
Palestine Polytechnic University
Deanship of Graduate Studies and Scientific Research

Master of Informatics

Reliability Prediction from Early Software Development Life Cycle
Phases

Submitted by:
Mohammad AL-Jundi

Supervisor:
Dr. Mahmoud Saheb

Thesis submitted in partial fulfillment of requirements of the degree
“Master of Science in Informatics”

DECLARATION

I declare that the Master Thesis entitled “Reliability
Prediction from Early Software Development Life Cycle
Phases” is my original work, and Herby certify that
unless stated, all work contained within this thesis is my
own independent research and has not been submitted
for the award of any other degree at any institution,
except where due acknowledgment is made in the text.

Mohammad AL-Jundi

Date:_________________ Signature:________________

STATEMENT OF

PERMISSION TO USE
In presenting this thesis in partial fulfillment of the requirements for the master's

degree in Informatics at Palestine Polytechnic University, I agree that the library

shall make it available to borrowers under the rules of the library.

Brief quotations from this thesis are allowable without special permission, provided

that accurate acknowledgment of the source is made.

Permission for extensive quotation from, reproduction or publication of this thesis

may be granted by my main supervisor, or in his absence, by the Dean of Graduate

Studies and Scientific Research when, in the opinion of either, the proposed use of

the material is for scholarly purposes.

Any copying or use of the material in this thesis for financial gain shall not be

allowed without my written permission.

Mohammad AL-Jundi

Date:_________________ Signature:________________

DEDICATIONS

This thesis is dedicated to my greatest parents, my great brothers and sisters,my

dearest wife, and my beloved kids: Mahmoud, Joury, and Taim.

ACKNOWLEDGMENTS

Many people have directly or indirectly contributed to the successful

completion ofthis thesis. They will all be remembered in my heart. First, I would like

to takethis opportunity to highly appreciate my thesis supervisor Dr. Mahmoud Al-

Saheb for hisexemplary guidance and encouragement throughout my thesis research

and writing.

I appreciate my family's encouragement, especially my greatest parents,

wonderful wife, great brothers, and sisters. Their support and encouragement were

the reason for all the success which Ihave made.

I express my deep sense of reverence and gratitude to all of my respected

teachers and colleagues for their valuable knowledge they imparted to me. And

finally, my special thanksshould be brought to Dr.Ali Zein for his constant

inspiration and motivation.

Also, I would like to thank the project managers of Newsoft company for their

assistance in analyzing some factors which are used in this thesis.

I

صالملخّ

في المرحلتین الأولیین من دورة حیاة لاحتساب الأخطاءفي ھذه الأطروحة، تم اقتراح نموذج تنبؤ

تستخدم ھذه الأطروحة . في الوقت المناسبالمناسبللسماح لمدیري المشاریع باتخاذ القرار ،اتتطویر البرمجی

تم . في المراحل الأولى من دورة حیاة تطویر البرامجالبرمجیاتبموثوقیة اًالمقاییس الأكثر ارتباط

، والتي تم اب الموثوقیةأخرى لاحتسثم تمت مقارنة النتائج بنماذج ،الضبابیةباستخدام نظاماحتسابالأخطاء

تم إجراء المقارنة من خلال . لفحص النموذجمجموعة بیاناتوتعتمد في عملھا على٢٠٠٥نشرھا بعد عام

لكل نموذج)BMMRE(ي توازن حجم الخطأ النسبومتوسط)MMRE(حجم الخطأ النسبيحساب متوسط

أن MMRE & BMMREأظھرت نتائج. الأخرىلمقارنة العیوب المتوقعة من النموذج المقترح والنماذج

من خلال النتائج . الأخرىالنموذج المقترح لھ القیم الدنیا ، مما یعني أن دقتھ ھي الأعلى مقارنة بالنماذج

مجموعة البیانات فیما یتعلقب. الأكثر موثوقیة وفعالیة مقارنة بالنماذج الأخرىھذا النموذج أنھ والمقارنات أظھر

في المعدات ةنالمضمَّتم استخدام مجموعة بیانات تُعنى بالبرمجیاتقق من صحة النموذج، المستخدمة للتح

یتسنى لباستخداممجموعة بیانات لنوع آخر من الأنظمة الإلكترونیة ، لذلك یجب التحقق من صحة النموذج

.تعمیم النموذج على الأنواع الأخرى

II

Abstract

In this thesis, a prediction model has been proposed to calculate the defect

density number within the first two stages of the software development life cycle to

let the projects managers take the right decision at the right time. This thesis uses the

most related metrics to software reliability within the early stages of the software

development life cycle. The residual defects were calculated using the fuzzification

and defuzzification system. Then the results have been compared with other

quantitative reliability models, which are published after 2005 and havea dataset. The

comparison has been madeby calculating the Mean Magnitude of Relative Error and

Balance Mean Magnitude of Relative Error factors for each model to compare the

predicted defectsfrom the proposed model and the other models. The results of

MMRE & BMMRE showed that the proposed model has the minimum values, which

means its accuracy is the highest compared with the other models that can be used

within the early stages of the software development life cycle. This model showed

that it is reliable and effective.Depending on the used dataset to validate the model,

the results are considered to the software embedded into the electronic equipment, so

the model should be validated by another type of software dataset to be used more

generally.

III

Keywords

Reliability Prediction, Software Reliability, Software Development Life Cycle, Fault
Density Indicators, Reliability Indicators.

IV

Table of Contents

Chapter 1: Introduction ...1

1.1 Problem statement.. 2

1.2 Research Objectives... 3

1.3 Research Questions.. 3

1.4 Motivations .. 4

1.5 Thesis Outline.. 4

Chapter 2: Background..5

2.1 SDLC ... 5

2.2 Software Reliability ... 8

Chapter 3: Literature Review ...11

3.1 Metrics Affect The Software Reliability.. 12

3.2 Fuzzification Models ... 13

3.3 Network Algorithm Models... 17

Chapter 4: Methodology ..23

4.1 Model Design... 23

4.2 Methodology ExplAnation .. 32

Chapter 5: Case Study and Analysis...34

5.1 Introduction.. 34

5.2 Data Set.. 34

5.3 Model Testing.. 35

5.4 Model Illustration: Case Study .. 36

Chapter 6: Results and Discussion..38

6.1 Introduction.. 38

6.2 Prediction Results .. 38

6.3 Model Validation ... 40

6.4 Results Conclusion .. 42

Chapter 7: Conclusion and Future Work ..43

Bibliography ..45

V

List of Figures

Figure 2.1: SDLC Phases..5

Figure 2.2: Failure Rates...9

Figure 2.3: Quality Metrics Impacting Reliability..10

Figure 3.1: Phase-wise model ...14

Figure 3.2: Yadav model ..16

Figure 3.3: Pandey and Goyal Model ...16

Figure 3.4: A BBN model for predicting the reliability of a class..............................18

Figure 3.5: Predicted and actual values ..22

Figure 4.1: The proposedmodel architecture. ...25

Figure 4.2: Quality of Documentation Inspected..29

Figure 4.3: Regularity, Inspection and Walk-through ..29

Figure 4.4: Requirement Fault Density...29

Figure 4.5: Requirement Stability...30

Figure 4.6: Requirement Phase Defect Density Indicator ..30

Figure 4.7: Complexity of functionality ...30

Figure 4.8: Scale of New functionality...30

Figure 4.9: Design Review Effectiveness...31

Figure 4.10: Design Phase Defect Density Indicator..31

Figure 6.1: Project size vs number of defects ...41

VI

List of Tables

Table 3-1: Models classification based on the methodology......................................12

Table 3-2: Metrics affect software reliability ...12

Table 3-3: Models classification based on the methodology......................................14

Table 3-4: Description of the object-oriented metrics ..18

Table 3-5: Metrics used in Fenton Model...20

Table 4-1: Requirement metrics used in the proposed model23

Table 4-2: Design metrics used in the proposed model..24

Table 4-3:Requirement analysis phase software metrics..27

Table 4-4: Design analysis phase software metrics ..28

Table 4-5: Requirement phase fuzzy rules ...32

Table 4-6: Design phase fuzzy rules...32

Table 5-1: The considered metrics of software projects ...35

Table 5-2: Dataset projects splitting for model building and testing..........................35

Table 6-1: Actual and predicted defects number ..39

Table 6-2: Actual and predicted defects with differences ..39

Table 6-3: Applying MMRE & BMMRE on the evaluation dataset40

Table 6-4: Model evaluation measures ...41

VII

List of Abbreviations

No Abbreviation Definition

1 CC Complexity of functionality

2 DPDDI Design Phase Defect Density Indicator

3 DRE Design Review Effectiveness

4 H High

5 L Low

6 M Medium

7 QDI Quality of Documentation Inspected

8 RFD Requirement Fault Density

9 RIW Regularity, Inspection, and Walk-through

10 RPDDI Requirement Phase Defect Density Indicator

11 RS Requirement Stability

12 SDD Software Design Document

13 SDLC Software Development Life Cycle

14 SNF Scale of New functionality

15 SRS Software Requirement Specifications

16 VH Very High

17 VL Very Low

Chapter 1:Introduction

Chapter 1: Introduction

At present, most people depend on software directly orindirectly.Governments

and human's dependence on software have been increased during the last thirty years

[1]. Software reliability and qualitymodeling become essential because the software

is used in various areas of applications. Many historical events show theeffect of

software failures and defectsthat existed in [1].Hence, software developers have a

great challenge, which is to build reliable software thatcontains fewer defects. So, the

reliabilityprediction of software is of great importance. An accurate estimation of the

reliability can be obtained using reliability models only in the later phases of

softwarebuilding.The existing reliability models can be applicable only in the later

stages of development and helping developers either by the end of coding or in the

testing phase. This is too late for the developers to take corrective measure to

improve software reliability. However, with the objectives of cost-effectiveness and

management of time and effort of resources, the reliability prediction of thesoftware

in the early phases of the Software Development Life Cycle (SDLC) is one of the

significant areas of concern.

Software Reliability is the probability that a system can deliver its purposed

functionality and quality for a specified period, and under specified conditions, and

at the start of this period [2]. The main method to measure the software quality is to

detect the defects in the software, and usually, the metric used for this issoftware

defect density. The software defect density is the total number of defects divided by

the size of the software [3].

Software defect density prediction has an important role inproducing reliable

software. In order to achieve the aim of defect estimate,it is required to predict the

defect density indicator in each phase of the SDLC from the early phases, mainly at

the end of each phase. Many models have been proposedfor the estimation and

prediction of software reliability in thepast three decades. It is observed that

traditional models, which predict the defect density at the end of the testing phase of

SDLC phases,for software reliability prediction are not universally successful in

predictingthe reliability of the software and not generally tractable tousers [5].

Chapter 1:Introduction 2

So, the failure of information during the early phasesof the SDLC is available

in the form of expert knowledge, whichmay be reflected in terms of software metrics

[6].

This chapter outlines the problem statement (section 1.1) and research

objectives (section 1.2) of the research, and its purposes (section 1.3). Section

1.4describes the significance and scope of this research. Finally, section 1.5 includes

an outline of the remaining chapters of the thesis.

1.1 PROBLEM STATEMENT

Many approaches have been developed to predict the fault density of the

application, but most of them calculate the fault density depending on metrics related

to coding and testing phases of SDLC [4][21][22], which means they can get an

indicator about software reliability at the end of coding or testing phase of SDLC,

which is too late because it will be costly in time and budget to reanalyze or redesign

some features of the software.

Other approaches have been developed depending on metrics in the first two

phases of SDLC [16][18], but these approaches are not widely used and cannot

predict accurate reliability of software because of some factors; such as:

1- Depending on metrics in the first phase of SDLC only, which causes a lack

of information about the software, so they get an inaccurate result about

software reliability.

2- Depending on metrics that are not highly related to software reliability, or

they have noeffects on reliability directly.

3- Limitation of software scope, some of the approaches are limited to

onlyobject-orientedapplications or limited procedural applications.

Furthermore, we have no approach that can be used to predict the software

reliability within the early stages of SDLC, to give the project managers theability to

go ahead in software development or to solve some issues in analysis or design

phases before starting the implementation phase to save time and budget, because of

Chapter 1:Introduction 3

getting back and solving the issues has less effort and budget than completing the

software development and discovering them lately.

1.2 RESEARCH OBJECTIVES

This research aims to develop a solution for software reliability prediction

within the early stages of the software development life cycle, which should use the

most highly related metrics to the reliability to get the most accurate results and can

be used for deciding to go ahead or not through the SDLC.This research intends to

address the following objectives:

 Developing a model that can show the project manager an indicator about

the faults which may appear in the software.

 The validity of using the proposed model.

 Compare the proposed model with other models to ensure that the results

are more accurate than the other models that have been developed to

predict reliability in the early stages of SDLC.

1.3 RESEARCH QUESTIONS

The research questions section represents some sub-objectives of the research.

We achieve ourobjectives of the research by implementing every sub-

objective.Experiments wereconducted to seek answers to the following research

questions:

Research Ques on 1: How could we choose some metrics of early stages of

SDLC to enhance the calculation of software defect density?

Research Ques on 2: What is the effect of chosen metrics on so ware defect

density accuracy?

Research Ques on 3: How can the use of the proposed model improve

software development?

Chapter 1:Introduction 4

1.4 MOTIVATIONS

Nowadays, as software development has many methodologies, which improve

the creation of more reliable software, despite that, human needs to get reliable

software has increased; because software playsa major role in human life, and it is

used in most critical aspects of his life. The failure of software development

somehow exists after applying the new methodologies, and some companies or

developers waste time and budget in building software, but the faults will be

discovered after implementation and testing, then sometimes it is hard or impossible

to reanalyze or redesign the requirements, which means the software development

has failed.

Thus, there is an essential need to find an effective, feasible, and accurate

solution for finding defects in the early stages of SDLC, to allow the developers to

avoid and solve these defects before starting the implementation and testing the

software. Detecting and solving the defects in software during the early stages of

SDLC is an active research topic in academic corporations andindustries. In this

work, the authors use the four most metrics highly related to reliability in the

requirement phase and three metrics in the design phase to predict the defect density

more accurately.

1.5 THESIS OUTLINE

The rest of this thesis is organized as follows. Chapter 2: introduces software

reliability background.Chapter 3: illustrates the literature review.Chapter 4: explains

the proposed model development methodology.Chapter 5:illustrates the case study,

which is used to validate the model,Chapter 6:shows the model results and its

validation.Chapter 7:concludes the thesis along with the future work,followed by the

references.

Chapter 2:Background

Chapter 2: Background

This chapter provides a background forthe first two main SDLC phasesand

some of their metricsthatare related to software reliability and their importance. Next,

this chapter also gives an overviewof software reliability in SDLC, especially in the

earlystages.

2.1 SDLC

SDLC is a term that refers to the Software Development Life Cycle, which

means: "The period that starts when a software product is conceived and ends when

the product is no longer available for use. The software life cycle typically includes a

requirement phase, design phase, implementation phase, test phase, installation and

check out phase, operation, and maintenance phase, and sometimes retirement

phase." [39] As shown in Figure 2.1.Or in other words: it is the progress that is used

to produce software with the highest quality and lowest effort and budget in the

planned time. SDLC usually includes a detailed plan for how to build the software,

maintain, and install it with the replacement of the old software system.It is used to

facilitate the production of large software, and it contains many phases starting from

analyzing the requirements and ending with the testing and delivering the software. It

contains all of the information related to software from conception to

implementation.

Figure 2.1: SDLC Phases

Chapter 2:Background 6

There are many reasons that force developers to use SDLC within software

development, which are [24]:

 Understanding all of the processes of software.

 Having a clear and structured approach to build the software.

 Enabling the developers to plan the resources that will be used.

 Enabling the developers to track the progress of the system.

2.1.1 Requirement Phase

It is considered as the first main step for software developers; its output is a

document called SRS, which refers to Software Requirement Specification; it

contains the description of what the system will do, without containing how it will be

done.

It is divided into two main parts[24]:

 Functional requirements: Describes what the software has to do; they are

called product features.

 Non-Functional requirements: They are often related to the quality of

software and how the software will work, such as reliability, availability,

usability, flexibility.

The objective of this phase is to provide solutions for stated problems in the form of

specifications to meet users' and clients' needs.

There are many metrics related to this phase which the developer can depend on to

verify the output of the phase[25]:

 Relevant experience of specification and documentation staff: It is

related to the experience and skills of the team members for executing this

project during the requirements and specification phase.

 Quality of documentation inspected: It is related to the quality of the

requirements collected from clients.

 The regularity of specification and documentation reviewers: It is

related to whether all the requirements documentation have been reviewed.

Chapter 2:Background 7

 Standard procedures followed: It is related to the effectiveness of the

review procedure.

 Specification defects discovered in the review: It is related to whether the

defects density of specification reviews is on the high side.

 Requirements stability: It is related to how stable the requirements in the

projectare.

2.1.2 Design Phase

It is considered as the second main step for software developers; its output is a

document called SDD, which refers to a Software DesignDocument, which contains

the description of how the system requirements will be implemented.

The design describes the final system and process by which it is developed.

During this phase, the software is designed to meet the requirements collected and

identified in the previous phase. It is the most creative and challenging phase; it

organizes the software module in a pattern that is easy to be developed and allows

developers to deal with the size and complexity of programs.

It is divided into two main parts[24]:

 Conceptual design: Describes the data source and destination in the

system and how the system will look to users.

 Technical design: It mainly translates the customer's problem and

requirements into solutions, and it describes the hardware configuration,

software needs, communication interfaces.

Some of the metrics which can be extracted from the design phase and the

developers can depend on to improve the software design documents, and which are

important to be used in the measurement of software defect density[25]:

 Relevant development staff experience: It is related to the experience and

skill set of the team members for executing this project during the design

phase.

 Defined processes followed: It is related to the review effectiveness in the

project for this phase.

Chapter 2:Background 8

 Development staff motivation: It is related to the motivation levels of

team members who execute this project during the design phase.

2.2 SOFTWARE RELIABILITY

The production of reliable software is a crucial operation, especially those

projects which have a vital role in the business and publicsectors. Human is affected

in certain waysby the presence of software. All of the life domains, suchas medical,

education, transportation, andentertainment, directly or indirectly depend onsoftware.

Reliability is an attribute of quality thatmust be considered in most safety-critical

systems.

The reliability is defined by IEEE as:"The ability of a system or a component

to perform its required functions under stated conditions for a specified period of

time."For project managers and software developers, reliability means that software

performs its functions correctly without failures, so they consider the fixed bugs in

the testing phase. During that, it is necessary to assure the reliability and develop

robust, high-quality software with free defects reliability through all of the stages of

the software lifecycle. That means the reliability of the delivered product is related to

the quality of all of the processes and software development, the requirements

documentation, the code, test plans, and testing[26].

It is important to show that software failure rate differs from hardware failure

rate as shown inFigure 2.2; when the component is tested for the first time, the initial

fault count is high, but then it decreases as the faulty components are identified and

removed or edited to be stable. Thecomponent will be in the useful life phase when

few if any faults are found. As the component physically wears out, the fault rate

starts to increase.

To get the highest reliability, the developers have to focus on comprehensive

requirements and a comprehensive testing plan and ensuring all requirements are

tested. The focusing also must be on the maintainability of the software since there

will be a "useful life" phase where sustaining engineering will be needed. There are

some steps that must be done to avoid software error, which are[26]:

Chapter 2:Background 9

1. Ensure the requirements are clearly and accurately defined and meet the

final product functionality.

2. Ensure the implementation way can easily support sustaining engineering

without arising additional errors.

3. An overall testing must be done to verify that all functionalities stated in the

requirements are included.

Figure 2.2: Failure Rates

2.2.1 Reliability importance

Computerization is playing a very important role in our life. Most of the tools

which human use daily that hadanalog and mechanical parts were replaced with

digital devices, CPU's and software such as Dishwashers, TV's, Microwave Ovens,

AC's, and others. So,the human cannot dispense with these tools, which depends on

all of their life aspects.

In the last two decades, digitization is used widely, and it comes instead of

analog methodology. So, the use of software increased related to the use of

digitization, which depends on software directly; therefore, the software must be

more reliable and can perform its job as it is required without failures. So, software

developers consider this issue as the main part ofthe software development life cycle

Increasing development costs have putpressure to quantify software quality and

to measure and control the level of quality delivered. There are many software

quality factors, but Software Reliability is the most important and most measurable

aspect of software quality[27].

Chapter 2:Background 10

2.2.2 Software Reliability as a Quality Metric

There are many various models that were created to find the software quality,

but in most models, reliability is oneof the criteria attributes that is incorporated. ISO

defines some qualitycharacteristics; one of them is reliability. IEEE states,"A

software reliabilitymanagement program requires the establishment of a balanced set

of user quality objectives, andidentification of intermediate quality objectives that

will assist in achieving the user qualityobjectives." Since reliability is an attribute of

quality, it can be concluded that softwarereliability depends on high-quality

software[30].

To build high-reliability software;developers should depend on the applying

ofthe quality attributes at each phaseof the development life cycle with ensuring

there are no errors, especially in the early lifecycle phases, and they should use

themetrics related to reliability at each development phase to measure applicable

qualityattributes, [26], which are shown in Figure 2.3.

Figure 2.3: Quality Metrics Impacting Reliability

Chapter 3:Literature Review

Chapter 3: Literature Review

Researchers have proposed many different models to address the problem of

software reliability and to predict the defects count that might be arisen in the

software.

Most of those different models are proposed to predict the software reliability at the

implementation and testing stages of the software development life cycle, which is

considered to be late and cost prediction for project managers to regather the

requirements or redesign them because the source of defects might be from

requirements or design.

The authors have reviewed many papers related to the software reliability that

had been proposed to get defect density of software. The authors classifiedthe

reviewed papers based on papers proposed work or the goal of the research.The

authors first made a category for the papers that provided the relations between

software metrics and software reliability.Then the authors made another category for

the papers that proposed models to address the software reliability and got results in

this field.

After research and deep inspection, the authors found that the collected

models from the second category can be classified into three approaches depending

on their methodologiesto quantify the errors density shown inTable

3-1[4][11][12][13][14][15][16][18][21][22].

1. Fuzzification models: these models use Fuzzy logic, which has logical

values and real numbers between 0 and 1 to determine the value of its

variables.

2. Network algorithms models: these models use networking algorithms such

as Bayesian and Neural algorithms and apply principles of these algorithms

using Component Dependency Graph (CDG) as an input to the model to

predict the defect density of software.

Chapter 3:Literature Review 12

3. Object-Oriented models: these models depend on the structure and analysis

of object-oriented unified modeling language (UML) and the design classes

to predict the defect density of software.

Table 3-1: Models classification based on the methodology
No Model classifications Model examples

1 FuzzificationModels. Phase-wise model [4], SRQF model [15], Yadav

[16], Pandey and Goyal model [22]

2 Network algorithms

Models.

ERSA model [18], Fenton model [21]

3 Object-oriented models SBRA model [20]

3.1 METRICS AFFECT THE SOFTWARE RELIABILITY

During the review of the literature[10][11][12][13][14][15]; it is observed that

the software metrics play animportant role in fault prediction, through that the

metrics for which the SDLC phase belong to, and the number of SDLC stages used

in the model.

Many papers and researches have aimed to define the relations between

software metrics and software reliability. Software reliability is highly related to the

quality of all of the processes and products of software development, starting from

the requirementsdocumentation, the coding, test plans, and testing, so; it depends on

many metrics are extracted from all stages of SDLC [26].

The authors of [26] had identified the most highly related metrics to the

software reliability in the whole process of the SDLC, as shown inTable 3-2, and

they illustrate how each metric affects the reliability.

Table 3-2: Metrics affect software reliability
SDLC Stage Metric Description

1

R
eq

ui
re

m
e

nt
s

R
el

ia
bi

lit
y

M
et

ri
cs

Lines of Text Physical lines of text as a measure of the size

2 Imperatives Words and phrases that command that something

must be done or provided

Chapter 3:Literature Review 13

3 Continuances Phrases that follow an imperative and introduce
the specification of requirements at a lower level

4 Directives References provided to figures, tables, or notes

5 Weak Phrases Clauses that are apt to cause uncertainty and leave
room for multipleinterpretation measure of
ambiguity

6 Incomplete Statements within the document that have TBD
(To be Determined) or TBS(To Be Supplied)

7 Options Words that seem to give the developer latitude in
satisfying the specifications but can beambiguous.

8

D
es

ig
n

an
d

C
od

e
R

el
ia

bi
lit

y
M

et
ri

cs

Cyclomatic

Complexity

Computed as the number of linearly independent
test paths

9 Code Size Total lines of code, counting all lines; non-
comment non-blank

10 (WMC) Weighted methods per class – related to Object-
oriented

11 RFC Response for a Class – related to Object-oriented

12 CBO Coupling Between Objects – related to Object-
oriented

13 DIT Depth in Tree – related to Object-oriented

14 NOC Number of Children – related to Object-oriented

15 Testing

Reliability

Metrics

The total set of test

cases

Each requirement must be tested at least once

3.2 FUZZIFICATION MODELS

Fuzzificationmodels use Fuzzy logic, which has logical values (VH, H, M, L,

VL), and real numbers between 0 and 1 to determine the value of its variables using

fuzzification algorithms and equations.

3.2.1 Phase-wise Model

This model is proposed to predictsoftware defects density indicator at each

phase of SDLC, requirement, design, implementation, and testing, which is

considered as a later stage reliability model. The defect density indicator in the

requirement analysis, design, coding, and testingstage is predicted using nine

software metrics of these four stages.The defect densityindicator metric,which

ispredicted at the end of each stage, is considered as an input to the next stage.

Software metrics areassessed in linguistic terms (VH: Very High, H: High, M:

Chapter 3:Literature Review 14

Medium, L: Low, VL: Very Low), and a fuzzification algorithm was usedto develop

the model, which is shown inFigure 3.1. The proposed model has been applied

totwenty software projects[4].

The steps of this model are:

1- Select software metrics.

2- Define the membership function of input and output metrics.

3- Design Fuzzy rules.

4- Perform fuzzy inference and defuzzification.

The input metrics which this model depends on are shown inTable 3-3.

The output of each phase is considered depending on fuzzy rules, which have

linguistic terms and fuzzy ranges between 0 and 1.

The fuzzy rule is defined in the form of an IF-THEN conditionalstatement. IF

part of the rule is known as an antecedent, andTHEN part is consequent.

Table 3-3: Models classification based on the methodology

No Requirement Phase Design Phase Coding Phase Testing Phase

1 Requirement Stability (RS)
Cyclomatic

Complexity (CC)

Programmer

Capability (PC)
Staff Experience (SE)

Figure 3.1: Phase-wise model

Chapter 3:Literature Review 15

2
Requirement Fault Density

(RFD)

Design Review

Effectiveness

(DRE)

Process Maturity

(PM)

Quality of Documented

Test Cases (QDT)

3

Regularity-Inspection, and Walk-

through the specification &

documentation (RIW)

3.2.2 Yadav Model

This model is proposed to predict the number of residual defects before the

designingstage, which is considered as an early stage reliability model. Software

metrics are available in the requirements analysis stage, in which the top four metrics

are:requirement defect density, requirement stability, error distribution, and reviews,

inspections, and walkthroughs. The third and fourth metrics depend on the

experience of the Requirement stage team members. Therefore, these three metrics of

the requirements analysis stage, i.e., Experience of Requirement Team (ERT),

Requirement Defect Density (RDD), and RequirementStability (RS), are considered

as input to the proposed Fuzzy model. ERT metric measures the relevant experience

and skill set of team members for executing the project during the requirements

analysis stage of SDLC. RDD metric measures the percentage of defective

requirements in the requirements specification documents, which are obtained

through regular reviews. Requirement stability (RS) metric measures the stability of

the requirements in the projects.

Three metrics of the requirements analysis stage are used as inputs to the fuzzy

rule-based inference system, which gives an aggregated fuzzy set of the total number

of residual defects as output. The total number of residual defects obtained through

defuzzification further helps to decide the testing strategy during the testing stage of

the software. The model is shown in Figure 3.2.

Chapter 3:Literature Review 16

Figure 3.2: Yadav model

3.2.3 Pandey and Goyal Model

This model predicts the number of faults at the end of each SDLCstage using

related software metrics and the level of the developer's Capability Maturity Model

(CMM) with reliability. The model uses 11 metrics within three SDLC stages, so; it

is considered as a later stage reliability model.

This model used a fuzzy inference system - shown in Figure 3.3- to get the

number of faults in the system.The used fuzzy rules depending on the expert's

Figure 3.3: Pandey and Goyal Model

Chapter 3:Literature Review 17

opinion.

The metrics used by this model are: Requirements Change Request (RCR),

Regularity-Inspection, and Walk-through the specification &documentation(RIW),

and Process Maturity (PM) as input to the requirements stage, design defect density

(DDD), fault days number (FDN), and data flow complexity (DC) have been

considered as inputs to the design stage.Code defect density (CDD), and Cyclomatic

Complexity (CC) as inputstothe coding stage. The outputs of the model will be the

number of faults at the end of the Requirements Phase (FRP), the number of Faults at

the end of the Design Phase (FDP), and the number of Faults at the end of the

Coding Phase (FCP). This model uses a fuzzy logic approach to predict the number

of faults in the software [22].

3.3 NETWORK ALGORITHM MODELS

Network Models use some network algorithms such as Bayesian Belief

Network, Artificial Neural Network, and others to predict software reliability.

3.3.1 ESRA

This model is proposed depending on Bayesian Belief Network to predict the

reliability of object-oriented software; it works in three phases during the first two

stages of SDLC, so; it is considered as an early stage reliability model.

In the first phase, the reliabilities of the classes are predicted from the design

metrics obtained from the UML model of the software, whichis known as class

reliability prediction, which is shown inFigure 3.4.The second phase, which is known

as use case reliability prediction,contains a prediction of use case reliabilities

depending on the operational profile and predicted values of the classes in phase 1. In

the last phase, which is known as system reliability prediction, the system reliability

is predicted from reliability values of the use cases and the operational profile.

The first phase uses 14 metrics to calculate the reliability value of classes,

which are illustrated inTable 3-4. This model uses multiple equations to calculate the

reliability of each phase, then uses these values to calculate the reliability value[18].

Chapter 3:Literature Review 18

Figure 3.4: A BBN model for predicting the reliability of a class

Table 3-4: Description of the object-oriented metrics
Name of the metric Description

Weighted Methods per Class

(WMC)

This metric is defined as the sum of the complexities

of all methods in a given class

Coupling Between Objects (CBO) It counts the number of classes whose attributes or

methods are used by the given class and the number

of classes which use the attributes or the methods of

the given class

Depth of Inheritance Tree (DIT) It is defined as the length of the longest path from a

given class to the root class in the inheritance

hierarchy

Lack of Cohesion of Methods

(LCOM)

It counts the sets of methods in a class that are not

related through the sharing of some local variables of

the class

Number of Children (NOC) It is the count of the total number of immediate child

classes of a given class

Response for Class (RFC) It measures the number of methods (NOM) and

constructors that can be invoked as a result of a

message sent to an object of the class

Chapter 3:Literature Review 19

Method Inheritance Factor (MIF) It represents the ratio of inherited methods to the total

NOM in a class

Attribute Inheritance Factor (AIF) It represents the ratio of inherited attributes to the

total number of attributes in a class

Data Access Metric (DAM) This is represented by the ratio of private and

protected attributes to the total number of attributes

declared in a class

Class Interface Size (CIS) This is a count of the total number of public methods

of a class

Direct Class Coupling (DCC) A count of classes that accepts instances of a given

class as a parameter and the classes that include

attributes of the given class type

Number of Transitions (NT) This metric measures the total NT in the state

diagram of a given class

Number of States (NS) This metric computes the total NS in the UML state

diagram of a given class

Number of Activities (NA) This metric counts the total number of events in the

UML state diagram

Number of Entry Actions

(NEntryA)

The total number of the actions performed each time

a state is entered

The problem with this model is that; the model could be used with the software

that analyzed using UML classes and use-case methodology. So, it is special to deal

with object-oriented software.

3.3.2 Fenton Model

This model is proposed to develop a causal model (Bayesian net) for predicting

the number of defects that are likely to be found during independent testing or

operational usage. Its method does notrequire detailed domain knowledge. The

model incorporates a set of quantitative and qualitative factors describing a project

Chapter 3:Literature Review 20

and its development process, which are inputs to the model. The researchers of the

Fenton model [21] have performed various sensitivity analyses. They found that the

most influential qualitative factors are project complexity and scale of distributed

communication. Although none of the individual process factors appear to be highly

influential on their own, the aggregation of such factors as process effectivenessis

highly influential[21].

The proposed model used many metrics collected through the whole process of

the software development life cycle, which are shown inTable 3-5, so it is considered

as a later stage reliability model.

The proposed model results are more accurate in medium and large software

than the small projects, as shown inFigure 3.5.

Table 3-5: Metrics used in Fenton Model

Stage Metric Description

1

R
eq

ui
re

m
en

t s
ta

ge

Relevant experience of

spec and doc staff

How would you rate the experience and skill

set of your team members for executing this

project during the requirements and

specifications phase?

2 Quality of

documentation

inspected

How would you rate the quality of the

requirements given by the client or other

groups?

3 The regularity of spec

and doc reviews

Have all the Requirements, Design

Documents, and Test Specifications been

reviewed in the project?

4 Standard procedures

followed

In your opinion, how effective was the review

procedure?

5 Review process

effectiveness

What was the review effectiveness in the

project for the requirements phase?

6 Spec defects

discovered in the

review

In your opinion, is the defect density of spec

reviews on the high side?

Chapter 3:Literature Review 21

7 Requirements stability How stable were the requirements in your

project?

8

N
ew

 f
un

ct
io

na
lit

y
The complexity of new

functionality

What was the complexity of the new

development or new features that happened in

your project?

9 The scale of new

functionality

implemented

How large was the extent of working on new

functionality rather than just enhancing the

older functionalities in your project?

10 Total no. of inputs and

outputs

For your product domain, would you rate the

total no of outputs/inputs (newly developed/

enhanced) as high?

11

D
es

ig
n

an
d

de
ve

lo
pm

en
t

Relevant development

staff experience

How would you rate the experience and skill

set of your team members for executing this

project during the design and development

phase?

12 Programmer capability On average, how would you assess the quality

of code produced by the team members?

13 Defined processes

followed

What was the review effectiveness in the

project for the Design and Development

phase?

14 Development of staff

motivation

What is your opinion about the motivation

levels of your team members?

15

T
es

tin
g

an
d

re
w

or
k

Testing process well

defined

How effective was the testing process adopted

by your project?

16 Staff experience unit

test

What was the level of software test

competence of those performing the unit test?

17 Staff experience

independent test

What was the level of software test

competence of those performing the unit test?

18 Quality of documented

test cases

What was the extent of the defects that were

found using formal testing against the

intuitive/random testing?

Chapter 3:Literature Review 22

Figure 3.5: Predicted and actual values

Chapter 4:Methodology

Chapter 4: Methodology

The proposed work aims to make a new model that predicts the software

reliability within the first two stages of the software development life cycle, which

are requirements and design stages. This work will add value for predicting the

software reliability and assist project managers in making the right decisions at the

right time, and allow them to refine the requirements or design if they consist of

some troubles.

4.1 MODELDESIGN

The architecture of the proposed model is shown inFigure 4.1. The proposed

model depends on seven metrics, which are collected from the first two stages of

SDLC, which affect the software reliability directly. The metrics collected from the

requirements stageare Quality of Documentation Inspected (QDI), Regularity-

Inspection, and Walk-through the specification &documentation (RIW), Spec

Defects Discovered in Review (RFD), Requirements Stability (RS) as explained

inTable 4-1. The metrics collected from the design stage are Complexity of new

functionality (CC), Scale of New Functionality implemented (SNF), Defined

processes followed (DRE) as explained in Table 4-2.

The authors have chosen these metrics because these metrics are the most

influencing the software reliability depending on Li and Smidts [34]software

reliability metrics ranking.

Table 4-1: Requirement metrics used in the proposed model
Metric Description

1 QDI Quality of Documentation

Inspected

How would you rate the quality of the

requirements documentation?

2 RIW Regularity, Inspection, and

Walk-through the specification

Have all the Requirements, Design

Documents, and Test Specifications

Chapter 4:Methodology 24

&documentation been reviewed in the project?

3 RFD Requirement Fault Density or

Spec Defects Discovered in

Review

In your opinion, is the defect density

of spec reviews on the high side?

4 RS Requirements Stability How stable were the requirements in

your project?

Table 4-2: Design metrics used in the proposed model
Metric Description

1 CC The complexity of new

functionality

What was the complexity of the new

development or new features that

happened in your project?

2 SNF Scale of New functionality

implemented

How large was the extent of working

on new functionality rather than just

enhancing the older functionalities in

your project?

3 DRE Design Review Effectiveness What was the review effectiveness in

the project for the Design phase?

Chapter 4:Methodology 25

Figure 4.1: The proposed model architecture
The steps of the proposed model:

I. Selection of software metrics.

II. Define membership function of input and output metrics.

III. Design fuzzy rules.

IV. Perform fuzzy inference and defuzzification.

Here, the authors will explain the steps which are involved in the proposed

model:

4.1.1 Selection of software metrics

Many software reliability prediction models have beenproposed since 2000

using softwaremetrics. These models helped developers and software managers to

develop reliable software.But, someof them have used a lot of software metrics to

predict the software reliability, which made the process very complex and more

expensive processing cost; these models have many useless metrics which doesn't

affect the software reliability and less important to be used there[4].

But instead, there are software reliability prediction models have been

proposed using a reasonable number of software metrics, but these models have been

Chapter 4:Methodology 25

Figure 4.1: The proposed model architecture
The steps of the proposed model:

I. Selection of software metrics.

II. Define membership function of input and output metrics.

III. Design fuzzy rules.

IV. Perform fuzzy inference and defuzzification.

Here, the authors will explain the steps which are involved in the proposed

model:

4.1.1 Selection of software metrics

Many software reliability prediction models have beenproposed since 2000

using softwaremetrics. These models helped developers and software managers to

develop reliable software.But, someof them have used a lot of software metrics to

predict the software reliability, which made the process very complex and more

expensive processing cost; these models have many useless metrics which doesn't

affect the software reliability and less important to be used there[4].

But instead, there are software reliability prediction models have been

proposed using a reasonable number of software metrics, but these models have been

Chapter 4:Methodology 25

Figure 4.1: The proposed model architecture
The steps of the proposed model:

I. Selection of software metrics.

II. Define membership function of input and output metrics.

III. Design fuzzy rules.

IV. Perform fuzzy inference and defuzzification.

Here, the authors will explain the steps which are involved in the proposed

model:

4.1.1 Selection of software metrics

Many software reliability prediction models have beenproposed since 2000

using softwaremetrics. These models helped developers and software managers to

develop reliable software.But, someof them have used a lot of software metrics to

predict the software reliability, which made the process very complex and more

expensive processing cost; these models have many useless metrics which doesn't

affect the software reliability and less important to be used there[4].

But instead, there are software reliability prediction models have been

proposed using a reasonable number of software metrics, but these models have been

Chapter 4:Methodology 26

built to be used within the whole software development life cycle, including the

coding stage, which is considered as a late-stage to allow the developers and

software managers to make the right decisions which will be time and effort

costly[32][33][34].

Also, there are some models that work in the first stage of SDLC to predict the

software reliability, these models assist the decisions makers in making the decisions

at the early stageof the software life cycle, but these predicting models' results are not

accurate as needed, because in the first stage there is no enough information to be

used.

So, the decision-makers need a predicting model, which can work through the

early stages of SDLC and give accurate results to be considered in their decisions.

According to that, the authors investigate how the software metrics affect the

software reliability to select the right metrics,which could improve the

predictionaccuracy depending on Li and Smidts [34], who had ranked the top thirty

metrics with respect to their ability to affect the software reliability. The selected

metrics are shown inTable 4-1 and Table 4-2 and explained as follows:

4.1.1.1. Requirement phase software metrics

1- Quality of Documentation Inspected (QDI): The purpose of documentation

inspection is that to detect detailed errors in the requirements; if the quality

of documentation is high, this leads to low defects, which means high

reliability.

2- Regularity, Inspection, and Walk-through the specification

&documentation (RIW):The purpose of this metric is to carry out a

technical analysis of product components or documentation to find

mismatches between the specification and client requirements; high RIW

leads to low defects.

3- Requirement Fault Density (RFD): The purpose of this metric is to measure

the faulty of requirements and specification documents; high RFD leads to

high defects.

Chapter 4:Methodology 27

4- Requirement Stability (RS): Requirement stability is proportional to

theinverse of requirements changing. The main reason forvarying

requirements is that the stakeholders have no

clearrequirements.Requirement changescould be made at any timeduring

the software development. Requirementschanges adversely affect the cost,

quality, and reliability of the software, which is under development; high

RS leads to low defects.

4.1.1.2. Design phase software metrics

1- The complexity of new functionality (CC): This metric measures the

complexity of software depending on the decision points. It is usually to

estimate the number of remaining software defects[36]. High CC leads to

high defects.

2- The scale of New functionality implemented (SNF): This metric measures

the size of the expansion of working on new functionality rather than just

enhancing the older functionalities in the project; high SNF leads to low

defects.

3- Design Review Effectiveness (DRE): The purpose of this metric is to check

whether the design documents meet the stakeholder's requirements or to

find whether design documents need to be modified; high DRE leads to low

defects.

Table 4-3:Requirement analysis phase software metrics
Requirement analysis phase software metrics Fuzzy range Linguistic terms

Input metrics Quality of Documentation Inspected (QDI) [0 - 1] [L, M, H]

Regularity, Inspection, and Walk-through (RIW) [0 - 1] [L, M, H]

Requirement Fault Density (RFD) [0 - 1] [L, M, H]

Requirement Stability (RS) [0 - 1] [L, M, H]

Output metric Requirement Phase Defect Density Indicator

(RPDDI)

[0 - 1] [VL, L, M, H,

VH]

Chapter 4:Methodology 28

Table 4-4: Design analysis phase software metrics
Design analysis phase software metrics Fuzzy range Linguistic terms

Input metrics Complexity of functionality (CC) [0 - 1] [L, M, H]

Scale of New functionality (SNF) [0 - 1] [L, M, H]

Design Review Effectiveness (DRE) [0 - 1] [L, M, H]

Requirement Phase Defect Density Indicator

(RPDDI)

[0 - 1] [VL, L, M, H,

VH]

Output metric Design Phase Defect Density Indicator (DPDDI) [0 - 1] [VL, L, M, H,

VH]

4.1.2 Define membership function of input and output metrics

In the fuzzy logic world, we have many ways to perform membership
functions.

This operation can be intuitive, or it can be based on some mathematical or logical

process. In an intuitive way, membership function is derived from the ability of

humans to develop membership functions through their own innate intelligence and

understanding. So, there are no standard guidelines or rules that can be considered to

create membership functions. Another problem that makes building membership

functionsessentialis the lack of consensus regarding the definition and

interpretationof membership functions. Membership functions for all input and

output metrics are taken into account in the proposed modelshould be determined by

domain experts. Membership development job with the help of expert knowledge is

one of the essentials steps in designing a problem to be solved by a fuzzy

settheory[16].

Membership functions can have a variety of types, such as triangular,

trapezoidal, polygonal, and others. Triangular andtrapezoidal types providea suitable

representation of domainexpert knowledge as it simplifies the calculation

process.Triangular and trapezoidal membership functions are lineartypes, and they

are more suitable when the membership functions of a fuzzy set are not known.

Therefore, in the proposed model, triangular and trapezoidal memberships are

used to represent the linguistic states, depending on experts opinions – who are three

experts having more than 5 years of experience in project management - who took

Chapter 4:Methodology 29

Figure 4.2: Quality of Documentation Inspected

Figure 4.3: Regularity, Inspection and Walk-through

Figure 4.4: Requirement Fault Density

part in the development of these functions,Figure 4.2 to Figure 4.9, which have been

taken as snapshots from the MATLAB tool during the model building.

Chapter 4:Methodology 30

Figure 4.5: Requirement Stability

Figure 4.6: Requirement Phase Defect Density Indicator

Figure 4.7: Complexity of functionality

Figure 4.8: Scale of New functionality

Chapter 4:Methodology 30

Figure 4.5: Requirement Stability

Figure 4.6: Requirement Phase Defect Density Indicator

Figure 4.7: Complexity of functionality

Figure 4.8: Scale of New functionality

Chapter 4:Methodology 30

Figure 4.5: Requirement Stability

Figure 4.6: Requirement Phase Defect Density Indicator

Figure 4.7: Complexity of functionality

Figure 4.8: Scale of New functionality

Chapter 4:Methodology 31

Figure 4.9: Design Review Effectiveness

Figure 4.10: Design Phase Defect Density Indicator

4.1.3 Design fuzzy rules

Fuzzy rules design is not an easy work, especially for real-world problems. The

fuzzy rule base can be decided using different approaches such as domain experts,

automated generation, historical data analysis, and knowledge of existing literature.

The most efficient approach mostly used is the expert's domain to enable the design

of such a system with more human-like reasoning, especially with the fuzzy IF-

THEN rules. IF part of the rule is called Antecedents, and the THEN part is called

Consequent[38].

In the proposed model, the fuzzy rules set, which are used to predict the

number of defects in the software, are defined with the help of domain experts who

are three experts having more than five years in software management. The proposed

Chapter 4:Methodology 32

model has two phases; the first phase has four input metrics; each metriccontains

three linguistic states Low (L), Medium (M), High (H)Table 4-3, so, the number of

rules in the first phaseis: 34 = 81 rules, Eq. (4.1),Table 4-5, and the second phase has

four input metrics, one of them has five linguistic states Very Low(VL), Low (L),

Medium (M), High(H), Very High (VH) and the other metrics have three linguistic

states,Table 4-4, so, the number of rules in the second phase is: 33 * 5 = 135 rules,Eq.

(4.1),Table 4-6.

38 4.1
Table 4-5: Requirement phase fuzzy rules

Rule No Fuzzy rule

1 If QDI is L and RIW is L and RFD is L, and RS is L, Then RPDDI is H

2 If QDI is L and RIW is L and RFD is L, and RS is H, Then RPDDI is H

………... …………………………………………………………………………
80 If QDI is H and RIW is H and RFD is H, and RS is M, Then RPDDI is L

81 If QDI is H and RIW is H and RFD is H, and RS is H, Then RPDDI is L

Table 4-6: Design phase fuzzy rules
Rule No Fuzzy rule

1 If RPDDI is VL and CC is L and SNF is L, and DRE is L, Then DPDDI is M

2 If RPDDI is VL and CC is L and SNF is L, and DRE is M, Then DPDDI is M

………... …………………………………………………………………………
134 If RPDDI is VH and CC is H and SNF is H, and DRE is M, Then DPDDI is H

135 If RPDDI is VH and CC is H and SNF is H, and DRE is M, Then DPDDI is M

4.2 METHODOLOGY EXPLANATION

The proposed model aims to find the number of defects in the software within

the early stages of the software development life cycle against the models that find

the number of defects at the end of the testing stage. This enhancement will add a

positive value in this field to develop more reliable software and help the project

managers to make the right decisions at the right time.

Chapter 4:Methodology 33

In order to validate the proposed model, the authors will present a case study

using project number 1 from the used NASA dataset[21] to explain the steps of the

model and how it works

Then, the authors will compare the proposed model withother reliability

models that quantify the software defect density at the early stages of SDLC by

showing the final results of each model.

The evaluation measures have been considered[37]to get the percentage of

error of each model compared with real data of the NASA projects to validate the

prediction accuracy of the proposed model, which they are:

1- Mean Magnitude of Relative Error (MMRE): MMRE is the mean of

absolute percentageerrors. It is a measure of the spread of a variable such as

Z, where Z=estimate/actual.1 | | 4.2
2- Balanced Mean Magnitude of Relative Error (BMMRE).1 | |, 4.3
Wheren is the number of projects,yi is the actual value, and y^

i is the estimated

value of a variable of the compared model.

The model which has fewer values of MMRE and BMMRE indicates better

accuracy of prediction, so the real project's data has the minimum values which are

zeros of MMRE and BMMRE.

Chapter 5:Case Study and Analysis

Chapter 5: Case Study and Analysis

5.1 INTRODUCTION

This chapter shows the steps of the proposed model implementation by

applying the case study using project # 1 from the NASA dataset[25].

The rest of this chapter is organized as follows. Section 5.2 introduces the used

dataset, section 5.3 explains how the model has been tested, section 5.4 illustrates the

proposed model using the case study.

5.2 DATA SET

In order to validate the proposed model, the authors use the twenty real

software projects dataset [25] which were produced by NASA, which are shown

inTable 5-1 where the qualitative values of selected software metrics are represented

in terms of Very Low (VL), Low (L), Medium (M), High (H), Very High (VH). The

dataset contains 31 projects; the authors have used the projects that provide enough

information about the used metrics in the proposed model, so it is called twenty real

software dataset.

These data set projects developed software embedded in electronics products.

Each developed software was integrated with another software; so, it is not stand-

alone software. The project managers followed a waterfall life cycle to develop the

projects. The overall development of these projects was distributed into many

locations in a global organization. The software specification and independent testing

were in a different location to the software location[25].

The authors have divided the dataset projects into two parts, the first part,

which contains 9 projects, has been used to build the proposed model, and the other,

which contains 11 projects,has been used to test the proposed model, as shown in

Table 5-2.

Chapter 5:Case Study and Analysis 35

Table 5-1: The considered metrics of software projects
Case study # Project # [25] Size (KLOC) QDI RIW RFD RS CC SNF DRE

1 1 6 M VH H L M L M
2 2 0.9 H VH H H L VL M
3 3 53.9 H VH VH H H H VH
4 7 21 M VH L M L VL M
5 8 5.8 M H L H M L M
6 9 2.5 VH VH M VH L L M
7 10 4.8 H H M H M L M
8 11 4.4 M H H H H H H
9 12 19 M H M L H H H
10 13 49.1 M M H L H H H
11 15 154 H H VH VL H H M
12 16 26.7 H H H M L VL M
13 17 33 H M H M L VL M
14 19 87 M H H M H H H
15 20 50 L M M VL VH H VH
16 21 22 H H M M L M VH
17 22 44 L M M L M M VH
18 24 99 M M H L M M H
19 29 11 M VH M VH M M H
20 30 1 H VH M VH L L M

5.3 MODEL TESTING

The authors have tested the proposed model by dividing the dataset projects

into two sets, depending on the size of the projects, the first set, which contains nine

projects, was used to build the model, and the other set, which contains eleven

projects, was used to test the model, as shown in Table 5-2.

Table 5-2: Dataset projects splitting for model building and testing.
Project number

Used in model building Used in model testing

1 2 1

2 9 3

3 15 7

4 19 8

5 20 10

6 21 11

7 22 12

8 29 13

9 30 16

10 17

11 24

Chapter 5:Case Study and Analysis 36

5.4 MODEL ILLUSTRATION: CASE STUDY

To explain the proposed model, project number #1 from the dataset is

considered as a case study. Following are the steps to find the defect density

indicator for each software development life cycle stage and the total number of

defects for case study 1.

5.4.1 Selection of software metrics

Usually, the fuzzy range of software metrics differs from project to project

depending on the lowest and highest values. So, in the proposed model, the

considered metrics have various fuzzy ranges; because of that, the authors have

represented the fuzzy ranges in the normalized form, which is [0, 1].

The software metrics which are used in the proposed model are shown in Table

4-3andTable 4-4 for both SDLC stages (Requirement and Design), respectively.

5.4.2 Define membership function of input and output variables

The membership functions are usually used to describe the fuzziness of

software metrics. To assign membership values to fuzzy variables, we have many

approaches, such as rank-ordering, intuitive, inference.

In the proposed model, the intuitive approach is used to assign membership

values, which depend on human intelligence and domain expert. The membership

functions for all of the input and output metrics are developed using triangular and

trapezoidal functions, as explained in Figure 4.2 to Figure 4.10.

5.4.3 Design fuzzy rules

The fuzzy rules which are used in the proposed model are explained in

section4.1.3 and shown in Table 4-5 and Table 4-6. The authors briefly explain how

the metrics affect defect density:

5.3.3.1. Requirement phase fuzzy rules:

 If QDI is High, the defectdensity will be Low.

 If RIW is High, the defectdensity will be Low.

 If RFD is High, the defectdensity will be High.

Chapter 5:Case Study and Analysis 37

 If RS is High, the defectdensity will be Low.

5.3.3.2. Design phase fuzzy rules:

 If CC is High, the defect density will be High.

 If SNF is High, the defect density will be Low.

 If DRE is High, the defect density will be Low.

5.4.4 Perform fuzzification and defuzzification

To get the defect density indicator value at the end of the requirement and

design stages, the MATLAB tool is used for fuzzification and defuzzification input

metrics values, by applying the proposed fuzzy rules using the membership

functions.

Chapter 6:Results and Discussion 38

Chapter 6: Results and Discussion

6.1 INTRODUCTION

This chapter shows the proposed model results. In order to show the

effectiveness of the proposed model, the authors will compare the model results with

other models, and to show the accuracy of the proposed model, the MMRE and

BMMRE will be calculated for the proposed model and the other compared models.

Results are discussed at the end of this chapter.

The rest of this chapter is organized as follows. (section 6.2) explains the

prediction results, the model validation is described in (section6.3), and (section 6.4)

concludes the model results.

6.2 PREDICTION RESULTS

The metrics used in the proposed model are the most related metrics to the

software reliability within the early two stages of SDLC (Requirement and Design),

depending on Li and Smidts [34], who had ranked the top thirty metrics which have

improved the software reliability.

The proposed model predicts the defect density indicator of the first two stages

of SDLC using the software metrics and fuzzy inferencesystem. The prediction

results of the twenty real software projects of NASA [25] areshowninTable 6-1;

which also contains the actual defects, requirement and design stages defect density

indicators, Yadav model[16], Fenton model[21], and the Pandey and Goyal[22]

predicted defects which all of them used the same dataset to predict the defect

density. The total number of defects is calculated at the end of the design stage using

the two stages output metrics, which are RPDDI and DPDDI multiplied with the

software code size which will be explained next.

Many researchers considered that there is an approximate relationship between

the defect density count and the size of software [4][16][21]. So, we can use the

software size to calculate the residual defects.

Chapter 6:Results and Discussion 39

Table 6-1shows the RPDDI, DPDDI, results of the proposed model, and the

results of other models that predict at the early stages of SDLC.

Depending on that; the total number of software defect density is calculated as:

Case study number 1:

RPDDI (Requirement Phase Defect Density Indicator): 0.2, from Table 6-1.

DPDDI (Design Phase Defect Density Indicator): 0.16, from Table 6-1.

LOC: 6000 line, from Table 5-1

Total Number of defects = RPDDI * DPDDI * LOC = 0.2 * 0.16 * 6000 = 192.

Table 6-1: Actual and predicted defects number
Case study

#

RPDDI DPDDI Actual

defects

Defects Predicted by

Proposed model Yadav model Fenton model Pandey and
Goyal

1 0.2 0.16 148 192 88 75 56

3 0.0867 0.09 209 421 261 254 211

4 0.0752 0.13 204 205 204 262 113

5 0.15 0.06 53 52 56 48 54

7 0.1 0.06 29 29 70 203 26

8 0.186 0.09 71 74 64 51 41

9 0.119 0.05 90 113 92 347 176

10 0.1 0.04 129 196 476 516 337

12 0.1 0.04 109 107 130 145 128

13 0.15 0.14 688 693 589 444 136

18 0.224 0.07 1597 1552 1440 1514 -

Table 6-2: Actual and predicted defects with differences
Proposed Model Yadav model Fenton model Pandey and Goyal

Project
size

Actual
defect

Predicted Diff Predicted Diff Predicted Diff Predicted Diff

4.4 71 74 3 64 -7 51 -20 41 -30

4.8 29 29 0 70 41 203 174 26 -3

5.8 53 52 -1 56 3 48 -5 54 1

6 148 192 44 88 -60 75 -73 56 -92

19 90 113 23 92 2 347 257 176 86

21 204 205 1 204 0 262 58 113 -91

26.7 109 107 -2 130 21 145 36 128 19

33 688 693 5 589 -99 444 -244 136 -552

49.1 129 196 67 476 347 516 387 337 208

53.9 209 421 212 261 52 254 45 211 2

99 1597 1552 -45 1440 -157 1514 -83 - -

Chapter 6:Results and Discussion 40

The proposed model is used in the early stages of SDLC, where the software

size is not known, so; the project managers should use one of the estimation tools to

get a rough estimation of the software size to be able to use this model.

6.3 MODEL VALIDATION

To evaluate the proposed model, the authors use the most suggested and

common measures, which are MMRE and BMMRE, to measure the spread of the

error, then the authors discuss and validate the results with the other compared

models. We tried to validate the proposed model using one of the statistical tests such

as T-test or ANOVA test, but in this case, there is no need to validate with them,

because we need to compare these models to get the accuracy of the models and

measure the spread of the error which could be measured by MMRE & BMMRE and

not applicable using statistical tests.

6.3.1 Evaluation measures

The authors use the following measures:

1- Mean Magnitude of Relative Error (MMRE) using its equation, which is

explained in equation 4.2.

2- The Balanced Mean Magnitude of Relative Error (BMMRE) using its

equation, which is explained in equation 4.3.

The result of applying these two equations (4.2, 4.3) is shown inTable 6-3.

The model which has fewer values of MMRE and BMMRE is the closest to the

actual, as explained inTable 6-4.

Table 6-3: Applying MMRE & BMMRE on the evaluation dataset
Case
study #

Actual
defects Predicted

| | | | | |,
1 148 192 44 0.2972973 0.29729729
3 209 421 212 1.01435407 1.01435406
4 204 205 1 0.00490196 0.00490196
5 53 52 1 0.01886792 0.01923076
7 29 29 0 0 0
8 71 74 3 0.04225352 0.04225352
9 90 113 23 0.25555556 0.25555555

Chapter 6:Results and Discussion 41

Figure 6.1: Project size vs number of defects

10 129 196 67 0.51937984 0.51937984
12 109 107 2 0.01834862 0.01869158
13 688 693 5 0.00726744 0.00726744
18 1597 1552 45 0.02817783 0.02899484

Sum 2.20640407 2.20792689

MMRE & BMMRE
respectively

0.1226 0.1227

The MMRE and BMMRE for the other models have been calculated using the same

projects that have been used to evaluate the proposed model.

Table 6-4: Model evaluation measures
MMRE BMMRE

Proposed

model

Yadav

model

Fenton

model

Pandey and

Goyal

Proposed

model

Yadav

model

Fenton

model

Pandey and

Goyal

0.1226 0.2685 0.2846 0.2870 0.1227 0.4664 0.7380 0.5625

6.3.2 Model results validation

FromTable 6-4, it can be noticed that the MMRE and BMMRE for the

proposed model are: 0.1226, 0.1227,respectively, which are the least compared with

the other models, so it is clear that the predicted accuracy of the proposed model is

the closest to the actual compared with Yadav [16], Fenton [21], Pandey and Goyal

[22] models for both measures.

Chapter 6:Results and Discussion 41

Figure 6.1: Project size vs number of defects

10 129 196 67 0.51937984 0.51937984
12 109 107 2 0.01834862 0.01869158
13 688 693 5 0.00726744 0.00726744
18 1597 1552 45 0.02817783 0.02899484

Sum 2.20640407 2.20792689

MMRE & BMMRE
respectively

0.1226 0.1227

The MMRE and BMMRE for the other models have been calculated using the same

projects that have been used to evaluate the proposed model.

Table 6-4: Model evaluation measures
MMRE BMMRE

Proposed

model

Yadav

model

Fenton

model

Pandey and

Goyal

Proposed

model

Yadav

model

Fenton

model

Pandey and

Goyal

0.1226 0.2685 0.2846 0.2870 0.1227 0.4664 0.7380 0.5625

6.3.2 Model results validation

FromTable 6-4, it can be noticed that the MMRE and BMMRE for the

proposed model are: 0.1226, 0.1227,respectively, which are the least compared with

the other models, so it is clear that the predicted accuracy of the proposed model is

the closest to the actual compared with Yadav [16], Fenton [21], Pandey and Goyal

[22] models for both measures.

Chapter 6:Results and Discussion 41

Figure 6.1: Project size vs number of defects

10 129 196 67 0.51937984 0.51937984
12 109 107 2 0.01834862 0.01869158
13 688 693 5 0.00726744 0.00726744
18 1597 1552 45 0.02817783 0.02899484

Sum 2.20640407 2.20792689

MMRE & BMMRE
respectively

0.1226 0.1227

The MMRE and BMMRE for the other models have been calculated using the same

projects that have been used to evaluate the proposed model.

Table 6-4: Model evaluation measures
MMRE BMMRE

Proposed

model

Yadav

model

Fenton

model

Pandey and

Goyal

Proposed

model

Yadav

model

Fenton

model

Pandey and

Goyal

0.1226 0.2685 0.2846 0.2870 0.1227 0.4664 0.7380 0.5625

6.3.2 Model results validation

FromTable 6-4, it can be noticed that the MMRE and BMMRE for the

proposed model are: 0.1226, 0.1227,respectively, which are the least compared with

the other models, so it is clear that the predicted accuracy of the proposed model is

the closest to the actual compared with Yadav [16], Fenton [21], Pandey and Goyal

[22] models for both measures.

Chapter 6:Results and Discussion 42

Also, it is observed in Table 6-2 that the differences between the actual and

proposed defects sometimes increase when the size of the project increases in a

nonlinear relation.

From Table 6-4Table 6-4 andFigure 6.1, it is clear that the prediction of the

proposed model is the closest to the actual, so the proposed model accuracy is the

highest compared with the three models.

6.4 RESULTS CONCLUSION

After explaining the case study, which illustrated how the proposed model

works step by step, the resultsshowed that the proposed model accuracy is the

highest compared with the other models that can be used within the early stages of

SDLC. This model shows that it is reliable, effective, and can be used to detect the

defect density during the early stages of SDLC by the project managers to take the

right decision at the right time to develop more reliable software. In the proposed

model, the authors used the most related metrics to the reliability during the first two

stages of SDLC, which are the requirement and design stages.

The proposed model was validated using part of the twenty software

projects[25], which were embedded in electronic products so that the model results

can be considered with electronic software types.

To generalize these results with other project types, the model should be

validated using another dataset that has sufficient data to be used, which will be as

future work.

Chapter 7:Conclusion and Future Work

Chapter 7: Conclusion and Future Work

This thesis proposed a model that predicts software reliability at the early

stages of the software development life cycle, which are the requirement and design

stages. The proposed model uses some of the most related software metrics to

software reliability in both stages. The proposed model uses Quality of

Documentation Inspected (QDI), Regularity, Inspection, and Walk-through the

specification &documentation (RIW), Requirement Fault Density (RFD),

Requirement Stability (RS) metrics as the inputsto the requirement stage in

fuzzification system, and uses Complexity of functionality (CC), Scale of New

functionality (SNF), Design Review Effectiveness (DRE) metrics as the inputsto the

design stage. The output of the first stage is Requirement Phase Defect Density

Indicator (RPDDI), which is used as an input metric to the second stage. The design

stage output metric is the Design Phase Defect Density Indicator (DPDDI). The

outputmetrics are used as variables multiplied with the software size to get the total

number of defects at the end of the defuzzification.

The proposed model used the fuzzy inference system to predict software defect

density. The fuzzy system membership functions and rules were developed using

human intelligence and domain expert who have a long experience period in

software analysis and development.

This model is proposed to be used within the first two stages of SDLC, and it

uses the software size, which is not available in these stages, so; the managers should

roughly estimate the software size by using any ofthe estimation tools.

From the proposed model results, the defect numbers can be calculated at the

end of the design stage of SDLCwith a high accuracy percentage compared with the

other models that predict the defects during the early stages of SDLC.These results

will enhance the software development by giving the ability to the project managers

to discover the software defaults in early stages, so they can make the right decision

at the right time to develop reliable softwarewith saving time and budget.

Chapter 7:Conclusion and Future Work 44

Furthermore, the proposed model can be used easily by the concerned people

because it uses some of the software metrics, which can be evaluated through the

first two stages of SDLC, which can be easily calculated.

The proposed model is evaluated using data set of software that is embedded

into the electronic equipment, so to make it more general and valid for other types of

software, the model should be validated using another dataset thatconsists of other

types of software.

As future work, an evaluation for the proposed model using different dataset

types is needed to be used generally.

Bibliography 45

Bibliography

[1] M.R. Lyu, Handbook of Software Reliability Engineering, vol. 222, IEEE
Computer Society Press, CA, 1996.

[2] Mladen A. Vouk, Software Reliability Engineering, Box 8206 North Carolina
State University, Raleigh, NC 27695, 2000.

[3] Norman E. Fenton and Martin Neil, A Critique of Software Defect Prediction
Models, Member, IEEE Computer Society, VOL. 25, NO. 3, MAY/JUNE 1999.

[4] Harikesh Bahadur Yadav, Dilip Kumar Yadav, A fuzzy logic based approach
for phase-wise software defects prediction using software metrics, Department
of Computer Applications, National Institute of Technology, Jamshedpur
831014, India, 2015.

[5] K.Y. Cai, C.Y. Wem, M.L. Zhang, A critical review on software reliability
modeling, Reliable. Eng. Syst. safety 32 (3) (1991) 357–371.

[6] C. Kaner, Software engineering metrics: what do they measure and how do we
know? In: 10th International Software Metrics Symposium, vol. 6, 2004.

[7] William Farr,software reliability modeling survey, Naval Surface Warfare
Center.

[8] Latha Shanmugam, Dr. Lilly Florence, An Overview of Software Reliability
Models, Volume 2, Issue 10, October 2012.

[9] Y. Jiang, B. Cukic and T. Menzies, Fault Prediction using Early Lifecycle
Data, In (ISSRE-07) Proceeding of 18th IEEE International Symposium on
Software Reliability Engineering (ISSRE), pp. 237–246, (2007).

[10] Ramamoorthy, FB Bastani, Software Reliability—Status and Perspectives,
IEEE Transactions on Software Engineering, 1982.

[11] C. Smidts, M. Stutzke, R.W. Stoddard, Software reliability modeling: an
approach to early reliability prediction, IEEE Trans. Reliab. 47 (3) (1998).

[12] V. Cortellesa, H. Singh, B. Cukic, Early reliability assessment of UML based
software models, Proceedings of the 3rd International Workshop on Software and
Performance, 2002, pp. 302–309.

[13] Y. Maa, S. Zhua, K. Qin and G. Luo, Combining the Requirement Information
for Software Defect Estimation in Design Time, Information Processing Letters,
vol. 114(9), pp. 469–474, (2014).

[14] Jelinski. Z, Moranda P.B. ―Software Reliability Research Statistical
Computer Performance Evaluation, W. Frebierger, New York, Academic Press.

[15] Syed Rizvia, Vivek Singhb and Raees Khanc, Fuzzy Logic based Software
Reliability Quantification Framework: Early Stage Perspective (FLSRQF),
Twelfth International Multi-Conference on Information Processing-2016
(IMCIP-2016).

[16] Dilip Yadav, Chaturvedi, Ravindra Misra, Early Software Defects Prediction
Using Fuzzy Logic, International Journal of Performability Engineering Vol. 8,
No. 4, July 2012, pp. 399-408.

[17] Nasa iv&v facility. Metric data program. Available from
http://MDP.ivv.nasa.gov/, visited on 12/02/2017.

[18] Sirsendu Mohanta, Gopika Vinod, Rajib Mall,A technique for early
prediction of software reliability based on design metrics, Int J Syst Assur EngManag (Oct-Dec 2011) 2(4):261–281.

[19] IEEE, IEEE Standard Glossary of Software Engineering Terminology, 1990.

Bibliography 46

[20] Sherif Yacoub, Bojan Cukic, Hany H. Ammar, A Scenario-Based Reliability
Analysis Approach for Component-Based Software, 2004.

[21] Norman Fenton, Martin Neil, William Marsh, Peter Hearty, Łukasz
Radliński, Paul Krause, On the effectiveness of early life cycle defect prediction
with Bayesian Nets, 2008.

[22] Ajeet Kumar Pandey, N. K. Goyal, A Fuzzy Model for Early Software Fault
Prediction Using Process Maturity and Software Metrics, International Journal
of Electronics Engineering, 1(2), 2009.

[23] American Psychological Association (APA). (2010). Publication Manual of
the American Psychological Association (6th Ed.). Washington, DC: Author.

[24] B.B. Agrawal, S. P. Tayal, M. Gupta, Software Engineering & Testing,
Library of Congress cataloging-in-publication Data, 2010.

[25] N. Fenton, M. Neil, W. Marsh, P. Hearty, L. Radlinski, Project data
incorporating qualitative factors for improved software defect prediction, Third
international workshop on predictor models in software engineering, 2007.

[26] Linda Rosenberg, Ted Hammer, Jack Shaw, SOFTWARE METRICS AND
RELIABILITY, 1998.

[27] Meena, Vipin Aroda, Software Reliability-Most Important Aspect of Software
Quality, IJIRST –International Journal for Innovative Research in Science &
Technology| Volume 2 | Issue 1 | June 2015.

[28] SDLC (Software Development Life Cycle) Phases, Methodologies, Process,
And Models.https://www.softwaretestinghelp.com/software-development-life-cycle-
sdlc/, visited on 04/04/2020.

[29] Gillies, A.C.,Software Quality, Theory and management, Chapman Hall
Computing Series, London, UK, 1992.

[30] IEEE Standard 982.2,Guide for the Use of Standard Dictionary of Measures
to Produce Reliable Software, 1987.

[31] C. Catal, B. Diri, A systematic review of software fault predictions studies,
Expert Syst. Appl. 36 (4) (2009) 7346–7354.

[32] C. Catal, Software fault prediction: a literature review and current trends,
Expert Syst. Appl. 38 (4) (2011) 4626–4636.

[33] D. Radjenovic et al., Software fault prediction metrics: a systematic literature
review, Inf. Softw. Technol. 55 (8) (2013) 1397–1418.

[34] M. Li, C. Smidts, A ranking of software engineering measures based on expert
opinion, IEEE Trans. Softw. Eng. 29 (9) (2003) 811–824.

[35] What is software complexity and how you can manage it?
https://carlalexander.ca/what-is-software-complexity, visited on 26/09/2020.

[36] S.V. Wong, A.M.S. Hamouda, Optimization of fuzzy rules design using genetic
algorithm, Elsevier Science. Advances in Engineering Software 31 (2000) 251–
262.

[37] Dan Port, Marcel Korte. Comparative Studies of the Model Evaluation Criterions
MMRE and PRED in Software Cost Estimation Research, ESEM'08, October 9–10,
2008, Kaiserslautern, Germany, ACM 978-1-59593-971-5/08/10.

[38] LOTFI A. ZADEH, Knowledge Representation in Fuzzy Logic, IEEE Trans.
Knowl. Data Eng. 1 (1) (1989) 89–100.

[39] Software development life cycle,
https://practice.geeksforgeeks.org/problems/software-development-life-cycle,
visited on 04/04/2020.

[40] Mohammad Ibraigheet, Sayed Abdullah Fadzli, Software Reliability Prediction
In Various Software Development Stages, Journal of Theoretical and Applied
Information Technology, ISSN: 1992-8645, 15th April 2018. Vol.96. No 7.

Bibliography 47

