Palestine Polytechnic University
Deanship of Graduate Studies and Scientific Research
Master of informatics

Using Clustering to Enhance Protein
Sequence Classification

Submitted by:

Haneen Musallam Altartouri

Thesis submitted in partial fulfillment of requirements of the
degree Master of Science in Informatics

May, 2013
(ol ol St Al
E % % Palé'sﬁua Poiytechnic University {¢
: {PPU}

k3 e
@Ef__me Librasy &y..i&h-. ,




DECLARATION

I declare that the Master Thesis entitled ” Using Clustering to Enhance
Protein Sequence Classification” is my original work, and herby certify
that unless stated, all work contained within this thesis is my own indepen-
dent research and has not been submitted for the award of any other degree

at any institution, except where due acknowledgement is made in the text.

Haneen Musallam Hussein Altartouri

e
Signature: - Date: /4 / ;{/—/éd/l 90/3

ii



The undersigned hereby certify that they have read, examined and rec-
ommended to the Deanship of Graduate Studies and Scientific Research at
Palestine Polytechnic University the approval of a thesis entitled: Using
Clustering to Enhance Protein Sequence Classification, submitted
by Haneen M. Altartouri in partial fulfillment of the requirements for the

degree of Master in Informatics.

Graduate Advisory Committee:

Dr. Hashem Tamimi (Supervisor), Palestine Polytechnic University.

Signamre:Maa; Date: 71.(/:7// 2| A

Dr. Yaqgoub Ashhab (Supervisor), Palestine Polytechnic University.
D B i - S S 7 A
Signature: ,dp{{;’f\iv. — Datc-5_ ~J L [v; ~2012
(e gt ) e
Dr. Mohammed Aldasht (Internal committee member), Palestine Polytech-

nic University.

Si D B/ 4
'lguatur(‘.' i ntc:J@_'Z_?ng
(o=

Dr. Mohamed Alshalalfa (External committee member), University of Cal-

gary. - oy
R ///(f/ g" e :
— 3/ Tuly /2017

Signature: Date:_2/ /=

Thesis Approved
Dr.Sameer Khader

Dean of Graduate Studies and Scientific Research
Palestine Polytechnic University

Signature: = o Date-_ &L 0320113

\




DECLARATION

I declare that the Master Thesis entitled ” Using Clustering to Enhance
Protein Sequence Classification” is my original work, and herby certify
that unless stated, all work contained within this thesis is my own indepen-
dent research and has not been submitted for the award of any other degree

at any institution, except where due acknowledgement is made in the text.

Haneen Musallam Hussein Altartouri

e
Signature: T up Date:_/LLl%L_Za_LZ

i



STATEMENT OF
PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for the
master degree in Informatics at Palestine Polytechnic University, I agree that
the library shall make it available to borrowers under rules of the library.

Brief quotations from this thesis are allowable without special permission,
provided that accurate acknowledgement of the source is made.

Permission for extensive quotation from, reproduction, or publication of
this thesis may be granted by my main supervisor, or in his absence, by the
Dean of Graduate Studies and Scientific Research when, in the opinion of
either, the proposed use of the material is for scholarly purposes.

Any coping or use of the material in this thesis for financial gain shall

not be allowed without my written permission.

Haneen Musallam Hussein Altartouri

Signature: /ﬂk Date:__ LY / E;jq [ 70/2

>

il




DEDICATION

To my mother and father, who always supported me and encouraged me to

get my Master degree. To my brothers and sisters for their support.

iv




ACKNOWLEDGEMENT

As T write the last words of this thesis, I greatly appreciate the thesis’s
supervisors Dr. Hashem Tamimi and Dr. Yagoub Ashhab for their support
and time they spent with me in order for this thesis to succeed.

I would like to thank the thesis’s examiner Dr. Mohamed Alshalalfa and
Dr. Mohammed Aldasht for their valuable suggestions and corrections to
this work, which greatly helped me to improve in various aspects.

I would like to thank my family for continued support, encouragement

and patience from the first step till the end.




skl

Jodd dm ool Sladly 831 Al o) Gt DL ods g
eF @ e e mandl g adadl Gl lys fe slae¥L ol )
(.L\éc..,l{ A3 g ohy ladll & s ol olegez J Ol Al Judl
F e diadl byt Gl & ¢ e s et Ol lss ol
5 & QS Wil GUL seled) Lay) (il cA! F3sadl icgez
SECINY RN

LoVl ogeml) LlaS™ § oL ailas Sus plaszal £ Cs_}o;” KV J
or Tate el b Y1 Lramy o] pallas o ekl o an
VeVl gad ] ol Oty b plasial 7 eells I BLoYL 4o jailad
£l by paladl sia Ll pailad) foslze¥l 3 K s
Al 3gadl shs) e oLz

(Lol e e Lakiz glyl T o ad ¢ C;@.H gisedl jl=y
3 Slasdl Jodle et o) B3 Wl Josdl & A1 AR P g
G Bl G e ooy il plasal Glhe sl £l lam Liaad
gl 350l O Cagll sl @bl £l bl U5 ) BLYL . gl
a5 ¢ Logmle ity cldadl oy lys oW 5300 o9l 55 5 st
L Hes K SULI sl & S ke C,m Pl 5,08 e Ju
Lo s o O

vi



Abstract

We introduce a new approach for enhancing the performance of predic-
tion of biological attributes based on protein sequences using a combination
of classification algorithms and clustering analysis. Before applying classifi-
cation, we use clustering analysis in order to find clusters of similar proteins.
A classification algorithm is then applied on each cluster. The proposed ap-
proach is suitable for large datasets, when high classification accuracy and
fast convergence are required.

Different descriptors based on the physicochemical properties of amino
acids are used, some of them are native properties and the others are de-
rived properties. Two encoding methods are used to represent the protein
sequences using the descriptors. These descriptors and encoding methods
are analyzed to enhance the performance of the proposed approach.

Three standard benchmark datasets, Caspase, Major Histocompatibility
Complex class II (MHC-II) and the membrane proteins are used to examine
the proposed approach. Many experiments with different parameters are
performed and the results are cross validated.

The results show that applying clustering prior to classification gives
higher prediction accuracy than using the classification without clustering, es-
pecially when using the membrane proteins dataset and the Caspase dataset.

In addition, the result of time performance, especially when using the MHC-II




dataset, shows that the proposed approach succeeds in reducing the train-
ing time of the classification algorithm significantly while maintaining the
accuracy of prediction. That means our approach can handle large datasets,

without the need to reduce the data.




Table of Contents

1 Introduction
BN essobjeativesei S L.

1.2 ClomimTommingiam

2 Background
2.1 Physicochemical properties of amino acids . . ... ... ...
27288 Encodingithe protein sequences . . . . . . . . . . ... . ...
2.2.1 Encoding methods using the amino acid sequence . . .
2.2.2 Encodings using PCPs of amino acids . . . ... .. ..
23V achinelllearning ' Techniques . . . . . . . . o v v v oo o n ..
28N @usteAmalysis. . . . .. ... L. L.
2.3.2 - Cllassiliieaiiio i
2.4 Feature selection and reduction techniques . . .. ... .. ..
R N e HUNESEleCHIONT . . . . . . .. . s e e

A B REATITEREXUEACHION. s « = 5 o o o o v s oo e se s s

3 Literature Review
3.1 Importance of encoding protein sequences using the physico-
chemiGANRTODERHes Rl . o . . o oo L L s

3.2 Representing the amino acids based on PCPs . . . .. . . ..

10
18
18
20
27
27
28

30




Table of Contents

1 Introduction
LIL T OIoErstin | o

2 Clomtmilbuiiome

2 Background

2.1 Physicochemical properties of amino acids . . . ... .. ...

2.2 Encoding the protein sequences . . ... ............
2.2.1 Encoding methods using the amino acid sequence . .
2.2.2 Encodings using PCPs of amino acids . . . ... .. ..

ZSalVlachinedlVearning Techniques . . . . . . . . .. ... .:....
AR EIUSTERIAMAlYSIS. . . . . . . . v e e e e e e e e
P R @lassifiGationt . .. L L

2.4 Feature selection and reduction techniques . . ... ... . . .
2ALIL IREaiinine e e o) o S

AR B EEAIEIEXITACHION -« v v v o o o v e e e e e

3 Literature Review
- 3.1 Importance of encoding protein sequences using the physico-
EETEE]| [ITOTDETIHES] | e R S

3.2 Representing the amino acids based on PCPs . . . . . . . . .

10
18
18
20
27
27
28

30




TABLE OF CONTENTS

3.2.1  Selection of native amino acids PCPs . . . . ... ... 31
3.2.2  Derivation of novel SSRGS N bk v v & w5 4 s 32
3.3 Classification based on olistianing - B L 35
& NlTes SR conimbutione. S s . L L L 36
Data and Methods 38
Sl Baimeeis o 38
4.1.1 Membrane proteins benchmark . . ... .. ... ... 39
N @R elass T benchmark . . . . . ... ......... 39
BN Gaspase 3ibenchmark . . . . . ... ... ... ... .. 41
4.2 General description of the proposed approach . . ... . ... 42
4.3 Native and derived descriptors used in this SOy S 44
RN native Properties . . . . . . . . . ... 44
S ANISiderdisiproperties . . . . . . . ... . ... 46
SIS Achlleyisiproperties’. . . . . . . . .. ... ... 47
4.3:4 * Venkatarajan’s properties . ... ............ 47
dxStommNiaetsehke’s' propexties . . . . . . . ... ... ... .. 48
BIOMREconoieve's properties . . . . . . . ... ... ..., 48
4.3.7 Georgieve’s BLOSUMG62 properties . . . .. ... ... 49
4.4 Encoding protein sequences using PCPs . . ... ... .. .. 49
AW @lassificationtbased on clustering . . . . ... ......... 52
4858 I aTaldivASION'StEP . » - - . . . v e e e e e 53
ALS 2 (ClISEmn G o) A 93
AR5 ESIN) STRIDUGIONTSEEDS « = « - -« & v v o v e v e e 54
RV R @ aSSTHEATONISTED = « « « « s + + 5 & v v v e o e 55
4.6 Prediction of a new testing sample . .. ... ... ... ... 56
RO ANCEIeVAIUATION v . & . . . o v e e e e 57




TABLE OF CONTENTS

5 Experiments and Results 60
D1 ISpenimeniial Fiin 60
5.2 Results from full protein sequences . . .. ... ........ 61
5.3 Results from peptide sequences . .. ... ........... 64

5.3.1 Results from MHC-II sequences . . ........... 64
5.3.2 Results from Caspase sequences . . . ... ....... 65
DAL Time IPlemiomomariies 69
SEEeEseoofiosults L . L L L L. 72
9.5.1 Performance of encoding methods in our approach . . . 72
9.5.2 Performance of selected descriptors in our approach . . 74

5.5.3  Performance of our proposed approach on different bench-

L R . . i e e 75
9.5.4 Performance of SVM training time in our approach . . 76
6 Conclusion and Future Work 77




List of Figures

2.1
2.2
2.3
24
2.5
2.6
201
2.8
259
2.10

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

GinkexamplefofACencoding . . . . . ... .. ...
An example of the dipeptide composition . . . ... .... .
antexamplefoffthe @E encoding . . . . . .. ... .... ..
An example of encoding using concatenating methods . . . . .
An example of average physicochemical encoding. . . . . . . .
An example of clustering showing intra and inter distances . .
Diasnamioftclassification method. . . . . . . ... ... .. ..
Mapping data into a higher dimensional feature space.

Many possible separating hyperplanes . . . . . . . ... .. ..

Il saimeinan IIETEIN . o o S

Example of membrane protein sequences. . . . . . . ... ...
Bxamplefof MH@-TI'peptides. . . . ... ............
Bxampletofi@aspase-3 peptides. . . . . . ... .........
Block diagram of the proposed approach. . . . ... ... ...
Bampleloffcrossivalidation. . . . . . . .. ... .0
ClsiEmmg SIEM- - o b b o e e R S
IDNSHTIBTTEN SUETDE i o P

L ErGlASSITEARONISIEDERS s © o . . v i e e e e e e

The four possible outcome of the classifier . ... ... .. . .

42

o4
95

o7




LIST OF FIGURES %

|

9.1 Accuracy of SVM for membrane proteins using PseACC. . . . 62 §

5.2 Accuracy of SVM for membrane proteins using CTD. . . . . . 63 1

9.3 Accuracy of SVM for MHC-II sequences using PseAAC.. . . . 65
9.4  Accuracy of SVM for MHC-II sequences using CTD. ., .. .. 66
5.5 Accuracy of SVM for Caspase sequences using PseAAC. ... 67
9.6 Accuracy of SVM for Caspase sequences using @TD.. . .. .-, 68

5.7 Accuracy of SVM for Caspase sequences using concatenating

mEhocl L 69
5.8 The time performance for the proposed approach based on
S mlEomitlhiEn. Lo 72

xiii




~ LIST OF FIGURES
9.1 Accuracy of SVM for membrane proteins using PseACC. . . . 62
9.2 Accuracy of SVM for membrane proteins using CTD. . . . . . 63
9.3 Accuracy of SVM for MHC-II sequences using PseAAC.. . . . 65
9.4 Accuracy of SVM for MHC-II sequences using CTD. .. ... 66
9.5 Accuracy of SVM for Caspase sequences using PseAAC. ... 67
5.6 Accuracy of SVM for Caspase sequences using CTD. ... .. 68

5.7 Accuracy of SVM for Caspase sequences using concatenating
moEtlbal L 69
9.8 The time performance for the proposed approach based on

S o, s R 72

xiii




t of Tables

Examples of physicochemical properties

Distribution the amino acids into groups based on their PCPS 16

The description of the native properties . . . . ... ... ... 45
fuestofiiSideratsifactors. . . . . . . .. ... L. 46
LeiesteWatehlevistfactors . . . . . . ... ... ... ... .. 47
WalestoVenkatarajan’s factors . . . . . . ... ........ 48
Values of Maetscﬁke’s Liafions o0 49
ValuestoffthelGeorgieve factors . . . . . ... .. ....... 50
Values of Georgieve BLOSUM62 factors . . ... ....... 51
Comparison the time performance and accuracy for different

GENRE G B SO e i, L L L L L Tl

xiv




AA
AC
CTD
FA
MDS
MHC
OE
OMPs
PCA
PseAAC
PCPs
SVM

ist of Abbreviations

Amino Acid

Amino acid Composition
Composition, Transition and Distribution
Factor Analysis

Multidimensional Scaling

Major Histocompatibility Complex
Orthonormal Encoding

Outer Membrane Proteins
Principle Component Analysis
Pseudo Amino Acid Composition
Physicochemical Properties

Support Vector Machines




e ——

Chapter 1

Introduction

Proteins represent an important component in living cells. They perform
most biological functions inside and outside them and determine the overall
body status in health and disease [28]. Each protein within a given organism
has a specific role. Without proteins, the organisms would be unable to
reform, adjust or protect themselves [61].

In the field of Bioinformatics, prediction of biological attributes such as
function, structure and localization, based on protein sequences is gaining
more attention[53]. Using machine learning algorithms, predication is used
to identify the family or the functional class to which a newly discovered
protein belongs, and it helps the researcher to identify the functions and
structures of unknown proteins in a faster, more accurate, and more cost
effective manner [53].

Recently, several researchers have focused on using different classifica-
tion techniques to solve various protein prediction problems, such as assign-
ing function, structure, sub-cellular location, and role in interaction net-

works...etc.

In bioinformatics, proteins are represented as strings of characters of vari-
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able lengths as follows: Let s — T1,T2," "+ ,Tn be a protein sequence of length
|s| = n over an alphabet Y., where r; represents the i;, residue in the se-
quence, and ¥ = {G,A,V,L,I,P,F,Y,W,S,T,N,Q,C,M,D,E,H,K,R}.
Each element in ¥ is called amino acid. Usually when n < 50 we refer to the
protein sequence as a peptide [39].

When we wish to apply machine learning techniques, such as classifica-
tion or clustering, to protein sequences or peptides, we are faced with two
facts. 1) the proteins are represented as characters and as not numeric values
and 2) the proteins have different lengths. Since machine learning techniques
usually require that all input data be numeric and fixed length, we need to
encode the proteins into a new representation.

Formally an encoding method can be considered as a transform z =
E(s;,p), where s; is the protein sequence of arbitrary length n; and z is
the encoded vector of length p. This means that the encoding transform E
unifies the length of the protein sequences to a given length p, which makes
the classification process possible. The values in s are also changed by the
encoding method accordingly with minimum loss of information.

The evaluation process of any classification method is usually performed
by first dividing the data of interest into training and testing set. Then, the
classifier is trained to map each element of the training set to a given class.
After that, the classifier is evaluated by measuring its ability to correctly pre-
dict (classify) the elements of the testing set based on the gained knowledge
through training.

A binary classifier is a special classifier which can recognize two classes.
The formal definition of binary classification is as followes, we are given a
training dataset, D = {(z1,%1), (z2,%2), - - , (%1, %)}, where z; represents a

high dimensional feature vector of a given length m and y; € {-1,1} is




1.1. THESIS OBJECTIVE

its corresponding label. In the case of protein prediction, z; is an encoded
protein sequence and y; is its corresponding biological binary propriety. Now,
Let 7 be a classification method defined as 7(D) = =, where 7 is the learnt
experience through the classification function 7. Once we obtain v, We can
apply it to further classification of novel elements.

Usually classification leads to very good to excellent results, when the
data of interest can be easily separable. This is not always the case. therefore
sometimes we need to process the data prior to classification as explained

below.

1.1 Thesis objective

In this thesis, we propose a method to enhance the performance of prediction
(training time and accuracy)for protein attributes using a combination of
classification algorithms and clustering analysis. We apply clustering prior
to classification. A separate classifier for each cluster is used for protein
prediction. This will make the classifiers work with easily separable data

inside each cluster and will eventually enhance the prediction power of the

classifiers.

1.2 Contributions

The following summarise the main contributions to the thesis:

e We propose a new approach that will enhance the prediction accuracy
and computation time of protein attribute prediction by applying clus-

tering prior or classification.

e We study the effect of different encoding methods on the performance




THESIS ORGANIZATION

of the proposed approach.

We verify the results using different data sets in order to ensure general

applicability of the approach regardless of the protein problem

‘The remaining parts of the thesis are organized as follows: chapter 2 describes
1‘Cu e theories and basic concepts that are needed to understand the rest of the
T;Eﬁhesis. Chapter 3 contains a summary of some previous works related to our
work. Chapter 4 covers the methodology used in this thesis to enhance the
- accuracy of the prediction, and the description of the benchmarks. Chapter 5
| demonstrates experiments and the results achieved by the work, and results

discussion. Finally, Chapter 6 concludes the work and propose some new

direction for the future work.
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Chapter 2

Background

This chapter gives a theoretic background needed for understanding the rest
of the thesis. The first section explains the physicochemical properties of
amino acids. The second section explains the encoding methods for pro-
tein sequences. In the third section of this chapter, the machine learning
techniques needed in this thesis are explained, such as K-mean clustering al-

gorithm and the SVM classifier. The final section covers the main techniques

for feature selection and extraction.

2.1 Physicochemical properties of amino acids

Amino acids that form the proteins determine the properties of proteins, each
amino acid has a set of physicochemical properties (PCPs), these PCPs can
be used to study protein sequence profiles, folding and function [37].

The amino acid properties can be represented by the set of numerical
values, which are known as the amino acid indices [57].

A few databases of amino acid indices have been constructed and regularly
maintained. The most important ones are: AAindex and APDbase [30] [37].

AAindex contains 544 properties [30], where APDbase contains 242 proper-

6
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2.2. ENCODING THE PROTEIN SEQUENCES

ties [37]. In this thesis, we refer to these properties as native properties. In
addition, researchers have generated new properties from the native proper-
ties which we refer to as derived properties (see Section 4.3).

Table 2.1 presents an example of 3 physicochemical properties of 10 amino
acids, the properties are size, charge and hydrophobic (a measure of how

strongly the side chains are pushed out of the water) [18].

Table 2.1: Examples of physicochemical properties. An example of three
physicochemical properties(size ,charge and Hydrophobic) for 10 amino acids,

these values are taken from AAindex database
Amino acid R [SDE QN E H S T P

Size IEBRNIDRENTTIH 28" 114 129 137 87 101 97
Charge RO D ISE S5 5.4 “3.2° 76 57 .59 6.5
liyduophiobieMi=6l =45 -3 -2.9 2.7 -26.-1.7 -11 -08 -0.3

2.2 Encoding the protein sequences

In order to apply machine learning algorithms to investigate protein se-
quences, the protein sequences need to be represented numerically. As defined
previously in Section 1.1 the encoding is a transform function X = E(s;, p).
The two major encoding methods of protein sequences are: encoding methods
based on the amino acid sequence and encoding methods based on physico-

chemical properties of the amino acids [43]. This section consists description

of some of these methods.

2.2.1 Encoding methods using the amino acid sequence

Different methods have been developed to encode the sequences using the

amino acids characters. Some of these methods are:




o i

——

2.2. ENCODING THE PROTEIN SEQUENCES

Amino acid composition (AC)

This is a simple encoding method. It finds the frequency of each amino acid
in the protein sequence., Therefore ,the encoded vector contains 20 numerical
features regardless of the length of the protein sequence [10]. Figure 2.1 shows

an example of AC encoding.

Peptide sequence | RQANFLGKIWPSHKGR |

AminoAcid ([A[C|D [E[F|G|HI KILIMN/P/QR[S[T|VIWY
ACencodinglOO01211210111210010
Length=20 >

Figure 2.1: An example of AC encoding

The dipeptide composition

The dipeptide is a component that contains two amino acids. Given that
we have twenty amino acids, we can have a combinations of 400 dipeptides.
The dipeptide composition calculates the frequency of each dipeptide in the
sequence, this method has an advantage of taking into account the order of

amino acids in the sequence [10]. Figure 2.2 shows an example of dipeptide

composition encoding.

Orthonormal Encoding

Orthonormal Encoding (OE) is also called distributed encoding or sparse
encoding. In OE, each amino acid is represented by a 20-bit vector with 19
bits set to zero and one bit set to one, the exist of amino acid at a given

residue is encoded as 1 [43]. Figure 2.3 shows an example of OE encoding.




2.2. ENCODING THE PROTEIN SEQUENCES

Peptide sequence [ RQACFLGKYWPSHKAR |

Totalnumberof allpossible peptidesin the protein sequence=13.

First line: 20 components of dipeptide composition beginning with amino add A —

Dipeptide AA |AC [ AD [ AE [AF | ... AQ |AR [ AS |AT [AV [AW [ AY
Dipeptide 0 115 | 0 s RS M 0 1715 |0 0 [0 |O 0
composition
[ |
I Length=20 |

Second line: 20 componerts of dipeptide conposition beginning with amino acid C

Dipeptide CACCCDCECF.....CQCRCSCIC\'CWCY
0

Dipeptide 0 0 0 0 1715 | ... 0 0 0 |0 |0 |oO

composition i
e %
IR Length=20 |

Third line: 20 components of dipeptide composition beginning with amino add D

Twenty-line: 20 components of dipeptide conmposition begmning with amino acid Y

Dipeptide YA |YC (YD [YE |[YF [... [YQO[YR [YS [YT | YV [YW]|YY
Dipeptide 0 0 |0 M 2 ¥ 0 0 (1« OB L) 1/15( 0
composition
<
k Length=20 —

Figure 2.2: An example of the dipeptide composition

Peptide sequence Tié;ﬁﬁéﬁf\isnx’"&ii
Length of the sequence =16

OE for R amino acid OE for Q amino acid

A \'f
00P=SIDNIRITYD OT X SAU 0T =J0133A 210D DY) JO ITud oYy |,

Figure 2.3: An example of the OE encoding




2.2. ENCODING THE PROTEIN SEQUENCES

2.2.2  Encodings using PCPs of amino acids

The PCPs of amino acids help to determine the structure and function of the
protein sequence [34]. There are different methods used to encode sequences
based on physicochemical properties of amino acids, some of these methods

are :

Concatenating method

This is a simple method used to represent each amino acid numerically as a
set of different physicochemical properties. For example if the length of the
sequence is N and each amino acid represent by 5 properties, then the length
of the feature vector will be N x 5 [48]. So in this method, the length of the
feature vector depends on the length of the protein sequence and the number

of selected PCPs. Figure 2.4 shows an example of this encoding method.

. Length=11 —I
Peptide sequence R‘D>IA AICI\;A{SIE AlY|
,/'/ \\
S FERCRRI .,,,;4;\“ e
Feature Vector [S6NI0BINTSY ... .. _ [B7SFT |

-

Size Charge Hydrophobic
Length=11=3

Figure 2.4: An example of encoding using concatenating methods, Three
PCPs were used (size, charge, and hydrophobicity)

The average physicochemical encoding

This encoding is simple, and it invariant to the length of the sequence, thus
mainly suited for proteins. Each feature is represented by the average value
of a physicochemical property with respect to the amino acid in the sequence,

therefore the feature vector is composed by F features where F is the number

10
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2.2. ENCODING THE PROTEIN SEQUENCES

of selected PCPs [43]. Figure 2.5 shows an example of an average physico-

chemical encoding method.

Peptide sequence ‘A"A'V]A A E/A Y]
Length=8

0.8 To.6 [0:a 0.6 0.9 [o5To-8J0:6]0.8 0.6 [05 |03 0.8 o6 0.7 [05]

Hydrophobic Charge

Hydrop}_u!blc Charge

Feature Vector [0.77 [0.55

— P=2 —

Figure 2.5: An example of average physicochemical encoding. Two PCPs
were used (hydrophobic and charge) after normalized it to be between 0 and
1

Autocorrelation

Autocorrelation describe the level of correlation between two objects based
on their specific structural or physicochemical property, which are defined
based on the distribution of amino acid properties along the sequence [44].
Eight amino acid properties are used for deriving the autocorrelation descrip-
tors, these properties are: (hydrophobicity scale, average flexibility index,
polarizability parameter, free energy of amino acid solution in water, residue
accessible surface areas, amino acid residue volumes steric parameters, and
relative mutability [44].

There exist mainly three types of autocorrelation descriptors: Moreau-
Broto, Moran and Geary autocorrelation descriptors. All PCPs values of

amino acids should be normalized before applying these encodings, the nor-

malization process describes in Equation 2.1.

P-P
P, = (2.1)

g

11
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2.2. ENCODING THE PROTEIN SEQUENCES

where P, is the PCP after normalized, P is the PCP before normalized,

P is the mean of the PCP of the 20 amino acids and is defines in Equation

2.

- LBy
= 22

and o is the standard deviation of the PCP, see Equation 2.3.

20

o= J 25 > (Pi— P (2.9

i=1
1. Normalized Moreau-Broto autocorrelation descriptors
The normalized Moreau-Broto autocorrelation descriptors [44] can be
defined as follows:

Z,{:d P

ATS(d) = <=L~

d=1,2,3,..,nlag (2.4)

where:

e d is called the lag of the autocorrelation (e.g: lag 1 means corre-
lating between the variable X; and X;_,).

e P, and P4 are the properties of the amino acids at position 7 and
1 + d, respectively.

e nlag is the maximum value of the lag.

2. Moran autocorrelation descriptors

The Moran autocorrelation descriptors [44] can be defined as follows:

el (B P) (B P)

a=1

— d=1,2.3;:..,30 (2.5)
7{7 Ezjil (Pi = P)2

I(d) =

3. Geary autocorrelation descriptors

12
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The Geary autocorrelation descriptors [44] can be defined as:

T d) B (P — Pyo)?

I(d) =
(d) N— 121— (P P

41,28, 17300 (26)

The quasi-sequence-order descriptors

The quasi-sequence-order descriptors are proposed by K.C.Chou, et.al (2000).
They are derived from the distance matrix between the 20 amino acids. The
physicochemical properties computed include hydrophobicity, polarity, and

side-chain volume [14].

1. Sequence-order-coupling Number The d—th rank sequence-order-coupling

number is defined as [14]:

N—d
iy — Z (dz-,,-+d)2 d=1,2,3,...,nlag (2.7)

=1

where d; ;4 is the distance between the two amino acids at position i

and 7 + d.

2. Quasi-sequence-order Descriptors: In this case, for each amino acid

type a quasi-sequence-order descriptor can be defined as [14]:

Ir A%
o - 7= T80 P SRR )
PRt o Ty

where f, is the normalized occurrence for amino acid, and w is a weight-

ing factor (often w = 0.1).

These are the first 20 quasi-sequence-order descriptors. The other

13
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quasi-sequence-order descriptors are defined as:

X wTy_ o
@= 20 nlag
r=1 f rtw Z

d=21,22,..,20 +nlag  (2.9)

The pseudo amino acid composition

The pseudo amino acid composition (PseAAC) is similar to the quasi-sequence

order descriptor, it proposed by Chou (2001) [15]. The pseudo amino acid

descriptor is made up of a (20+k) vector in which the first 20 components re-

flect the effect of the amino acid composition and the remaining components

reflect the effect of sequence order by the correlation factors of the different

ranks. The last K features are obtained based on a given physicochemical

property [15].

The PseAAC can be described as follow:

If the protein sequence have L amino acids residues: RiRyR;5....R;,_sR;_1R;
Sequence order effect can be approximately reflected with a set of se-

quence order-correlated factors as defined below:

= = (R, R
= 755 3.5  O( R, Rio)
= r5 i O(Ri, Riys) 210y

br= 3 Tia OB Rips) (A< D)
The 6; is called the first-tier correlation factor that reflects the sequence
order correlation between all the most contiguous residues along a protein
chain, 6, the second-tier correlation factor that reflects the sequence order

correlation between all the second most contiguous residues, and 6, is the

A — th tier correlation factor [15].

14
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The correlation factor can defined as:
O (R, R; ) = [F (R;) - F (R,)]? (2.11)

where F(R;) is the feature (e.g. size) value of the amino acid R;. The
value is converted from the original feature value of the amino acid according

to the following equation:

Fo(R) — 30, B0
\/ 2 [For)-z0, ]’

F(R;) = (2.12)

20

where Fy(R;) is the original feature value of the amino acid R;. So, the

feature vector (V) of the protein can be represented by a (20 + \) vector as
follows:

fz 1<z2<20
e 5 U G ) (2.13)

W—_20 S
® fi+w23\=1 6; (21 <z <20+ /\)

Ve =

where f,(z = 1,2,.,20) represents the amino acid composition (AC),

which was described earlier.

Composition, Transition and Distribution(CTD)

This method depending on distributing amino acids into groups based on
their PCPs, it was developed by Dubchak et al. (1995). In this method the
amino acids are divided into three classes according to its attribute and each
amino acid is encoded by one of the indices 1, 2 and 3 according to which

class it belonged. The amino acids distributed into three classes based on 7

physicochemical properties [17], see Table 2.2.

15
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'[11‘5'175)16 2.2: Distribution the amino acids into groups based on their PCPS

Attributes Group 1 Group 2 Group 3
Hydrophobicity [ Polar Neutral Hydrophobicity
(R,K,E,D,Q,N) (G,ASTPHY) |(CL,V,MFW)
Normalized van | 0-2.78 2.95-4.0 4.03-8.08
der Waals Vol- (G,A,S,T,P,D,C) (N,V,E,Q,I,L) (M,H,K,F,R,Y,W)
ume
Polarity 4.9-6.2 8.0-9.2 10.4-13.0
(L,L,F,W,C,M,V,Y) (P,A,T,G,S) (H,Q,R,K,N,E,D)
Polarizability 0-1.08 0.128-0.186 0.219-0.409
(G,A,S,D,T) (CPN,V.EQLL)| (KMHF,R,Y,W)
Charge Positive ~ (K,R) [ Neutral Negative (D,E)
(A,N,C,Q,G,H,IL,
M,F,P,ST,W,Y,V
Secondary Helix Strand Coail (G,N,P,S,D)
Structure (E,A,L,M,Q,K,R,H) (V,LY,C,W,F,T)
Solvent Accessi- | Buried Exposed Intermediate
bility (A.LF,C,GLV,W)| (RKQEND) |(MSPTHbY)

Each sequence converted into a new sequence where each amino acid is
represented by a number of a group depended on each previous attribute.
Then, we can find three values for each sequence, these values represents the

composition (C), transition (T) and distribution (D).

Example: For a sequence: FAKITAAMCQEIDESSGHGA and accord-

ing to the hydrophobicity division in Table2.2, the sequence is encoded as:

32132223311311222222

1. Composition: Composition can be defined as:

C;= =123 (2.14)

2|8

where n: is the number of i in the encoded sequence and N is the length
2
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of the sequence [41], for each sequence we can find 21 values represent

the composition for 7 attributes, and for each attributes three groups.

Based on the previous example, the composition values of the sequence

are: C1 = 5/20, C, = 10/20 and C3 = 5/20 Where 20 is the length of

the protein sequence.

Transition: The transition represent the transition from one group to
another for the same attribute [41], e.g.: transition from class 1 to 2 is
the percent frequency with which 1 is followed by 2 or 2 is followed by

1 in the encoded sequence. The transition can be defined as:

N5 + N

L e

ij=(1,2,[1,3],[23] (2.15)

Also, for each sequence we can find 21 values represent the transition.
Based on the previous example the transition values of the sequence

are: T1p = 2/19, Tp3 = 3/19 and T3 = 4/19

Distribution: The distribution descriptor describes the distribution of
each attribute in the sequence. There are five distribution descriptors
for each group and they are the position percents in the sequence for
the first residue, 25% residues, 50% residues, 75% residues and 100%
residues [41]. For each sequence we can find 105 values represent the
distribution for 7 attributes, and for each attributes three groups, where

5 values (residues) for each group.

Based on the previous example the distribution values of the group 2 in

17
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of the sequence [41], for each sequence we can find 21 values represent
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the sequence are: There are 10 amino acids encoded as 2 in the above
example, the residues for the group 2 in the encoded sequence are 2 (for
the first position), 5 (for 25% from the 10), 15 (for 50% from the 10), 17
(for 75% from the 10) and 20 (for 100% from the 10), so the distribution
descriptors for group 2 are: 10.0 (2/20 x 100), 25.0 (5/20 x 100), 75.0
(15/20 x 100), 85.0 (17/20 x 100) and 100.0 (20/20 x 100), respectively.

2.3 Machine Learning Techniques

Machine learning is concerned with the development of algorithms and tech-
niques that allow computers to learn, it can be defined as a science of al-
gorithmic methods of learning from experience with the goal of improving
performance on selected tasks [40).

Mainly there are two types of machine learning, these types are [25]:

e Supervised learning: where both input and target pairs should be pro-

vided during the learning process, such as classification

e Unsupervised learning: where only input and no target is required

during learning, such as clustering

This section introduces a description of classification and clustering.

2.3.1 Cluster Analysis

Clustering is a very common technique in unsupervised machine learning to
discover groups of data that behave similarly based on features describes the
objects. The result of cluster analysis is a number of heterogeneous groups
with homogeneous contents inside each group, where there are substantial

differences between the groups, but the individuals within a single group are

18
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N e

similar [56]. One advantage of the clustering is that it can be used to reduce

5
¥

the data, by replacing all of the elements in a cluster with a single repre-

sentative element. Formally, the aim of clustering is to automatically collect

the data into groups (clusters) based on their similarities. A clustering al-
gorithms re-arrange a dataset z;, z,, - - - » Tn into the clusters {c;, cy, - - - G}
. where & < n, such that the elements z; and z; € ¢, if f Az, z;) < €. oth-
erwise z; and z; belong to different clusters, where A is a distance function

and e is predefined distance.

R T R B Y TS N

A good clustering method will produce high quality clusters in which the

F similarity in the intra-class is high, and the inter-class is low, see Figure 2.6

| e—

x‘r Intra-cluster
3 distances are
i — minimized
O
8% \
o © o)
o0/

Inter-cluster
distances are
maximized

Figure 2.6: An example of clustering showing intra and inter distances. The
distances between the instances within the same cluster should be minimized,

and between the clusters should be maximized
There are different clustering approach such as K-mean [56], hierarchical

clustering [56] and SOM clustering[60]. Here we explain the most common

and simplest one, which is the K-mean.

K-mean
K-means algorithm is one of the simplest clustering algorithms that solve the

well-known clustering problem. The k-mean algorithm classify a given data
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based on a certain number of clusters (assume k clusters), for each cluster
the centroid should be defined [56]. K-mean is described by Algorithm 1.
First, the number of clusters and the initial centroids (points representing
the centers of the clusters) should be determined, then each point in the
sample assigned to the nearest cluster centroid using the Euclidean distance

in Equation 2.16, where n represents the dimension.

- 1/2
A= (Z (z: — yi)2> (2.16)

i=1
The cluster centroids are updated based on the mean of the data points

in its cluster, the algorithm stops when the centroids do not change.
The K-mean algorithm is sensitive to the initial selected cluster centroids,
so the k-means algorithm should run multiple times to reduce this effect [25].
The K-mean algorithm also is sensitive to the number of clusters, the number
of clusters can be determined as a fix based on previous knowledge, or by

trying to find a suitable number of clusters experimentally [25].

Algorithm 1 K-mean algorithm
select K points as initial centroids

for all centroid not change do
Determine the distance of each object to the centroids.

Group the object based on minimum distance.
Recompute the centroids of new clusters.

end for

2.3.2 Classification
Classification is a very common technique in supervised machine learning
to generate input-output mapping relations from a set of labeled training

data [40]. Figure 2.7 illustrates the concept of classification.

Different machine learning methods can be used to solve classification
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Testing data

|
|
|
S

Training data Classification —
withlabel | Algorithm ~— | TestingModel

J
Classification

result (labels of
testing data)

Figure 2.7: Diagram of classification method. The training data is inserted
into the classification algorithm and after the training is done, the system
can predicate the label of the testing data.

problem. In the following, support vector machine is explained as an exam-

ple of classification tool.

Support Vector Machine

Support Vector Machine (SVM) is a supervised learning technique that gen-
erates input-output mapping relations from a set of labeled training data.
SVM is a linear classifier that can separate the data, so that it can maxi-
mize the margin defined (maximizes the distance between it and the nearest
data point of each class); the result is a hyperplane that separate the two
classes. The SVM can be applied for classification and regression [23]. In
this subsection the SVM for classification will be described.

To use the SVM, the input data should be transformed into a high-
dimensional feature space using the nonlinear kernel functions. In order
to make input data more separable [23].Figure 2.8 illustrates the mapping to
higher dimensional space.

SVM is a binary classier. The data for a two class learning problem con-

sists of objects labeled with one of the two labels corresponding to the two
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g o dimension

/A A A /A Mapping to higher
) o A

Input space

Feature space

Figurt? 2.§: Mapping data into a higher dimensional feature space. The
mapping is done using a kernel, so the data can be separated linearly

classes; for suitability we assume the labels are +1 (positive examples) or -1

(negative examples) [23].

Let L is a training points, where each input z; has D attributes (D —
dimensions) and is in one of two classes Yi = —1 or y; = +1. In general the
linear classifier can be defined as the dot product between two vectors, as

follows:

M
() = Zwixi (2.17)

A linear classifier is based on a linear discriminant function of the form
i (@)i="(w,2)+b (2.18)

where w is weight vector, and b is the bias, f(x) assigns score for each
point (z) in order to classify the point according to this score.
The hyperplane can be described by f(z) = 0, this hyperplane divides the
space into two half spaces according to the sign of f(z), that indicates on
which side of the hyperplane a point is located, if f(z) > 0, then one decides
for the positive class, otherwise for the negative. The boundary between

regions classified as positive and negative is called the decision boundary of
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the classifier [23].

Linear separable data
For the linear separable data, there exists many of the hyperplane that cor-
rectly classifies data points, but we should choose the optimal hyperplane,
that maximizes the margin [9]. Figure 2.9 illustrates the possible separating

hyperplanes for a set of data.,

&2 \l/ A
(@) O !‘.] ', A A
O 1 A

(@ AL A
o) | A A

Figure 2.9: Many possible separating hyperplanes

To find the optimal hyperplanes all points should confirm the following
constraint

yi[(w,z) +0] 21 Vi=1,2,.,n (2.19)

Also we should find the optimal b and w corresponding to the maximum

margin hyperplane; one has to solve the following optimization problem [9].

2
w
MANIMIZEw b l 2“ (2.20)

where the minimizing process in the previous equation means maximizing

the margin.
The classifier that is applicable to the linearly separable data is called a

hard margin SVM [9]. See Figure 2.10.
23
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Support vect
pp! e ors‘_‘

Figure 2.10: Maximum Margin

Non-linear separable data

. In, practice, data are not linearly separable, so SVM provides a soft margin
SVM for this type of data, that provides a greater margin that allows the
classifier to mis-classify some data, by allowing errors, so the constraint on

points will be changed to the following [9].

yi [(w,z:) +0] 21-€;  Vi=12,.,n (2.21)

where & > are slack variables that allow data to be in the margin or

misclassied, and, the optimization problem will be as follows [9].

2 n
w
mim‘mizew,b” 2” +C) & (2.22)

The constant C' > 0 sets the relative importance of maximizing the mar-

gin and minimizing the amount of slack 9].
To solve the previous optimization problem the method of Lagrange mul-
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Figure 2.10: Maximum Margin

Non-linear separable data

In, practice, data are not linearly separable, so SVM provides a soft margin

SVM for this type of data, that provides a greater margin that allows the
classifier to mis-classify some data, by allowing errors, so the constraint on

points will be changed to the following [9].

v [(w,z:)+b] 21—-¢; Vi=12,.,n (2.21)

where & > are slack variables that allow data to be in the margin or

misclassied, and, the optimization problem will be as follows [9].

2 n
w §
mz’m’mz’zew,b” 2” + CZ & (2.22) |

i=1 i

The constant C > 0 sets the relative importance of maximizing the mar-

gin and minimizing the amount of slack [9].

To solve the previous optimization problem the method of Lagrange mul-
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~ tipliers are used, it reformulates the original primary problem into dual for-

malization; it is expressed in terms of Q; as:

n n n
% 1
mazimize,, E i E E Yiyi0i; (T4, ;) (2.23)

=1 i=1 j=1

under the following constraint:

n
D %= 0, 0<a<C (2:24)

i=1
Then the weight vector w can be expressed as
n
w = Z Yio;xT; (225)
i=1

The z;, for which o; > 0 are called support vectors, see Figure 2.10.
The data that relate to non-linearly separable should be mapped to higher
vector space using the mapping function (¢), then the discriminant function

expressed as [9].

f(z) = (w,¢(z)) +b (2.26)

In Equation 2.26 f(z) is linear function that because it defined using the

mapping function.

The mapping can be done using kernels, the weighting vector w is updated

using the kernel as follows [9].

w= weid (@) (227)

i=1
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Then the new w substituting in the discriminant function, as follows

F@) =) ioi (¢(2),6 (@) +b (2.28)

=1

where the (4 (z) , ¢ (x;)) is a kernel function, that defined as follows [9].

k(@,2:) = (¢ (z:), ¢ (z)) (2.29)

Kernel Functions

Different kernel functions can be used with SVM, the common kernel func-

tions are [8]: |

1. Linear kernel: it is the simplest kernel function. It is computed by the

inner product plus an optional constant as follows

b )=z yC (2.30)

2. Polynomial kernel: it is suitable for problems where all the training

data is normalized.
k() = (aa™y +C)° (2.31)

where a is the slope that is an adjustable parameter and d is the degree
of the polynomial.

is an example of a radial basis function kernel.

R

3. Gaussian kernel: it

PR

k(z,y) = exp (_%gl) 0

ameter that controls the width of the Gaussian, it

S —

4’;};

where ¢ > 0 is a par.

¥
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plays a similar role ag the degree of the polynomial kernel.

2.4 Feature selection and reduction techniques

When data objects that will be used by machine learning techniques are
described by a large number of features (i.e. The data is high dimension),.it
is often beneficial to reduce the dimension of the data [16, 20).
Dimensionality reduction is the transformation of high-dimensional data into
a meaningful representation of reduced dimensionality [35].

Dimensionality reduction is an important task in machine learning for

different reasons [3] as follows:

o Facilitates classification, compression, and visualization of high-dimensional

data.

e When an input is unnecessary (e.g. redundant), we save the cost of

extracting it.
e Reduced both the time and space complexity.

After using a dimentional reduction techniques some information will be lost,
but this information is considered the less important and have a weak ability
to represent the data (unimportant features). There are two main methods

for reducing dimensionality: feature selection and feature extraction.

2.4.1 Feature selection

In feature selection, a set of D dimensions that give us the most information
?

is selected and the other dimensions (unimportant features) are discarded.

There are two approaches for feature selection: forward and backward selec-

tion [3].
2
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In forward selection, we start with an empty set and add features one by
one, at each step adding the one that decreases the error to the most, until
any further addition does not decrease the error. In backward selection, we

start with all features and remove them one by one, at each step removing

the one that decreases the error the most (or increases it only slightly), until

any further removal increases the error significantly [3].

2.4.2 Feature extraction

In feature extraction, a new set of k dimensions that are extracted from the
original D dimensions is generated. These methods may be supervised or un-
supervised depending on whether or not they use the output information 3].

Three methods of feature extraction are discussed below, these methods
are: Principal Components Analysis, Factor Analysis and Multidimensional

Scaling. |

Principle Component Analysis

Principle Component Analysis (PCA) is the dimension reduction technique
that is widely used in many applications due to its simplicity and effi-
ciency [12]. The PCA can be calculated as follows: Let {D =z;};_;, is
a sample data described by a set of p features. This data can be represented

by a feature-object matrix X[yxn], where each column represents an object,

the covariance of these data defined as [12]

XX j (2.33)
o

=

h the diagonal terms in C capture the variances in the individual
where

Fatines T o e onell e quentity. the: covariances between the
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corresponding pairs of featureg [12].

For this i i :
covariance matrix C, the élgen-vectors V' and eigen-values A can

be calculated. There exist p eigenvalues and eigen-vectors. The process of

dimension reduction is started by selecting k eigen-vector (where k£ < p) with
the highest eigenvalues of the data [3]. This produce a subset of A that we
denote A. Finally, the reduced data, ®(kxn), which has only k features can be

computed by the following transformation:

d=AxxT (2.34)

Factor Analysis

Factor Analysis (FA) is used when there exist a group of variables that have
high correlation among themselves and low correlation with all the other
variables, then there may be a single underlying factor that gave rise to these
variables [3]. FA depends on partitioning the features into factor clusters,
and then few factors can represent these groups of features. In contrast with

PCA, in FA we can obtain the original features from the factors but in PCA

we can not [3].

Multidimensional Scaling

Multidimensional Scaling (MDS) can be used when the distances between the
pairs of points di; ¥ 4,5 = 1,2, , N are known, but the exact coordinates
of the points, their dimensionality, or Bl wioevanc ealoulbtethare
unknown [3]. MDS is the method for placing these points in a low dimensional

space where the distance between them is as close as possible to the given

distances in the original space di, J) 3]
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Chapter 3

Literature Review

This chapter contains a summary of some important contributions related
to our work. The chapter includes different approaches developed to select a
suitable PCPs for amino acids, the importance of encoding protein sequences
using the amino acids PCPS, and the earlier work related to use the cluster-
ing with classification to increase the prediction accuracy. The last section

explains our contribution in this thesis.

3.1 Importance of encoding protein sequences
using the physicochemical properties

The representation of the protein sequences using the physicochemical prop-

erties is very useful for machine learning prediction of protein structural and

functional classes, protein-protein interactions and subcellular locations [26].
Many researches have showed that using a few important PCPs to encode

the sequences is better than using the amino acid characters, and can improve

the result of protein prediction.

R k. Ray et al applied different PCPs in order to predict
n their work, - al.
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the peptide-MHC class T binding. In their results they found that using
an important physicochemical features gave better results than using amino

acids characters, whether these Properties used separately or combined using

different machine learning algorithms [51].

3.2 Representing the amino acids based on

PCPs

As previously mentioned, a few databases of amino acid indices have been
constructed and regularly maintained, these databases contain hundreds of
amino acid properties, some of these properties are rela:ted to each other
reflecting a high degree of redundancy. Several approaches have been followed
to select a suitable subset in order to reduce the redundancy among the
different properties, and to reduce the dimensionality of feature vectors. This
subset should represent the main important properties that can be used to
solve specific problems or for general use.

As mentioned in Chapter 2, there are two methods used to reduce the
dimensionality of feature vectors; feature selection and feature extraction.
The feature that were used to represent the amino acids using the amino
acids PCPs can be divided into two groups; the first group represents the
features selected from the databases of amino acid indices, the second group

represents the features derived mathematically from the databases of amino

acid indices.

3.2.1 Selection of native amino acids PCPs

In this approach the feature selection approach was used to reach an optimal

subset of features [62, 52]. The selection process is done on the databases of
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FE0 sGidimdices oithie values they used are real values coming from these

databases.

Ry, ebal. presented a selection approach depending on a set of properties

based on the literature survey to predict peptide-MHC class-I binding. For
any particular classifier, they started with the Initial set of properties and
employ the forward selection method using the mis-classification error as the
criterion to choose a subset. On the other hand, Xiong, et al. started from
AAindex database after removing the indices with missing values, and then
they followed a similar approach with, by developing a greedy approach in
combination with correlation analysis for feature selection, the final subset
contains a four physicochemical properties. These two subsets of features (62,

52] is not for general use, but they are suitable for the specific problems.

3.2.2 Derivation of novel descriptors

The second approach is to derive a new subset of features by performing a
reduction algorithm on the databases or on the amino acid substitution ma-
trices, some of these approaches depending on different algorithms of reduc-
tion such as principal component analysis (PCA), Multidimensional Scaling
(MDS) and Factor Analysis (FA), these approaches are useful when the pur-

pose of the analysis is dimensionality reduction, but they are less useful in

designing interpretable scales [22].
The derived methods started few decade ago, when Sneath [55], Kidera

et al. [32] and Hellberg et al. [24] developed the approaches that aim

at reducing the redundancy. These approaches could not help to solve the
tly, because it did not take into account

problems that have appeared recen

the structural features (prOpeftieS) of amino acids [22]. For example Kidera

performed the FA on all available sets of physical properties of the 20 amino
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acids. They demonstrated that all of these data, can be represented by a set
of 10 property factors. These factors correlated with a-helical propensity,
bulk, S-sheet propensity, and hydrophobicity [32].

Recently, a new approaches have been developed that take into account
different aspects of physicochemical properties of amino acids to derive amino
acid descriptor scales.

Sandberg et al. derived five descriptors (z1-z5) using PCA algorithm
on 26 different PCPs. These descriptors represent essentially hydrophobic-
ity /hydrophilicity (z1), steric/ bulk properties and polarizability (z2), polar-
ity (z3), and electronic effects (z4 and z5) of the amino acids [54].

However, Opiyo and Moriyama noticed that the z-scales derived by Sand-
berg et al. (1998) gave poor results for their classification problem because
they lack structure related features. Opiyo and Moriyama applied PCA
on 12 selected physicochemical properties (mass, volume, surface area, hy-
drophilicity, hydrophobicity, isoelectric point, transfer of energy solvent to
water, refractivity, nonpolar surface area, the frequencies of a-helix, S-sheet,
and reverse turn), then the first five principal components (PCPs) were se-
lected [45].

The previous methods (Sandberg et al., Opiyo and Moriyama) were de-
signed for a specific problem (GPCRs classification). On the other hand;
Venkatarajan and Braun derived new 5 quantitative descriptors based on
MDS of 237 physicochemical properties and they designed it for general

use, these 5 descriptors correlate well with five properties (hydrophobicity,

size, preferences for amino acids to occur in a-helices, number of degenerate
b

triplet codons, and the frequency of occurrence of amino acid residues ing-
7)

strands) [59]. Also, Atchley et al. developed an approach for general use by

. . t ﬁ
applying factor analysis followed by promax Iotationinorder fo compuieiive
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3.2. REPRESENTING THE AMINO ACIDS BASED ON PCPS

to find the simple structure in the data and for improving the interpretability
of principal components [5].

In his study, Georgiev explained that Atchley et al., 2005 method gave a
poor interpretability of two of the resulting five scales, because they used a
small subset of properties during the analysis. Georgiev, 2009 work proved
that a reduced dataset with lower redundancy could not be represented suf-
ficiently well by less than 12 independent principal components. Therefore,
Georgive derived a 19 descriptors from 509 amino acid indices using the vari-
max criterion rather that the PCA to increase the ease of interpretation,
also varimax scales gave a better performance than Atchley et al., 2005 in
the task of Class A GPCR subfamily classification [22].

In his work, Georgive performed another approach that depends on de-
riving new features from substitution matrix (technique used to find the
similarity between sequences, but this technique depends on the PCPs of
amino acids in order to determine how the amino acids substitute one an-
other [29, 31]). He derived 10 factors from BLOSUM 62 substitution matrix,
and he found that these factors gave a better result that all previous scales
in the task of Class A GPCR subfamily classification. The result of Georgive
(2009) work demonstrated that the varimax scales are suitable for exploratory

analyses, whilethe BLOSUM 62scales appear better choice for unsupervised

learning and modeling applications [22].

In an earlier work, Maetschke et al. derived a 5 factor from BLOSUM

62 to encode the peptide sequence in order to improve the single peptide

cleavage site prediction, these 9 factors improved the result of this problem

6]
compared to the previous methods were used [36]
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3.3. CLASSIFICATION BASED ON cr, USTERING

3.3 Classification based on clustering

A lot of efforts have been directed towards using an unsupervised with su-

pervised machine learning techniques for two main purposes:
e Minimizing the computational time and memory consumption.

e Enhancing the accuracy of prediction.

Classification based on clustering has been used for different types of data,
such as: text data, large numerical dataset, waveform data and others.

Cervantes, et al. and Yu, et al. have introduced approaches to reduce
the classification time for large data set. In their work Cervantes, et al.
generated a large random data set, they used a fuzzy clustering algorithm
to cluster the training data, and then they kept a heterogeneous clusters
(clusters contain data from different classes) for next steps and applied SVM
on homogeneous clusters to find the optimal hyperplane, then they eliminated
the homogeneous clusters far away from the optimal hyperplane, after that,
the de-clustering and the SVM classification via reduced data were used. so
using this method enabled them to reduce the training time while maintain
the same range of accuracy [13]. Their approach as we can see eliminates
some samples from the dataset, and also it adds an overhead for applying
the SVM classifier twice.

Yu, et al. approach is similar to previous but they used a hierarchal

clustering rather than the fuzzy, and they were able to enhance the time of

classification for lager dataset, but they showed that random sampling could

hurt the training process of SVM, especially when the probability distribution

of training and testing data were different [63].

have enhanced the classification result for text

Kyriakopoulou, et al '
nto clusters and then each cluster contributes

data by clustering the data i
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3.4. THESIS CONTRIBUTION

one meta-feature to the feature Space of the training and testing data, finally

they used SVM classifier to classify the expanded data (data contains the

original features and meta features), they were able to Elietla e elsdfior

results approximately by 8% [33]. The main disadvantage of this method is

that the testing data should be involved in the process from the beginning
to form the meta-features.

Rahideh, et al. have studied the cancer data, (colon cancer and leukemia)
by using the clustering in order to group the genes and then select the top
ranking genes from each group to form the intended sub-set of relevant genes
to be used for classification. As a result, they found that the accuracy of
the classifiers with and without clustering is comparable for the cancer se-

quences [49].

3.4 Thesis contribution

Reviewing previous literature showed that there are few works using the clus-
tering for classification that were mainly focusing on reducing the complexity
of classification for specific types of data such as random numerical data or
text data. On the other hand, few other studies have focused on using the
clustering before the classification to improve the classification accuracy.

As we see from the previous works and up to our knowledge, no attempts
had been made to study the importance of clustering the protein sequences

data before the classification in order to improve the classification perfor-

mance.

This thesis is concerned with improving the classification performance
1is thesi

(computational time and accuracy ) for the proteinl sequences using the ma-
p

chine learning algorithms.
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3.4. THESIS CONTRIBy TION

in order to enhance the performance of prediction.

Our novel method depending on groups the training data using clustering
algorithm and distribute the testing data into these groups based on the
distances between the test data and the centroids of clusters, then applying
the classification algorithm on these clusters. The most important features
that distinguish our approach from previous approaches are: there is no need
to eliminate samples from the dataset in order to minimize the computation
time as the previous approaches, and the prediction of a new testing sample is
done directly without need to be involved in the process from the beginning.

The amino acids in this thesis are represented by different sets of natural
amino acids’ physicochemical properties or features derived from the natural
PCPs using the feature extraction technique, in order to know the effect of
these features on our classification method on different sets of protein data.

In this thesis, we represent the protein sequences using different encoding
methods based on the physicochemical properties of the amino acids, these
encoding methods are used to examine the performance of the proposed
approach.

We have tested the performance of the proposed approach on various

types of protein biological features so as to ensure general applicability of

this approach regardless of the protein problem uniqueness.
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Chapter 4

Data and Methods

This chapter covers the methodology used in this thesis that aims at enhanc-
ing the performance of the prediction process, when dealing with protein
sequences. We start with introducing a description of the benchmark data
and a general description of our proposed approach. We define sets of descrip-
tors that will be used in our approach and study different encoding methods.
After that we clarify how to predicate new samples using our approach and

demonstrates the method for measuring and evaluating performance of the

classification.

4.1 Datasets

Three datasets of proteins are used to examine the performance of the pro-

posed approach on various types of protein biological features so as to ensure

the general applicability of this approach, these dataset are: Membrane pro-

teins dataset is used as a benchmark dataset for full protein sequences, Cas-

pase and MHC class II datasets are used as benchmark datasets for peptide

sequences. These benchmarks are explained in the next subsections.
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4.1. DATASETS

, they determine whether the immune

system recognizes the cell as foreign or not, and they play an important role
in monitoring the processes of life [2]. Membrane proteins are embedded on
one side of the cell membrane, either on the outer surface or the interior
wall, the discrimination of the outer proteins from the inner is of medical
importance as well as genome sequencing necessity [2].

The non-redundant dataset constructed by Park and coworkers [46] are
used to study the performance of our proposed approach for the full pro-
tein sequences (different lenght sequences), it contains 208 outer membrane
proteins (OMPs), 673 globular proteins, and 206 a-helical membrane pro-
teins [46].

In our study, we emphasis on identifying the OMPs from inner mem-
brane proteins, so OMPs and the a-helical membrane proteins are selected
from the Parks dataset to construct a benchmark contains two classes, where
the OMPs represent the positive class and the a-helical membrane proteins

represent the negative class. Figure 4.1 represents an example of OMPs and

a-helical membrane protein sequences.

4.1.2 MHC class II benchmark

The Major Histocompatibility Complex (MHC) is a large genomic region

or gene family found in most vertebrates that encodes MHC molecules [58],

and it plays an critical role in the immune system and autoimmunity [58].

i ted f
Only a small fraction of the possible peptides that can be generated from
1 t
proteins actually generates an immune response [58]. MHC molecules act as
: i 11 elf peptides
receptors for peptides derived from foreign antigens as well as selt pep
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Figure 4.1: Example of membrane protein sequences. The first two sequences
represent the OMP that have a positive label and the next two sequences
represent the a-helical membrane proteins that have a negative label, where
all sequences have the samedifferent lengths.

and enable the long-term display of antigens on the cell surface [50]. There
are two major types of MHC molecules are involved in the peptide binding
process; class I MHC and class II MHC [50]. Prediction of peptide-MHC
binding represents an important goal in bicinformatics, because of their role
in the immune system. Prediction of peptides binding to an MHC class II
molecule is more difficult than MHC class I due to different length of the

binding peptides is longer than 9mer (sequences contain more than 9 amino

acids) [50].
Peptide datasets used in this study are available from the NetMHCII 2.2

server [27]. The dataset was used in this study is DRB1*0101 dataset which

contains 5166 peptides.
When classifying the peptides into binders and non-binders, a threshold
value is used. This means that peptides with binding affinity values greater
i istics of thi
than 01426 aze olasstidl asibuidens: (271 Ehe: main: characteristics of this
dataset. that it contains 5166 sequences, 1656 are non binders, and 3510
, ongest sequence contains

SRR he 1
are binders. The second characteristic 1S that t
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4.1. DATASETS

37 amino acid. F igure 4.2 represents an example of binder and non-binder
sequences of MHC-II.

This dataset is used in this thesis to study the performance of our ap-

proach on peptide Séquences that have different lengths.

MHC II peptide Label

7 VDSYYSLIMPILTLT 1

Ta
Bindey ( . VPIVDSYYSLIMPIL 1
Sequences YYSLIMPIITLTRAL 1
.. 71 QARQFDQQVWEKYGH |
Non-binder TVVEFDSIPNKEHIP .1
sequences  SSLLMPILTLTRALAA =1

Figure 4.2: Example of MHC-II peptides. The first two sequences represent
the binder sequences that have a, positive label and the next two sequences
represent the non-binder sequences that have a negative label, where these
sequences vary in their lengths.

4.1.3 Caspase-3 benchmark

Caspases are a family of cysteiny proteases that regulate apoptosis (cell
death) and other biological processes. Caspase-3 is considered the central
executioner member of this family with a wide range of substrates [7]. It has
a major role in programmed cell death as well as other vital cellular processes.
As a specified-opeptidase, caspase3 cleaves its substrates after aspartic acid
residue ’D’. Although the presence of the amino acid D in the target sequence
is a mandatory condition yet it is not enough for recognition and cleavage

by this caspase [7]. Identification of Caspase3 novel substrates is crucial to

advance the understanding of the biological roles of this important enzyme.

I study, a dataset of Caspase3 human substrates is used [7], this
n our A

dataset contains 247 mapped cleavage sites and these sequences represent a
et ¢

i d
positive data. While the negative data are 247 non-cleaved peptides extracte
. "D’ but outside the Caspase3

i i idue
randomly and contained aspartic acid resi
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4.2. GENERAL DESCRIPTION OF THE PROPOSED APPROACH

cleaved site.

The main characteristics of Caspase Séquences, that all sequences have

the same lengths from 14 amine acids. Figure 4.3 represents an example of

cleaved and non-cleaved peptides of Caspase-3

This dataset is used in this thesis to study the performance of our ap-

proach on peptide sequences that have same lengths.

Cpase peptide Label
, - VRLLQDSVDFSLAD 1
Cleaved " vSDPEDITDCPRTP 1
peptides s WESPLDEVDKMCHL 1
-~ IEKGASDEDIKKAY i
Non-cleaved ' AALLTDIEDMLQLI 1
peptides A CECNIKILDVNDNI -1

Figure 4.3: Example of Caspase-3 peptides. The first two sequences represent
the cleaved peptides that have a positive label and the next two sequences
represent the non-cleaved peptides that have a negative label, where all se-
quences have the same length.

4.2 General description of the proposed ap-

proach

Our approach for enhancing the classification performance is depending on
clustering the sequences into groups then using the classification algorithm
for each cluster. The protein sequences are converted from string sequences

into numeric sequences by different encoding methods using descriptors based

on the physicochemical properties of amino acids.

= X t we wish to
Formally, given a protein dataset S = 51,82,"** ,5n, tha

classify through mapping them into a set of biological labels y1, %2, ; Yn-

We first encode S by applying 2

1,2,..n. The new set 1" is now of size p X n. Nex

n encoding transform 1 = Ja{(cmiN =

t we divide 7" into a training
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4.2. GENERAL DESCRIPTION OF THE PROPOSED APPROACH

set (1T'r) and testi
(Tr) Sting set (Te). We apply clustering to the elements in Tr and

roup them i
S nto the clusters ¢, c,, ... »C based on their similarities, Next,

we perform a learning process on each group of samples that belong to each
cluster by a unique classifier. This means, the set of classifiers 15, 75, -+ , 7,
will obtain knowledge +;, ;. . . - Vi

To verify the results, the following are performed: we cluster the elements
of the test set Te using a distance criteria A. After that, we classify each
element T'e; through the knowledge 75 if Te; € ¢;. We compare the result of
the classifier for the sample T'e; with y; to verify the success of that classifier.

Figure 4.4 shows a general block diagram of the proposed approach. The

next sections explain the proposed approach in detail.

Cluster 1
05112420306 .. & B
PCPs 053512456 1.2 . (Classification,

EQEDVMIEGVEKFFS 05112429306 081324290306 _,\

5778350984122
05112420306
B83512458)

/
577850984122 Clustzring\
05112429300 process
08351245612 wies ;

ETVEKIVDQYREFVE

577850984122 __
05112420306 ..

EQVDLGPVLNVLEWH l Q8351245612 .. - 08351245612 ‘\_-/

Cluster 2
ACHLOGENMLETIKY 572850984122 ... TN
ACVKDLVSIYLADNE BST LZHZ RIC6 e f
AENDRQVINNISNCY 0835124 :‘ - process
LERTVTVRRVGPGGRAY 785098412
i e representation of protein
S agueroes Joerep p The generated clusters

sequences using PCPs

Figure 4.4: Block diagram of the proposed approach. each pro.tein sequence
encoded to numerical values using PCPs, and then the clustering algorl.thm
used to cluster the sequences into groups, after that, each cluster ‘class¥ﬁed
using the classification algorithm to find the average result of classification.
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The first step in our approach is the selection of the suitable descriptors in
order to represent the amino acids of the proteins. In this thesis two sets
of descriptors; Native PCPs and derived properties are used to examine the
performance of the proposed approach.

The Native properties are the PCPs that represent a given measured
property such as size, hydrophobicity, polarity or inferred propensity such as
relative frequency to occur in an alpha helix or beta sheet. As mentioned
before, the database of amino acid indices contains redundant properties that
increase the dimensionality. In our approach, we used a set of non-redundant
properties contains 50 PCPs of amino acids proposed by Georgiev [22].

The derived properties are those properties that were derived from an-
alyzing a large set of PCPs by applying a given reduction algorithm such
as PCA. Our approach contains sets of driven features, these features are:
Venkatarajanet al. (2001) [59] properties, Atchley et al. (2005) [5] properties,
Kidera et al. (1985) [32] properties, Georgive (2009) [22] properties, Georgive
(2009) [22] BLOSUM properties, Maetschke et al. (2005) [36] properties.

These descriptors are selected based on Geogieve study [22].

4.3.1 The native properties

These properties were selected from AAindex, in which the duplicated or
I i til 50
closely related properties were removed by an iterative procedure unti
properties with no more than 50% correlation between them, based on Georgieve
rties wi

tudy [22]. The names of these properties are illustrated in Table 4.1, the
Study : en

m AAindex.
values of these properties can be extracted fro
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Table 4.1: The deg

cription of the native Properties [22]

Description of the properties
BUNA790102 alpha-CH chemica] shifts (Bundi-

: g ] Wauthrich, 1979
BUNA790103 Spin-spin coupling constants 3 Halpha-NH (Bunzii-Wuthrich, 1979)

CHAMB830102 Residuals from the best correlation of the Chou-Fasman parameter of b-sheet
The number of atoms in the side chain labelled 11 (Charton-Charton 1983)

The number of atoms in the side chain labelled 21 (Charton-Charton, 1983)

Frequency of the 4th residue in turn (Chou-Fasman, 1978b) ,

Helix termination parameter at position j-2,j-1, (Finkelstein et al., 1991)

Normalized relative frequency of double bend (Isogai et al., 1980)

pK (-COOH) ( Jones, 1975)

Relative mutability ( Jones et al., 1992)
Flexibility parameter for two rigid neighbors (Karplus-Schulz, 1985)
The Kerr-constant increments (Khanarian-Moore, 1980)
Normalized frequency of zeta R (Maxfield-Scheraga, 1976)
Short and medium range non-bonded energy per residue (Oobatake-Ooi, 1977)
Optimized transfer energy parameter (Oobatake et al., 1985)
Normalized frequency of alpha-helix in all-alpha class (Palau et al., 1981)
Intercept in regression analysis (Pra.bhakaran—Ponnuswamy, 1982)
Slope in regression analysis x 1.0E1 (Prabhakaran-Ponnuswamy, 1982)
Weights for alpha-helix at the window position of -6 (Qian-Sejnowski, 1988)
Weights for alpha-helix at the window position of -5 (Qian-Sejnowski, 1988)
Weights for beta-sheet at the window position of -3 (Qian-Sejnowski, 1988)
Weights for coil at the window position of -5 (Qian-Sejnowski, 1988)
Weights for coil at the window position of -4 (Qian—Sejnowslfi, 1988)
Weights for coil at the window position of 5 (Qian-Sejnowski, 1988)
Average relative fractional occurrence in AL(i) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in ER(i) (Rackovsky-Scheraga, 1982)
Average relative fractional occurrence in A0(i-1) (Rackovsky-Scheraga, 1982)
Relative preference value at N (Richa.rdson—Rj?hardson, 1988)
Relative preference value at N2 (Richardson—R}chardson, 1988)
Relative preference value at N3 (Richardson—R.}chardson, 1932)
Relative preference value at C1 (R.ichardson—f.{lchardson&328))
Relative preference value at C (Richardson—R{chardSOH, i
Relative preference value at C (Richardson—RJchardson,b Edae s o
Information measure for extended without H-bond (Robson )

i i lix (Tanaka-Scheraga, 1977)
Normalized frequency of isolated helix . 15

; 2 d helix (Tanaka-Scheraga, )
Normalized frequency of left-hande s

i eta R (Tanaka-Scheraga, 1977)
Normalized frequency of z ; I etall 1953)
Relative population of conformational state

: : ikovic et al., 1985)
Electron-jon interaction potential (Vehkovll{ch) (Wertz-Scheraga, 1978)

of alpha(Ri) to A ) ini -Rose, 1998)

IP\I}::;;?;E&’ ;};:iltlsig:nal residue frequency a: 23;’: :::nlizi gc@ (&u:f;fa_Ro se, 1998)

i itional residue frequency at 11 ‘s Aurora-Rose, 1998)
o o vesidue frequency  helix termini G40 (Aur

B : 1., 2002)

Amphiphilicity index (Mitaku <?t al,, 0. 1994 :
Elciron-ion interction potetil e s 0.1‘)76TFA/MeCN/H20(W?lce ctal, 1333
Hydrophobicity coefficient }n RP_HPLCj C4 with 0.1%TFA /MeCN/ H2O(Wllc}eI 2et(;) av.‘,“I A
Hydrophobicity coefficient in Rp'gch' 018 with 0.1%TFA/2-PrOH/MeCN/H20(Wilce et al,

Hydrophobicity coefficient in lei-ataset (George-Heringa, 2003)

i : i George-Heringa, 2003)
Linker propensity from 12—lmlziertaset (linker length is greater than 14 residues)( g
Linker propensity from long da
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0.30
1.38

2.10
1.48

2.04
0.72
0.80

: Values of Kidera’s factors

RS F6 T
027 093 0.78 030
081 -0.92 0.15 -159
-1.05 071 241 159
117 -1.31 040 0.04
-143 022 081 (.67
-0.16 0.10 -0.11 139
0.28 161 1.01 -1.85
-0.77 -0.54 0.03 -0.83
LSTOME 1545851 62 2 1:15
-1.10 -0.55 -2.05 0.96
-0.73 200 152 026
0.81 0.18 0.37 -0.09
-0.75 0.88 -0.45 0.30
110 1.10 059 0.84
1.87 1.70 046 0.92
QY288 021 76£0.43 21,89
0.63 -0.10 021 024
-0.40 050 -0.81 -1.07
1.57 1.16 057 0.48
-0.56 0.00 -0.68 -0.31

32]

F8 F9 F10
=008 0.21 -0.48
047 0.76 0.70
0069 1.13 - '1.10
0.38 -0.35 -0.12
IO 171 -0.44
236 -1.66 0.46
W7 113 163
0.51 066 -1.78
-0.08 -0.48 0.60
=0.76 045 0.93
OEEL - -1.27 0.27
1825 1.10 -1.73
-230 0.74 -0.28
-0.71 -0.03 -2.33
0:39 023 0.93
-1.15 -0.97 -0.23
-1.15 -0.56 0.19
0.06 -0.46 0.65
0.40 230 0.60
1.03 -0.05 0.53

4.3.2 Kidera’s properties

Kidera performed Factor Analysis (FA) on all available sets of physical prop-

erties of the 20 amino acids. They demonstrated that all of these data can

be represented by a set of 10 property factors, these factors correlated with

a-helical propensity, bulk, 3-sheet propensity, and hydrophobicity (32].

The first four factors are essentially pure physical properties (Helix/bend
and the Hydropho-

ference
preference, Side-chain size, Extended structure pre 3

bicity); the remaining six factors are extracted of several physical proper-
icity);

ties [32]. Table 4.2 illustrates the
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4.3. NATIVE AND DERJ VED DESCRIPTORS USED IN THIS STUDY

Table 4.3: Value

s of Atchley’s factors [5
VAT F2 F3 F4 g

F5
-0.591 -1.302 -0.733  1.570 -0.146

-1.343  0.465 -0.862 -1.020 -0.255
D 1.050  0.302 -3.656 -0.259 -3.249
E 1.357 -1.453 1.477 0.113 -0.837
F -1.006 -0.590 1.891 =0.397 0.412
G  -0.384 1.652 1.330 1.045 2.064
H 0.336 -0.417 -1.673 -1.474 -0.078
-1.239 -0.547 2.131 0.393 0.816
K 1.831 -0.561 0.533 -0.277 1.648
L -1.019 -0.987 -1.505 1.266 -0.912
M -0663 -1524 2219 1005  1.212
N 0.945 0.828 1.299 -0.169 0.933
R 0.189 2.081 -1.628 0.421 -1.392
Q 0.931 -0.179 -3.005 -0.503 -1.853
R 1.538 -0.055 1.502 0.440 2.897
S

i

Y

W

N

Q>

—_

-0.228 1.399 -4.760 0.670 -2.647
-0.032 0.326 2.213 0908 1.313
-1.337 -0.279 -0.544 1.242 -1.262
-0.595 0.009 0.672 -2.128 -0.184
0.260 0.830 3.097 -0.838 1.512

4.3.3 Atchley’s properties

Atchley et al. developed an approach for general use by applying FA fol-
lowed by promax rotation [5], in order to compute five factors from 54 se-

i i by five
lected amino acid attributes, so each amino acid can be represented by fiv

factors [5]. Table 4.3 illustrates the values of these 5 factors.

4.3.4 Venkatarajan’s properties

i i i 20 na:t"

icalchemical proper-
urally occurring amino acids using MDS of 237 physic

- jor components were
1 ties that correlate well with the five maj .
e no acids to occur in a-helices, num-

ami
o ; ferences for .
hydrophobicity, size, pre ency of occurrence of amino

the frequ
ber of degenerate triplet codons and
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Table 4.4: Values of Venkatarajan’s factors [59]
AA  F1 F2 F3 F4 F5
A 0.008 0.134 -0.475 -0.039

0.181
0.171  -0.361 0.107 -0.258 -0.364

B RNOS8E 0117 018 _g.055
DSUBRS0057% 0014 0295 (156
01825 0174 0070 0565 -0.374
0.149 -0.184 -0.030 0035 -0.119
0221 -0.280 -0.315 0.157 0303
0.218 0.562 -0.024 0.018 0.106
0.023 -0.177 0.041 0280 -0.021
-0.353  0.071 -0.088 -0.195 -0.107
-0.267 0.018 -0.265 -0.274 0.206
0.243 -0.339 -0.044 -0.325 -0.027
-0.239 -0.141 -0.155 0.321 0.077
-0.329 -0.023 0.072 -0.002 0.208
0.173 0.286 0407 -0.215 0.384
0.199 0.238 -0.015 -0.068 -0.196
0.068 0.147 -0.015 -0.132 -0.274
-0.296 -0.186 0.389 0.083 0.297
-0.141 -0.057 0.425 -0.096 -0.091
-0.274 0.136 -0.187 -0.196 -0.299

= = s el s f e os S = s @) ) ) @) 15 = 9

acid residues in S-strands [59]. Table 4.4 illustrates the values of these 5

factors. Table 4.4 illustrates the values of these 5 factors.

4.3.5 Maetschke’s properties

tid
Maetschke et al. derived a 5 factor from BLOSUM 62 to encode the peptide

i i diction [36],
sequence in order to improve the single peptide cleavage site predic [36]

these 5 factors are illustrated in Table 4.5.

4.3.6 Georgieve’s properties
i id indices using the vari-
Georgive derived a 19 descriptors from 509 amino acl g
o interpretation :
i ase the ease of in
iteri he PCA to incre
max criterion rather that t

: ble 4.6.
these 19 factors are illustrated in Ta
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Table 4.5: Values of Maetschke’s Factors (36]
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4.3.7 Georgieve’s BLOSUMG62 properties

Georgive performed an approach that depends on deriving new features from

substitution matrix. He derived 10 factors from BLOSUM 62 substitution

matrix based on Class A GPCR subfamily problem [22]. These 10 factors

are illustrated in Table 4.7.

4.4 Encoding protein sequences using PCPs

pro sequences as I i using a
i umerical sequences

f representing the protein s€q
cess o | b
€t o Ps. in order to i hine learning tools.

f PC ng of mac g

i facilities usl . |

i : quences Or peptides vary in

i tein se
Most protein data sets contain Pro

4 roblem when using the machine learning
sidered & P

length, and this is con
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Table 4.6- Valués o)
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Table 4.7: Values of Georgieve BLOSUMS62 factors [22]

WL O VY T e i N N

A 0077 00160 0. L
o _%'58%% _%.%%é 0240 0190 0656 -0.047 1357 0333

L0055 0i6610 ‘0,175 “0:219 0,590
S 0 00 053 0 o 200 -0.139
T R S 000 0010 s e 0,282
L s 0 g0 g o 0,102
R 000 050 00 os b 0.667
T R 008 007 1014 0363 gons oo
P I 0 E T s 1212 0o71 00 o
G R 0550, 0055 0655 0.076 0185 0 oo
N 000 0276 -0.032 0198 0216 007
P T R TRy iz 0109 0146 0,435 -0 09
R R R 0819 0007 0213 0120 0176 08k
M 09638 0585 S01972 01538 0.236 0.365 0,062 0208 -0.560 0303
P -L619 1.007 0811 0623 0549 0290 -0.021 0008 0433 .18
P 0883 -0.675 0382 -0.869 -1.243 -2.023 0845 -0.352 -0491 0908
S 0844 0448 0493 0317 0200 0541 0009 -0.797 0624 0129
T 018 -0.733 0.178 -0.012 0022 0378 -0.304 -1958 0.149 0.063
W -1577 2281 1166 -1.610 0.122 0239 -0.542 -0.398 -0349 0.499
Y 1142 1740 -0.582 0.747 -0.119 -0475 0241 -0251 0713 -0.251
V_ 1127 -1.227 -0.633 0.064 -0596 0158 0014 0016 0251 0607

tools, several methods used to overcome this problem; such as: remove some
amino acids from sequences to unify the lengths of the sequences, another

method depend on adding unused character (e.g. : J or B) to complete the

sequences in order to unify the lengths.
In this thesis we used the encoding methods to represent the protein

sequences numerically and to unify the length of the sequences, so we selected

. L) d
encoding methods that consider effective for representation and can be use

to unify the lengths of the sequences. These methods are:

e PseAAC encoding: probably the most used encoding for proteins [42],
se :

sequence with a discrete model without com-

it represents a protein . S
p nformation. PseAAC is chosen in this

ing its sequence order i ' '
ol q ums of amino acid composi-

i d s
study because it formed from weighte
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s : . .
tions, physicochemical square correlations and combinatiop of amino

acid compositions and dipeptide composition [42]. Therefore the fea-

ture vector is composed of 20 (from AC)

Section 2.2).

+ A (correlation factors, see

o CTD encoding: is the famous encoding of proteins that depending

on distributing amino acids into groups based on their PCPs [44].
The feature vector is composed of 21 (from Composition) + 21 (from
transition) 4+ 105 (from distribution) for all sequences regardless their

lengths.

These encoding schemas; PseAAC and CTD are selected to help in unify-
ing the lengths, where Pse ACC considered as complicated method and CTD
as a method depending on distributing amino acids into groups based on
their PCPs. From simple encoding methods we choose the method that de-
pending on representing each amino acid numerically as a set of different
physicochemical properties, this method is not suitable for sequences have
various lengths but it is a good choice for the dataset that have sequences

with fixed lengths, so it uses only for Caspase benchmark.

These encoding methods are used to examine the performance of our

proposed approach using different methods.

4.5 C(Classification based on clustering

ification in order to en-
In this thesis, the clustering is used before the classification 1n
| ction. In this section we

i i redi

hance the performance of protein attributes p . |

osed approach in order to explain how clus-
rop

: iption of the p :
Rrovidea doserloril n. The proposed approach consists

tering can be used before the classificatio

of the following steps:
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e Data division step: to divide the data into k-fold cross validation

Clustering step: to cluster the training set, into N clusters

Distribution step: to distribute the testing data to the generated clus-

ters.

Classification step: to apply the classification algorithm for all gener-

ated clusters.

These steps can be clarified as follows:

4.5.1 Data division step

Let (X,Y) be an input data set where X — T S sl ¥ =
{00 To o , Tai}, d is the dimension of the properties for each amino
acids, and Y = {y1,v%,¥3,....... , Yn} where y; € (—1,1).These data are

divided into M sets using the cross validation.

The main idea of the cross validation is to split the data, once or several
times, for estimating the risk of each algorithm: part of the data (the training
data) is used for training each algorithm, and the remaining part (the testing
data) is used for evaluation of the algorithm [4]. Figure 4.5 illustrates an
example of 3-fold cross validation, the dataset is divided into three groups,

two of them are used for training and the rest is used for testing the method.

b i ted
The same procedure is repeated for three times and the average is compu

for obtaining the accuracy.

4.5.2 Clustering step

proach we used the K-mean algorithm to
ur ap

a clustering algorithm. In o
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M daty o

Experiment 1

Experiment 2

Experiment 3

T

Train data Test data

Figure 4.5: Example of cross validation. This example illustrated the 3-fold
cross validation, where the data is divided into three groups, two of them are
used for training and the rest is used for testing the method. The white part
of the data represents the train data and the gray scale represents the test
data.

cluster the data, this algorithm was chosen due to its simplicity, and based on
literature [49, 33]. Figure 4.6 illustrates an example of this step, this figure
shows two clusters resulted from applying the clustering algorithm for one

fold of the data.

4.5.3 Distribution step

After the clustering step ends, the testing and the training data should be
prepared for the classification process. The distribution step concerns on

testing data. In this step the testing data distributes to the clusters as

follows:

e For each cluster we have a centroid point.

d each
e Compute the Euclidean distance between each test sample and eac

centroid of the generated clusters

between it and the centroids.
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0S11.2429306.... 05112820306, .

08351285612 ... 8835124561

5.27.8500 841 2. REIRS0Re43 22 .

051 f'f_"? 9306..... Cluster 1
0835124381 033.512“_561.2.__

~;,35:, ' Fold2 5.;7.850.98112_2_
L T i e - 3.3y . ’.:;1~:‘.’--"‘|.:' g —y D’ : ]
08351245612 08351245612 ' \ o
577850984122, S[5778508 84120 Clustering
Q?!PZ!.IQ!&?.....- 051 uuiso‘amn Pm"’
133 &1 08151245612 - Cluster 2
3778 g+122 577850984122 Kt
0 2906 . 05112329306
0131245612 06351245612
778509341582.. 77850984122
25161.24223256..... Fold3
3025745622 ... 0202124290,
5428120984632 ;;z;onu Two clusters resulted from
: Nl

251612422326, clustering process for fold2 data

3825745622......
Training data S42812 u.u-;zu 3.

3-fold cross validation

Figure 4.6: Clustering step.Two clusters generated by applying K-mean al-
gorithm on the Fold 2, the clustering algorithm should apply on all folds

e This step is done for all folds in the approach.

Figure 4.7 illustrates the distribution step, in this figure the training data
in fold N grouped into 3 clusters, each cluster has a centroid, and then the
testing data distributes to the clusters based on the minimum Euclidean

distance between the centroids of the clusters and the testing sample.

4.5.4 Classification step

Each cluster contains a test and train data, so we can apply a classification

d to classi
algorithm on each cluster. In our approach the SVM was used to fy

i i i that
the data, because it is one of the most powerful classification techniques

i oven a great
was successfully applied to many real world problems, it has pr e g
protein classification and face recognition 6],

Success in many areas, such as . .
3 | e 4.8 illustrates the classification

and it’s suitable for unbalanced data. Figur

applied in all clusters and the result of the

step, in this figure the classifier g
: the clusters.
case is the average classification results from
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Fold N
05112425306,
nuul.nu.....

. 8§33 <
Training data 577850984122, |

The center of cluster 1
(d-dimension vector)

d-dimenzion vecter

1 ’
773245784182
45112429306,

64652145672,
577850984122
051124.29306.....
08351245612
177450984122 ...
04112429306....
05351285422.....

Testing data

Figure 4.7: Distribution step.The distribution of the testing data into three
clusters generated from the training data of Fold N, the distribution is done
using the Euclidean distance

The proposed algorithm is summarised in Algorithm 2.

4.6 Prediction of a new testing sample

After the SVM trained then the prediction of new sample in our approach is

done as follows:

: : d en-
1. The new sample (protein sequence) is encoded using the selected en

coding method.

the centroid
2. Finding the Euclidean distance between the sample and the

of each cluster.
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Ra——

Fold N
05112429306
08351245
Training data 5778509 :f"f"
05112629304,
08551245632
Testing data 577850984122
08142427321 ..
0815125802 ...
7732435784182
45112429306.....
63652135672 .
577850984122...
051123293806 .
08351245612
177450883122
04112429306
85351285322

The average
( Classification Ciassification : classification
- - 3 =
result resuit = resultforfold N
3

Figure 4.8: The classification step.In this step, the SVM classifier is applied
on each cluster, and then an average result is generated from the results of
classifier on all clusters.

4. Determining the label of the new sample based on the training result

of the selected cluster.

That means the prediction of a new testing sample is done directly without

need to be involved in the process from the beginning.

4.7 Performance evaluation

18 used in our experiments.
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Algorithm 2 The proposed algorithm
Division step
Input: all data set
N=desired number of folds
Divide the data into N folds
Output: N folds of datg,

Clustering step
Input: training data
K=desired number of clusters
for each fold do
cluster training data into K clusters using K-mean
end for
Output: K clusters for each fold

Distribution step
Input: testing data
for each fold do
for each testing sample do
Compute the Euclidean distance between centroids of clusters in the fold
and the sample data
end for
end for
Output: the cluster that the testing data belong to.

Classification step
Input: training and testing data of previous step

for each cluster do
Train SVM classifier based on the training data for N folds
Classify the testing data belong to each cluster for N folds

end for | .
Compute the average result for the classification for all clusters.

Output: predicate labels of testing data and the average value of the perfor-
mmance measure of classifier

i tained
All measures of performance are based on four possible outcomes obta

: i these values,
from applying the classier on the test data, Figure 4.9 illustrates the

i itive I nd classified as
where: TP means the instance that is positive It truth an y
in truth and classified as

Positive, FV means the instance that is positive '
| d classified as

i ive in truth an
negative, TN means the instance that 1 negative i e
; ive 1 uth and €
negative, and F'P means the instance that 1s negative in tr
8 positive [11].

58



47 PERFORMANCE EVALUATION

PR

Predicted

Positive

[\

T ]
Positive

Truth

Negative

Figure 4.9: The four possible outcome of the classifier

The accuracy was chosen in our work to evaluate the classifier result and
it is efficient in our approach because we do not need to compare different
classification algorithms, but we need it to compare the result of classifier
with and without applying clustering before the classification.

Accuracy (ACC) is an evaluation measurement for the classifier that takes

into account all true classification results [19], it can be defined as follows

TP +TN (1)
AL = TP+ FN+ FP+TN
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Chapter 5

Experiments and Results

In this chapter we present the experimental results of applying our approach.
In the first section, we show the general settings and parameter adjustments
of our experiments. In the second section, we introduce the results generated
from the full protein sequences using the membrane proteins benchmark.
In the third section, we introduce the results generated from the peptide
sequences using MHC class II (MHC-II) and Caspase benchmarks. In the
fourth section, the time performance based on the proposed approach is
discussed. Finally, we discuss the performance of selected properties, encod-
ing method in the proposed approach, the performance of our approach for

benchmarks, and the performance of training time.

5.1 Experimental settings
ata, the

ithm to cluster the d
In ] the K-mean algorithm
our experiments we used PseAAC

. din methOdS;
SVM algorithm to classify the data, and two main encoding

and CTD to represent the protein sequences. 30 [21]for

i and A =
For PseAAC we set w = 0.15 for all experiments f
quences, We used 7 sets 0O

ide se
full Protein sequences and A = 3 for peptide
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testing and comparing the results.

Two environments were used to i
Plement thig thesis; J
» Java and Matlab,

(Java-ML) [1], the Composition, Transition, Distribution encoding using th
& using the
Biojava library [47], and we used the Matlab Statistics Toolbox for the SVM

implementation [38].

5.2 Results from full protein sequences

The membrane proteins benchmark as full protein sequences was used in
testing our approach. Two encoding methods: the PseAAC, and the CTD
were used to encode the sequences in this benchmark. A description of the

experiments that were done will be introduced here.

Results From PseAAC encoding method

Each protein sequence in the benchmark was encoded using the PseAAC
based on Equations 2.10 to 2.13. The feature vector for each sequence was

20 (AC properties) + 30 (correlation factors from A = 30 ), and we used the

7 sets of properties.
Figure 5.1 shows the accuracy results of 3 fold cross validation test for
7 sets and

SVM classifier based on K-mean clustering using the previous

i lusters of
PseAAC, the experiments were done using different numbers of ¢
10 clusters because after

training data, ranging from 2 to 10. We stopped at
geneous clusters

) . d homo
this number of clusters some experiments produce

) that can oot be classified. The

(clusters contain data from the same classes
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T Georgier
S Venkatarajan

D T Kadena

T Georgie Blousems2

T Magtschie
0 : g : —

Accuracy (%)

i | | ; ;
1 2 3 4 5 Gy 7 5 5 J
Number of clusters

Figure 5.1: Accuracy of SVM for membrane proteins using PseACC. The
training data divided into different numbers of clusters (range from 2 to 10),
one cluster of training data means a classification without clustering. The x-
axis represents the number of clusters and the y-axis represents the accuracy
of the classification.

These results show that the using of classification without the clustering
gives not good results compared with classification based on clustering. Once

: ivided into
the data is split the accuracy risen dramatically, when the data divide

i for all sets
two clusters enhanced the accuracy results approximately by 20%

by 5% only, but
of properties except Venkatarajan that enhanced the result by 970

its still better than using classification without clustering.

i ifferent numb
All sets of properties behaved the same with differ

. ing the Atchley
hieved by using
eXxce : highest value was ac :
Pt Venkatarajan, but the hig oximately 80% at nine

er of clusters

. a r
Properties where the accuracy result arrived to app

clusterg, G

: e al
x :ve properties gav
The results also show that using derived or native P
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the same effect using the PseACC encoding.

Results from CTD encoding method

Each protein sequence in the benchmark Was encoded using CTD (
CTD

mentioned in section 2.2), the feature vector for each S€quence was 21 (com-
position) + 21 (transition) + 105 (distribution).

Figure 5.2 shows the results of 3 folq Cross validation test for Sy classi-
fier based on K-mean clustering using CTD, the experiment was done using
different numbers of clustering for training data, where the result of one clus-
ter of data means a result of classification without clustering for the data.

This result shows that the using of classification based on the clustering
can not make any enhancement, on the contrary the result was not good,

so CTD is not a good choice to encode membrane proteins when using our

proposed approach.

Accuracy (%)

i
&

=3

A : Number of clusters

i train-
ane proteins using CTD. The tra

e
f clusters (range from 2 to 7), on
thout clusterng.

_Figure 9.2: Accuracy of SVM for membr
"¢ data divided into different numbe:rS ok p
Cluster of training data means a classification Wi
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5.3 Results from Peptide e cos

Two peptide benchmarks were selected to tegt OUr approach: My
. : C-II and
Caspase,where MHC contains peptide sequences With variable | th
engths and

the Caspase contains sequences with fixeq lengths.

5.3.1 Results from MHC-I] sequences

Two encoding methods: the PseAAC, and the CTD were used to encode the
MHC-IT sequences, a description of the experiments that were done will be

introduced below.

Results from PseA AC encoding method

Each peptide sequence in the benchmark was encoded using the PseAAC. In
this experiment we used \ = 3 (due to short lengths of peptide sequences), so
the feature vector for each sequence was 20 (AC properties) + 3 (correlation
factors). Also the 7 sets of PCPswere used in this experiment ( Section 4.2).

Figure 5.3 shows the results of 3 fold cross validation test for SVM classi-
fier based on K-mean clustering using the previous 7 sets and PseAAC, the

i ining data,
experiments were done using different numbers of clustering of training

ber of
tange from 2 to 20, this large range was selected due to the large numbe

data,

I n the classi-
The figure shows there are no significant improvement whe .
e due to the complexity

fication based on clustering was used, this may B
racy close to the

it ccu
o MHC-I1, however our approach has maintained the &

Acuracy of classification without clustering.
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Accuracy (%)
=
T

| | 1 1 | ; | '
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0 3 8 12 v T +

10
Number of clusters

Figure 5.3: Accuracy of SVM for MHC-II sequences using PseAAC. The
training data divided into different numbers of clusters (range from 2 to 20),
one cluster of training data means a classification without clustering.

Results from CTD encoding method

Each sequence in the benchmark was encoded using CTD. Figure 5.4 shows
the results of 3 fold cross validation test for SVM classifier based on K-
mean clustering using CTD, the experiment done using different numbers of

clustering of training data, where the result of one cluster of data means a

result of classification without clustering for the data.

ivi i ters the
The Figure 5.4 shows that when the data divided into 2 or 3 cluster

ber of clusters
fesults of accuracy increased very slightly, then when the num 5
i of classification
fcreased, the accuracy decreased compared to the accuracy

Without clustering.

ces

%3.2 Results from Caspase sequen |
ncatenating method wer

the co
Three encoding methods: PseAAC, CTD o he experiments that

:vtion of t
1%ed to encode the Caspase sequences; & descript!
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Figure .5..4: Ac.curaC}.r of SVM for MHC-II sequences using CTD. The training
data dmded' 11.1to different numbers of clusters (range from 2 to 20), one
cluster of training data means a classification without clustering. ,

were done will be introduced below.

Results from PseAAC encoding method

Each peptide sequence in the benchmark was encoded using the PseAAC. In
this experiment we used A = 3 (due to short lengths of peptide sequences),
%0 the feature vector was as the MHC-II feature vectors. Also the 7 sets of

PCPs were used in this experiment ( Section A7)
test for SVM clas-

Figure 5.5 shows the results of 3 fold cross validation
rties and

sifier baseq on K-mean clustering using the previous 7 sets of prope

ring of
PseAAC, the experiments were done using different numbers of clustering
clusters becauseé after

aining data, range from 2 to 12. We stopped at 12
eous clusters:

: n
this Number of clusters some experiments produced homoge
ot on the accuracy

From th i veme
s figure ee an improve
gure we can S ot two clusters

when the

B X ification,
tata divided into clusters before applying the classifica
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Fig'ur.e 5.5 Aczm.lracy of SVM for Caspase sequences using PseAAC. The
training data divided into different numbers of clusters (range from 2 to 12),
one cluster of training data means a classification without clustering.

the accuracy of the classification enhanced by 15% especially when we used
Maetschkes properties. The accuracy of almost sets of properties oscillating

up and down, however the classification based on clustering was the best in

all cases.

Results from CTD encoding method

Bach sequence in the benchmark was encoded using CTD. Figure 5.0 shows

: K
the results of 3 fold cross validation test for SVM classifier based on
nt numbers of

ean clustering using CTD, the experiment done using differe
ans a

i data me
“lustering of training data, where the result of one cluster of da

'8ult of classification without clustering for the data. :
proved slightly

: im
The figure shows that the accuracy using the CTD was

i de
is not & good choice to enco

fanged from (2-3)%. We can see that the CTD

th
* Caspase sequences for our approach.
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Figure 5.5: Accuracy of SVM for Caspase Sequences using PseAAC. The
treining data divided into different numbers of clusters (range from 2 to 12),
oze cluster of training data means a classification without clustering.

the accuracy of the classification enhanced by 15% especially when we used
Maetschkes properties. The accuracy of almost sets of properties oscillating

" and down, however the classification based on clustering was the best in

all cases.

Results from C'TD encoding method

-

Ead] : : .6 shows
“h sequence in the benchmark was encoded using CTD. Figure 5 6s
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% results of 3 fold cross validation test for SVM classifier bas
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' stering.

This encodin

e ; }rlnethod can be used when the dataset contains sequences have

i S, SO W.e used it for Caspase dataset to evaluate our approach,

" ure of this method is using the original values of the properties
er than derived new values represent the original properties such as the

PseAAC
and CTD. Also the 7 sets of PCPs were used in this experiment.

Figure 5
.7 shows the results of 3 fold cross validation test for SVM classi-
concatenating

fier based
on K-mean clustering using the previous 7 sets and
g of

ethod, th, i
t , the experiments were done using different numbers of clusterin
raini
ing data, range from 2 to 12.
on the clustering

Thi
s result shows that the using of classification based
hout clus-

Bives sjgnj :
gnificant enhancement compared with the classification wit

ce the data ar€ gplit the

terin
gw : On
hen using the concatenating method.
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Number of clusters 0 12

ure 5.7: Accuracy of SVM for Caspase sequences using concatenating
d. The training data divided into different numbers of clusters (range
2 to 12), one cluster of training data means a classification without

stering.
curacy results were enhanced approximately by 30%for Georgive and Native
properties (The accuracy reached to 82%).
- All sets of properties enhanced the accuracy when using our approach,
Georgive and Native behaved the same, thats because the Georgives proper-

ties derived from the Native set.

54 Time Performance

\ : tion time for
Many previous studies have focused on reducing the computatl :

z 5 ecla]ly when
large data sets by using the clustering before classification, €sp

. : e the tr
the SVM was used as a classification algorithm becaus &
s. that because training

lane
: to find 2 hyperp.
ually posed as a quadratic programming (@Rjproblont

aining time of

an SVM is
VM is a serious obstacle for large data set

e n is the pumber of

: : ere th
Which implicates a matrix of density n X Wi
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54. TIME PERFORMANCE

samples in the data set,and his matrix needs huge quantitjes of o
Omputationg]
time and memory for large data sets, so the training complexity of gy
; Y OoI SVM is
dependent on the size of a data set 1]

fforder tostudyithetime performance of our approach on different size of
protein datasets, the approach was applied op three datasets; thege datasets
are Caspase 3 that contains 494 Sequences, and the membrane dataset that
contains 414 sequences, in addition to MHC IJ that contains 5166 sequences.
Table 5.1 shows the time and accuracy for different input dataset(5166 se-
quences, 494 sequences and 414 sequences) for different number of clusters
(range from 2 to 10 clusters), and the native properties were used by the
PseAAC encoding method.

The specification of our computer that used to run the experiments is as
the following: Dell laptop Inspiron 5040, core i5, 8GB RAM.

Table 5.1 shows that the training time for classification is declined when
the number of clusters increased for the three datasets, while the accuracy
of classification increased or remain in the same rang of accuracy when using
the classification without clustering.

The effect of the system on the time can be clearley obvious when the
datset is lagre as MHC II dataset. Figure 5.8 illustrates the change of the
time (in second) with the increase in the number of clusters for the MHC-

Caspase and
Il data sets because it is the largest dataset compared to the Casp

native properties
membrane protein datasets, it contains 5166 sequences, the

were used by the PseAAC encoding method.

s the time decreased from 610 to

When ivided into two cluster
the data divide sters, then it began to

i clu
97 seconds, the time continued to decline at three

: i
the overhead caused by increast g
0

ncrease slightly, this increase is due t

the Number of clusters.

70



\ TIME PERFORMANCE

Number of clusters

[ Accuracy (%) T T r——
- Y (%) [ Time (second
1 (without clustering) 0.502416 0.2284552
2 0.723069 0.032004
3 0.720195 0.03932]
4 0.763793 0.04904
5 0.74485 0.05847
6 0.769374 0.066932
7 0.767262 0.125557
8 0.743521 0.090693
9 0.732575 0.105045
10 0.746734 0.101628
1 (without clustering) 0.546332 0.268538
) 0.614169 0.06064
3 0.564923 0.042766
4 0.565955 0.054031
5 0.58076 0.07251
6 0.62807 0.0772:3
7 0.603619 0.104507
8 0.600051 0.099
9 0.588401 0.10714
10 0.605474 0.106795
: 0.690476 610.2449
1 (without clustering) : s 97,7859
9 0.709 |
0.698631 :
3 5.8520
0.692373
4 6.9318
5 0.690527 e
4 .
6 0.68803 el
36 '
" 0.6751 -
68 :
8 0.6762 11.9592
9 0.675399 0
0 0.676864

that Contains fewer training data.
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1 (without clustering) %wrm

§ e 0.228455

; 0.720195 8833?2)4

: 0.763793 0 0490411

’ 0.74485 0.05847

: 0.769374 0.066032

! 0.767262 0.125557

: 0.743521 0.090693

i 0.732575 0.105045

G ' 0.746734 0.101628

without clustering) 0.546332 0.268538

g 0.614169 0.06064

; 0.564923 0.042766

. %.5565955 0.054031

58076 0.07251

g 0.62807 0.077678

0.603619 0.104219

8 0.600051 0.099507

9 0.588401 0.10714

10 0.605474 0.106795

1 (without clustering) 0.690476 610.2449

2 0.709833 97.7859

3 0.698631 5.7150

4 0.692373 5.8520

5 0.690527 6.9318

6 0.688034 7.7595

7 0.675136 9.1864

3 0.676268 10.5869

9 0.675399 11.9592

0 0.676864 13.6008

- This big decline in values is due to the reducin

f hat contains fewer training data.
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Splitting the training data into clusters, then applying SVM

g the training data by

on each cluster




ON OF RESULTS

10 12
Number of clusters i i 18 =

The time performance for the proposed approach based on SVM
The experiment was done using the MHC-II benchmark, the
LAC encoding method and the Native properties were used

5.5 Discussion of results

ion contains a discussion of the above results, the section is di-
nto the following subsections: the performance of selected PCPs in
pproach, the performance of encoding methods in our approach, the
nce of our proposed approach using different benchmarks, and the

rmance of of SVM computation time using our approach.

Performance of encoding methods in our approach

d CTD),
encoding methods were used for all benchmarks (PseAAC an )

the Caspase
41d an additional method (concatenating method) was used for

lataset because has fixed length sequences.

PseAAC encoding method
‘ 5 ing, it was clear that
When applying PseAAC to classification without clustering

brane
i d 50%) for mem
classification rates were not satisfactory (aroun
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when the data divided into two clusters. After that the values of
swing up and down but it remained higher than the accuracy for

assification without clustering. However, our approach using PseAAC

make an a major improvement for MHC-I] sequences. this may be

to the complexity of the MHC-II problem.

‘encoding method

TD of classification without clustering did not give good results for the
membrane proteins and Caspase sequences, but the accuracy of the MHC was
similar to the results based on PseAAC.

When the clustering was used before the classification, the results were
hanced in the case of membrane proteins. For the MHC and Caspase
ade very little improvement but it not exceed the 4%.

In general, CTD as encoding method did not lead to any enhancement.
is due to nature of CTD method, as mentioned in 2, the CTDs features
ot original values of PCPs, instead it is a values derived from dividing

- : oups in
the amino acids into groups then depends on the appearing of the group

i i based on
equences. In addition, CTD depends on the dipeptide features bas

division the sequence to pairs.
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roperties behaved the same based on PseAAC, thats because

' depends on the features that derived from the natural PCPs

 will be close for the same dataset.

e PseAAC, the performance of concatenating method depends on

used to represent the sequences.

.2 Performance of selected descriptors in our ap-

‘proach

s

of the above experiments, we used 7 sets of descriptors (Atchley,
Venkatarajan, Kidera, Georgive BLOSUM 62, Maetschke and Na-
tive). When using PseACC as encoding method, we can notice that the effect
wéets of PCPs on the accuracy for all benchmarks were nearly similar.
is due to the nature of features derived using this encoding method (20
AC + correlation factors), where the first twenty values are similar, so the
n factors. These

arison was mainly done depending on the correlatio

1 . ino acids in the
Correlation factors take into consideration the order of the ami

lence and the values of the PCPs of amino acids. .
: ine the conca
On the other hand, when repeating the experiments USHE

on the classification accuracy

n ar differences
g method, there were cle & metliod depends

tenatin,
ng the 7 descriptors. This is because the conca
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 values of the Properties, the results of thjg method op Caspase
d that Native Properties are the best in classification also
Georgive and Native are close, because the Georgive pr

operties
rom the Native sets themselves.

these results, we can say that the performance of the descriptors

ach depends on encoding methods that were used.
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Conclusion and Future Work

hesis has proposed a novel approach that aims at enhancing the ac-

7 of the classification for the protein sequences. This approach based

‘f descriptors based on PCPs, and applying two encoding methods to

esent the sequences. The results show that the classification based on the

datasets of the proteins need to examine again to distribute the sequences
based on their similarities, in order to facilitate the classification.

This approach has the potential to discover the suitable encoding method
and the suitable set of properties for each protein dataset, while the classifi-
Cation without the clustering failed in.

s; membrane proteins,

: The proposed approach tested on three dataset
ents the full

MHC 11, Caspase, while the membrane protein dataset Tepre>
e Se-

g0t tid
Protein sequences where the MHC and Caspase represent the Pep

i formance of
& fnces. Seven sets of descriptors were used to examine the per

7



mean clustering before the SVM classifier of the Protein sequences can g
n give

.....

better results than the classification without the clustering using the selected

approach can be used to reduce the SVM training time for large datasets,

"?»'ﬁjil the need to eliminate any sample from the dataset as in previous

 The results of our experiments show that the PseAAC gave better re-

sults than the CTD for the three datasets, and the concatenating method

gave better results than PseAAC for Caspase dataset, also the concatenating

éthod was better than other encoding methods to clarify the differences

tween the selected sets of descriptors.

: iptors
: In genera] the performance of our approach depends on the deonr
hieve high
nd the encoding methods used to represent the sequences, S0 80 aC
4 d encoding

Performance you should find the suitable combination of PERsar

- ethods,
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mitations, that’s because the datasets contain a large Number of
€r o

Sequences,
especially the MHC II dataset, and for each dataset we need t
‘ 0

encode each

( ce using the PCPs and cluster the Séquences, for oy ex

Perimentg
we need to cluster the sequences at least from 2 to 10 clusters, also tp

) SO c
classification of the sequences needs time.

In the future other encoding methods, other descriptors can be used to

enhance the results of our approach, also different clustering and classification

iptors, encoding method, clustering and classification algorithms can

be used to enhance the accuracy of the prediction for different datasets of

‘Based on our approach the reserachers in the future can determine the

best descriptors for each dataset (that achieve the higher accuracy).
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