

Palestine Polytechnic University

Deanship of Graduate Studies and Scientific Research

Master of informatics

Towards a Hybrid Data Partitioning Technique

for Secure Data Outsourcing

Sultan Khalil Badran

Supervisor

Prof. Nabil Arman

Co- Supervisor

Dr. Mousa Farajalla

Thesis submitted in partial fulfillment of requirements of the

degree "Master in Informatics."

June 2021

The undersigned hereby certify that they have read, examined, and rec-

ommended to the Deanship of Graduate Studies and Scientific Research

at Palestine Polytechnic University the approval of a thesis entitled: To-

wards a Hybrid Data Partitioning Technique for Secure Data Out-

sourcing. Submitted by Sultan Khalil Badran in partial fulfillment of

the requirements for the degree of Master in Informatics.

Graduate Advisory Committee:

Prof. Nabil Arman (Supervisor), Palestine Polytechnic University

Signature:_______________________

Date:___________________________

Dr. Mousa Farajalla (Supervisor), Palestine Polytechnic University

Signature:_______________________

Date:___________________________

Dr. Mahmoud Al-Saheb, (Internal committee member), Palestine Poly-

technic University

Signature:_______________________

Date:___________________________

Dr. Husam Suwad, (External committee member), Palestine Technical

University – Kadoorie

Signature:_______________________

Date:___________________________

Thesis Approved

Dr. Murad Abu Sbeih

Dean of Graduate Studies and Scientific Research

Palestine Polytechnic University

Signature:_______________________

 Date:___________________________

i

DECLARATION

I declare that the Master Thesis entitled "Towards a Hybrid Data Parti-

tioning Technique for Secure Data Outsourcing" is my original work.

Besides, I hereby certify that unless stated, all work contained within

this thesis is my independent research and has not been submitted for the

award of any other degree at any institution, except where due acknowl-

edgment is made in the text.

Sultan Khalil Badran

Signature:

Date: 30/06/2021

ii

STATEMENT OF

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for the

master's degree in Informatics at Palestine Polytechnic University, I

agree that the library shall make it available to borrowers under the li-

brary's rules. Brief quotations from this thesis are allowable without spe-

cial permission, provided that accurate acknowledgment of the source is

made.

Permission for extensive quotation from, reproduction, or publication of

this thesis may be granted by my supervisor, or in his absence, by the

Dean of Graduate Studies and Sciatic Research when, in the opinion of

either, the proposed use of the material is for scholarly purposes.

Any copying or use of the material in this thesis for financial gain shall

not be allowed without my written permission.

Sultan Khalil Badran

Signature:

Date: 30/06/2021

iii

DEDICATION

My wife, whose words of encouragement and inspiration are still ringing

in my ears and who has always supported me and encouraged me to ob-

tain my master's degree. To her for being there throughout the entire

master's program. I also dedicate this work and give special thanks to

my friends, who have been a constant source of support and encourage-

ment during the challenges I faced. I also dedicate this thesis to my col-

leagues at the UNRWA ICT office, who have supported me throughout

the process.

To all the people in my life who have touched my heart, I dedicate this

research; I will always appreciate all the help and love I received.

iv

ACKNOWLEDGEMENT

With great pleasure, I would like to acknowledge the support, assistance,

and contribution provided by individuals since the beginning of this

work, people who secured me with access, data, and information to all

those who supported the completion of this thesis.

Foremost, I would like to express my sincere gratitude to my advisors

Prof. Nabil Arman and Dr. Mousa Farajallah, for the continuous support

for my master's study and research, for their patience, motivation, enthu-

siasm, and immense knowledge. Their guidance helped me throughout

the research and during the writing process of this thesis. Thank you for

your critical eye and constructive criticism, your optimistic attitude, and

encouragement, your awareness of my situation has been invaluable dur-

ing the whole process.

Besides, I would like to thank the examining committee, my colleagues

in the master's program for all their help, support, access, and assistance

that made my work possible.

v

 الملخص

لإنترنت وتطوير في ضوء التقدم الذي أحرزه قطاع التكنولوجيا في مجالات سرعة ا
الدوثوقية ، بالإضافة إلى الدزايا الأخرى التي توفرىا السحابة مثل الخدمات السحابية

وسهولة الوصول من أي مكان وفي أي وقت، رأى معظم مالكي البيانات فرصة في
الاستفادة من السحابة لتخزين البيانات. ومع ذلك، سيواجو مالكو البيانات تحدياً في

حماية البيانات الحساسة من التسرب. ىو ، و هتهم في الاستعانة بمصادر خارجيةمواج
البيانات إلى أقسام بناءً على حساسية البيانات، يمكن أن جد الباحثون أن تقسيم و و

يحمي البيانات من التسرب ويزيد من الأداء عن طريق تخزين القسم الذي يحتوي على
 بيانات حساسة في شكل مشفر.

 طريقة ىجينة لتقسيم البيانات لتأمين البيانات الحساسة وتحسين أداء الرسالةتقدم ىذه
والأفقي العامودي، يتم تنفيذ تقسيم البيانات الاستعلام. في ىذا النهج الجديد

لإنشاء علاقات مقسمة. يتم تطبيق مجموعة من Microsoft SQL باستخدام خادم
وبيانات وصفية Query binning (QB) القواعد الدقترحة على عملية طلب الاستعلام؛

ق من صحة النهج الدقترح باستخدام التجارب التحقوتم. (Metadata) لتقسيممتعلقة با
مخزن جراءا تنفيذ من نتائج تجميعهاالتي تنطوي على مجموعة من البيانات التي تم

(stored procedure) . تحقيق خصائص فيما يتعلق بنتائج النهج الدقترح مرضية وكانت
 النهجنتائج كانت و تعريف أمن البيانات: عدم الارتباط وعدم القدرة على التمييز.

في %05 ممتازاً أكثر من اتفيذ الاستعلامتن من حيث زمن الاداءالدقترح مرضية. كان
 .PANDA أداء نتائج من أفضل وىو ،الدتوسط

vi

Abstract

In light of the progress achieved by the technology sector in the areas of

internet speed and cloud services development, and in addition to other

advantages provided by the cloud such as reliability and easy access

from anywhere and anytime, most data owners saw an opportunity in

taking advantage of the cloud to store data. However, data owners will

face a challenge in confronting them in outsourcing, protecting sensitive

data from leakage. Researchers found that partitioning data into parti-

tions, based on data sensitivity, could protect data from leakage and in-

crease performance by storing the partition, which contains sensitive da-

ta in an encrypted form.

This thesis is presenting a hybrid data partitioning approach for secure

sensitive data and improve query performance. In this novel approach,

vertical and horizontal data partitioning are implemented using a Mi-

crosoft SQL server to generate divided partitioned relations. A group of

proposed rules is applied to the query request process; query binning

(QB) and Metadata of partitioning. The proposed approach is validated

using experiments involving a collection of data evaluated by outcomes

of stored procedure. The suggested approach results are satisfactory in

achieving the properties of defining the data security: non-linkability

and indistinguishability. The results of the proposed approach were sat-

isfactory. The performance of query execution time was more excellent

than 50% on average, which is better than the results of PANDA per-

formance.

vii

Table of Contents

1. Introduction .. 2

1.1 Problem Statement ... 2

1.2 Motivation ... 2

1.3 Contribution and Proposed Approach 3

1.4 Thesis Organization ... 3

2. Background .. 4

2.1 Data Outsourcing ... 5

2.2 Data Partitioning .. 6

2.3 Data Partitioning Security ... 11

2.4 Query Inference Attacks .. 12

2.5 Data Encryption ... 12

3. Literature Review ... 13

4. Research Approach .. 17

4.1 Hybrid Data Partitioning Model .. 17

4.2 Query Binning Technique ... 27

4.3 Data Partitioning Security ... 30

4.4 Encryption Technique .. 35

5. Implementation, Results, and Discussion .. 36

5.1 Experimental Tools .. 36

5.2 Implementation of Proposed Approach 37

5.3 Experiment Results and Discussion .. 39

5.4 Summary and Generalization of Results 46

6. Conclusion and Future Work ... 48

viii

6.1 Conclusion ... 48

6.2 Future Work ... 48

Bibliography .. 50

Appendixes .. 54

ix

List of Figures

Figure ‎2.1. Horizontal partitioning of data ... 7

Figure ‎2.2. Vertically partitioning data .. 8

Figure‎2.3. Functionally partitioning data ... 8

Figure ‎2.4 Data partitioning security .. 11

Figure ‎4.1 The context of the proposed approach 17

Figure ‎4.2 Insert tuple trigger and the partitioning computation 23

Figure ‎4.3 Query request .. 25

Figure ‎4.4 QB for four sensitive and four non-sensitive tuples. 28

Figure ‎4.5 Map mind .. 30

Figure ‎5.1 General architecture of the proposed approach 37

Figure ‎5.2 Query execution experiment results for 2000 tuples, 50%

values are sensitive in each attribute. ... 41

Figure ‎5.3 Query execution experiment results for 4000 tuples, 50%

values are sensitive in each attribute. ... 43

Figure ‎5.4 Query execution experiments result from 6,000to 20,000

tuples, 50% values are sensitive in each attribute. 45

x

List of Tables

Table ‎4.1 Employee relation .. 20

Table ‎4.2 Metadata table for relation R .. 20

Table ‎4.3 Relation 1 ... 21

Table ‎4.4 Relation 2 ... 21

Table ‎4.5 Relation 3 ... 21

Table ‎4.6 Relation 4 ... 22

Table ‎4.7 Queries results, without apply QB ... 28

Table ‎4.8 Query result using QB .. 29

Table ‎5.1 Sensitive attributes ... 38

Table ‎5.2 Sensitive attribute values .. 38

Table ‎5.3 Query execution experiment results for 2000 tuples, 50% of

values are sensitive in each attribute .. 40

Table ‎5.4 Query execution experiment results for 4000 tuples, 50%

values are sensitive in each attribute. ... 42

Table ‎5.5 Experiments Results of query execution times (in seconds) for

PANDA and our approach ... 44

Table ‎5.6 Average of performance enhancement of our approach 46

1

التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخدم علامة Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

List of Abbreviations

AES Advanced encryption standard

AV Adversarial view

CCA Chosen-ciphertext attack

CLR Common language runtime

COA Cipher-text only attack

CPA Chosen plaintext attack

DB Database

DES Data encryption standard

EDB Encrypted database

EMR Electronic medical records

KPA Known-plaintext attack

PANDA PArtioNed DAta

QB Query binning

R Relation

SQL Structured query language

2

استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

Chapter 1

1. Introduction

Generally, data outsourcing is vulnerable to different types of attacks.

Secure and efficient retrieval of outsourced data is still an open chal-

lenge. Data sensitivity is one of the most critical security issues that

need to be investigated. Generally, the data owner avoids data outsourc-

ing (sensitive and non-sensitive data). Alternatively, they are outsourc-

ing all data in encrypted form to protect sensitive data. In this study, the

data partitioning techniques based on data sensitivity are considered to

secure data outsourcing.

Accordingly, hybrid data partitioning techniques (vertically and horizon-

tally) are addressed. However, to improve data security against attacks,

data partitioning techniques (PANDA) are proposed [1]. These tech-

niques divide a relation into a set of relations based on data sensitivity.

While good partitioning techniques prevent data leakage against infer-

ence attack, these techniques must have specific characteristics to be

considered secure, such as non-linkability and indistinguishability.

1.1 Problem Statement

The data partitioning of relations for outsourcing purposes, without a

reliable securing technique, leads to difficult prevention of leakage of

sensitive data. Protecting sensitive data that outsourced to a untrusted

database is a difficult task for database owners. The main problem is

how to find the approach that can prevent leakage of sensitive data by

achieving the data security properties (Non-linkability and indistin-

guishability) and improving the performance of query requests.

1.2 Motivation

Protecting sensitive data in outsourcing Locations usually needs a secur-

ing approach to prevent data leakage and keep the query execution time

3

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق الذي على النص
 ترغب فً أن ٌظهر هنا.

acceptable for database owners. This thesis's primary motivation is to

develop an approach to prevent data leakage of sensitive data from a un-

trusted database and improve performance using Hybrid data partition-

ing and query binning (QB) [2].

1.3 Contribution and Proposed Approach

This thesis aims to improve query execution time, secure the sensitive

data against inference attacks, and prevent data leakage while outsourc-

ing data to a untrusted database for storage.

In this thesis, a hybrid data partitioning technique is used to divide rela-

tions into vertical and horizontal relations based on data sensitivity.

Query binning (QB) techniques [2] are applied for securing sensitive

data and enhancing the performance of query execution time.

1.4 Thesis Organization

The first chapter of this thesis discusses the problem description and mo-

tivation. The theories and fundamental concepts needed to understand

the thesis are discussed in Chapter 2, while Chapter 3 contains the pre-

vious partitioning methods' literature review. The methodology used for

hybrid partitioning data is presented and discussed in Chapter 4. Chapter

5 shows experiments demonstration and evaluation. The discussion and

conclusions are presented in Chapter 6 with the potential future work.

4

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Chapter 2

2. Background

Data outsourcing is vulnerable to different types of attacks. Secure and

efficient retrieval of outsourced data is still an open challenge. Data sen-

sitivity is one of the most critical security issues that need to be investi-

gated.

In the past, the data owner chose one of two scenarios. First, avoided

data outsourcing (sensitive and non-sensitive data). Second, encrypted

all data stored in the cloud to protect the sensitive data. However, to im-

prove data security against attacks, data partitioning techniques are pro-

posed [1], [2], and [3]. These techniques divide a relation into a set of

relations based on data sensitivity.

One of the significant concerns of data owners today is the leakage of

data to external parties, mainly sensitive data. On the other hand, the da-

ta owners need to outsource the data in a particular situation to benefit

from cloud features such as accessing the services or data from any-

where/anytime. The user pays only for used services or data. Increasing

data reliability supports parallel and distributed computing.

The challenges in security in outsourcing data lead researchers to find

solutions to improve the security aspect. One of these solutions is parti-

tioning data, where the data in a relation is divided into more minor rela-

tions depending on selective attributes or specific tuple values such as

sensitive data. Then store the new relation in different data centers that

may be in different locations.

Generally, to get the partitioning categories, there are many different

data partitioning approaches such as Data Sensitivity Partition, Frequen-

cy of Use Based Partition, and Space-Based Partition.

5

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

This research is motivated by developing information systems solutions

such as health record systems, which have sensitive data. In [1], data

outsourcing was used in several application contexts. Data partitioning

can be used to partition data into sensitive and non-sensitive relations

[1].

This thesis discusses the different types of partitioning techniques and

different approaches that researchers have proposed to come up with the

partitioning categories. It highlights how researchers used those parti-

tioning techniques to increase security and protect sensitive data. A hy-

brid data partitioning approach is proposed to improve these techniques

in terms of security and performance.

2.1 Data Outsourcing

Information outsourcing and dissemination services have recently seen

widespread diffusion because of the dramatically growing costs of on-

premises storage and management of a large set of sensitive data and the

requests for both storage capacity and skilled administrative personnel

[4]. Even though data outsourcing offers many advantages like reducing

management costs, higher availability and more effective disaster pro-

tection than in-house operations provide, data are not under their owners'

control.

A novel technology for data outsourcing has been developed because of

the fast evolution of storage, processing, and communication technolo-

gies [4]. The technology is called cloud, and the cloud services providers

are responsible for storage, management, and dissemination for any

companies or users who give their data to them. Using data outsourcing

decreases the cost of the software and the hardware and provides high

availability. On the other hand, data are not under the data owner's con-

trol; neither companies nor users and attackers can violate their data.

This will affect their confidentiality and integrity.

6

دم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخ Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

2.2 Data Partitioning

Nowadays, the size of data grows dramatically in many large-scale solu-

tions, so the data is divided into partitions that can be managed and ac-

cessed separately [5]. Partitioning can be used for many purposes: it can

be used to improve scalability and security and optimize performance

[1] [5] [6]. The cheap data storage is usually used to partition and ar-

chive the older data [5].

However, the partitioning techniques must be chosen carefully to max-

imize the benefits and minimize adverse effects [5].

2.2.1 How to design data partitions?

There are three typical partitioning techniques for data: horizontal parti-

tioning, vertical partitioning, and functional partitioning [1] [5] [6]. The

selected technique of partitioning depends on two factors: the first is the

purpose of partitioning, and the second is what the owner wants to im-

prove in the system (security, performance, or both).

Horizontal partitioning technique: in this technique, the original rela-

tion, and all partitions have the same relation schema. Each partition

contains a specific subset of the tuples [1] [5]. Figure ‎2.1 shows horizon-

tal partitioning. In this example, Staff member's data is divided into two

relations based on the department value. Each relation holds the tuples

for a contiguous range of shard values (IT with HR in one relation and

second relation include marketing department tuples), organized alpha-

betically by ID attribute.

7

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Figure ‎2.1. Horizontal partitioning of data

Vertical partitioning technique: in this technique, each partition holds

a subset of relation attributes. The attributes are divided according to

their pattern of use or property. For example, Sensitive attributes are

placed in a relation, and non-sensitive attributes are placed in another

relation [1] [7]. Figure ‎2.2 shows an example of vertical partitioning. In

this example, different attributes are stored in different relations. One

relation holds tuples that are sensitive data, including ID and Salary.

Another relation holds non-sensitive data (ID, Name, and Department)

[5]. In the above example, the ID belongs to the divided relations to re-

join the relations to produce the original relation.

Functional partitioning: in this technique, data is divided into different

relations according to the system's context. For example, in an HR sys-

tem, the Staff member's data is stored in one relation and payroll data in

another. Figure‎2.3 shows how the data is partitioned into two relations,

where each partition is stored in different locations.

8

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Figure ‎2.2. Vertically partitioning data

Figure‎2.3. Functionally partitioning data

9

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

These techniques can be combined, and it recommended that all of them

be considered when designing a partitioning scheme. For example, di-

viding data into horizontal or functional partitioning and then use verti-

cal partitioning to subdivide data in each horizontal or functional parti-

tioning.

2.2.2 Why Using Data Partitioning?

Improve scalability. The single database system has a limitation when

considering the used hardware resources. On the other hand, using the

data partitioning techniques leads to optimal use of resources. Due to

duplication of hardware resources, the single database is divided and

distributed over more than one data center/location.

Improve performance. Using data partitioning saves time during the

selection of query transactions. Data partitioning could make query pro-

cessing more efficient. Query transactions that affect more than one par-

tition are executed in parallel.

Improve security. Data partitioning is used to enhance security, such as

dividing data into different databases or locations based on sensitivity

and applying different security policies to sensitive data.

Improve availability. Partitioning data across multiple data centers

avoids a single point of failure. If one center failed, only the data in that

center is unavailable, but reduce availability for the system. Transactions

on other data centers can still operate.

2.2.3 What are the Types of Partitioning?

There are many approaches to perform data partitioning:

 Data Sensitivity Partition

In this approach, the partitioned data is divided into a set of relations

based on the data sensitivity. For example, suppose a relation includes a

sensitive attribute such as a PIN code to access the account profile. In

this case, a new relation is created for the PIN codes attribute and anoth-

10

لامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخدم ع Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

er relation for the rest of the attributes. Keeping a link between tuples in

the new relations created is needed to perform a joining operation to re-

trieve the original relation [1] [2] [8].

 Frequency of use Based Partition

In this partitioning approach, the transaction log file, and precisely the

WHERE clause conditions in each SQL SELECT statement, is moni-

tored. A statistical matrix for selected attributes used in the WHERE

clause conditions is produced. This matrix includes the frequency of use

of the WHERE clause's attribute values such as (WHERE SALARY Be-

tween 1000 and 2000). After the matrix is created, some cleaning to ex-

clude the smaller frequency counts is performed, and then a partition is

created for each frequency in the final matrix [9].

 Space-Based Partition

This partitioning approach starts by creating a statistical table that in-

cludes each value's frequency in a specific attribute and then continues

with dividing data according to bucket size. The partitioned relations

created are based on comparing the value frequency against the size of

the bucket. For example, if the frequency of the first value in the statisti-

cal table equals the bucket size, a new partition is created and with all

tuples that belong to the first value. If the sum of the second and third

values' frequency is equal, a new partition is created with all tuples that

belong to the first and third values. Generally, the new partitions can

contain tuples from one or more values, and tuples may belong to values

distributed to one or more partitions based on the frequency size and

bucket size [9].

 Mondrian or Bisection Tree-Based Partition

In this approach, an attribute is selected to be used to partition data, then

the tuples are ordered by the selected attribute. After that, the median is

calculated, and the two relations are created. The first relation includes

11

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
غب فً أن ٌظهر هنا.تر

the tuples in the right median, and the second relation includes the tuples

in the left median. The approach is repeated for each new relation until

the partition satisfies certain conditions [9].

 Histogram Based Partition

This approach is used to display statistical information. An Equi-width

technique is one of its types. This technique divides the values into

stacks of equal width. Each stack presents a new relation. This method

simply subtracts the minimum value from the attribute's maximum value

and is used to divide the results by the number of stacks [9].

2.3 Data Partitioning Security

The data security level should provide non-linkability and cipher-text

indistinguishability to protect data [1] [10]. Figure ‎2.4 show the two

properties that needed to be involved in the encryption algorithms:

 Non-linkability: the adversary does not learn the relationship be-

tween any encrypted and plaintext value.

 Cipher-text indistinguishability: the adversary does not learn any

relationship between encrypted values.

Figure ‎2.4 Data partitioning security [1]

12

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

2.4 Query Inference Attacks

The adversary uses query inference attacks to recover information about

the data or queries by linking encrypted information with openly availa-

ble information [11]. The most well-known types of inference attacks:

 Frequency attack, i.e., an adversary can conclude how many tu-

ples have a similar value [11].

 The workload-skew attack, i.e., an adversary, knowing frequent

selection queries by watching many queries, can guess which en-

crypted tuples potentially meet the frequent section in selection

queries [1].

2.5 Data Encryption

DB owners are concerned about their data when data are hosted and

managed in Untrusted databases. They tend to encrypt the data before

sending it to the untrusted database to prevent the provider from access-

ing data hosted on their machines. Data encryption can be performed by

using symmetric or asymmetric encryption schemes. Furthermore, data

encryption can be performed based on a deterministic or non-

deterministic framework [12]. The main difference between the two

frameworks is evident when encrypting identical values. If two identical

values are encrypted, the deterministic approach encrypts the values, and

the output is two identical encrypted cipher-texts. On the other hand, the

non-deterministic approach output is two non-identical encrypted ci-

pher-texts.

13

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Chapter 3

3. Literature Review

In this chapter, a summary of the main studies related to our research is

being presented. The literature studies about data partitioning can be di-

vided into two topics; the partitioning approach and the partitioning de-

sign. As stated in many related studies, the first topic usually depends on

how relations are divided, For example, attribute sensitivity and fre-

quency of use Based Partition. The second topic depends on the parti-

tioned relation layout and the inference attack, which is the most crucial

topic in protecting sensitive data.

Because of the importance of data security, especially these days, most

companies and organizations are turning to cloud solutions. However, the

companies and organizations are concerned about their data- stored in the

cloud-from leakage and loss of privacy. Therefore, researchers have de-

veloped different techniques to improve the database's security and the

queries' performance. In the literature, the security of sensitive data was

achieved using data partitioning techniques.

Several researchers have used encryption to secure data, such as Search-

able Encryption in [13]. Several data partitioning techniques have recent-

ly used encryption to secure data in database queries and avoid data leak-

age. Data partitioning was used to improve the data security and the per-

formance in [1], [2], [3], [7], [8], and [9].

The authors in [1], [2] and [3] have used data partitioning (vertically and

horizontally) based on data sensitivity for classifying tuples into sensitive

and non-sensitive tuples and attributes. The proposed solution assumes

that the entire database may not contain sensitive tuples, and non-

sensitive tuples can be exploited to handle the limitations of encryption-

based approaches. They proposed a new definition to secure data based

14

لامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخدم ع Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

on data sensitivity and improve the security against inference attacks

such as frequency-count and workload-skew attacks by proposing an ap-

proach called query binning (QB) to process joint queries through the

sensitive and non-sensitive tuples. Furthermore, the data partitioning and

QB enhance the performance, improve security, and prevent data leak-

age. However, the used techniques are unable to use more than one value

for criteria in queries.

The authors in [7] have proposed asymmetric encryption techniques to

protect data privacy during privacy-preserving data mining (PPDM). The

method is implemented using vertically partitioned relations based on

data sensitivity. The technique used different encryption algorithms to

encrypt the sensitive attributes in different relations at the same time. The

algorithms were applied to three data sets that were prepared as MS Ex-

cel files with different sizes. In addition, four symmetric encryption tech-

niques were implemented using sensitive attributes only: AES, DES,

Rijndael, and RC2. The proposed techniques' privacy results were better

than using just one encryption algorithm on each partitioned relation.

In [8], the authors presented an algorithm to prevent the leakage of sensi-

tive data or loss of privacy from the relations in a database stored in the

cloud. They have developed a model intending to offer secure data man-

agement capability in cloud databases. That model used two approaches

to partition data: the first uses attribute relationship to divide database

relations, and the second uses the data sensitivity to divide the relations.

They proposed a model to deal with the partitioning model results, which

are used to store partitioned relations in the data center. The model can

be stored in one cloud data center, which provides good performance and

security, or store the partitioned relations in different cloud data centers

and locations that improve the security. They distribute data into different

data centers in different locations to improve security and do not consider

performance.

15

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
غب فً أن ٌظهر هنا.تر

In [9], the authors presented Data Partitioning Methods to Process Que-

ries on Encrypted Databases on the cloud. They explored a technique to

improve the query processing performance and at the same time keep the

database relations secure on a cloud by encrypting relations from any

leakage or attack. They point to protecting data from any leakage or at-

tack by designing encrypted databases that process the SQL queries on

encrypted relations. This solution's main idea is handling the query on

encrypted data stored on the cloud without a need to decrypt it. The result

of the query is decrypted at the client side. Furthermore, four different

techniques are developed to index and partition the data as follows:

1. Frequency of use Based Partition.

2. Space-Based Partition.

3. Mondrian or Bisection Tree-Based Partition.

4. Histogram Based Partition.

They compared the efficiency of the first three techniques with the His-

togram-Based partition. The indexes and partitions are used to process

the query and select part of the cloud data. The 'indexes' data can be

stored on the cloud or on-premises server with the encrypted database

relation. This leads to a reduction in the overall processing time, which

contains the data transfer time from the cloud to the query requester site,

as well as the data decoding and processing time for the requester. More-

over, these techniques are used to compare encrypted relation and unen-

crypted relation. The comparison results including the running times for

retrieving a different number of tuples in relation to different tuple sizes.

They found that the encrypted relation with the Frequency-of-Use-Based

partition and the encrypted relation with Bisection-Tree-Based partition

is the most efficient partitions. In addition, they explain a particular issue

that shows how combining Frequency-of-Use-Based and Bisection-Tree-

Based enhances performance through data partitioning methods.

16

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

In addition to Data Partitioning techniques, researchers have explored

Inference Attacks to understand how adversaries attack the encrypted

databases and how the leakage of sensitive information occurred [11].

The authors of [11] have studied the inference attacks against encrypted

database (EDB) systems based on property-preserving encryption (PPE)

scheme, which is CryptDB. They presented a series of attacks that dis-

cover the plaintext from cipher-text encrypted using deterministic en-

cryption (DTE) and order-preserving encryption (OPE) encrypted data-

base attributes. They studied four different attacks. Two are well-known

attacks: frequency analysis attack and sorting attack. Moreover, two are

new attacks: lp-optimization attack and Cumulative attack. They con-

ducted experiments in electronic medical records (EMR) to evaluate the-

se attacks. The EMR data belong to actual patients from 200 US hospi-

tals. They assume that the adversary has access to EDB in a steady state

to perform the attack experiments. Besides, the adversary has access to

some auxiliary information about the system and/or the data, such as ap-

plication details, public statistics, and prior versions. They simulate the

EMR-EDB to develop the experiment scenario to try the considered at-

tacks and then analyze them. Their experimental results illustrate that

the sensitive information can be recovered when the adversary has back-

ground knowledge about EDB data and properties. In numbers, their at-

tacks recovered more than 80% of the patient records out of 95% of the

hospitals when using OPE-encryption to encrypt attributes (e.g., age and

disease severity). On the other hand, when using DTE in specific en-

crypted attributes (e.g., sex, race, and mortality risk), the attacks recov-

ered more than 60% of the patient records out of 60% of the hospitals.

17

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Chapter 4

4. Research Approach

In this chapter, the proposed approach presents in detail the process of

the Hybrid Data Partitioning Model for partitioning relations (presented

in section ‎4.1). The new divided relations utilize the Hybrid Data Parti-

tioning Technique [14]. Once this is performed, a novel technique called

Query Binning (QB) is implemented in [1]. The QB is explained how

increase the security in section ‎0 and How prevent data leakage against

inference attacks presented in section ‎4.3.

4.1 Hybrid Data Partitioning Model

In our research, we consider the following two entities in our model,

Trusted Database and Untrusted Database, shown in Figure ‎4.1 and de-

script below:

(1) Trusted Database on-premises contains the whole data in plaintext

format and executes queries, and sends query requests to untrusted

DB on the cloud. We assume that a relation R has attributes, say A1,

A2, A3 . . . , An, containing all sensitive and non-sensitive values in

tuples t1, t2, t3…, tm. According to values stored with specific attrib-

utes, the DB owner determines which attributes are sensitive or not

and lays rules that determine when the tuple is sensitive.

Figure ‎4.1 The context of the proposed approach

18

لامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخدم ع Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

The DB owner divides relation R into several relations based on the

tuples' data sensitivity using a hybrid technique that divides the orig-

inal tuple into three tuples at max; each divided tuple is stored in a

different relation. The first part contains the values stored in the at-

tributes marked as sensitive. The second part contains the values

stored in the attributes marked as non-Sensitive, and the rest of the

values may either include sensitive or non-sensitive values. This

means that the third tuple may either be considered sensitive or non-

sensitive.

The DB owner outsources the relations that contain non-sensitive da-

ta to a cloud in plaintext form. The tuples of the relations that con-

tain sensitive data are encrypted using any existing non-deterministic

encryption mechanism before outsourcing to the same cloud.

In our model setting, the DB owner must store metadata such as a

mapping relation that stores the original tuple ID with the new tuple

IDs in each of the divided relations. The Metadata is used for appro-

priate query formulation using the Query Binning (QB) proposed in

[2] and explained in section ‎0.

(2) Untrusted Database on Cloud that hosts the databases contains the

partitioned relations, executes queries, and provides answers to the

trusted DB stored on-premises.

To explain query execution in our model, let us assume a query  over

the relation R and p is a preposition, denoted by p(R). The query is ex-

ecuted on trusted DB with no limitation on the number of attributes in

the WHERE condition clause. The results of the query include four at-

tributes:

i. Tuple ID, the original ID for each tuple.

19

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
غب فً أن ٌظهر هنا.تر

ii. IDE, tuple ID representing the primary tuple key in new rela-

tion for sensitive data (RE).

iii. IDP, tuple ID representing the primary tuple key in new rela-

tion for non-sensitive data (RP).

iv. IDP_E, tuple ID representing the primary tuple key stored in

relation RP_E in plaintext or relation RE_P in encrypted form.

After that, the query process splits the execution of p(R) into four

subqueries. As presented in Equation ‎4.1, each subquery is sent to an un-

trusted DB to be executed. Then the results of subqueries are returned to

the Trusted DB. Then inside the trusted DB, there are two subqueries

((RP_E and RE_P)) that have the same scheme, for which a union opera-

tion is performed. Then join operations are performed to join the union

result with RP and RE. In particular, the query  on a relation R is exe-

cuted, as:

 () () () (() ())

Equation ‎4.1

Example: Let us illustrate the hybrid data partitioning model through the

following example:

 Attributes No

 a1 a2 a3 a4 a5 a6

Tuple

No
ID Name Department Salary Location Password

t1 1 Ali IT 1,000 Jerusalem ********

t2 2 Intisar Marketing 900 Jerusalem ********

t3 3 Mahmoud IT 1,200 Hebron ********

t4 4 Susan Marketing 1,500 Ramallah ********

t5 5 Sultan Marketing 1,450 Bethlehem ********

t6 6 Kazem HR 1,050 Nablus ********

t7 7 Alaa Marketing 1,460 Bethlehem ********

t8 8 Ahmad HR 980 Nablus ********

20

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Table ‎4.1 Employee relation

Table ‎4.1 considers an Employee relation R. Note that the notation ai (1

≤ i ≤ 6) is an attribute in the relation; it indicates the i
th

 attribute. In this

relation, note that the notation tj (1 ≤ j ≤ 8) of the relation; we used this

to indicate the j
th

 tuple. In this relation, the DB owner considers that the

password attribute values are not outsourced data, and the salary attrib-

ute values are sensitive. Moreover, all values in department attribute that

meet Department = "Marketing" are sensitive. In such a case, and after

applying the Hybrid partitioning calculation, the metadata are generated

as shown in Table ‎4.2. Metadata includes four attributes as described

before. It is worth mentioning that the data type of IDE, IDP, and IDP_E

attributes is a unique identifier data type. This data type generates

unique key values that contain 36 characters.

Tuple

No

Tuple

ID

IDE IDP IDP_E

t1 1 848CC055...A 43AACEF7...P F0D9C43C...R

t2 2 DF8BC1A8...C 2CF79E45...O 485F36AB...J

t3 3 03E47A30...E 1AC4E44F...Y CAF5A05C...Q

t4 4 5E1A2955...A 990D4BF7...I 17EDA383...8

t5 5 EF036F92...F BA921C43...G F1859688...Y

t6 6 CB1CCD4D...K 4276A931...K A03E7373...D

t7 7 116DB16E...H 10E7C843...U 14C0E88B...X

t8 8 F2220062...P 892285C5...D 05B4FA48...Z

Table ‎4.2 Metadata table for relation R

The Employee relation may be stored on the cloud as:

1. Relation 1contains all sensitive values in Salary's attribute

and stores values in encrypted form, as shown in Table ‎4.3.

Attributes

No

IDE a4

Tuple No ID Salary

t1 848CC055...A E(1000)

21

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

t2 DF8BC1A8...C E(900)

t3 03E47A30...E E(1200)

t4 5E1A2955...A E(1500)

t5 EF036F92...F E(1450)

t6 CB1CCD4D...K E(1050)

t7 116DB16E...H E(1460)

t8 F2220062...P E(980)

Table ‎4.3 Relation 1

2. Relation 2 contain all non-sensitive values in all attributes

marked as non-sensitive attributes and store values in

plaintext form, as shown in Table ‎4.4.

Attributes

No

IDP a2 a5

Tuple No ID Name Location

t1 43AACEF7...P Ali Jerusalem

t2 2CF79E45...O Intisar Jerusalem

t3 1AC4E44F...Y Mahmoud Hebron

t4 990D4BF7...I Susan Ramallah

t5 BA921C43...G Sultan Bethlehem

t6 4276A931...K Kazem Nablus

t7 10E7C843...U Alaa Bethlehem

t8 892285C5...D Ahmad Nablus

Table ‎4.4 Relation 2

3. Relation 3 contain all tuples that the attributes include sensi-

tive values. In the example, all sensitive values in Depart-

ment attribute, where Department = Marketing", are stored

in encrypted form, as shown in Table ‎4.5.

Attributes

No

IDP_E a3

Tuple No ID Department

t2 CAF5A05C...Q E(Marketing)

t4 17EDA383...8 E(Marketing)

t5 A03E7373...D E(Marketing)

t7 05B4FA48...Z E(Marketing)

Table ‎4.5 Relation 3

22

لامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخدم ع Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

4. Relation 4 contain all sensitive values in Name and Location

attributes, where Department ="Marketing" and saved in

plaintext form, as shown in Table ‎4.6.

Attributes

No

IDP_E A3

Tuple No ID Name

t1 F0D9C43C...R IT

t3 485F36AB...J IT

t6 F1859688...Y HR

t8 14C0E88B...X HR

Table ‎4.6 Relation 4

Hence, the sensitive data stored in Relation 1 and Relation 3 (Table ‎4.3

and Table ‎4.5) are encrypted before being outsourced to an untrusted

database. In contrast, Relation 2 and Relation 4 (Table ‎4.4 and Ta-

ble ‎4.6), including only non-sensitive data, are outsourced in plaintext

form. The partitioning is executed on the tuple level, a trigger is fired

and run the partitioning code in each time a tuple insertion, modifica-

tion, or deletion operation occurs as mentioned in Algorithm 1 shown in

Figure ‎4.2.

23

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
غب فً أن ٌظهر هنا.تر

Figure ‎4.2 Insert tuple trigger and the partitioning computation

The example shows us the Hybrid approach used as the proposed solu-

tion in this thesis. The Relations in Table ‎4.3 and Table ‎4.4 are divided

vertically. The first relation contains all values in an encrypted form that

belong to sensitive attributes (all values are sensitive in attributes). The

second relation contains values in plaintext that belong to attributes with

all non-sensitive values. On the other hand, the relations in Table ‎4.5

and Table ‎4.6 are divided horizontally. The first relation contains sensi-

tive values in encrypted form (we decrypt all values in tuple if one value

is sensitive at least). The second relation contains the plaintext values

that belong to the rest of the attributes and does not have any sensitive

values.

Algorithm 1 Insert Tuple

 Inputs: t: inserted/updated tuple.

 Variable: Metadata: table to store metadata about t.

24

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

To continue with example 1, consider a query : SELECT Name, De-

partment from Employee where location = N’ Jerusalem’ . In the trusted

DB, the query  Location = N„Jerusalem(R) is executed on relation R, then as

shown in Algorithm 2, the results of the query are joined in Metadata

relation, after that, they produce four queries that are sent and executed

in Untrusted DB below:

i) IDe in (query results)(RE) executes on RE relation.

ii) IDp in (query results)(RP) executes on RP Relation.

iii) IDp_e in (query results)(RP_E) executes on RP_E Relation.

iv) And the last query IDe_p in (query results)(RE_P) executes on RE_P

Relation.

 a[] list of attributes. v[] sensitive values list. IDE, IDP,IDP_E

1 Function InsertTuple (t) begin

2 a[]←Relation attributes v[]←Relation attributes Sensitive Values

3 IDE ←Generate Unique Identifier key

4 tE ← IDE

5 tE ←Encrypt all values store in attributes marked as sensitive in t

6 Send tE to RE in cloud

7 IDp ←Generate Unique Identifier key

8 tP ← IDP

9 tP ←all values store in attributes marked as non-sensitive in t

10 SendtP to RP in cloud

11 IDTemp←Generate Unique Identifier key

12 If the rest of the values in t marked as sensitive values

13 tE_P ← IDTemp

14 tE_P ←Encrypt all values marked as sensitive in t

15 Send tE_P to RE_P in the cloud

16 Else

17 tP_E ←IDTemp

18 TP_E ←all values marked as non-sensitive in t

19 Send tP_Eto RP_E in the cloud

20 Metadata ←t.ID, IDP, IDE,IDTemp

21 Return

25

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Figure ‎4.3 Query request

The query result is sent back to trusted DB, and SQL operation is per-

formed as presented in Equation ‎4.1. Firstly, send and execute the que-

ries. The UNION operation is performed between σ (RP_E) and σ (RE_P).

Then the output is used in the joining operation of σ (RP) and σ (RE).

The query retrieve tuples t1 and t2. Figure ‎4.3 and Algorithm 2 show how

the query request process works.

It is worth mentioning that the partitioning computation occurs during

the insertion of tuples into R relation. That saves time instead of doing

the partitioning computation of the whole data at once, as in [2]. Fig-

ure ‎4.2 shows the steps of the trigger while inserting a tuple in R rela-

tion.

26

لامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخدم ع Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

Algorithm 2 Query Request

Inputs: SQLstr: Select query statement, Metadata: table to

store metadata about tuples

 Outputs: Results: Query results

Variable: T_R: temporary data table to store metadata about SQL re-

sults, Result1 temporary relation

1 Function run_SQL (SQLstr) begin

2 T_R←Execute(SQLstr) Metadata

3

Result1←Execute_on_Cloud(RE_P, Domain(T_R.IDE_P))⋃

Execute_on_Cloud(RP_E, Domain(T_R.IDP_E))

4 Result1← Result1 Execute_on_Cloud(RP, Domain(T_R.IDP))

5 Result1← Result1 Execute_on_Cloud(RE,Domain(T_R.IDE))

6

Query results←retrieve tuple from Result1 match the original

where clause

7 Return Query results

27

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
غب فً أن ٌظهر هنا.تر

4.2 Query Binning Technique

In order to avoid the inference attacks in the partitioned computation, we

need a helpful security definition. Later we will discuss the formal defi-

nition of partitioned data security in section ‎2.3, but first, we will pro-

vide a solution to avoid inference attacks. We use the Query Binning

(QB) technique in [2] and describe how it works to link tuples.

QB involves two steps: first, the creation of the query bins. The second

step consists of rewriting the query based on the binning.

We can say that the QB in the base case is a one-to-one relationship be-

tween one sensitive tuple and one non-sensitive tuple. Accordingly, this

means that both tuples cannot be sensitive and non-sensitive.

Before describing QB, we need to present concept of approximate

square factors of a number used to create the bins.

As defined in [2], “two numbers, say x and y, are approximately square

factors of number n, where n > 0, if x × y = n, and x and y are equal or

close to each other. That difference between x and y is less than the dif-

ference between any two factors, say x′ and y′, of n such that x′ × y′ =

n”.

In our research, the QB uses tuples stored in partitions divided horizon-

tally to create the binning.

Continue with our example in section ‎4.1, to calculate the approximately

square factors, let us consider that n = number of non-sensitive tuple = 4

tuples, according to the definition of Approximately square factors, x =

2 and y = 2, this satisfies the definition of the Approximately square fac-

tors. Now we have two sensitive bins and two non-sensitive bins.

After creating the bins, we need to fill them with tuples using the Algo-

rithm described in [2] and shown in Appendix 2 that links between sen-

28

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

sitive tuples and non-sensitive tuples. The results of this operation are

shown in Figure ‎4.4.

In the example shown below, we use the location attribute in WHERE

clause and the same data in example1 (Table ‎4.1), and we retrieve tuples

as follows:

i) Retrieve tuples corresponding to employees who work in Lo-

cation =‟Jerusalem‟.

ii) Retrieve tuples corresponding to employees who work in Lo-

cation =‟Hebron‟,

iii) And retrieve tuples corresponding to employees who work in

Location =‟Bethlehem‟.

Figure ‎4.4 QB for four sensitive and four non-sensitive tuples.

Adversarial view

We assume that the adversary has access to Untrusted DB and to the

transactions log file, which means that when answering a query, the ad-

versary knows the retrieved encrypted tuples and the complete infor-

mation of the retrieved non-sensitive tuples. This information is known

to the adversary throw the adversarial view. Table ‎4.7 present the re-

trieved tuples without applying the QB.

Query value

Returned tuples/Adversarial view

Relation 1 Relation 2 Relation 3 Relation

4

Jerusalem E(t1), E(t2) t2 E(t2) t1

Hebron E(t3) t3 Null t3

Bethlehem E(t5), E(t7) t5 , t7 E(t5), E(t7) null

Table ‎4.7 Queries results, without apply QB

To apply the QB bins technique, we need to modify the query request

performed, so Algorithm 3 shows how to query request work with QB.

29

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

To know how the QB affects the results of the query request process, the

adversarial view is changed after Algorithm 3 is applied; Table ‎4.8 pre-

sent the query request result for an adversary using the QB technique. In

this example, we will use the same conditions in the previous example

after applying the QB technique (show Figure ‎4.4).

Query val-

ue

Returned tuples/Adversarial view

Relation 1 Relation 2 Relation 3 Relation 4

Jerusalem E(t1),E(t2),

E(t5), E(t6)

t1,t2,t5,t6 E(t2), E(t5) t1,t6

Hebron E(t2),E(t3),

E(t5), E(t8)

t2, t3,t5,t8 E(t2), E(t5) t3,t8

Bethlehem E(t2),E(t4),

E(t5),

E(t7), E(t3),

E(t8)

t2, t3, t4,t5,

t7, t8

E(t2),E(t4),

E(t5), E(t7)

t3, t8

Table ‎4.8 Query result using QB

Algorithm 3 Query Request with QB

Inputs: SQLstr: Select query statement, Metadata: table to

store metadata about tuples

 Outputs: Results: Query results

Variable: T_R_B: temporary data table with Bins, T_R_B: temporary

data table without Bins, T_R: temporary data table to store

metadata about SQL results, Result1 temporary relation

1 Function run_SQL (SQLstr) begin

2 T_R_W← Execute(SQLstr)

 T_R_B← Retrieve_Bins(T_R_W)

 T_R←T_R_B Metadata

3

Result1←Execute_on_Cloud(RE_P, Domain(T_R.IDE_P))⋃

Execute_on_Cloud(RP_E, Domain(T_R.IDP_E))

4 Result1← Result1 Execute_on_Cloud(RP, Domain(T_R.IDP))

5 Result1← Result1 Execute_on_Cloud(RE, Domain(T_R.IDE))

6

Query results← retrieve tuple from Result1 match the original

where clause

7 Return Query results

30

لامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخدم ع Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

4.3 Data Partitioning Security

Using non-deterministic encryption for sensitive data achieves the prop-

erty of cipher-text indistinguishability (i.e., an adversary cannot distin-

guish between two cipher-texts) [2]. Hence, the same plaintext values

have two different cipher-text values. Furthermore, the non-linkability is

achieved in two positions, first in the untrusted database by using IDs

for each tuple stored in each divided relation that is different from the

original IDs in the private database. Second, in the query request pro-

cess, this is achieved by using query binning (QB). Figure ‎4.5 Show the

security context.

Adversarial view: We want to explain the adversarial view that assumes

that the adversary has full access to Untrusted DB and the transactions

log file. This means that when answering a query, the adversary can re-

trieve the all-Select SQL statements, and re-execute these statements and

retrieve the encrypted tuples and the complete information of the re-

trieved non-sensitive tuples. The adversarial view lets the adversary

knows this information. Moreover, the adversary has no access to Trust-

ed DB.

Figure ‎4.5 Map mind

31

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
غب فً أن ٌظهر هنا.تر

Based on the adversarial view, we need proof of data security. For that,

we should first explain the notion of partitioned data security used in

PANDA [2] that is established when a partitioned computation over sen-

sitive and non-sensitive data does not leak any sensitive information.

Note that an adversary may infer sensitive information using the adver-

sarial view that was created during query processing, knowledge of fre-

quency counts, and workload characteristics. In PANDA, they begin by

clarifying the concepts of associated values, associated tuples, and the

relationship between counts of sensitive values.

The definitions used are the same notation used in [2] with additional

notation added to prevent data leakage after hybrid partitioning:

1. t1, t2. . .,tm are tuples of a sensitive relation, say RE_P. Thus, the

relation RE_P stores the encrypted tuples E(t1), E(t2), . . . , E(tm).

2. s1, s2, . . . , sm‟ are values of an attribute, say A, that appears in

one of the sensitive tuples of RE_P. Note that m′ ≤m, since a

number of tuples may have an identical value. Additionally, si∈

Domain(A),i = 1, 2, . . . ,m′.

3. |s (si)|, refer to the number of sensitive tuples with si as the value

for attribute A. They further define |s (v)| = 0, ∀v ∈ Do-

main(A),v< s1, s2, . . . , sm′ .

4. t1, t2, . . . , tn are tuples of a non-sensitive relation, say RP_E.

5. ns1, ns2, . . . , nsn′ are values of the attribute A that appears in one

of the non-sensitive tuples of RP_E. In equivalence with the case

where the relation is sensitive, n′ ≤ n, and nsi ∈ Domain(A), i =

1, 2, . . . ,n.

Associated values. Let us say ei= E(ti)[A] is the encrypted demonstration

of an attribute value of A in a sensitive tuple of the relation RE_P, and nsj

is a value of the attribute A for some tuple of the relation RP_E. They said

that ei is associated with nsj (denoted by
) if the plaintext value of ei is

32

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

identical to the value nsj. Because we used hybrid data partitioning, this

association applies only to tuples divided horizontally.

Associated tuples. Let us say ti is a sensitive tuple of the relation

RE_P(i.e., RE_P stores encrypted representation of ti) and tj is a non-

sensitive tuple of the relation RP_E. We state that ti is associated with

tj(for an attribute, say A) if the value of the attribute A in ti is associated

with the value of the attribute A in tj(i.e., ti[A]
 tj[A]). Note that this is

the same as stating that the two values of attribute A are equal for both

tuples.

Relationship between counts of sensitive values. Let viand vj be two

different values in Domain(A). They denote the relationship between the

counts of sensitive tuples with these A values (i.e., |s (vi)|(or |s (vj)|)) by

vi
 vj.

Note that
 can be one of <, =, or > relationships. Such as, in our exam-

ple, the t2
 t4 corresponds to =, since both values have exactly one sen-

sitive tuple in relation divided horizontally RE_P (see Table ‎4.5).

Given the above definitions, we can formally state the security require-

ments needed for selecting SQL queries over sensitive (encrypted val-

ues) and non-sensitive (plaintext values) data so that it does not leak any

information. Before that, it is worthy of mentioning the security defini-

tion in our context. The inference attack in partitioned computing can be

considered under the known-plaintext attack (KPA) category. The ad-

versary could know some plaintext data hidden in a set of cipher-text.

The adversary‟s goal in KPA is to designate cipher-text data that are re-

lated to a given plaintext, i.e., define a mapping between cipher-text and

the corresponding plaintext data representing the same value. In the ad-

versarial view, non-sensitive values are visible to the adversary in

plaintext. However, the attacks are different since, unlike the case of

KPA, in our setup, the cipher-text data might not contain any data value

that is the same as some non-sensitive data visible to the adversary in

33

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

plaintext. That means assuming the using of non-deterministic encryp-

tion to encrypt the sensitive data. The adversary cannot launch the cho-

sen-plaintext attack (CPA) and the chosen-cipher text attack (CCA). It is

not subject to the cipher-text only attack (COA).

Definition: Partitioned Data Security. We use the same notation in [2]

for defining the partitioned data security with some additions:

1. R is a relation containing sensitive and non-sensitive tuples.

2. RE is the sensitive relations for vertical partitioning.

3. RP is the non-sensitive relations for vertical partitioning.

4. RE_P and RP_E are the sensitive and non-sensitive relations, re-

spectively.

5. AV is an adversarial view generated for a query q(w)(RE, RP,

RE_P, RP_E)[A], where the query, q, for a value w of the attribute

A of the Rs and Rns relations.

6. It is a joining operation between relations.

7. Ri and Rj are divided relations from R.

8. X is the auxiliary information about sensitive data.

9. PrAdv is the probability of the adversary knowing any infor-

mation.

A query execution mechanism ensures the partitioned data security if the

following three properties hold:

1. PrAdv[Ri Rj|X, AV] = 0, where Ri and Rj  Divided relations on R

and is a joining operation using the ID attribute, which represents

the primary key for the divided relation from R.

Equation ‎4.2

2. PrAdv[ei
 nsj|X] = PrAdv[ei

 nsj|X, AV], where ei = E(ti)[A] is the

encrypted representation for attribute value A for any tuple ti of the

relation Rs and nsj is a value for attribute A for any tuple of relation

Rns. [2]

 Equation ‎4.3

34

لامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخدم ع Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

3. PrAdv[vi
 vj|X] = PrAdv[vi

 vj|X, AV], for all vi, vi  Domain(A).

[2]

 Equation ‎4.4

The use of the hybrid partitioning technique raises a new security chal-

lenge, which presents a security gap that lets the adversary guess which

values in the plaintext are stored in divided relations that belong to en-

crypted values stored in encrypted relation for the same tuples (ti in

Original R). The security gap covered by Equation ‎4.2 represents the

„zero‟ probability of knowing the original relation by joining the divided

relations. This equation is achieved by using different Identifier keys in

the divided relations from the original Keys in R.

The second Equation ‎4.3 presents an initial probability of associating a

sensitive tuple with a non-sensitive tuple after executing a query on the

divided relations. Therefore, an adversary cannot know anything from

an adversarial view. Satisfying this condition also prevents the adversary

from succeeding in KPA. The last Equation ‎4.4 presents that the proba-

bility of an adversary learning information about the relative frequency

of sensitive values does not increase after the query execution is applied

to the divided relations.

In our example, the execution of any queries for any values in the

WHERE clause without using different ID keys does not satisfy the first

equation. i.e., the query for t2 retrieves the original tuple stored in R; the

adversary knows that Intisar works for a sensitive department. Further-

more, execution of any of three queries (for values 2, 3, or 4) without

using QB does not satisfy the second equation. For example, the query

for 3 in the domain “ID” retrieves the only tuple from non-sensitive rela-

tion. That makes the probability of estimating whether 3 is sensitive or

non-sensitive zero compared to an initial probability of the exact estima-

tion, which was 1/4. Hence, the execution of the three queries violates

partitioned data security. However, the query execution for “2” and “4”

35

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
غب فً أن ٌظهر هنا.تر

satisfies the last equation since the count of returned tuples from RE_P is

equal. Hence, the adversary cannot distinguish between the count of the

values (“2” and “4”) in the domain of “ID” of RE_P relation.

4.4 Encryption Technique

In the proposed solution, we create Microsoft .NET Framework com-

mon language runtime (CLR) functions to encrypt and decrypt data.

CLR function is created as a database object inside the SQL Server in-

stance as a programmed assembly files (DLLs files). CLR function built

using Microsoft visual studio 2015 with C# language, and the encryption

implemented using the AES encryption technique. Algorithm 4 shows

how the encryption is applied.

Algorithm 4 Encryption

 Inputs: Tuple_ID, Attributes_Value

Outputs: Cipher-Text

Variable: Encryption_Key

1 Function Encryption (Tuple_ID, Attributes_Value) begin

2 Encryption_Key←GenerqateKey(Tuple_ID)

3

Cipher-Text←AES_Encryption(Attributes_Value, Encryp-

tion_Key)

4 Return Cipher-Text

36

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Chapter 5

5. Implementation, Results, and Discussion

This chapter presents the implementation's practical approach by apply-

ing Hybrid Partitioning and QB to the trusted Databases and untrusted

Databases, respectively.

The effectiveness of the proposed approach is demonstrated by testing it

against inference attacks. Testing the proposed approach against infer-

ence. The results are discussed at the end of this chapter.

The rest of this chapter is organized as follows; Section ‎5.1 introduces

the tools used for implementing our approach. Section ‎5.2 describes the

steps of implementing the proposed approach. Section ‎5.3 presents Ex-

periment Results and Discussion. Finally, Section ‎5.4 concludes the ex-

periment results.

5.1 Experimental Tools

This section introduces the tools used to implement and test the pro-

posed solution; we used Microsoft SQL server 2014 installed on Win-

dows Server 2012 R2 to store the database and build the proposed solu-

tion. In addition, we used a stored procedure as a tool to log the perfor-

mance of query requests. Moreover, we used Microsoft Visual studio

2015 to write SQL assembly files for encryption and decryption of data.

The experiment environment specification used to evaluate the proposed

approach: Server includes Processor Intel(R) Xeon(R) CPU E5-2620 v2

@ 2.10GHz (2 CPUs), Installed Memory 32 GB RAM, Hard Disk 512

GB, Microsoft SQL Server 2014, and Windows Server 2012 R2 Stand-

ard 64-bit.

37

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

5.2 Implementation of Proposed Approach

This section explains the practical approach and the implementation of

the Hybrid partitioning technique used. Figure ‎5.1 shows a general over-

view of the proposed approach architecture where the two database

servers host the trusted and untrusted databases, respectively. The first

database server is connected to the internet and private network and

hosts the trusted database. The second database server is connected to

the internet and is hosting the untrusted database. The Client's devices

are connected to the private network.

Figure ‎5.1 General architecture of the proposed approach

The rest of this section describes how the proposed approach is imple-

mented.

38

لامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخدم ع Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

5.2.1 Data Partitioning

A stored procedure in SQL server built to implement the Hybrid data

partitioning. The stored procedure called after inserting, updating, and

deleting the tuples in the original relation (see Table ‎4.1).

A trigger executes the "Apply Data Partitioning" Stored procedure.

While calling the procedure, the type of operation, and the tuple ID (for

example, if the operation is an insertion, we send "I" as a char to proce-

dure and “U” as char if the operation is updating a tuple).

In the same stored procedure, "Apply Data Partitioning" we apply the

Query Binning described in-depth in subsection‎0 ‎4.2.

There are two relations stored in trusted databases used to store metadata

about sensitive attributes and sensitive values in original relations. For

example, Table ‎5.1 presents the attribute names and whether the attrib-

ute is sensitive or not, and Table ‎5.2 present the sensitive values for the

attribute “Position”. These relations are used in the "Apply Data Parti-

tioning" procedure, and the DB owner can add, remove and modify

those values.

AttributeName IsSensitive

Employee_Name FALSE

Position TRUE

DOB FALSE

Sex FALSE

MaritalStatus FALSE

Salary TRUE

Location FALSE

Address1 FALSE

Address2 FALSE

Password TRUE

Table ‎5.1 Sensitive attributes

AttributeName SensitiveValue

Position Marketing Director

Position Marketing

Position Senior Marketing

Table ‎5.2 Sensitive attribute values

39

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
غب فً أن ٌظهر هنا.تر

5.2.2 Encryption Data

Data encryption is implemented by writing two functions in C# language

using Microsoft Visual Studio 2015 and Advanced Encryption Standard

(AES). As shown in Appendix 1, the first function is used to encrypt da-

ta, while the second is used to decrypted data, as shown in Appendix 1.

5.3 Experiment Results and Discussion

The proposed approach is evaluated by conducted experiments with a

different number of tuples retrieved from the database, starting from

2000 tuples, and then the number is increased by 2000 until it reaches

20,000 tuples. In each experiment, the number of attributes that contain

sensitive values is gradually increased to 10. As well, these attributes

contain 50% of the sensitive values only. The following subsections de-

scribe the results of the trials in more detail.

5.3.1 Security Proof

In [2], the authors proved that QB is secure against inference attacks and

satisfies the definition of partitioned data security and proved that all the

sensitive bins are associated with all the non-sensitive by proving that

Equation ‎4.3 and Equation ‎4.4 has satisfied the data security properties

(non-linkability and indistinguishability). Furthermore, after using Hy-

brid partitioning, a new security gap is raised: the adversary can learn

and link the encrypted values (sensitive attributes) with values that are

not encrypted (non-sensitive attributes) that belong to the same tuple.

This gap does not satisfy Equation ‎4.2.

Using different keys in the untrusted database for each tuple satisfies

Equation ‎4.2. It is worth mentioning that the adversary cannot learn any-

thing from the encrypted data since the DB owner is the only party who

knows the keys and the Metadata. The Metadata relation is hidden from

the adversary.

40

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

All experiments show that Equation ‎4.1 to retrieve the original relation

from divided relations on untrusted database equals 0 tuples all the time.

That bridges the gap and satisfies Equation ‎4.2 and, therefore, satisfies

the data security property (non-linkability).

5.3.2 Performance Experiments

The first experiment that is being discussed is a query to retrieve 2000

tuples. Table ‎5.3 present the experimental results of the comparison be-

tween our approach and PANDA. Experiment results of query execution

performance to retrieve 2000 tuple (%50 of values in sensitive attributes

are sensitive).

of Sensitive

attributes

Technique
Enhancement

percentage
Our approach

(Seconds)

PANDA

(Seconds)

1 2.89

9.08

68%

2 4.00 56%

3 4.97 45%

4 5.54 39%

5 6.10 33%

6 7.09 22%

7 7.52 17%

8 8.33 8%

9 9.49 ~0%

10 9.88 ~0%

Table ‎5.3 Query execution experiment results for 2000 tuples, 50% of values are sensi-

tive in each attribute

In PANDA experiments, the execution time represent in one number

(9.08 Second) because, there is no difference in sensitivity status of tu-

ples when number of sensitive attributes are changed.

Equation ‎5.1 presents how the enhancement percentage of any proposed

algorithm regarding the exiting algorithm is evaluated.

 (

)

Equation ‎5.1

41

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Figure ‎5.2 Show the performance of query execution time for ten differ-

ent partitioned relations according to the number of sensitive attributes

in the original relation, 2000 tuples and 50% of tuples contain sensitive

values in our approach and PANDA. Unites are measured in seconds.

Figure ‎5.2 Query execution experiment results for 2000 tuples, 50% values are sensi-

tive in each attribute.

Overall, the PANDA technique takes more query execution time than

our approach in the given attributes range. Both PANDA and our ap-

proach spend most of their query execution time when all attributes con-

tain sensitive values. That happens when the number of attributes is nine

and ten too. Furthermore, the most significant difference in performance

between the two techniques is apparent when the number of sensitive

attributes is one.

In case number of sensitive attributes, one and two, query execution

time in our approach is about 3 to 4 seconds as opposed to the PANDA,

which is 9 seconds. Similarly, our approach query execution time was

higher when the number of attributes was more significant than 8

(around 9 seconds and 9.5 seconds, respectively).

42

لامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخدم ع Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

The second experiment is a query to retrieve 4000 tuples. Table ‎5.4 pre-

sent the experiment results of a comparison between our approach and

PANDA. The experiment results for query execution performance to

retrieve 4000 tuples (%50 of values in sensitive attributes are sensitive).

of Sensitive

attributes

Technique
Enhancement

percentage
Our approach

(Seconds)

PANDA

(Seconds)

1 3.69

16.51

78%

2 5.52 67%

3 7.29 56%

4 8.13 51%

5 9.87 40%

6 11.17 32%

7 12.53 24%

8 14.42 13%

9 16.13 2%

10 17.45 ~0%

Table ‎5.4 Query execution experiment results for 4000 tuples, 50% values are sensitive

in each attribute.

In PANDA experiments, the execution time represent in one number

(16.51 Second) because, there is no difference in sensitivity status of

tuples when number of sensitive attributes are changed.

Figure ‎5.3 shows the performance of query execution time for ten differ-

ent partitioned relations according to the number of sensitive attributes

in original relation, 4000 tuples and 50% of tuples contain sensitive val-

ues in PANDA and our approach, unites are measured in seconds.

43

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
غب فً أن ٌظهر هنا.تر

Figure ‎5.3 Query execution experiment results for 4000 tuples, 50% values are sensi-

tive in each attribute.

In general, the PANDA technique takes more query execution time than

our approach in the attributes to the range given. Both PANDA and our

approach spend most of their query execution time when all attributes

contain sensitive values. That happens when the number of attributes is

10. Furthermore, the most significant difference in performance between

the two techniques was when the sensitive attribute number is one.

In case the number of sensitive attributes is 1 to 7, query execution time

in our approach spend about 3.5 seconds to 12.5 seconds. In this, as op-

posed to the PANDA's 16 seconds. In this range, the performance im-

proves more than 25%. Similarly, our approach query execution time is

higher when the number of attributes is 10.

Finally, the rest of experiments are to retrieve 4000, 6000, 8000, 10000,

12000, 14000, 16000, 18000, 20,000 tuples. All experiment results are

present in Table ‎5.5. Figure ‎5.4 shows the performance of query execu-

tion time for eight experiments. For each experiment, a different number

of tuples and ten different partitioned relations according to the original

relation's number of sensitive attributes. The sensitive attributes have

50% of tuples with sensitive PANDA values, and our approach, where

unites are measured in seconds.

44

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Number of Attributes that contains 50% sensitive values

#
 o

f
tu

p
le

s

Technique 1 2 3 4 5 6 7 8 9 10

2
0
0
0
 Our ap-

proach
2.89 4.00 4.97 5.54 6.10 7.09 7.52 8.33 9.49 9.88

PANDA 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08 9.08

4
0
0
0
 Our ap-

proach
3.69 5.52 7.29 8.13 9.87 11.17 12.53 14.42 16.13 17.45

PANDA 16.51 16.51 16.51 16.51 16.51 16.51 16.51 16.51 16.51 16.51

6
0
0
0
 Our ap-

proach
4.87 7.01 9.77 11.43 13.59 15.88 18.02 20.66 23.20 25.18

PANDA 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67 24.67

8
0
0
0
 Our ap-

proach
5.51 8.53 11.84 14.63 17.93 20.40 23.24 26.46 29.83 33.28

PANDA 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19 32.19

1
0
0
0

0
 Our ap-

proach
6.21 10.03 13.89 17.84 21.61 24.93 28.59 32.88 36.58 40.64

PANDA 40.72 40.72 40.72 40.72 40.72 40.72 40.72 40.72 40.72 40.72

1
2
0
0

0
 Our ap-

proach
7.57 11.82 16.49 20.70 25.09 29.80 33.83 38.62 43.90 48.02

PANDA 47.27 47.27 47.27 47.27 47.27 47.27 47.27 47.27 47.27 47.27

1
4
0
0

0
 Our ap-

proach
8.52 13.67 19.02 24.49 29.45 34.58 39.32 45.10 50.40 55.90

PANDA 55.51 55.51 55.51 55.51 55.51 55.51 55.51 55.51 55.51 55.51

1
6
0
0

0
 Our ap-

proach
8.94 15.16 21.88 27.15 34.76 39.14 44.68 51.09 57.23 63.70

PANDA 62.90 62.90 62.90 62.90 62.90 62.90 62.90 62.90 62.90 62.90

1
8
0
0

0
 Our ap-

proach
9.99 16.83 24.15 30.83 37.35 43.55 50.68 57.87 63.89 72.47

PANDA 70.29 70.29 70.29 70.29 70.29 70.29 70.29 70.29 70.29 70.29

2
0
0
0

0
 Our ap-

proach
10.88 19.11 26.22 33.71 41.38 48.63 54.86 64.60 71.86 79.55

PANDA 77.86 77.86 77.86 77.86 77.86 77.86 77.86 77.86 77.86 77.86

Table ‎5.5 Experiments Results of query execution times (in seconds) for PANDA and

our approach

Overall, the PANDA technique takes more query execution time than

our approach in each experiment's attributes range. Both PANDA and

our approach spend most of their query execution times in each experi-

ment when sensitive attributes are nine. Furthermore, the most signifi-

cant difference in performance between the two techniques is when the

number of sensitive attributes is one. On the other hand, our approach

increases slightly on the number of attributes 10.

45

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

a) 6,000 tuples

b) 8,000 tuples

c) 10,000 tuples

d) 12,000 tuples

e) 14,000 tuples

f) 16,000 tuples

g) 18,000 tuples

h) 20,000 tuples

Figure ‎5.4 Query execution experiments result from 6,000to 20,000 tuples, 50% values

are sensitive in each attribute.

46

لامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق خطأ! استخدم ع Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

In General, according to Table ‎5.6, there is an enhancement in the per-

formance of query execution time. It is worthy of mentioning that most

of the relations do not fully contain sensitive values.

of Sensitive

Attributes

Enhancement

Percentage

1 82%

2 72%

3 62%

4 54%

5 44%

6 35%

7 27%

8 16%

9 6%

10 ~0%

Table ‎5.6 Average of performance enhancement of our approach

5.4 Summary and Generalization of Results

After implementing our approach technique, all experiments results

showed that our approach's query execution time increases directly with

increasing number of tuples and attributes that contain sensitive values.

All experiments had the same trend about Hybrid performance. The in-

crease in the number of tuples leads to an increase in the query execu-

tion time. Furthermore, the increase in the number of attributes contain-

ing sensitive data increases the query execution time. That increase is

justified because either the number of sensitive values that need to be

decrypted from cipher-text to plaintext increases in line with the increase

in the tuples or sensitive attributes. That becomes overhead on query re-

quests. As well, the proof in security in section ‎5.3.1 proves that our ap-

proach is reliable, effective, and can prevent inference attacks. That im-

proves the use of the hybrid partitioning data, whether to secure sensi-

tive data and improve performance.

47

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
غب فً أن ٌظهر هنا.تر

In general, if the number of sensitive attributes is about half of the total

number of attributes in a relation, our approach outperforms PANDA by

more than 35% in terms of Enhancement percentages. This Enhance-

ment percentage tends to increase as the number of tuples in the original

relation increases.

48

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Chapter 6

6. Conclusion and Future Work

In this chapter, section ‎6.1 presents the conclusion, and the future work

is discussed in section ‎6.2.

6.1 Conclusion

In this thesis, a Hybrid approach for data partitioning aimed to secure

sensitive data when outsourcing data is proposed. The proposed ap-

proach is essential to secure the sensitive data that is outsourced to a un-

trusted database. The proposed approach has the main advantage of im-

proving query performance and securing sensitive data against inference

attacks. Furthermore, a new partitioning approach called Hybrid data

partitioning (Vertical and Horizontal) is developed. In addition, AES

encryption is used to encrypt sensitive data.

The proposed approach has been evaluated using a set of experiments of

partitioning data in an untrusted database. Also, comparisons of the re-

sults with the PANDA technique are presented. The results of the pro-

posed approach were satisfactory in which the properties of defining the

data security satisfy the non-linkability and indistinguishable. Further-

more, the proposed approach results are satisfactory, where the perfor-

mance of query execution is better than the results of PANDA perfor-

mance.

6.2 Future Work

This thesis's proposed approach is a Hybrid data partitioning approach to

secure data and improve query request performance. A potential future

enhancement is to have “join” and “union” operations. Another potential

future work is using a dynamic query binning (QB) or finding a novel

49

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

technique replacement to the QB, which may improve the results signif-

icantly by finding a technique that keeps the sensitive data secure.

50

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Bibliography

[1] S. Mehrotra, S. Sharma, J. D. Ullman and A. Mishra, "Partitioned

Data Security on Outsourced Sensitive and Non-Sensitive Data,"

2019 IEEE 35th International Conference on Data Engineering

(ICDE), pp. 650-661, 2019.

[2] S. MEHROTRA, S. SHARMA, J. D. ULLMAN, D. GHOSH and

P. GUPTA, "PANDA: Partitioned Data Security on Outsourced

Sensitive and Non-sensitive Data," ACM Transactions on

Management Information Systems, 05 2020.

[3] S. Mehrotra, Y. O. Kerim and S. Shantanu, "Exploiting Data

Sensitivity on Partitioned Data," From Database to Cyber Security,

pp. 274-299, 2018.

[4] P. Samarati and S. D. C. d. Vimercati, "Data protection in

outsourcing scenarios: Issues and directions," in Proceedings of the

5th International Symposium on Information, Computer and

Communications Security, ASIACCS 2010, 2010.

[5] "Horizontal, vertical, and functional data partitioning," Microsoft,

11 04 2018. [Online]. Available: https://docs.microsoft.com/en-

us/azure/architecture/best-practices/data-partitioning. [Accessed 20

02 2020].

[6] J. P. Meeta and P. B. Mansi, "Overview of Horizontal Partitioning

and Vertical Partitioning," in National Conference on "Computer

Science & Security" (COCSS-2013), SVIT, Vasad, 2013.

[7] D. Vashi, H. B. Bhadka, K. Patel and S. Garg, "Implementation of

Attribute Based Symmetric Encryption through Vertically

Partitioned Data in PPDM," International Journal of Engineering

51

ٌسٌة" لتطبٌق خطأ! استخدم علامة التبوٌب "الصفحة الرئ Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

and Advanced Technology (IJEAT), vol. 9, no. 1, pp. 868-874,

2019.

[8] O. M. Ben Omran and B. Panda, "A Data Partition Based Model to

Enforce Security in Cloud Database," Journal of Internet

Technology and Secured Transaction, vol. 3, no. 3, pp. 311-319, 09

2014.

[9] O. Omran and B. Panda, "Data Partitioning Methods to Process

Queries on Encrypted Databases on the Cloud," University of

Arkansas, Fayetteville, 2016.

[10] W. L. e. al., "Towards Secure and Efficient Equality Conjunction

Search over Outsourced Databases," in IEEE Transactions on

Cloud Computing, Early Access, 2020.

[11] M. Naveed, S. Kamara and C. V. Wright, "Inference attacks on

property-preserving encrypted databases," in Proceedings of the

22nd ACM SIGSAC Conference on Computer and Communications

Security, Machinery, New York, NY, USA, 2015.

[12] S. M. Shafi Goldwasser, "Probabilistic encryption," Journal of

Computer and System Sciences, vol. 28, no. 2, pp. 270-299, 1984.

[13] M. A. Abdelraheem, T. Andersson, C. Gehrmann and C. Glackin,

"Practical Attacks on Relational Databases Protected via Searchable

Encryption," International Conference on Information Security, pp.

171-191, 9 September 2018.

[14] S. K. Badran, N. Arman and M. Farajallah, "Towards a Hybrid

Data Partitioning Technique for Secure Data Outsourcing," in The

International Arab Conference on Information Technology ACIT,

Cairo, 2020.

52

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

[15] T. Peng, C. Xiang, S. Sen, C. Rui and S. Huaxi, "Differentially

Private Vertically Partitioned Data Publishing," IEEE Transactions

on Dependable and Secure Computing, 2019.

[16] M. A. Panhwar, S. A. Khuhro, G. Panhwar and K. A. Memon,

"SACA: A Study of Symmetric and Asymmetric Cryptographic

Algorithms," INTERNATIONAL JOURNAL OF COMPUTER

SCIENCE AND NETWORK SECURITY, vol. 19, no. 1, pp. 48-55,

2019.

[17] B. Maram, J. M. Gnanasekar, G. Manogaran and M. Balaanand,

"Intelligent security algorithm for UNICODE data privacy and

security in IOT," Service Oriented Computing and Applications,

2018.

[18] S. V. Khedkar and A. Gawande, "Data partitioning technique to

improve cloud data storage security," International Journal of

Computer Science and Information Technologies, vol. 5, no. 3, pp.

3347-3350, 2014.

[19] J. M. Gnanasekar, "UNICODE Text Security Using Dynamic and

Key-Dependent 16X16 S-box," Service Oriented Computing and

Applications, 2016.

[20] P. Dhulavvagol, V. Bhajantri and S. Totad, "Performance Analysis

of Distributed Processing System using Shard Selection Techniques

on Elasticsearch," Procedia Computer Science, vol. 167, pp. 1626-

1635, 2020.

[21] V. Ciriani, S. Vimercati, S. Foresti, S. Jajodia, S. Paraboschi and P.

Samarati, "Fragmentation Design for Efficient Query Execution

over Sensitive Distributed Databases," 2009 29th IEEE

International Conference on Distributed Computing Systems, pp.

53

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

32-39, 2009.

54

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Appendixes

Appendix 1

Encryption and Decryption Functions

publicstaticstring EncryptAES(string str,string tuple_id)

{

 string EncrptKey = GetKey(tuple_id);

 byte[] byKey = { };

 byte[] IV = { 18, 52, 86, 120, 144, 171, 205, 239, 18, 52, 86, 120, 144, 171, 205, 239 };

 AesCryptoServiceProvider aes = new AesCryptoServiceProvider();

 byKey = System.Text.Encoding.UTF8.GetBytes(EncrptKey.Substring(0, aes.Key.Length));

 byte[] inputByteArray = Encoding.UTF8.GetBytes(str);

 MemoryStream ms = new MemoryStream();

 CryptoStream cs = new CryptoStream(ms, aes.CreateEncryptor(byKey, IV), CryptoStreamMode.Write);

 cs.Write(inputByteArray, 0, inputByteArray.Length);

 cs.FlushFinalBlock();

 returnConvert.ToBase64String(ms.ToArray());

}

publicstaticstring DecryptAES(string str,string tuple_id)

 {

 str = str.Replace(" ", "+");

string DecryptKey = GetKey(tuple_id)

byte[] byKey = { };

byte[] IV = { 18, 52, 86, 120, 144, 171, 205, 239, 18, 52, 86, 120, 144, 171, 205, 239 };

byte[] inputByteArray = newbyte[str.Length];

AesCryptoServiceProvider aes = newAesCryptoServiceProvider();

 byKey = System.Text.Encoding.UTF8.GetBytes(DecryptKey.Substring(0, aes.Key.Length));

 inputByteArray = Convert.FromBase64String(str.Replace(" ", "+"));

MemoryStream ms = newMemoryStream();

CryptoStream cs = newCryptoStream(ms, aes.CreateDecryptor(byKey, IV), CryptoStreamMode.Write);

 cs.Write(inputByteArray, 0, inputByteArray.Length);

 cs.FlushFinalBlock();

 System.Text.Encoding encoding = System.Text.Encoding.UTF8;

return encoding.GetString(ms.ToArray());

 }

55

ٌسٌة" لتطبٌق خطأ! استخدم علامة التبوٌب "الصفحة الرئ Heading 1 على النص الذي
 ترغب فً أن ٌظهر هنا.

Appendix 2

Query Binning Algorithm Source ([2])

56

Heading 1خطأ! استخدم علامة التبوٌب "الصفحة الرئٌسٌة" لتطبٌق على النص الذي
 ترغب فً أن ٌظهر هنا.

Appendix 3

Bin-Retrieval Algorithm Source ([2])

