigen-vector (where k <p) with 

the highest eigenvalues of the data [3]. This produce a subset of A that we 

denote A. Finally, the reduced data <I>[kxn], which has only k features can be 

computed by the following transformation: 

d=Ax X (2.34) 

Factor Analysis 

Factor Analysis (FA) is used when there exist a group of variables that have 

high correlation among themselves and low correlation with all the other 

variables, then there may be a single underlying factor that gave rise to these 

variables [3]. FA depends on partitioning the features into factor clusters, 

and then few factors can represent these groups of features. In contrast with 

PCA, in FA we can obtain the original features from the factors but in PCA 

we can not [3]. 

Multidimensional Scaling 

Multidimensional Scaling (MDS) can be used when the distances between the 

· f · t d u ,; 2· - l 2 N are known, but the exact coordinates pairs o1 poIns 4; V , ; 9··· 

f th · th di ensionality or how the distances are calculated are o) e points, eir Lim€ '3 

unknown [3]. MDS is the method for placing these points in a low dimensional 

d. b tween them is as close as possible to the given space where the listance ·e 

distances in the original space di,j) [3]. 
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Chapter 3 

Literature Review 

This chapter contains a summary of some important contributions related 

to our work. The chapter includes different approaches developed to select a. 

suitable PCPs for amino acids, the importance of encoding protein sequences 

using the amino acids PCPS, and the earlier work related to use the cluster­ 

ing with classification to increase the prediction accuracy. The last section 

explains our contribution in this thesis. 

3.1 Importance of encoding protein sequences 

using the physicochemical properties 

The representation of the protein sequences using the physicochemical prop- 

t. · f 1 c0r machine learning prediction of protein structural and er1es Is very useru, I 

f t. 1 l vtein-protein interactions and subcellular locations [26]. unctonar classes, pro 

M h h howed that using a few important PCPs to encode any researc es ave s 

h • b th sing the amino acid characters, and can improve t e sequences IS etter an u 

the result of protein prediction. 

1 Pplied different PCPs in order to predict In their work, Ray et a · a 
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the peptide-MR C class I b · d · . 
indmng. In their results they found that using 

an important physicoch ·5· i] r em1cal features gave better results than using amino 
acids characters, whether th · ese properties used separately or combined using 
different machine learning algorithms [51]. 

3.2 Representing the amino acids based on 

PCPs 

As previously mentioned, a few databases of amino acid indices have been 

constructed and regularly maintained, these databases contain hundreds of 

amino acid properties, some of these properties are related to each other 

reflecting a high degree of redundancy. Several approaches have been followed 

to select a suitable subset in order to reduce the redundancy among the 

different properties, and to reduce the dimensionality of feature vectors. This 

subset should represent the main important properties that can be used to 

solve specific problems or for general use. 

As mentioned in Chapter 2, there are two methods used to reduce the 

dimensionality of feature vectors; feature selection and feature extraction. 

The feature that were used to represent the amino acids using the amino 

acids PCPs can be divided into two groups; the first group represents the 

features selected from the databases of amino acid indices, the second group 

t th c t s derived mathematically from the databases of amino represents e feature 

acid indices. 

3.2.1 Selection of native amino acids PCPs 

1 t · on approach was used to reach an optimal In this approach the feature seuec 1 

] The selection process is done on the databases of subset of features [62, 52 • 
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amino acid indices so the valu th d · 
, es ey use are real values commg from these 

databases. 

Ray, et al. presented a selection approach depending on a set of properties 

based on the literature survey to predict peptide-MHC class-I binding. For 

any particular classifier, they started with the initial set of properties and 

employ the forward selection method using the mis-classification error as the 

criterion to choose a subset. On the other hand, Xiong, et al. started from 

AAindex database after removing the indices with missing values, and then 

they followed a similar approach with, by developing a greedy approach in 

combination with correlation analysis for feature selection, the final subset 

contains a four physicochemical properties. These two subsets of features [62, 

52] is not for general use, but they are suitable for the specific problems. 

3.2.2 Derivation of novel descriptors 

The second approach is to derive a new subset of features by performing a 

reduction algorithm on the databases or on the amino acid substitution ma­ 

trices, some of these approaches depending on different algorithms of reduc­ 

tion such as principal component analysis (PCA), Multidimensional Scaling 

(MDS) and Factor Analysis (FA), these approaches are useful when the pur­ 

f h 1 · dimensionality reduction, but they are less useful in pose o1 tie analysis is 

designing interpretable scales [22]. 

d c d de ago when Sneath [55], Kidera The derived methods starte tew tecac '» 

1 [24] developed the approaches that aim et al. [32] and Hellberg et a · 
. These approaches could not help to solve the at reducmg the redundancy. 

tl because it did not take into account problems that have appeared recen y, . 
iv j) of amino acids [22]. For example Kidera the structural features (properties 

t f physical properties of the 20 amino performed the FA on all available se so 
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3.2. REPRESENTING THE AMINO ACIDS BASED ON POPS 

acids. They demonstrated that 11 f h 
a o t ese data can be represented by a set 

of 10 property factors Thes fa :t 1 · · se tactors correlated with a-helical propensity, 
bulk, ,8-sheet propensity, and hydrophobicity [32]. 

Recently, a new approaches have been developed that take into account 

different aspects of physicochemical properties of amino acids to derive amino 
acid descriptor scales. 

Sandberg et al. derived five descriptors (z1-z5) using PCA algorithm 

on 26 different PCPs. These descriptors represent essentially hydrophobic­ 

ity /hydrophilicity (zl), steric/ bulk properties and polarizability (z2), polar­ 
ity (z3), and electronic effects (z4 and z5) of the amino acids [54]. 

However, Opiyo and Moriyama noticed that the z-scales derived by Sand­ 

berg et al. (1998) gave poor results for their classification problem because 

they lack structure related features. Opiyo and Moriyama applied PCA 

on 12 selected physicochemical properties (mass, volume, surface area, hy­ 

drophilicity, hydrophobicity, isoelectric point, transfer of energy solvent to 

water, refractivity, nonpolar surface area, the frequencies of o-helix, S-sheet, 

and reverse turn), then the first five principal components (PCPs) were se­ 

lected [45]. 

The previous methods (Sandberg et al., Opiyo and Moriyama) were de­ 

signed for a specific problem (GPCRs classification). On the other hand; 

Venkatarajan and Braun derived new 5 quantitative descriptors based on 

MDS of 237 physicochemical properties and they designed it for general 

h 5 d · t correlate well with five properties (hydrophobicity, use, t ese escnp ors 
:. : ids to occur in o-helices, number of degenerate size, preferences for amino acids 

f of occurrence of amino acid residues in­ triplet codons, and the requency 
t 1 d veloped an approach for general use by strands) [59]. Also, Atchley et al. 1e 

. db romax rotation, in order to compute five applying factor analysis followe 2y P 

33 



3.2. REPRESENTING THE AMINO ACIDS BASED ON PCPS 

factors from 54 selected amino acid attribute Th, 
at r1lutes. e promax rotation is used 

to find the simple structure in th d t d c · · 
e tata an for improving the interpret ability 

of principal components [5]. 

In his study, Georgiev explained that Atchley et al., 2005 method gave a 

poor interpretability of two of the resulting five scales, because they used a 

small subset of properties during the analysis. Georgiev, 2009 work proved 

that a reduced dataset with lower redundancy could not be represented suf­ 

ficiently well by less than 12 independent principal components. Therefore, 

Georgive derived a 19 descriptors from 509 amino acid indices using the vari­ 

max criterion rather that the PCA to increase the ease of interpretation, 

also varimax scales gave a better performance than Atchley et al., 2005 in 

the task of Class A GPCR subfamily classification [22]. 

In his work, Georgive performed another approach that depends on de­ 

riving new features from substitution matrix (technique used to find the 

similarity between sequences, but this technique depends on the PCPs of 

amino acids in order to determine how the amino acids substitute one an­ 

other [29, 31]). He derived 10 factors from BLOSUM 62 substitution matrix, 

and he found that these factors gave a better result that all previous scales 

in the task of Class A GPCR subfamily classification. The result of Georgive 

(2009) work demonstrated that the varimax scales are suitable for exploratory 

analyses, whilethe BLOSUM 62scales appear better choice for unsupervised 

learning and modeling applications [22]. 

hk t 1 derived a 5 factor from BLOSUM In an earlier work, Maetscl e e a · 
id ice in order to improve the single peptide 62 to encode the pept1 e sequen 

. . . h 5 factors improved the result of this problem cleavage site prediction, these 
: ·thods were used [36]. compared to the previous me 
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3.3. CLASSIFICATION BASED ON CLUSTERING 

3.3 Classification based on clustering 

A lot of efforts have been dire t d t d . 
c e owa.r s usmg an unsupervised with su­ 

pervised machine learning techniques for t»,, 
1c wO main purposes: 

• Minimizing the computational time and memory consumption. 

• Enhancing the accuracy of prediction. 

Classification based on clustering has been used for different types of data, 

such as: text data, large numerical dataset, waveform data and others. 

Cervantes, et al. and Yu, et al. have introduced approaches to reduce 

the classification time for large data set. In their work Cervantes, et al. 

generated a large random data set, they used a fuzzy clustering algorithm 

to cluster the training data, and then they kept a heterogeneous clusters 

( clusters contain data from different classes) for next steps and applied SVM 

on homogeneous clusters to find the optimal hyperplane, then they eliminated 

the homogeneous clusters far away from· the optimal hyperplane, after that, 

the de-clustering and the SVM classification via reduced data were used. so 

using this method enabled them to reduce the training time while maintain 

the same range of accuracy [13]. Their approach as we can see eliminates 

some samples from the dataset, and also it adds an overhead for applying 

the SVM classifier twice. 

Yu, et al. approach is similar to previous but they used a hierarchal 

1 · h th th fuzzy and they were able to enhance the time of c ustermg rat er an e , 
· • 1 d t t but they showed that random sampling could classification for iager iaaset, 

. . f SVM especially when the probability distribution hurt the training process o , 
[63]. . . • d t were different of training and testmg a a 

h enhanced the classification result for text Kyriakopoulou, et al. ave 
. clusters and then each cluster contributes 

data by clustering the data into 
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3.4. THESIS CONTRIBUTION 

one meta-feature to the feature space of the training and testing data, finally 

they used SVM classifier to classify the expanded data ( data contains the 

original features and meta features), they were able to enhance the classifier 

results approximately by 8% [33]. The main disadvantage of this method is 

that the testing data should be involved in the process from the beginning 
to form the meta-features. 

Rahideh, et al. have studied the cancer data ( colon cancer and leukemia) 

by using the clustering in order to group the genes and then select the top 

ranking genes from each group to form the intended sub-set of relevant genes 

to be used for classification. As a result, they found that the accuracy of 

the classifiers with and without clustering is comparable for the cancer se­ 

quences [49]. 

3.4 Thesis contribution 

Reviewing previous literature showed that there are few works using the clus­ 

tering for classification that were mainly focusing on reducing the complexity 

of classification for specific types of data such as random numerical data or 

text data. On the other hand, few other studies have focused on using the 

1 t . b c the classification to improve the classification accuracy. clustering vetore c. J 

. orks and up to our knowledge, no attempts As we see from the previous w 

h . rtance of clustering the protein sequences had been made to study tie impo 
. . . rder to improve the classification perfor- data before the classification in o 

mance. 
. h . roving the classification performance This thesis is concerned wit) imp 

) c the protein sequences using the ma- : id accuracy, tor (computational time an 

chine learning algorithms. 
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3.4. THESIS CONTRIBUTION 

Our approach aims at expl · th · · · 
orig e importance of clustering protein se­ 

quences into groups based on their s+%sjj-++% the_ 
err similarities, then applying the classifica­ 

tion on each group rather than applying the classification of all the data set 

in order to enhance the performance of prediction. 

Our novel method depending on groups the training data using clustering 

algorithm and distribute the testing data into these groups based on the 

distances between the test data and the centroids of clusters, then applying 

the classification algorithm on these clusters. The most important features 

that distinguish our approach from previous approaches are: there is no need 

to eliminate samples from the dataset in order to minimize the computation 

time as the previous approaches, and the prediction of a new testing sample is 

done directly without need to be involved in the process from the beginning. 

The amino acids in this thesis are represented by different sets of natural 

amino acids' physicochemical properties or features derived from the natural 

PCPs using the feature extraction technique: in order to know the effect of 

these features on our classification method on different sets of protein data. 

In this thesis, we represent the protein sequences using different encoding 

methods based on the physicochemical properties of the amino acids, these 

encoding methods are used to examine the performance of the proposed 

approach. 

d th c0rmance of the proposed approach on various We have teste e pen 

. . • ] t so as to ensure general applicability of types of protein biological features 

f h tein problem uniqueness. this approach regardless O t e pro 
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Chapter 4 

Data and Methods 

This chapter covers the methodology used in this thesis that aims at enhanc­ 

ing the performance of the prediction process, when dealing with protein 

sequences. We start with introducing a description of the benchmark data 

and a general description of our proposed approach. We define sets of descrip­ 

tors that will be used in our approach and study different encoding methods. 

After that we clarify how to predicate new samples using our approach and 

demonstrates the method for measuring and evaluating performance of the 

classification. 

4.1 Datasets 

Three datasets of proteins are used to examine the performance of the pro- 

d h · types of protein biological features so as to ensure pose approacl on various 

th 1 1. b"l"t of this approach these dataset are: Membrane pro- e genera app±icatnnty " 
. . b h ark dataset for full protein sequences, Cas- teins dataset is used as a enc)it 

d t e used as benchmark datasets for peptide pase and MHC class II atasers ar 
ks xplained in the next subsections. sequences. These benchmar are e 
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4.1. DATASETS 

4.1.1 Membrane proteins benchmark 

Membrane proteins are the most important proteins, it helps the cells to 

communicate with the surroundings, they determine whether the immune 

system recognizes the cell as foreign or not and they 1 · t t 1 
3 play an important role 

in monitoring the processes of life [2]. Membrane proteins are embedded on 

one side of the cell membrane, either on the outer surface or the interior 

wall, the discrimination of the outer proteins from the inner is of medical 

importance as well as genome sequencing necessity [2]. 

The non-redundant dataset constructed by Park and coworkers [46] are 

used to study the performance of our proposed approach for the full pro­ 

tein sequences ( different lenght sequences), it contains 208 outer membrane 

proteins (OMPs), 673 globular proteins, and 206 a-helical membrane pro­ 

teins [46]. 

In our study, we emphasis on identifying the OMPs from inner mem­ 

brane proteins, so OMPs and the a-helical membrane proteins are selected 

from the Parks dataset to construct a benchmark contains two classes, where 

the OMPs represent the positive class and the a-helical membrane proteins 

represent the negative class. Figure 4.1 represents an example of OMPs and 

a-helical membrane protein sequences. 

4.1.2 MHC class II benchmark 

The Major Histocompatibility Complex (MHC) is a large genomic region 

. t brates that encodes MHC molecules [58], or gene family found in most ver e 
. . . 1 . th immune system and autoimmunity [58]. and it plays an critical role in 1e 

"bl eptides that can be generated from Only a small fraction of the possii le p 
onse [58]. MHC molecules act as proteins actually generates an immune resp · 

c . antigens as well as self peptides id de d from tore1gn receptors for peptites terrve 
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4.1. DATASETS 

Protein sequence 
~IGUU.t.\"Sl.\UsLSr.;rKA.'\7 • 
L \"P:,.PQL'\1. TAD-FGGSG\ 'Yss,~QALA,IAYRX:,.1'£lQAEIOKAQA.\IF.GAf1QSG 
xvoxr1MAvGxAYVDALy±;] [sTQrIPL Gui@vi 6karAtv1is1as; 

_,,,; 11.l>.Q\'i-lOEAAJQETKAsl\DAlL F. ll>..'\ TKKl!KL'-QOl\'\'AIEU\'KAGAOAElOl 
/ KLIQsPQL\'Q~IQLQLQAllATIT~~~~G\ Glll.lDl(fl VDKGLPGL nowsnu, 

7 PVYNRNQGKIMAEAQYTQAAHEF( "DLNIQLGGRHFSDDGSSAAVMSAFAEV oMs < 9siotxaioiiiiGisivi/57"£\?n99osgyxstvrsrs IKEsQ FHYQQAHADYHKSLIQMTOLLGLEP 
--.._ MIDTQ\'SlMTQAAIPSEPIAP<iMGl , 
~ P\'JL\ftMGSILOSS\ULULD. S\GJ1QA.AAOLPQ\'PAAI\AOlt\'ILSAPRQ\l.O 

~IL\.\!A\1.-\G\u,\L\SA\"VGSL~~~LG\l.QP..O:,.'IXQSIIHAQKAQ\'DL\IRSGAn 
lDltKJYGll,'"\'\\'MDQ\'QOS\"Allt . GK>JSQ~KnQKXIDGR..'\'ILIOA~IQALGKTSO 
o1sos.rrcrancosoiol.'Z,32594 gyrvosrvgas asvovno 
0\'\' · Avr..lKO\l.QUQQYTQSHXQA\\ltAM 
MDLATLLGLIGGFAF1i\LAI I GGS;GA1FDttSIHI yo6hr tea Aetna+r =. 77 IAGKAFMFKADEPEDLAkh',, 'GMVDVTsitIvGGsiF'vifKFiIGQFGATK </. \'\"RMlXKDIALTOUH IADMJtKGOFLAUL\![L'<~ID!QKOIOLLVDGHOAO 

. . A.\!A \'AJ.L m YG>JLS:,..;~.G TO\ 'FltAFGO\"Al'A,\(G.\UG n \'GL \"A.\llSX?-IDDPKAIGP (l'-helica, 111embra11c ~"l'L'-"l:OllALIIDI.' FrPIADKLSLltROQEn:-1tr..1.1~tDO'<l.AIQOGQXPR\1DS\' 

proteins MLYGFESGVILQGAIVTLELALSSVVLAVZIGLV 
DLVLMLLIFYGLQIALNVV" GAGAKLSQNRSVTGLIFEGYTILIRGV? GHIEAATArGFnicSj},}P- ompopipnrvAoiuroriGAYFTirr.GArtAvr 

TQLAGKSTWitl'Yf . ffPA.\C.fR\'AlPGIO:--S\\'Q\11.KATAL\'SLLOLED\'\'KA 
AV\'CGU\l.VFTT\'SSGVULLEltlt\'SVGVKRAOL 

Label 

-1 

1 

Figure 4.1: Example of membrane protein sequences. The first two sequences 
represent the OMP that have a positive label and the next two sequences 
represent the -helical membrane proteins that have a negative label where 
all sequences have the samedifferent lengths. ' 

and enable the long-term display of antigens on the cell surface [50]. There 

are two major types of MHC molecules are involved in the peptide binding 

process; class I MHC and class II MHC [50]. Prediction of peptide-MHC 

binding represents an important goal in bioinformatics, because of their role 

in the immune system. Prediction of peptides binding to an MHC class II 

molecule is more difficult than MHC class I due to different length of the 

binding peptides is longer than 9mer (sequences contain more than 9 amino 

acids) [50]. 

Peptide datasets used in this study are available from the NetMHCII 2.2 

server [27]. The dataset was used in this study is DRBl *0101 dataset which 

contains 5166 peptides. 

When classifying the peptides into binders and non-binders, a threshold 

al · d Th" that peptides with binding affinity values greater v ue 1s use . IS means · 

d [27] The main characteristics of this than 0.426 are classified as bin ers · 
1656 are non binders, and 3510 dataset that it contains 5166 sequences, 

' 
t · tic is that the longest sequence contains 

are binders. The second characters 
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4.1. DATASETS 

37 amino acid. Figure 4.2 represents 
an example of binder and non-binder 

sequences of MHC-II. 

This dataset is used in this th . 
es1s to study the performance of our ap- 

proach on peptide sequences that h d"a . ave titterent lengths. 

' VDSVvS Binder 77 '9YY 3LLMPILTLT 
<_ VPIVDSYYSLLMPIL 

sequences-+YYSLLMPILTLTRAL 
te s».> gRarpgQEYoH Non binder TVVEFDSIPNKEHIP 
sequences 4SLLMPILTLTRALAA 

MHC II peptide Label 
I 
I 
I 
-1 
.J 
-1 

Figure 4.2: Example of MHC II t"d Th . - pep I es. e first two sequences represent 
the bmder sequences that have a positive label and the next t h • wo sequences 
represent t e non-bmder sequences that have a negative label where these 
sequences vary in their lengths. ' 

4.1.3 Caspase-3 benchmark 

Caspases are a family of cysteiny proteases that regulate apoptosis ( cell 

death) and other biological processes. Caspase-3 is considered the central 

executioner member of this family with a wide range of substrates [7]. It has 

a major role in programmed cell death as well as other vital cellular processes. 

As a specified-opeptidase, caspase3 cleaves its substrates after aspartic acid 

residue 'D'. Al though the presence of the amino acid D in the target sequence 

is a mandatory condition yet it is not enough for recognition and cleavage 

by this caspase [7]. Identification of Caspase3 novel substrates is crucial to 

advance the understanding of the biological roles of this important enzyme. 

In our study, a dataset of Caspase3 human substrates is used [7], this 

dataset contains 24 7 mapped cleavage sites and these sequences represent a 

· · d Wh"l th tive data are 247 non-cleaved peptides extracted positive iata. ile enega 

d 
• d tic acid residue 'D' but outside the Caspase3 ran omly and contame aspar 
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4.2. GENERAL DESCRIPTION OF 
THE PROPOSED APPROACH 

cleaved site. 

The main characteristics of C aspase sequenc th 
th I 

es, at all sequences have 
e same engths from 14 . . amino acids. F: 

1gure 4.3 represents an example of 
cleaved and non-cleaved peptide f P 1 es ol Caspase-3. 

This dataset is used in thi: the° 
1s .esis to study the performance of our ap­ 

proach on peptide sequences that h ave same lengths. 

Cpase peptide 

<-7 VRLLQDSVDFSLAD 
VSDPEDI TDCPR 1P 

% WESPLDEVDKMCHL 

Label 
Cleaved 
peptides 

Non-cleaved 
peptides 

;; 1EKGASDEDIKKAY 
<, AALLTDIEDMLQLI 

.. ).CECNIKILDVNDNI 

-1 
-I 
-1 

Figure 4.3: Example of Caspase-3 vtid Th fl . pep 1 es. e rst two sequences represent 
the cleaved peptides that have a positive label and the next two sequences 
represent the non-cleaved peptides that have a negative label, where all se­ 
quences have the same length. 

4.2 General description of the proposed ap­ 

proach 

Our approach for enhancing the classification performance is depending on 

clustering the sequences into groups then using the classification algorithm 

for each cluster. The protein sequences are converted from string sequences 

into numeric sequences by different encoding methods using descriptors based 

on the physicochemical properties of amino acids. 

Formally, given a protein dataset S = $1,52,··s,, that we wish to 

classify through mapping them into a set of biological labels Y1, Y2, · · · , Yn· 

We first encode S by applying an encoding transform T = E(si,P) Vi = 

1 2 Th t T · w of size p x n. Next we divide Tinto a training 
, , .. n. e new se 1s no 
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4.2. GENERAL DESCRIPTION OF THE PROPOSED APPROACH 

set (Tr) and testing set (Te). We apply clustering to the elements in Tr and 

group them into the clusters c1, c2, · • '·C based on their similarities. Next, 

we perform a learning process on each group of samples that belong to each 

cluster by a unique classifier. This means, the set of classifiers 7
2
, 7

2
, • • • , 7k 

will obtain knowledge 'Yi, "Ii,··· , "/k• 

To verify the results, the following are performed: we cluster the elements 

of the test set Te using a distance criteria ZA. After that, we classify each 

element Tei through the knowledge 'Yi if Tei €c,. We compare the result of 

the classifier for the sample Tei with Yi to verify the success of that classifier. 

Figure 4.4 shows a general block diagram of the proposed approach. The 

next sections explain the proposed approach in detail. 

EQEDVMIEGVEKFFS 

EQYVDLGPVLNVLKWH 
ET{EKIOOYFEEIS 
EVLKIKDEVRLST RE 
FF{HEEDOFOFT; 
i-',A:="r:Qr.iO PiT1 '.':-· 
1--A.,'-i-.• •• :-'..r-.:l',', • ...;,h 
AAE WV'LAYMLFTKIF 
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ACVKDLVSKYLAD NE 
AF HAQI NS; {V 
EETITER\SP GS.AV 
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0511.2429.306... 
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Average 
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result 

Protein Sequences The representation of protein 
sequences using PCPs 

091.124561.2 
5'185098412 > 
O, ~ I ! I .' ,'J ? (J 
I) 'J j; ~~ 'f S l~: .... 

The generated clusters 

ed approach. each protein sequence 
Figure 4.4: Block diagram of t~e p;~~s nd then the clustering algorithm 
encoded to numerical values usmg s, aaft that each cluster classified 

into groups, er ' . · used to cluster the sequences 5,d the average result of classification. 
using the classification algonthm to 
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4.3. 
NATIVE AND DERIVED DESCRIPTORS USED IN THIS STUDY 

4.3 Native and d · d errve descriptors used in 
this study 

The first step in our approach is the selection of the suitable descriptors in 

order to represent the amino acids of the proteins. In this thesis two sets 

of descriptors; Native PCPs and derived properties are used to examine the 

performance of the proposed approach. 

The Native properties are the PCPs that represent a given measured 

property such as size, hydrophobicity, polarity or inferred propensity such as 

relative frequency to occur in an alpha helix or beta sheet. As mentioned 

before, the database of amino acid indices contains redundant properties that 

increase the dimensionality. In our approach, we used a set of non-redundant 

properties contains 50 PCPs of amino acids proposed by Georgiev [22]. 

The derived properties are those properties that were derived from an­ 

alyzing a large set of PCPs by applying a given reduction algorithm such 

as PCA. Our approach contains sets of driven features, these features are: 

Venkatarajanet al. (2001) [59] properties, Atchley et al. (2005) [5] properties, 

Kidera et al. (1985) [32] properties, Georgive (2009) [22] properties, Georgive 

(2009) [22] BLOSUM properties, Maetschke et al. (2005) [36] properties. 

These descriptors are selected based on Geogieve study [22]. 

4.3.1 The native properties 

d f AAindex in which the duplicated or These properties were selecte trom ·3 
: ioved by an iterative procedure until 50 closely related properties were rem 

o/c 1 tion between them, based on Georgieve properties with no more than 50% correta 
ti: re illustrated in Table 4.1, the study [22]. The names of these properties a 

. e extracted from AAindex. values of these properties can b 
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4.3. NATIVE AND DERIVED DE 
SCRIP TORS USED IN THIS STUDY 

Table 4.1: The description of th . 
Description of the properties e native properties [22] 
BUNA790102 alpha-CH chemical shifts ( . 
BUNA790103 Spin-spin couplin : i t Bundi-Wuthrich, 1979) 
CHAM830102 Residuals no ,,',"""®"® 3UHalpha-NH (Bat- which, 1979) 
Th b es correlation of the Ch F e num er of atoms in the side chain labelled 11 (( 3Ou-tasman parameter of b-sheet 
The number of atoms in the side chain labell d 21 (g~arton-Charton, 1983) 
Frequency of the 4th residue in turn (Ch ]' arton-Charton, 1983) 
H 1. . :. ou-asman, 1978b) 
e ix termination parameter at position J._2 . 1 '(Fik 1 . 

N 1. d I · J- ,J m e stem et al. 1991) ormaize re ative frequency of double bend (I · 1 ., 
pK (-COOH) ( Jones, 1975) sogai et a., 1980) 
Relative mutability (Jones et al., 1992) 
Flexibility parameter for two rigid neighbors (Karplus-Schulz, 1985) 
The Kerr-constant mcrements (Khanarian-Moore 1980) 
Normalized frequency of zeta R (Maxfield-Scheraga, 1976) 
Short and medium range non-bonded energy per residue (Oobatake-Ooi, 1977) 
Optimized transfer energy parameter (Oobatake et al., 1985) 
Normalized frequency of alpha-helix in all-alpha class (Palau et al., 1981) 
Intercept in regression analysis (Prabhakaran-Ponnuswamy, 1982) 
Slope in regression analysis x 1.0E1 (Prabhakaran-Ponnuswamy, 1982) 
Weights for alpha-helix at the window position of -6 (Qian-Sejnowski, 1988) 
Weights for alpha-helix at the window position of -5 (Qian-Sejnowski, 1988) 
Weights for beta-sheet at the window position of -3 (Qian-Sejnowski, 1988) 
Weights for coil at the window position of -5 (Qian-Sejnowski, 1988) 
Weights for coil at the window position of -4 (Qian-Sejnowski, 1988) 
Weights for coil at the window position of 5 (Qian-Sejnowski, 1988) 
Average relative fractional occurrence in AL(i) (Rackovsky-Scheraga, 1982) 
Average relative fractional occurrence in ER(i) (Rackovsky-Scheraga, 1982) 
Average relative fractional occurrence in AO(i-l) (Rackovsky-Scheraga, 1982) 
Relative preference value at N (Richardson-Richardson, 1988) 
Relative preference value at N2 (Richardson-Richardson, 1988) 
Relative preference value at N3 (Richardson-Richardson, 1988) 
Relative preference value at Cl (Richardson-Richardson, 1988) 
Relative preference value at C {Richardson-Richardson, 1988) 
Relative preference value at C (Richardson-Richardson, 1988) 
Information measure for extended without H-bond (Robson-Suzuki, 1976) 
Normalized frequency of isolated helix (Tanaka-Scheraga, 1977) 
Normalized frequency of left-handed helix (Tanaka-Scheraga, 1977) 
Normalized frequency of zeta R (Tanaka-Scheraga, 1977) 
Relative population of conformational state A (Vasquez et al., 1983) 
Electron-ion interaction potential (Veljkovic et al., 1985) j978) 
rec energy aangeoratplap) oathat®rWS"",',,-nose, 1oos) 
Normalized positional residue frequency al """" 4a '(Aurora- Rose, 1998) :. id fre icy at elix ermim Normalized positional resi!ue equen h r t ·ni C40 (Aurora-Rose 1998) 
Normalized positional residue frequency at e IX ermi ' 
Amphiphilicity index (Mitaku et al., 2002) 

1994
) 

Electron-±on interaction potential valu©? (©],, 6.1«TFA/MeCN/H20(Wlce et al.,, 1005) 
Hydrophobicity coefficient m RP-HPL 'C4 ·th O.l%TFA/MeCN/H2O(Wilce et al., 1995) 
Hydrophobicity coemctent in RP-H#g ,,,,, o.iwrFi/2-Pro/tic/2owuce ei al., 1905) 
Hydrophobicity coefficient in RP-HP et (George-Heringa, 2003) . . 
Linker propensity from 2-hnker datas . ( 1 gth is greater than 14 residues) (George-Heringa, 2003) 

1 d taset (hnker en, 1 Linker propensity from tong .a 
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4.3. NATIVE AND DERIVED DE 
SCRIP'TORS USED IN THIS STUDY 

AA FI 
Table 4.2: Vah F2 p5 '@lues of Kidera's factors 

A 
D 
C 
E 
F 
G 
H 
I 
K 
L 
M 
N 
p 
Q 
R 
s 
T 
V 
w 
y 

-1.56 
0.58 
0.12 
-1.45 
-0.21 
1.46 
-0.41 
-0.73 
-0.34 
-1.04 
-1.40 
1.14 
2.06 
-0.47 
0.22 
0.81 
0.26 
-0.74 
0.30 
1.38 

-1.67 F4 F5 F6 F7 
0.9» 97 -0.27 0.93 -0.78 -0.26 
0.8o 98 0.81 -0.92 0.15 -1.52 
0 19 

0.45 -1.05 -0. 71 2.41 1.52 
-1.61 1.17 0.98 ' -1.31 0.40 0.04 

1., 36 -1.43 0.22 -0.81 0.67 
6.5% 28 -0.16 0.10 -0.11 1.32 

. -0.28 0.28 1.61 1.01 -1.85 
-0.16 1.79 -0.77 -0.54 0.03 -0 83 
0.82 -0.23 1.70 1.54 -1.62 1.15 
0.00 -0.24 -1.10 -0.55 -2.05 0.96 
0.18 -0.42 -0.73 2.00 1.52 0.26 
-0.07 -0.12 0.81 0.18 0.37 -0.09 
-0.33 -1.15 -0.75 0.88 -0.45 0.30 
0.24 0.07 1.10 1.10 0.59 0.84 
1.27 1.37 1.87 1. 70 0.46 0.92 
-1.08 0.16 0.42 -0.21 -0.43 -1.89 
-0.70 1.21 0.63 -0.10 0.21 0.24 
-0.71 2.04 -0.40 0.50 -0.81 -1.07 
2.10 0.72 1.57 1.16 0.57 0.48 
1.48 0.80 -0.56 0.00 -0.68 -0.31 

[32) 
FS 

-0.08 
0.47 
-0.69 
0.38 
1.10 
2.36 
0.47 
0.51 
-0.08 
-0.76 
0.11 
1.23 
-2.30 
-0.71 
0.39 
-1.15 
-1.15 
0.06 
0.40 
1.03 

F9 
0.21 
0.76 
1.13 
-0.35 
1.71 
-1.66 
1.13 
0.66 
-0.48 
0.45 
-1.27 
1.10 
0.74 
-0.03 
0.23 
-0.97 
-0.56 
-0.46 
2.30 
-0.05 

F10 
-0.48 
0.70 
1.10 
-0.12 
-0.44 
0.46 
1.63 
-1.78 
0.60 
0.93 
0.27 
-1.73 
-0.28 
-2.33 
0.93 
-0.23 
0.19 
0.65 
0.60 
0.53 

4.3.2 Kidera's properties 

Kidera performed Factor Analysis (FA) on all available sets of physical prop­ 

erties of the 20 amino acids. They demonstrated that all of these data can 

be represented by a set of 10 property factors, these factors correlated with 

o-helical propensity, bulk, B-sheet propensity, and hydrophobicity [32]. 

The first four factors are essentially pure physical properties (Helix/bend 

preference, Side-chain size, Extended structure preference, and the Hydropho­ 

bicity); the remaining six factors are extracted of several physical proper­ 

ties [32]. Table 4.2 illustrates the values of these 10 factors. 
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4.3. NATIVE AND DERIVED D 
ESCRIPTORS USED IN THIS STUDY 

Table 4 3· Val AA 7j' {ues of Atchley's factors [5] 
A -0.591 -1 F2 F3 F4 F5 
< ae {# $E "a 
D 1 050 o · -1.020 -0.255 
E 1.357 902 -3.656 -0.259 -3.242 
F -1.453 1.477 0.113 -0.837 
G -1.006 -0.590 1.891 -0.397 0.412 
H -0.384 1.652 1.330 1.045 2 064 

0.336 -0.417 -1.673 -1 474 . I 1 23 · -0.078 - . 9 -0.547 2.131 0.393 0.816 
K 1.831 -0.561 0.533 -0.277 1.648 
L -1.019 -0.987 -1.505 1.266 -0.912 
M -0.663 -1.524 2.219 -1.005 1 212 
N 0.945 0.828 1.299 -0.169 0.933 
p 0.189 2.081 -1.628 0.421 -1.392 
Q 0.931 -0.179 -3.005 -0.503 -1.853 
R 1.538 -0.055 1.502 0.440 2.897 
S -0.228 1.399 -4.760 0.670 -2.647 
T -0.032 0.326 2.213 0.908 1.313 
V -1.337 -0.279 -0.544 1.242 -1.262 
W -0.595 0.009 0.672 -2.128 -0.184 
Y 0.260 0.830 3.097 -0.838 1.512 

4.3.3 Atchley's properties 

Atchley et al. developed an approach for general use by applying FA fol­ 

lowed by promax rotation [5], in order to compute five factors from 54 se­ 

lected amino acid attributes, so each amino acid can be represented by five 

factors [5]. Table 4.3 illustrates the values of these 5 factors. 

4.3.4 Venkatarajan's properties 

Venkatarajan, et al. derived new 5 quantitative descriptors for the 20 nat­ 

urally occurring amino acids using MDS of 237 physicalchemical proper- 

t. [59] p · th t elate well with the five major components were 1es. 'roperties ai Corre U 

h d 
• • : for amino acids to occur in a-helices, num- 

ylrophobicity, size, preferences 

b 
. d d the frequency of occurrence of amino 

er of degenerate triplet co ons an 
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4.3. NATIVE AND DERIVED DE 
SCRIPTORS USED IN THIS STUDY 

Table 4.4: Values of Vi ka . ' 
AA Fl en ·tarajan's factors [59] 

F2 F3 Fi 
A 0.008 6 134 F5 
R 0. ' -0.475 -0.039 0.18i 
{l ®% o.ao7 .o.2ss o.ace 
D 0.39 038 0.117 0.118 -0.055 
C . -0.057 -0.014 0.225 0.156 

-0.132 0.174 0.070 0.565 -0.374 
Q 0.149 -0.184 -0.030 O 035 . 
E 0.221 -0.280 -0.315 0.157 -0.112 
G ozs osse s {7;;g 
H 0.023 -0.177 0.041 0.280 -0.021 
I -0.353 0.071 -0.088 -0.195 -0.107 
L -0.267 0.018 -0.265 -0.274 0.206 
K 0.243 -0.339 -0.044 -0.325 -0.027 
M -0.239 -0.141 -0.155 0.321 0.077 
F -0.329 -0.023 0.072 -0.002 0.208 
P 0.173 0.286 0.407 -0.215 0.384 
S 0.199 0.238 -0.015 -0.068 -0.196 
T 0.068 0.147 -0.015 -0.132 -0.274 
W -0.296 -0.186 0.389 0.083 0.297 
Y -0.141 -0.057 0.425 -0.096 -0.091 
V -0.274 0.136 -0.187 -0.196 -0.299 

acid residues in ,8-strands (59]. Table 4.4 illustrates the values of these 5 

factors. Table 4.4 illustrates the values of these 5 factors. 

4.3.5 Maetschke's properties 

Maetschke et al. derived a 5 factor from BLOSUM 62 to encode the peptide 

sequence in order to improve the single peptide cleavage site prediction [36], 

these 5 factors are illustrated in Table 4.5. 

4.3.6 Georgieve's properties 

G . d . d 19d . t rs from 509 amino acid indices using the vari- eorgive terive a tescripto 
. . h PCA to increase the ease of interpretation [22], 

max cntenon rather that t e 

these 19 factors are illustrated in Table 4.6. 
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4.4. ENCODING PROTEIN SEQ 
UENCES USING PCPS 

Table 4.5: Values of M 
AA Fl aetschke's Factors [36] 

F2 F3 F4 
A -0 57 F5 R . 0.39 -0.96 -0.61 -0.69 
» "? -98s -o.1 1.26 ·o.zs 

- . 0 -0.63 -1.47 1 02 D 1 62 . · 1.06 
- · -0.52 -0.67 1.02 l 47 

C 0.07 2.04 0.65 -1.13 -0.39 
~ -0.05 -1.50 -0.67 0.49 0.21 
9.64 -1.59 -0.39 0.69 1.04 

-0.90 0.87 -0.36 1.08 1 95 
H 0.73 -0.67 -0.42 1.13 0.99 

0.59 0. 79 1.44 -1.90 -0.93 
L 0.65 0.84 1.25 -0.99 -1.90 
K -0.64 -1.19 -0.65 0.68 -0.13 
M 0.76 0.05 0.06 -0.62 -1.59 
F 1.87 1.04 1.28 -0.61 -0.16 
P -1.82 -0.63 0.32 0.03 0.68 
S -0.39 -0.27 -1.51 -0.25 0.31 
T -0.04 -0.30 -0.82 -1.02 -0.04 
W 1.38 1.69 1.91 1.07 -0.05 
Y 1.75 0.11 0.65 0.21 -0.41 
V -0.02 0.30 0.97 -1.55 -1.16 

4.3.7 Georgieve's BLOSUM62 properties 

·. .a 3A;r",3, " » '6, (laud la-M4es eat?? 
[ Palestine Polytechnic Univers 
.',: {??!J} 
¢ The Library &i.sit ­ 

Acc l.6..5. .. 'l:r.1 ~11 

Clasli ~• 

Georgive performed an approach that depends on deriving new features from 

substitution matrix. He derived 10 factors from BLOSUM 62 substitution 

matrix based on Class A GPCR subfamily problem [22]. These 10 factors 

are illustrated in Table 4.7. 

4.4 Encoding protein sequences using PCPs 

Encoding methods using PCPs or extracting features from proteinsis the 

P f t. th otein sequences as numerical sequences using a rocess o represen mg e pr 

set of PCPs in order to facilities using of machine learning tools. 
' . t in protein sequences or peptides vary in 

Most protem data sets con a1 
. . d blem when using the machine learning 

length, and this is considere a pro 
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4.4. ENCODING PROTEIN SEQUENCES USING PCS 

Fl Table 4.6: Values of the Georgieve factors 
[22)] AA F2 F3 FI F5 FG F7 F8 F9 FI0 Fll A 0.57 3.37 -3.66 2.34 -1.07 -0.40 1.23 -2.32 -2.01 1.31 -1.14 R -2.80 0.31 2.84 0.25 0.20 -0.37 3.81 0.98 2.43 -0.99 -4.90 N -2.02 -1.92 0.04 -0.65 1.61 2.08 0.40 -2.47 -0.07 7.02 1.32 D -2.46 -0.66 -0.57 0.14 0.75 0.24 -5.15 -1.17 0.73 1.50 1.51 C 2.66 -1.52 -3.29 -3.77 2.96 -2.23 0.44 -3.49 2.22 -3.78 1.98 Q -2.54 1.82 -0.82 -1.85 0.09 -0.60 0.25 2.11 -1.92 -1.67 0.70 E -3.08 3.45 0.05 0.62 -0.49 -0.00 -5.66 -0.11 1.49 -2.26 -1.62 G 0.15 -3.49 -2.97 2.06 0.70 7.47 0.41 1.62 -0.47 -2.90 -0.98 H -0.39 1.00 -0.63 -3.49 0.05 0.41 1.61 -0.60 3.55 1.52 -2.28 I 3.10 0.37 0.26 1.04 -0.05 -1.18 -0.21 3.45 0.86 1.98 0.89 L 2.72 1.88 1.92 5.33 0.08 0.09 0.27 -4.06 0.43 -1.20 0.67 K -3.89 1.47 1.95 1.17 0.53 0.10 4.01 -0.01 -0.26 -1.66 5.86 M 1.89 3.88 -1.57 -3.58 -2.55 2.07 0.84 1.85 -2.05 0.78 1.53 F 3.12 0.68 2.40 -0.35 -0.88 1.62 -0.15 -0.41 4.20 0.73 -0.56 p -0.58 -4.33 -0.02 -0.21 -8.31 -1.82 -0.12 -1.18 0.00 -0.66 0.64 s -1.10 -2.05 -2.19 1.36 1.78 -3.36 1.39 -1.21 -2.83 0.39 -2.92 T -0.65 -1.60 -1.39 0.63 1.35 -2.45 -0.65 3.43 0.34 0.24 -0.53 w 1.89 -0.09 4.21 -2.77 0.72 0.86 -1.07 -1.66 -5.87 -0.66 -2.49 y 0.79 -2.62 4.11 -0.63 1.89 -0.53 -1.30 1.31 -0.56 -0.95 1.91 

V 2.64 0.03 -0.67 2.34 0.64 -2.01 -0.33 3.93 -0.21 1.27 0.43 

Fl8 Fl9 AA Fl2 Fl3 Fl4 Fl5 Fl6 Fl7 
A 0.19 1.66 4.39 0.18 -2.60 1.49 0.46 -4.22 

-3.08 0.82 1.32 0.69 -2.62 -1.49 -2.57 R 2.09 
0.37 -0.89 3.13 0.79 -1.54 -1.71 -0.25 N -2.44 

0.90 1.38 -0.03 -3.85 1.28 -1.98 0.05 D 5.61 
-1.64 -1.05 0.93 1.43 1.45 -1.15 C -0.43 -1.03 
4.35 0.92 -0.99 -1.56 6.22 -0.18 2.72 Q -0.27 

0.15 -0.06 -0.35 1.51 -2.29 -1.47 E -3.97 2.30 
0.30 0.32 0.05 G -0.62 -0.11 0.15 -0.53 0.35 

2.17 3.37 1.87 -1.45 -0.77 -4.18 -2.91 H -3.12 
1.54 2.11 -4.18 -1.02 -1.21 -1.78 5.71 I -1.67 
0.63 -0.24 1.01 -4.79 0.80 -1.43 L -0.29 -2.47 

1.62 0.96 -1.09 1.36 1.78 -2.71 K -0.06 1.38 
-1.02 -4.32 -1.34 0.09 

M 2.44 -0.26 -3.09 -1.39 
0.68 1.46 2.33 2.14 1.10 F 3.54 5.25 1.73 
0.16 -0.34 0.04 0.36 0.08 p -0.92 -0.37 0.17 

1.75 -2.77 3.36 2.67 
1.27 2.86 -1.88 -2.42 

3.73 -5.46 -0.73 s 
0.20 -2.20 1.91 2.66 -3.07 2.73 -2.20 0.90 T 0.72 1.75 w -0.30 -0.50 1.64 

5.19 -2.56 2.87 -3.43 
0.20 .0.76 

-1.21 4.77 y -1.26 1.57 -1.31 .1.97 4.22 1.06 V -1.71 -2.93 
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4.4. ENCODING PROTEIN SEQUENCES USING Pcps 

Table 4.7: Values of Georgieve BLOSUMG2 La [99] AA F1 F2 F3 factors [22 
A F4 F5 FG F7 F8 F9 FlO 0.077 -0.916 0.526 0.004 0.240 0.190 0.656 -0.047 1.357 0.333 R 1.014 0.189 -0.860 -0.609 1.277 0.195 0.661 0.175 -0.219 -0.520 N 1.511 0.215 -0.046 1.009 0.120 0.834 -0.033 -0.570 -1.200 -0.139 D 1.551 0.005 0.323 0.493 -0.991 0.010 -1.615 0.526 -0.150 -0.282 C -1.084 -1.112 1.562 0.814 1.828 -1.048 -0.742 0.379 -0.121 -0.102 Q 1.094 0.296 -0.871 -0.718 0.500 -0.080 -0.442 0.202 0.384 0.667 E 1.477 0.229 -0.670 -0.355 -0.284 -0.075 -1.014 0.363 0.769 0.298 G 0.849 0.174 1.726 0.093 -0.548 1.186 1.213 0.874 0.009 0.242 H 0.716 1.548 -0.802 1.547 0.350 -0.785 0.655 -0.076 -0.186 0.990 I -1.462 -1.126 -0.761 0.382 -0.599 0.276 -0.132 0.198 -0.216 0.207 L -1.406 -0.856 -0.879 -0.172 0.032 0.344 0.109 0.146 -0.436 -0.021 K 1.135 -0.039 -0.802 -0.849 0.819 0.097 0.213 0.129 0.176 -0.850 M -0.963 -0.585 -0.972 -0.528 0.236 0.365 0.062 0.208 -0.560 0.361 F -1.619 1.007 -0.311 0.623 -0.549 0.290 -0.021 0.098 0.433 -1.288 p 0.883 -0.675 0.382 -0.869 -1.243 -2.023 0.845 -0.352 -0.421 -0.298 s 0.844 -0.448 0.423 0.317 0.200 0.541 0.009 -0.797 0.624 -0.129 T 0.188 -0.733 0.178 -0.012 0.022 0.378 -0.304 -1.958 0.149 0.063 w -1.577 2.281 1.166 -1.610 0.122 0.239 -0.542 -0.398 -0.349 0.499 y -1.142 1.740 -0.582 0.747 -0.119 -0.475 0.241 -0.251 0.713 -0.251 

V -1.127 -1.227 -0.633 0.064 -0.596 0.158 0.014 0.016 0.251 0.607 

tools several methods used to overcome this problem; such as: remove some ' 
amino acids from sequences to unify the lengths of the sequences, another 

· d h t ( · J or B) to complete the method depend on addmg unuse c arac er e.g. · 

sequences in order to unify the lengths. 

. . d th ncoding methods to represent the protein In this thesis we use e e 
. he length of the sequences, so we selected sequences numerically and to unify t 

: tire for representation and can be used encoding methods that consider effectiv 
These methods are: to unify the lengths of the sequences. · 

most used encoding for proteins [42], 
• PseAAC encoding: probably the . 

ith a discrete model without com­ :. it rotein sequence w 
it represents a pr, sAAC is chosen in this 

;, u nuence order information. Pse 
pletely losing its sequ ,f ino acid composi­ 

'chted sums ot am : s> d from we1g study because it torme 
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4.5. CLASSIFICATION BASED ON CLUSTERING 

tions, physicochemical square correl>+; 
elations and combination of amino 

acid compositions and dipeptid .:.: 
e composition [42]. Therefore the fea­ 

ture vector is composed of 20 (from AC) . + A ( correlation factors, see 
Section 2.2). 

• CTD encoding: is the famous encoding of proteins that depending 

on distributing amino acids into groups based on their PCPs [44]. 

The feature vector is composed of 21 (from Composition) + 21 (from 

transition) + 105 (from distribution) for all sequences regardless their 
lengths. 

These encoding schemas; PseAAC and CTD are selected to help in unify­ 

ing the lengths, where PseACC considered as complicated method and CTD 

as a method depending on distributing amino acids into groups based on 

their PCPs. From simple encoding methods we choose the method that de­ 

pending on representing each amino acid numerically as a set of different 

physicochemical properties, this method is not suitable for sequences have 

various lengths but it is a good choice for the dataset that have sequences 

with fixed lengths, so it uses only for Caspase benchmark. 

These encoding methods are used to examine the performance of our 

proposed approach using different methods. 

4.5 Classification based on clustering 
. . d befcr the classification in order to en- In this thesis. the clustering is use vetore U 

, . tt ibutes prediction. In this section we hance the performance of protem a r 
h in order to explain how clus­ 

provide a description of the proposed approac . 
. :. The proposed approach consists 

te . b d before the classificat10n. ring can ve use :I 

of the following steps: 
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4.5. CLASSIFICATION BASED ON 
CLUSTERING 

• Data division step: to divide the <lat . 
a into k-fold cross validation. 

• Clustering step: to cluster th t .. 
e raining set into N clusters. 

• Distribution step: to distribute the testing data to th 
e generated clus­ 

ters. 

• Classification step: to 1 th app!y e classification algorithm c 11 a 1or au gener­ 

ated clusters. 

These steps can be clarified as follows: 

4.5.1 Data division step 

Let (X,Y) be an input data set where X = {1,To,z3,......., a,},z,= 

{as, os,·....., pa;}, d is the dimension of the properties for each amino 

acids and Y = {y y y y } h 1 'l5/25 I35·······3 hh Were y; E (-1, l).These data are 

divided into M sets using the cross validation. 

The main idea of the cross validation is to split the data, once or several 

times, for estimating the risk of each algorithm: part of the data ( the training 

data) is used for training each algorithm, and the remaining part (the testing 

data) is used for evaluation of the algorithm [4]. Figure 4.5 illustrates an 

example of 3-fold cross validation, the dataset is divided into three groups, 

two of them are used for training and the rest is used for testing the method. 

The same procedure is repeated for three times and the average is computed 

for obtaining the accuracy. 

4.5.2 Clustering step 

h £ Id is grouped into C clusters using In this step the training data for eac 0 

h used the K-mean algorithm to 
a clustering algorithm. In our approact we 
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4.5. CLASSIFICATION BASED ON CLUSTERING 

""=! ""=! 
Experiment 3 .,I __ -:-----.L.----1' ; 

Train data 

data 

7 
Test data 

Figure 4.5: Example of cross validation.This example illustrated the 3-fold 
cross validation, where the data is divided into three groups, two of them are 
used for training and the rest is used for testing the method. The white part 
of the data represents the train data and the gray scale represents the test 
data. 

cluster the data, this algorithm was chosen due to its simplicity, and based on 

literature [49, 33]. Figure 4.6 illustrates an example of this step, this figure 

shows two clusters resulted from applying the clustering algorithm for one 

fold of the data. 

4.5.3 Distribution step 

After the clustering step ends, the testing and the training data should be 

. . The distribution step concerns on prepared for the classification process. 

In thl·s step the testing data distributes to the clusters as testing data. 

follows: 

• For each cluster we have a centroid point. 

between each test sample and each • Compute the Euclidean distance 

centroid of the generated clusters 

h the minimum distance the cluster ave • The testing sample relates to 

between it and the centroids. 
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4.5. CLASSIFICATION BASED ON CLUSTERING 

0.S 11.24.24.306.. 
0.815 12 U 6 1-2 ........ 
_, J ,.~. (I y :i 'f .i ,. • 

0.511.2 4.2 9.3 0.6 ··- 
033514551 
, ; , cs 09£417 
0311.2429.32.5. 
0$3.512 4561.2... 
5.77.85Q.98f.12..2 .. _ 
051124.2930.6.... 
0$3512450 1.2 
;) . ' C 5 {1, o ~ 4 l : : 
02031742906 
0131245¢611 
77.85 0.934.15.2.. 
2.5 1.61.24.2 2.3 26.. 
3.0 25 74.5 62.2.... 
.J 4 :.8 ) ! 0 :; S -i L~ j _ 

Training data 

Fold 1 
O.S 1 U U 9.30.6 ....... 
~815 12 ♦.56U __ ., 
; ; ... ,..1 0: G : ; ~ -... 
0. 5 l 1.2 +.2 11.J 0.6 - ..... 
t C ~ 5 : _ .. ~-5 6 ! -; 
5 785098+12. 

Fold 2 
{._ ... :i i .! .:.. ~ ~-.:; V.t• _, 
0..S l..S 12 +.S 6.1.l __ 

--wS..7 7..15 0.9 B 4.1 Z.:? -·· 
O.S 11.24.2 9.3 0.6.... 
043512 4.5613 
57735693412.2 

Fold 3 
0 : V '"' ! ~ -i :" 9 O.o 
13124.561.2. 
7 785 0.9 34.15.2... 
251.6 1.24.2 2.326... 
3825745622..... 
5422120.9$4t 3.2 

Cluster 1 
0.03.5 ll 4..St, u _ 
s.?1.osMouu_ 
o.s 1 17 4.2 9.30.6.. 

Cluster2 
0.1 i l ~ .;.:: 9.30.o 
835124561.2. 
577.550.934122.. 

Two clusters resulted from 
clustering process for fold? data 

3-fold cross validation 

Pigure 4.6: Clustering step.Two clusters generated by applying K-mean al­ 
gonthm on the Fold 2, the clustering algorithm should apply on all folds 

• This step is done for all folds in the approach. 

Figure 4. 7 illustrates the distribution step, in this figure the training data 

in fold N grouped into 3 clusters, each cluster has a centroid, and then the 

testing data distributes to the clusters based on the minimum Euclidean 

distance between the centroids of the clusters and the testing sample. 

4.5.4 Classification step 

Each cluster contains a test and train data, so we can apply a classification 

algorithm on each cluster. In our approach the SVM was used to classify 

the data, because it is one of the most powerful classification techniques that 

1 ld roblems it has proven a great 
was successfully applied to many rea wor P ' 

. t . lassification and face recognition [6], 
success m many areas, such as pro em c 

. 4 8 illustrates the classification and it's suitable for unbalanced data. Figure · 
. . all clusters and the result of the 

step, in this figure the classifier applied in 
. ults from the clusters. 

case is the average classification reS · 
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I ·:a.tag data 

I 

&.,....>ill$. - 

a.a 4 
08151:. 02-%­ 
7.7 3245.784.18.2.- 
451124.29.306.....- 
M 6.S 214.S 6 7.2 ··•----- .­ 
S.1i-85 0.9 B·f.12.2 -- 
0..S 11.2 4.2 93 0.6 -- 
083.5 124.5 6 1.2.. _,_ 
177450.984.12.2..­ 
0411.24.29.306.--- 
05351285422....­ 

The center of cluster 1 
(d-dimension vector) 

Figure 4.7: Distribution step.The distribution of the testing data into three 
clusters generated from the training data of Fold N, the distribution is done 
using the Euclidean distance 

The proposed algorithm is summarised in Algorithm 2. 

4.6 Prediction of a new testing sample 

After the SVM trained then the prediction of new sample in our approach is 

done as follows: 

) • ded using the selected en- 1. The new sample (protein sequence, is enco 

coding method. 

. the sample and the centroid 
2. Finding the Euclidean distance between 

of each cluster. 

. : m distance with the sample. 
3. Selecting the cluster that has a minmu 
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Figure 4.8: The classification step.In this step, the SVM classifier is applied 
OE e-200 duster, and then an a,·erage result is generat,ed from the results of 
classier on all clustas. 

4 Determining the label of the new sample based on the training result 

of the selected cluster. 

That means the predid:ion. of a new testing sample is done directly without 

need to be involved in the process from the beginning. 

4. 7 Performance evaluation 

T 
. d evaluating performance of 

here are different methods for measunng an 
• : fc the accuracy measure that 

the classifier. Here we introduce descnption or 

is used in our experiments. 
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Algorithm 2 The proposed al . h 
D
. . · {goritlim 
ivision step 
Input: all data set 
N=desired number of fold 
Divide the data into N la, 

Output: N folds of data 

Clustering step 
Input: training data 
K=desired number of clusters 

for each fold do 
cluster training data into K cl t . end for usters using K-mean 

Output: K clusters for each fold 

Distribution step 
Input: testing data 

for each fold do 
for each testing sample do 

""E"".""" "co e «eve aaoaas ow ue a 
end for 

end for 
Output: the cluster that the testing data belong to. 

Classification step 
Input: training and testing data of previous step 

for each cluster do 
Thain SVM classifier based on the training data for N folds 
Classify the testing data belong to each cluster for N folds 

end for 
Compute the average result for the classification for all clusters. 

Output: predicate labels of testing data and the average value of the perfor­ 
mnance measure of classifier 

All measures of performance are based on four possible outcomes obtained 

from applying the classier on the test data, Figure 4.9 illustrates these values, 

where: T P means the instance that is positive in truth and classified as 

positive, F N means the instance that is positive in truth and classified as 

negative, TN means the instance that is negative in truth and classified as 
· : ti 5 truth and classified 

Iegative, and FP means the instance that is negative IT. 

as positive [11]. 
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Positive Negative 
Positive TP FN 
Negative FP TN 

Predicted 

Figure 4.9: The four possible outcome of the classifier 

The accuracy was chosen in our work to evaluate the classifier result and 

it is efficient in our approach because we do not need to compare different 

classification algorithms, but we need it to compare the result of classifier 

with and without applying clustering before the classification. 

Accuracy (ACC) is an evaluation measurement for the classifier that takes 

into account all true classification results [19], it can be defined as follows 

TP-+ TN 
ACC = TP+FN +FP+TN (4.1) 
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Chapter 5 

Experiments and Results 

In this chapter we present the experimental results of applying our approach. 

In the first section, we show the general settings and parameter adjustments 

of our experiments. In the second section, we introduce the results generated 

from the full protein sequences using the membrane proteins benchmark. 

In the third section, we introduce the results generated from the peptide 

sequences using MHC class II (MHC-IT) and Caspase benchmarks. In the 

fourth section, the time performance based on the proposed approach is 

discussed. Finally, we discuss the performance of selected properties, encod­ 

ing method in the proposed approach, the performance of our approach for 

benchmarks, and the performance of training time. 

5.1 Experimental settings 
ithm to cluster the data, the 

In our experiments we used the K-mean algori 
ain encoding methods; PseAAC 

SVM algorithm to classify the data, and two m 

and CTD to represent the protein sequences. 
d .\ = 30 (21]for ll experiments al 

For PseAAC we set w = 0.15 for a d 
7 
sets of 

tide sequences, we US© 
full protein sequences and A = 3 for pep 
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5.2. RESULTS FROM FULL PROTEIN SEQUENCES 

descriptors, 6 of them are derived properties, \q 
,an oneset' : 

;s. Is native properties, 
these sets mentioned in Section 4.2. Three-fold . 

· Cross validation was used for 
testing and comparing the results. 

Two environments were used to implement th· th • 
is 1esis; Java and Matlab 

' for implementation of k-mean we used the Java :hi 1 . . 
mac mne learning library 

(Java-ML) [1], the Composition, Transition, Distribution 5a, , 
' enco mg usmg the 

Biojava library [47], and we used the Matlab Statistics Toolbox for the SVM 
implementation [38]. 

5.2 Results from full protein sequences 

The membrane proteins benchmark as full protein sequences was used in 

testing our approach. Two encoding methods: the PseAAC, and the CTD 

were used to encode the sequences in this benchmark. A description of the 

experiments that were done will be introduced here. 

Results From PseAAC encoding method 

E . . b h k coded using the PseAAC ach protein sequence m the enc mar was en 

based on Equations 2.10 to 2.13. The feature vector for each sequence was 

. f A = 30 ) and we used the 20 (AC properties) + 30 (correlation factors rom ' 

7 sets of properties. 

f 3 fold cross validation test for Figure 5.1 shows the accuracy results 0 
. the previous 7 sets and SVM classifier based on K-mean clustering using 

. different numbers of clusters of PseAAC, the experiments were done usmg 
d t 10 clusters because after 

training data ranging from 2 to 10. We stoppe a 
' d d homogeneous clusters 

thi 5- mnts produce Is number of clusters some expenme ·fi d The 
ses) that can not be class1 e . 

( clusters contain data from the same clas 
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result of one cluster of data means a result of . 
classification . th 

of the data. WI out clustering 
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Figure 5.1: Accuracy of SVM for membrane proteins using PseACC. The 
training data divided into different numbers of clusters (range from 2 to 10), 
one cluster of training data means a classification without clustering. The x­ 
axis represents the number of clusters and the y-axis represents the accuracy 
of the classification. 

These results show that the using of classification without the clustering 

gives not good results compared with classification based on clustering. Once 

the data is split the accuracy risen dramatically, when the data divided into 

two clusters enhanced the accuracy results approximately by 20%for all sets 

f d th lt by 5% only, but 0 Properties except Venkatarajan that enhance e resu 

its still better than using classification without clustering . 
. h different number of clusters All sets of properties behaved the same wit 1 

. d b using the Atchley 
except Venkatarajan, but the highest value was achieve y . 

imately 80% at rune 
Properties where the accuracy result arrived to approx 

clusters 
· : ive almost . native properties ga 

The results also show that using derived or 
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5.2 _RESULTS FROM _FULL PROTEIN SEQUENCES 

the same effect using the PseACC encoding 

Results from CTD encoding method 

Each protein sequence in the benchmark was encoded 
using CTD (CTD 

mentioned in section 2.2), the feature vector for each seque 2 ( 
ence was 1 com­ 

position)+ 21 (transition) + 105 (distribution). 
Figure 5.2 shows the results of 3 fold cross validation test for SVM classi­ 

fier based on K-mean clustering using CTD, the experiment was done using 

different numbers of clustering for training data, where the result of one clus­ 

ter of data means a result of classification without clustering for the data. 

This result shows that the using of classification based on the clustering 

can not make any enhancement, on the contrary the result was not good, 

so CTD is not a good choice to encode membrane proteins when using our 

proposed approach. 

100 

0 

Number of clusters 

: OTD. The train- · using ;. ibrane proteins g to 7), one igure 5.2: Accuracy of SVM for memt., t rs (range from 
· b of c use · lllg data divided into different numl vers . 'thout clustermg. I 'fi tion WI· Cluster of training data means a classitca · 
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5.3 

5.3, RESULTS FROM PEPTIDE SEQUENCES 

Results from peptide Sequences 
Two peptide benchmarks were selected to t 

· test our approach: MHC-II and 
Caspase, where MHC contams peptide sequ . 

:. 1ences with variable lengths and 
the Caspase contams sequences with fixed l gth en . s. 

5.3.1 Results from MHC-II sequences 

Two encoding methods: the PseAAC. and the CTD ·d 
' were use to encode the 

MHC-II sequences, a description of the experiments th t d . 
a were lone will be 

introduced below. 

Results from PseAAC encoding method 

Each peptide sequence in the benchmark was encoded using the PseAAC. In 

this experiment we used X == 3 ( due to short lengths of peptide sequences), so 

the feature vector for each sequence was 20 (AC properties) + 3 (correlation 
factors). Also the 7 sets of PCPswere used in this experiment ( Section 4.2). 

Figure 5.3 shows the results of 3 fold cross validation test for SVM classi­ 

fier based on K-mean clustering using the previous 7 sets and PseAAC, the 

experiments were done using different numbers of clustering of training data, 

range from 2 to 20, this large range was selected due to the large number of 

data. 

:. vement when the classi­ The figure shows there are no significant impro 
. . be due to the complexity [cation based on clustering was used, this may 

: ined the accuracy close to the 
of MHC-II, however our approach has mamtai 

accuracy of classification without clustering. 
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Figure 5.3: Accuracy of SVM for MHC-II sequences using PseAAC. The 
training data divided into different numbers of clusters (range from 2 to 20) 
one cluster of training data means a classification without clustering. ' 

Results from CTD encoding method 

Each sequence in the benchmark was encoded using CTD. Figure 5.4 shows 

the results of 3 fold cross validation test for SVM classifier based on K­ 

mean clustering using CTD, the experiment done using different numbers of 

clustering of training data, where the result of one cluster of data means a 

result of classification without clustering for the data. 

d. .d d · t 2 or 3 clusters the The Figure 5.4 shows that when the data livite m 0 

h the number of clusters results of accuracy increased very slightly, then w en 
. h accuracy of classification 
increased, the accuracy decreased compared to t e 

without clustering. 

5.3.2 Results from Caspase sequences 
. method were 

Th d the concatenating 
ree encoding methods: PseAAC, CTD an : mnts that 

. f the experin© 
Used t description O 0 encode the Caspase sequences, a 
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t0 
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O 

tthhtl I I 
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Figure 5.4: Accuracy of SVM for MHC-II sequences using CTD. The training 
data divided into different numbers of clusters (range from 2 to 20), one 
cluster of training data means a classification without clustering. 

were done will be introduced below. 

Results from PseAAC encoding method 

Each peptide sequence in the benchmark was encoded using the PseAAC. In 

hi h 1 th f peptide sequences), t s experiment we used A = 3 (due to s ort eng s 0 

tors Also the 7 sets of so the feature vector was as the MH C-II feature vec · 

PCPs were used in this experiment ( Section 4.2). 
1 · dation test for SVM clas­ Figure 5.5 shows the results of 3 fold cross va 1 

. ions 7 sets of properties and 
sifier based on K-mean clustering using the prev f 

. t mbers of clustering O PseAAC, dc 5g different nu e , the experiments were one usmn£ 5ft r 
tr . . ed at 12 clusters because a e 

@mning data range from 2 to 12. We stopp 
3 reneous clusters. thi.. mroduced homog 

IS number of clusters some experiments P when the 
the accuracy Fr · rovement on om this figure we can see an unp . at two clusters 

dat ..,, :. the classification, 
a divided into clusters before applying 
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Figure 5.5: Accuracy of SVM for Caspase sequences using PseAAC. The 
training data divided into different numbers of clusters (range from 2 to 12), 
one cluster of training data means a classification without clustering. 

the accuracy of the classification enhanced by 15% especially when we used 

Maetschkes properties. The accuracy of almost sets of properties oscillating 

up and down, however the classification based on clustering was the best in 

all cases. 

Results from CTD encoding method 

E : CTD. Figure 5.6 shows ach sequence in the benchmark was encoded using '· 

h SVM classifier based on K­ t e results of 3 fold cross validation test for 
. in different numbers of lllean clustering using CTD the experiment done us g 

' ans a cluster of data me c!Ustering of training data, where the result of one 

result of classification without clustering for the data. d lightly 
. the CTD was improve s 

The figure shows that the accuracy usmg . to encode 
D is not a good choice 

ranged from (2-3)%. We can see that the CT 
theG, ·h dspase sequences for our approacl.. 
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Figure 5.5: Accuracy of SVM for Caspase sequences using PseAAC. The 
training data divided into different numbers of clusters (range from 2 to 12), 
one cluster of training data means a classification without clustering. 

the accuracy of the classification enhanced by 15% especially when we used 

laetschkes properties. The accuracy of almost sets of properties oscillating 

p and down, however the classification based on clustering was the best in 

ill cases. 

Results from CTD encoding method 

•-, . CTD Firure 5.6 shows t.aen sequence in the benchmark was encoded usmg · o 

• VM classifier based on K­ me results of 3 fold cross validation test for S 
. different numbers of 

il!Ean clustering using CTD, the experiment done usmg 
f data means a dust . lt f one cluster o · enng of training data, where the resu 0 

!esu.It of classification without clustering for the data. . ed slightly 
T . he CTD was improV 
he figure shows that the accuracy using . to encode 

d choice t~ D. ot a goo ged fron (2-3)%. We can see that the CT' 1s n 
1he C 

Spase sequences for our approach. 

67 



~ RESULTS FROM PEPTIDE SEQUENCES 

tot 
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Figure 5.6: Accuracy of SVM for Caspase sequences using CTD. The trainin 
data divided into different numbers of clusters (range from 2 to 12), on 
cluster of trammg data means a classification without clustering. 

Results from concatenating encoding method 

This encoding method can be used when the dataset contains sequences have 

the same lengths, so we used it for Caspase dataset to evaluate our approach, 

the main feature of this method is using the original values of the properties 

rather than derived new values represent the original properties such as the 

PseAAC and CTD. Also the 7 sets of PCPs were used in this experiment. 

Figure 5. 7 shows the results of 3 fold cross validation test for SVM classi­ 

fi . 7 ts and concatenating er based on K-mean clustering using the previous se 
. . t umbers of clustering of method, the experiments were done using different n 

training data, range from 2 to 12. . 
. based on the clustermg 

This result shows that the using of classification 
. sification without clus- 

gives significant enhancement compared with the c ass . the 
t . . Once the data are split 
ering when using the concatenating method. the ac- 

. . d . to two clusters 
@ccur .:. ;he data divide 1n racy nsen dramatically, when t e a 
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Figure 5.7: Accuracy of SVM for Caspase sequences using concatenating 
method. The training data divided into different numbers of clusters (range 
from 2 to 12), one cluster of training data means a classification without 
clustering. 

curacy results were enhanced approximately by 30%for Georgive and Native 

properties (The accuracy reached to 82%). 

All sets of properties enhanced the accuracy when using our approach, 

Georgive and Native behaved the same, thats because the Georgives proper­ 

ties derived from the Native set. 

5.4 Time Performance 

. the computation time for 
Many previous studies have focused on reducing 

. l 3sification, especially when large data sets by using the clustering before c as . 
· · g time of . h because the trairun the SVM was used as a classification algorithm . 

. • g an SVM is . that because tramm 
SVM is a serious obstacle for large data sets, 

1 :. JP) roblem to find a hyperplane 
Usually posed as a quadratic programming ( Q p b of 

. . :. n, where the n is the numb»er 
Which implicates a matrix of density n X ' 
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samples in the data set,and his matrix needs hu C · · 
8€ quantities of computations] 

time and memory for large data sets so the t . . 
> raming complexity of SVM ; 

l . f IB dependent on the size of a data set [13]. 

In order to study the time performance of our ap h . 
proacl on different size of 

protein datasets, the approach was applied on three d t t . h 
aasets; these datasets 

are Caspase 3 that contains 494 sequences and the memb d 
' rane ataset that 

contains 414 sequences, in addition to MHC II that contains 5166 
sequences. 

Table 5.1 shows the time and accuracy for different input dataset(5166 se- 

quences, 494 sequences and 414 sequences) for different number of clusters 

(range from 2 to 10 clusters), and the native properties were used by the 

PseAAC encoding method. 

The specification of our computer that used to run the experiments is as 

the following: Dell laptop Inspiron 5040, core i5, 8GB RAM. 

Table 5.1 shows that the training time for classification is declined when 

the number of clusters increased for the three datasets, while the accuracy 

of classification increased or remain in the same rang of accuracy when using 

the classification without clustering. 

. b 1 arley obvious when the The effect of the system on the time can ve cle 

datset is lagre as MHC II dataset. Figure 5.8 illustrates the change of the 
. . b f clusters for the MHC­ time (in second) with the increase in the num er 0 

d to the Caspase and II data sets because it is the largest dataset compare 
the native properties membrane protein datasets, it contains 5166 sequences, 

Were used by the PseAAC encoding method. 
he time decreased from 610 to 

When the data divided into two clusters t t 
then it began o 

9 1. at three clusters, 7 seconds the time continued to dee me . . g 
3 ·d by increasin . . the overhead cause Increase slightly, this increase is due to 

the number of clusters. 

70 



5.4. TIME PERFORMANCE 

psble 5.1: Comparison the time performance and acciura», ,,,, 
Ia "+-. CY using the clustering before the classification and without clustering for different ;,, 
of datasets 

'Number of sequences Number of clusters Accuracy () Time (second) 74 1 (without clustering) 0.502416 0.228455 2 0.723069 0.032004 3 0.720195 0.039321 4 0.763793 0.04904 5 0.74485 0.05847 6 0.769374 0.066932 7 0.767262 0.125557 8 0.743521 0.090693 9 0.732575 0.105045 10 0.746734 0.101628 
1 ( without clustering) 0.546332 0.268538 

'494 
2 0.614169 0.06064 
3 0.564923 0.042766 
4 0.565955 0.054031 
5 0.58076 0.07251 
6 0.62807 0.077678 
7 0.603619 0.104219 

0.099507 8 0.600051 
0.10714 9 0.588401 

0.106795 0.605474 10 
610.2449 1 (without clustering) 0.690476 
97.7859 

5166 
0.709833 2 
0.698631 5.7150 3 

5.8520 4 0.692373 
6.9318 5 0.690527 
7.7595 6 0.688034 
9.1864 7 0.675136 

10.5869 8 0.676268 
11.9592 

9 0.675399 
13.6008 0.676864 10 

d . g the training data by . d to the re ucm This big decline in values is due,,,-gVM on each cluster 
then applying splitting the training data into clusters, 

that contains fewer training data. 
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Table 5.1: Comparison the time performance and accuracy using +j,, 
clustering before the classification and without clustering for different ;>, 
of datasets 

. Number of sequences Number of clusters Accuracy (%) Time (second) 414 1 ( without clustering) 0.5024f6 0.228455 2 0.723069 0.032004 3 0.720195 0.039321 4 0.763793 0.04904 5 0.74485 0.05847 6 0.769374 0.066932 7 0.767262 0.125557 8 0.743521 0.090693 9 0.732575 0.105045 10 0.746734 0.101628 
1 ( without clustering) 0.546332 0.268538 

494 
2 0.614169 0.06064 
3 0.564923 0.042766 
4 0.565955 0.054031 
5 0.58076 0.07251 
6 0.62807 0.077678 
7 0.603619 0.104219 

0.099507 8 0.600051 
0.10714 0.588401 9 

0.605474 0.106795 10 
610.2449 1 ( without clustering) 0.690476 
97.7859 

5166 
0.709833 2 
0.698631 5.7150 3 

5.8520 4 0.692373 
6.9318 5 0.690527 
7.7595 6 0.688034 
9.1864 

7 0.675136 
10.5869 8 0.676268 
11.9592 

9 0.675399 
13.6008 0.676864 As,» 10 , 

b e 4 

d . g the training data y . . due to the reducing ,- T'his big decline in values is,,,-gVM on each cluste 
then applying 1. . . . d t into clusters, Splitting the training lata 

that contains fewer training data. 
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Figure 5.8: The time performance for the proposed approach based on SVM 
algorithm. The experiment was done using the MHC-II benchmark the 
PseAAC encoding method and the Native properties were used ' 

5.5 Discussion of results 

This section contains a discussion of the above results, the section is di­ 

vided into the following subsections: the performance of selected PCPs in 

our approach, the performance of encoding methods in our approach, the 

performance of our proposed approach using different benchmarks, and the 

performance of of SVM computation time using our approach. 

5.5.1 Performance of encoding methods in our approach 

T 11 b h ks (PseAAC and CTD), wo encoding methods were used for a enc mar 
. hod) mas used for the Caspase and an additional method ( concatenatmg met O w 

dataset because has fixed length sequences. 

PseAAC encoding method 

n ., :, ithout clustering, it was clear that 
hen applying PseAAC to classification witho 

d 5001) for membrane 
the sfa (aroun rvo e classification rates were not satisfactory 
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proteins and Caspase sequences. It gave better results for MHC 
datasets ( around 68%). 

On the other hand, the accuracy for the m b 
embrane proteins and Caspas . e 

sequences were improved significantly when the ch 5ts. 
clustering was introduced 

before the classification. The accuracy of sequence fo ill 
es or a sets of properties 

increased when the data divided into two clusters Aft th 
· er at, the values of 

accuracy swing up and down but it remained higher tha th n e accuracy for 
the classification without clustering. However, our approach using PseAAC 

cannot make an a major improvement for MHC-II sequences. this may be 

because to the complexity of the MHC-II problem. 

CTD encoding method 

The CTD of classification without clustering did not give good results for the 

membrane proteins and Caspase sequences, but the accuracy of the MHC was 

similar to the results based on PseAAC. 

When the clustering was used before the classification, the results were 

not enhanced in the case of membrane proteins. For the MHC and Caspase 

it made very little improvement but it not exceed the 4%. 

In general, CTD as encoding method did not lead to any enhancement. 

This is due to nature of CTD method, as mentioned in 2, the CTDs features 
. . 1 s derived from dividing are not original values of PCPs, instead it is a value 

h a earing of the groups in the amino acids into groups then depends on t e PP 
di tide features based on the sequences. In addition, CTD depends on the lipep 

division the sequence to pairs. 
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5.5. DISCUSSION OF RESULTS 

Concatenating encoding method 

Concatenating method was only applied to C 
aspase sequences because the 

have fixed lengths, the results showed that it • Y 
· snot good for classification 

without clustermg, but it is better than P ·AAC 
se and CTD in our approach 

for Caspase, thats because it uses the natu 1 1 
ra va ues of the PCPs and that 

made the differences between the selected s t f . 
e s o properties clear, while al- 

most sets of properties behaved the same based p A 
on 'se. .AC, thats because 

the PseAAC depends on the features that deri d f h ve rom t e natural PCPs 
' so the values will be close for the same dataset. 

Like the PseAAC, the performance of concatenating method depends on 

properties used to represent the sequences. 

5.5.2 Performance of selected descriptors in our ap­ 

proach 

In most of the above experiments, we used 7 sets of descriptors (Atchley, 

Georgive, Venkatarajan, Kidera, Georgive BLOSUM 62, Maetschke and Na­ 

tive). When using PseACC as encoding method, we can notice that the effect 

of these sets of PCPs on the accuracy for all benchmarks were nearly similar. 

This is due to the nature of features derived using this encoding method (20 
· 1 the AC + correlation factors), where the first twenty values are similar, so 

comparison was mainly done depending on the correlation factors. These 

1 . . h d f the amino acids in the correlation factors take into consideration the order O 

sequence and the values of the PCPs of amino acids. 
. ents using the concate­ 

On the other hand, when repeating the experm 
. the classification accuracy 

hating method. there were clear differences OD 
' . method depends 

among the 7 descriptors. This is because the concatenating 
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5.5. DISCUSSION OF RESULTS 

on the original values of the properties, the results 5r,, 
s ot this method on Caspas 

sequences showed that Native properties are the b . . e 
est in classification. also 

the results of Georgive and Native are close, because th G • 
e ieorgive properties 

were derived from the Native sets themselves. 

Based on these results, we can say that the perform f h . 
ance ot the descriptors 

in our approach depends on encoding methods that were d use . 

5.5.3 Performance of our proposed approach on differ­ 
ent benchmarks 

Based on previous results, our approach that depended on applying the clus­ 

tering before the classification enhanced the accuracy of classification for two 

benchmarks; Caspase and membrane proteins, but it failed to improve the 

accuracy of classification for MHC-II benchmark. 

In this thesis we used one clustering algorithm (K-mean) and one clas­ 

sification algorithm (SVM) for all experiments, and we founded that the 

performance of our approach depended on the encoding methods more than 

the selected properties, this was clear when we applied two encoding methods; 

PseAAC and concatenation methods, on the Caspase sequences by using the 

d th t th concatenating method same sets of properties, the results showe a e 

improved the accuracy by 30%, where the PseAAC improved the accuracy 

by 15%. 

75 



5.5. DISCUSSION OF RESULTS 

5.5.4 Performance of SVM training time in our 45, 
proach 

The result of the time on MHC-II showed that our approach significantly 

reduced the training time of the SVM while maintaining the accuracy of the 
prediction, and without eliminating any samples. 
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Chapter 6 

Conclusion and Future Work 

This thesis has proposed a novel approach that aims at enhancing the ac­ 

curacy of the classification for the protein sequences. This approach based 

on the using of clustering algorithm before the classification, using different 

sets of descriptors based on PCPs, and applying two encoding methods to 

represent the sequences. The results show that the classification based on the 

clustering can be significantly enhanced the accuracy of the prediction for the 

protein sequences, and this enhancement depends on the selected PCPs and 

the encoding methods used to represent the sequences, this mean that the 

datasets of the proteins need to examine again to distribute the sequences 

based on their similarities, in order to facilitate the classification. 

. . h . t ble encoding method This approach has the potential to discover the suita 
. d t et while the classifi­ and the suitable set of properties for each protem a as ; 

cation without the clustering failed in. 
asets; membrane proteins, 

The proposed approach tested on three dat: » 

. d t et represents the full MHC II, Caspase, while the membrane protein latas 
th Peptide se- C; vase represent e Protein sequences where the MHC and aspa , 

:. the performance O 
qu d to examme ences. Seven sets of descriptors were use 
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the classification based on clustering one of th 
' em represent . . ts original PCp 

taken from the amino acids databases, and the rest s 
I'epresent derived Pp 

also two encoding methods; PseAAC and CTD wer d s, 
e use to encode the MHC 

II, membrane protein and the Caspase sequences a d 1 ' n a so the concatenation 
method to encode he Caspase sequences.These encod; 

0 mg methods used to 
study the influence of the encoding methods on the class fi ·ti 

s111cation accuracy, 
Our experiments show that our approach which depends · h 

on using t e K­ 
mean clustering before the SVM classifier of the protein sequen . 

ces can give 
better results than the classification without the clustering using the selected 

descriptors and some encoding methods for two datasets; Caspase and the 

membrane proteins, and it maintains the same range of accuracy for MHC 

II sequences. 

Although our approach could not significantly improve the classification 

results for MHC II, it succeeds in reducing the training time of the SVM 

significantly while maintaining the accuracy of prediction. That means our 

approach can be used to reduce the SVM training time for large datasets, 

without the need to eliminate any sample from the dataset as in previous 

approaches. 

The results of our experiments show that the PseAAC gave better re- 
. t ating method sults than the CTD for the three datasets, and the conca en 

t lso the concatenating gave better results than PseAAC for Caspase dataset, a 

d t larify the differences method was better than other encoding methods O C. 

between the selected sets of descriptors. 
d the descriptors I ch depends on n general the performance of our approac . h 

so to achieve hig 
and the encoding methods used to represent the sequences, d' 

: 5fPCPs and encoding 
Performance you should find the suitable combination O 
Inet hods, 
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The main difficulty that we faced in develop· 
'lg our model is the s; sq 

' be h ·pee limitations, that s ecause t e datasets contain a lar 
Se number of sequences 

especially the MHC II dataset, and for each dataset ' 
we need to encode each 

sequence using the PCPs and cluster the sequences. fc 
s or our experiments 

we need to cluster the sequences at least from 2 to 10 1 
t 

c us ers, also the 
classification of the sequences needs time. 

In the future other encoding methods, other descriptors can be used to 

enhance the results of our approach, also different clustering and classification 

techniques can be used rather than the K-mean and SVM. 

The most important development of our approach is to develop a tool 

depending on this approach in order to help the researcher to know which 

descriptors, encoding method, clustering and classification algorithms can 

be used to enhance the accuracy of the prediction for different datasets of 

proteins. 

Based on our approach the reserachers in the future can determine the 

best descriptors for each dataset ( that achieve the higher accuracy). 
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