

Joint Biotechnology Master Program

Palestine Polytechnic University Deanship of Graduate Studies and Scientific Research Bethlehem University Faculty of Science

Microbiological Evaluation of Endophytic Bacteria in

Parsley and Mint in the West Bank

By

Sawsan Ibraheem Mahmoud Najajreh

In Partial Fulfillment of the Requirements for the Degree Master of Science in Biotechnology

January,2021

The undersigned hereby certify that they have read and recommend to the Faculty of Scientific Research and Higher Studies at the Palestine Polytechnic University and the Faculty of Science at Bethlehem University for acceptance a thesis entitled:

"Microbiological Evaluation of Endophytic Bacteria in Parsley and Mint in

the West Bank"

By

Sawsan Ibraheem Mahmoud Najajreh

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in biotechnology

Graduate Advisory Committee:

Committee Member (Student's Supervisor)

Dr. Rami Arafeh, Palestine Polytechnic University.

Committee Member (Internal Examiner)

Dr. Omar Darissa, Bethlehem University.

External Committee Member (External Examine)

Dr. Osama AL Abdallah, NARC (National Agricultural Research Center).

Approved for the Faculties

Dean of Graduate studies and

Scientific Research Palestine Polytechnic University Dean of Faculty of Science Bethlehem University

Date

Date

Date

"Microbiological Evaluation of Endophytic Bacteria in Parsley and Mint in the

West Bank"

By

Sawsan Ibraheem Mahmoud Najajreh

ABSTRACT

Mint (Pepper mint) and parsley (Petroselinum crispum) are two common herbal plants (fresh produce) used in Middle Eastern cuisine. Due to the high market demand, these two herbs are grown year-round in many countries including in Palestine. This study aimed to evaluate the internal (endophytic) microbial content in parsley and mint that are sampled from different markets in Hebron and Bethlehem cities. Samples were surface sterilized to eliminate epiphytic bacteria then an extract was prepared and cultured on two microbiological media, total coliform media and fecal coliform media. Bacterial genera were identified based on colony morphology. For total coliforms and fecal coliforms, CFU/g was calculated and compared between samples. No significant difference in microbial load between the commercial sources was found in both plants. No coliforms were found in the samples taken from home garden or in the negative control. Universal primers for 16S rDNA region were used to identify the bacterial species obtained from the culture step. The PCR products were sequenced and subjected to BLASTn in order to identify the sequenced bacteria. In total, seven different bacterial genera from three families were identified including Pseudomonas, Pantoea, Enterobacter, Lelliottia, Escherichia, Klebsiella and Salmonella. Furthermore, twenty-four different strains were identified from the sequenced in the two herbs. The results in this study should be considered to draw more attention regarding the food safety issues in fresh herbs quality and consumption.

Key words

Fresh produce, Fecal coliform, Total coliform, Endophytic bacteria

Arabic Abstract

النقييم الميكروبيولوجي للبكتيريا الداخلية في النباتات الخضراء في البقدونس والنعنع في الضفة الغربية النعنع(Pepper mint) من النباتات العشبية الشائعة المستخدمة في مطبخ الشرق الأوسط . نظرًا لارتفاع الطلب في السوق ، تتم زراعة هذين النوعين من الأعشاب على مدار العام في العديد من البلدان بما في ذلك فلسطين. هدفت هذه الدراسة إلى تقييم المحتوى الميكروبي الداخلي في ماسطبخ الشرق الأوسط . نظرًا لارتفاع الطلب في السوق ، تتم زراعة هذين النوعين من الأعشاب على مدار العام في العديد من البلدان بما في ذلك فلسطين. هدفت هذه الدراسة إلى تقييم المحتوى الميكروبي الداخلي لعم العديد من البلدان بما في ذلك فلسطين. هدفت هذه الدراسة إلى تقييم المحتوى الميكروبي الداخلي العام (endophytic)) في البقدونس والنعنع المأخوذة من أسواق مختلفة في مدينتي الخليل وبيت لحم. تم تعقيم السطح الخارجي للنباتات للتخلص من البكتيريا الخارجية، ثم تم تحضير مستخلص النبات وزراعته على وسطين ميكروبيونوجيين ، (endophytic) من المكتيريا الخارجية، ثم تم تحضير مستخلص النبات وزراعته على وسطين ميكروبيولوجيين ، (Etos colliform and fecal coliform media). تم يمور فولوجيا المستعمرة. بالنسبة لل Total coliform and fecal coliform البكتيرية بناء على مور فولوجيا المستعمرة. بالنسبة لل Total coliform fecal coliform مر ومقارنتها بين العينات. حيث لم يتم العثور على فرق معنوي في وجود الميكروبات الداخلية بين المصادر التجارية في كلا العينات. حيث لم يتم العثور على فرق معنوي في وجود الميكروبات الداخلية بين المصادر التجارية في كلا النيناتي. ولم يتم العثور على القولونيات في العينات المأخوذة من حديقة المنزل أو في السيطرة السلية.

تم استخدام IGS rDNA لتحديد الأنواع البكتيرية التي تم الحصول عليها من خطوة الاستزراع. ثم تسلسل منتجات PCR وتعريضها لـ BLASTn من أجل التعرف على البكتيريا المتسلسلة. في المجموع ، تم تحديد سبعة أجناس بكتيرية من ثلاث عائلات مختلفة كما يلي Pseudomonas و Pantoea و Enterobacter و Lelliottia و Salmonella و Klebsiella و Salmonella ، علاوة على ذلك ، تم التعرف على 24 سلالة مختلفة من البكتيريا الناتجة. ينبغي النظر في نتائج هذه الدراسة لجذب المزيد من الاهتمام فيما يتعلق بقضايا سلامة الأغذية في جودة الأعشاب الطازجة واستهلاكها.

DECLARATION

I declare that the Master Thesis entitled "Microbiological Evaluation of Endophytic Bacteria in Parsley and Mint in the West Bank" is my own original work, and hereby certify that unless stated, all work contained within this thesis is my own independent research and has not been submitted for the award of another degree at any institution, except where due acknowledgment is made in the text.

Name and signature:

Date: _____

Copyright © Sawsan Najajreh, 2021

All rights reserved

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for the joint master degree in biotechnology at Palestine Polytechnic University and Bethlehem University, I agree that the library shall make it available to borrowers under rules of the library. Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of the source is made.

Permission for extensive quotation from, reproduction, or publication of this thesis may be granted by my main supervisor, or in his absence, by the Dean of Higher Studies when, in the opinion of either, the proposed use of the material is for scholarly purposes. Any copying or use of the material in this thesis for financial gain shall not be allowed without my written permission.

Signature: _____

Date: _____

Dedication

I would like to dedicate this work to my precious mother. She gave me strength and she always gave me inspiration and pushed me to the top.

I would like to sincerely dedicate the completion of this work to my husband Mohammad who is always being supportive and loving.

The last dedication will be to the love of my life; my daughters Sabine and Pinar who have sacrificed a lot to arrive at the completion of this work.

This work is specially dedicated to my father, sisters, brothers and loved ones.

Acknowledgment

Greatest thanks be to Allah for being the main source of strength and motivation throughout this study.

I would like to thank my supervisor Dr. Rami Arafeh for his helpful contribution to this work.

Much appreciation and thanks are due to all the staff at the Biotechnology Research Center. And the lab technicians Mrs. Asma' Tamimi, Mr. Hasan Taradeh, Mr. Zaid Taradeh, and Mr. Ayman Eideh for their patient and relentless assistance.

Thanks also to the many friends I met while completing this program. Their support and companionship made the experience truly a delight.

Abbreviations

Abbreviation	Word or Sentence			
16S rDNA	16S ribosomal RNA subunit gene			
DNA	deoxyribonucleic acid			
RNA	ribonucleic acid			
rDNA	rDNA Ribosomal DNA			
rRNA	ribosomal RNA			
LB	Liquid Luria Bertani			
w/v	weight/volume			
rpm	rounds per minute			
sec	Second			
min	Minute			
h	Hour			
V	Volts			
TBE	tris/borate/EDTA			
EDTA	ethylene-diamine-tetra acetic acid			
WHO	World Health Organization			
EU	European Union			
bp	base pair			
DdH ₂ O	Deionized water			
rpm	Round per minute			
PCR	polymerase chain reaction			
рН	Potential hydrogen			
dNTP	Deoxyribonucleotide triphosphate			
UV	Ultraviolet			
NCBI	National Center for Biotechnology Information			
BLAST	Basic Local Alignment Search Tool			
Taq	Thermus aquaticus			
CFU	Colony forming unit			
μL	Micro liter			
μΜ	Micro Molar			
GW	Grey water			

List of Figures

Figure	Description	Page
Figure 3.1	Parsley stem and leaves surface sterilized. Plant	18
	leaves and stems were cultured on growth media after	
	surface sterilization to assure that all epiphytic	
	contamination was eliminated.	
Figure 3.2	Endophytic bacteria on total coliform and fecal	19
	coliform media. Plant extracts containing endophytic	
	bacteria were cultured on (A) total coliform and (B)	
	fecal coliform media.	
Figure 3.3	Agarose gel electrophoresis of the 16S rDNA region amplified by PCR. Leader - molecular 100 bp ladder;	22
	Lane 1,2,3- results of amplification of 16S rDNA	
	region; Last lane - negative control.	

List of Tables

Table	Description	Page
Table 2.1	Sequence names, primer codes, and primer	15
	sequences used in this study	
Table 3.1	Bacteria genera isolated from parsley and mint	20
	extract	
Table 3.2	Microbial load in the samples	21
Table 3.3	Bacteria genera isolated from parsley and mint	24-25
	extract from both commercial sources based on	
	BLASTn analysis of 16s rDNA sequencing data	

Table of Contents

ABSTRACT i
Arabic Abstract ii
DECLARATIONiii
STATEMENT OF PERMISSION TO USE iv
Dedicationv
Acknowledgmentvi
Abbreviations vii
List of Figuresix
List of Tablesx
CHAPTER ONE
Introduction1
1.1 Consumption of Raw Vegetables and Herbs 1
1.2 Contamination of Vegetables and Herbs
1.3 Determination of Microbial Quality
1.4 Bacterial Identification5
1.5 Parsley and Mint7
1.6 Endophytic Bacteria9
1.7 Outbreaks Attributed to Fresh Herbs11
1.8 Fresh herbs (mint and parsley) in Palestine west bank
2. Problem Statement and Objectives
2.1 The main objective of the present study12
2.2 Specific objectives12

CHAPTER TWO	13
Materials and Methods	13
2.1 Media preparation	13
2.1.1 M-Endo Agar LES (Total coliform)	13
2.1.2 M-FC Agar Rosolic acid (Fecal coliform)	13
2.1.3 LB Agar, Miller medium	14
2.2 Sample collection	14
2.3 Sample processing	14
2.4 Molecular characterization	15
2.4.1 Isolation of total genomic DNA	15
2.4.2 Primer sequences used in this study	15
2.4.3 Polymerase Chain Reaction (PCR) conditions	15
2.4.4 Agarose Gel Electrophoresis	16
2.4.5 DNA Purification	16
2.4.5.1 Gel Purification	16
2.4.5.2 PCR product purification	16
2.4.6 Sequencing of 16S rDNA	16
2.5 Data analysis and software	17

CHAPTER THREE	18
Results and Discussion	18
3.1 Isolation of Endophytic Bacteria	18
3.2 Qualitative Analysis	19
3.3 Quantitative Analysis	21
3.3.1Total Coliform Counts	21
3.2.2 Fecal Coliform Counts	22
3.4 Molecular Identification of Parsley and Mint Associated Bacteria	22
3.4.1 16s rDNA PCR, Gel electrophoresis and Sequencing	22
3.4.2 BLASTn Results	23
3.4.3 Discussion of BLASTn Results	26
CHAPTER FOUR	33
Conclusions and Future Work	33
4.1 Conclusions	33
4.2 Future Work	35
References:	36
Appendices	42

CHAPTER ONE

Introduction

1.1 Consumption of Raw Vegetables and Herbs

Many raw vegetables and herbs are incorporated into fresh dishes, such as ready-to-eat salads and native delicacies. The consumption of these fresh vegetables adds high nutritional value to one's diet, as they contain vitamins, dietary fibers, and minerals. They are often eaten raw to preserve their natural taste and preserve heat sensitive nutrients. Herbs, Particularly Parsley and mint are widely used in folk medicine in addition to providing nutrients and vitamins. Moreover, the antioxidant content of fresh vegetation is thought to have a protective effect against free radicals, which are implicated in the pathogenesis of most chronic diseases (Carlsen et al., 2010).

Fresh products occupies an increasingly important place in the human food supply because of its health-promoting nutritional properties. However, it must be noted that the consumption of raw vegetation, while nutritionally advantageous, its associated with increased risk of bacterial contamination. Data provided by the World Health Organization (WHO)/Food and Agriculture Organization (FAO) indicate that there was a 4.5% yearly increase in fruit and vegetable consumption between 1990 and 2004, with outbreaks of foodborne illnesses associated with the consumption of fresh produce increasing in frequency simultaneously (World Health Organization, 2008) These salad vegetables and herbs are normally consumed without heating or boiling step to get rid of unwanted contamination, which increases the possibility of food poisoning. The development of advanced diagnostic methods and surveillance systems have also

enabled authorities to pinpoint fresh produce as the source of foodborne disease (Naimi et al., 2003).

1.2 Contamination of Vegetables and Herbs

Vegetables and herbs can become contaminated with enteric bacteria, viruses, and parasitic human pathogens throughout their production from planting to consumption. Contamination of products may occur at all stages of production and processing. Possible sources of contamination include soil, feces, water, ice, animals, harvesting and processing equipment, and workers at any stage of production (Harris et al., 2003). Since the early 1990s, awareness of the potential of fresh produce to cause foodborne disease has increased, and the number of reported outbreaks associated with the consumption of fresh vegetables has grown steadily. Most of the reported outbreaks of gastrointestinal disease linked to fresh produce have been associated with bacterial contamination, particularly with members of the *Enterobacteriaceae* family. *Salmonella* spp., *Shigella* spp., pathogenic *Escherichia coli*, *Listeria monocytogenes* and *Campylobacter* spp. (Uneke, 2007).

The quality of irrigation water used in agriculture is a very important factor to avoid contamination of plants for consumption, and is a potential hazard for human health and even plants. The use of untreated wastewater and water supplies contaminated with sewage for irrigation has been implicated as one of the important sources of pathogenic microorganisms contaminating vegetables. Several studies draw the connection between irrigation with contaminated water and the presence of a high microbial load or pathogenic bacteria on the vegetables (Rai & Tripathi, 2007) (Barker-Reid et al., 2009). The World Health Organization has recommended that crops to be eaten should be irrigated only with biologically treated effluent

that has been disinfected to achieve a coliform level of not more than 100/100 ml in 80% of the samples.

Studies have also demonstrated that the use of poultry or cow manure as fertilizer during agronomic practices influences the fecal bacterial counts recorded on vegetables (Atidégla et al., 2016). Manure-handling guidelines suggest a composting period before application of manure (Augustin & Rahman, 2010). So it has been found that three days of composting animal manure at 131 F (55°C) is effective at lowering the amount of *E. coli, Salmonella* and *Listeria monocytogenes* to undetectable levels (Carlsen et al., 2010).

Post harvesting processes can also prove to be the source of contamination of fresh produce, as the produce pass through several pieces of equipment and are subject to several cooling and/or washing procedures. Studies have found cutting equipment, shredders, and conveyors, as well as other pieces of equipment, as the source of contamination of fresh produce with human pathogens (Buchholz et al., 2012).

Water used to wash produce post-harvesting has also been shown to be the source of contamination that caused large outbreaks of *Salmonella* (Sivapalasingam et al., 2003) (Gagliardi et al., 2003).

1.3 Determination of Microbial Quality

Coliforms are facultative anaerobic, Gram-negative, non-spore forming bacilli that ferment lactose and produce gas. They are commonly found in the environment, such as in soil, and in the intestines of animals, including humans. Total coliform count is commonly used as an indicator of the sanitary quality of food and water. Common genera include *Citrobacter*, *Enterobacter*, *Hafnia*, *Klebsiella*, and *Escherichia*.

Fecal coliforms are bacteria that are Gram-negative bacilli, not sporulated, oxidase-negative, facultative aerobic or anaerobic, able to multiply in the presence of bile salts or other surface agents that have equivalent properties, and are able to ferment lactose with acid and gas production in 48 h at the temperature of 44.5°C. Fecal coliforms are the coliform bacteria that generally originate from the intestinal tract of warm-blooded animals. They are cultured by increasing the incubation temperature to 44.5 C and using a somewhat different growth media.

Intestinal bacteria are primarily transmitted to the environment via feces, and therefore it is immensely important to monitor the potential fecal contamination of food and water in order to protect human and environmental health. Because fecal coliforms are considered a more accurate indication of animal or human waste than the total coliforms. However, reference to fecal coliforms by the term "thermotolerant coliforms" is gaining popularity because there exist a few genera of bacteria of non-fecal origin that are detected in testing procedures for fecal coliform. Thermotolerant coliforms include common root and shoot colonizers like *Enterobacter* and *Pantoea*, as well as plant pathogens like *Erwinia*, *Pectobacterium*, pathogenic species of *Pantoea*, and human pathogens such as certain *E. coli* stains, *Salmonella*, and *Shigella*.

E. coli is the most common thermotolerant coliform present in feces (typically >90%) and is regarded as the most specific indication of recent fecal contamination (Paruch & Mæhlum, 2012). The presence of *E. coli* in food is an indicator of direct or indirect fecal contamination, as well as an indicator for the possible presence of enteric pathogens. *E. coli* is the only member of the coliform bacteria and thermotolerant bacteria that is exclusively found in feces, and that does not multiply considerably in the environment (Haller et al., 2009).

Most *E. coli* strains are part of the normal flora of the gut and are harmless. However, there are also pathogenic strains associated with human and animal diseases. The Shiga toxin producing *E*.

coli (STEC) is a group of pathogenic strains of *E. coli* that has over 200 different serotypes. *E. coli* O157:H7 is the most important serotype in this group in regards to public health. This serotype is the main pathogenic bacteria that causes hemorrhagic colitis with bloody diarrhea and Hemolytic Uremic Syndrome. Fresh produce is recognized as an important source of foodborne pathogens; in particular pathogenic *E. coli*. Contaminated fruit and vegetables account for \approx 20% of all reported outbreaks of verotoxigenic *E. coli* and notable outbreaks have occurred from spinach, lettuce, and sprouted seed.

1.4 Bacterial Identification

The identification of bacteria has traditionally involved a process of observing phenotypic characteristics, such as colony and cell morphology, by Gram staining or other staining procedures, nutritional and physical requirements for growth, and other factors that have been developed and improved to the point where basic laboratories are able to identify isolates to the species level by fairly simple procedures. The characteristics used in these traditional identification schemes are all phenotypic, meaning that they are the products of gene expression. With the development of new technology, it is now possible to study the microbial genome and identify species by genotypic characteristics. The development of certain technologies, notably PCR and Sanger sequencing, has caused an explosion of published methods for genotyping bacteria.

Some bacterial identification schemes rely on the production of a banding pattern. For example, Pulsed-field gel electrophoresis (PFGE) is a technique that involves the restriction digest of bacterial DNA followed by the electrophoretic separation of the large DNA restriction fragments to generate a highly specific genetic fingerprint. This method is the method of choice in the

typing of human bacterial pathogens and the investigation of disease outbreaks; however, it is relatively costly and requires a number of days to obtain a result.

Other techniques for the identification of bacteria to the strain level rely on the sequencing of genetic markers. Multi-locus sequence typing (MLST) involves the sequencing of 400-500 base pair fragments of DNA at seven conserved genes. Multi-locus variable number of tandem repeats analysis (MLVA) is a technique that involves the amplification and sequencing of tandem repeats. MLVA is quicker and simpler to perform than MLST, but the technique suffers from issues with reproducibility.

Many bacterial species can be identified by sequencing specific sections of ribosomal DNA – the 16S rRNA gene is most commonly used - after amplification by PCR, and then comparing the results to sequences stored in a database. Presently, the bacterial ribosomal RNA (rRNA) operon, consisting of the 16S rRNA and 23S rRNA gene as well as an intergenic spacer (IGS) region, is the most frequently used molecular marker in microbial ecology. This is for a number of reasons, namely because of: (i) its universal abundance, (ii) the presence of both variable and highly conserved sequence domains, (iii) its high discriminatory potential, (iv) its multiple-copy nature, and (v) the availability of rDNA sequences in public databases such as GenBank regions. There are enough polymorphisms in the 16S rRNA gene to distinguish between species of bacteria. Because the 16s rRNA gene compromises a conserved region, universal PCR primers can be designed that are complementary to the conserved regions and the sequence of the variable region in between these regions is used for the phylogenetic assessment. The common lengths of sequences to compare are 500 and 1,500 bp, and sequences in databases are of various lengths (Clarridge, 2004).

The 16S rRNA gene sequences for a large number of bacterial strains have been sequenced. GenBank is the largest databank of nucleotide sequences, which includes over 108 million sequences, of which over 90,000 are of 16S rRNA gene. This means that there are many previously deposited sequences against which to compare the sequence of an unknown strain

All of the genotyping methods mentioned above have their limitations. Ideally, the sequence of the entire genome of a microbial isolate would be used to provide reliable typing. Until recently, this would have been very costly and taken years to complete, but with the evolution of next-generation sequencing (NGS) technology, whole genome sequencing (WGS) has become a practical option. Recently WGS has become within the scope of small clinical microbiology and research labs. The costs of NGS machines are falling and an entire bacterial genome can now be sequenced for a price comparable to the cost of MLST typing using conventional PCR/Sanger sequencing.

1.5 Parsley and Mint

Parsley (*Petroselinum crispum*) is a green herbaceous plant that belongs to the Apiaceae or Umbellifera family, which is recognized by aromatic plants and compound flower umbels. The Latin name *Petroselinum crispums* is derived from the Greek word (pétros) which means rock, and selinum which was the Latin name for celery (Parthasarathy et al., 2008)

It is a biennial herb and is widely propagated by seeds, which are sown 1cm below soil in relatively moist and warm conditions, best in a sunny area that receives direct light for 6–8 hours a day, with a pH range of 6–7, forming a plant with spindle-shaped roots and erect stems reaching height of 0.8 meters, with green leaves and yellow green flowers growing in groups. The upper leaves are dark green divided to create feather like-structure. The small greenish

yellow flowers have five petals on compound umbels, and the lower leaves are divided into two or three sides. The fresh roots are yellowish, carrot shaped, with a yellowish-white to reddishyellow clip (Peterson et al., 2006).

Many vegetables such as parsley, carrot and others, have therapeutic health benefits and anticancer activity due to their production of psoralen (5-methoxypsoralen) (Peterson et al., 2006).

Parsley is also known to act as an antioxidant, and have anticancer functionalities to produce phenolic compounds (Zhang et al., 2006).

Parsley extract also has a diuretic and laxative effect by interfering with the function of the Na+/K+ pump in the kidney and the colon through inhibition of the pump, which stimulates Na-K- Cl co-transporter and increases electrolyte and water secretion (Kreydiyyeh et al., 2001).

Mint (*Pepper mint*) is a plant with shallow roots close to the surface of the earth. It is a sterile plant that does not produce seeds. It grows in the spring by planting roots close to the surface, and is grown as a row crop in the first year after planting as it grows to give a solid holder called Meadow mint. The cultivation is preserved for several years by plowing the ground 4 to 6 inches deep in the late fall, which leads to keeping the field longer than 2 or 3 years (Murphy, 1953). Mint is also a plant that contains antioxidants, and has phenolics and polyphenolic compounds in its extract (Kanatt et al., 2007). Also, it has antimicrobial properties against the most prevalent microorganisms in oral infections (Al-Sum & Al-Arfaj, 2013).

1.6 Endophytic Bacteria

Bacteria can associate with plants in a number of ways. They can be pathogens, symbionts, epiphytes, or endophytes. Epiphytic bacteria are typically Gram negative and live on the surface of the plant, where they tend to cluster between epidermal cells, and are found in fewer numbers across the waxy cuticle. Dehydration and UV radiation seem to have a negative effect on the viability of epiphytic bacteria, which explains their relatively low numbers. In any case, visualization of leaves by scanning electron microscopy shows very few bacterial cells on leaves that have been washed, suggesting that epiphytic bacteria can be easily removed (Berg et al., 2005).

Of the four types of interactions between plants and bacteria, endophytic interactions are the least understood. Endophytes are bacteria that enter the interior of plants without causing disease symptoms or forming symbiotic structures like nodules. Endophytic bacteria are of interest because they can improve plant growth and the nutrition of plants through nitrogen fixation. Recent evidence has shown that human-pathogenic bacteria can also colonize plants as alternative hosts. Research has revealed that human enteric pathogenic bacteria can survive as endophytes or epiphytes, but the relationship depends on bacterial species as well as the plant cultivar. The phenomenon is still not well understood, but it may be dependent on the specific microflora of each plant. The phenomenon of pathogenic bacteria colonizing plants as endophytes is of particular interest because it means that human pathogens protected in the internal tissue of the plant cannot effectively be removed by standard post-harvest biocidal treatments or even surface sterilization (Berger et al., 2010).

Attachment of enteric human pathogens to plant tissue is the first step towards colonization of the plant environment. Fimbriae, flagella, and biofilms have a role in this attachment. It has been

noted that different strains of *E. coli* differ in their ability to attach to alfalfa sprouts, and sometimes the ability to attach can be gained by the insertion of a plasmid containing the gene for curli (a type of fimbria) production (Jeter & Matthysse, 2005). Continued research in this area is needed to further the understanding of the interactions between different plants and different bacteria and what factors are critical for the establishment of pathogens in the internal plant environment.

As for the routes taken by bacteria to the inside of the plant, it could be by the leaf surface, which has numerous stomata that provide entry into the substomatal cavity. Damage caused by spoilage bacteria or fungi can also enable human pathogens to enter the plant tissue where they are protected. In immature plants, the protective structures such as the casparian strip are not fully formed, which enables the entry of bacteria into the xylem, which forms a continuous tube up to the leaves through which bacteria can travel.

Several studies have been designed to artificially inoculate plants with pathogenic bacteria in order to study the factors that lead to their internalization, such as the bacteria being present in the water or the soil or on the plant surface, and the bacterial load necessary to initiate internalization, as well as the point of entry. Lettuce, because of its commercial importance, has been used as a model to demonstrate the internalization of human pathogens. In one experiment, lettuce seedlings were propagated in soil inoculated with *E. coli* 0157:H7 of different concentrations. At different time intervals samples were taken and washed to remove surface located bacteria. The *E. coli* strain was then recovered from the internal tissues of the seedlings (Solomon et al., 2002).

In a similar study, colonization of plant roots by *E. coli* appeared to follow a process similar to that of some endophytic microflora like *Klebsiella pneumoniae* and *Pectobacterium*, which exploit natural openings, such as emerging lateral roots (Dong et al., 2003).

1.7 Outbreaks Attributed to Fresh Herbs

Fresh herbs, which are grown close to the soil surface are more susceptible to contamination, have been implicated as vehicles for the transmission of microbial foodborne disease worldwide. In the United States, from 1996 to 2015 the FDA reported nine outbreaks linked to basil, parsley, and cilantro, which resulted in 2,699 illnesses and 84 hospitalizations (Control & Prevention, 2014). Of those outbreaks, four were linked to basil, three to cilantro, and two to parsley, prompting microbiological surveillance sampling by the FDA. Other epidemiologic investigations have specifically implicated chopped uncooked parsley as the source of several Shigellosis outbreaks in the United States. The source of contamination was found to be unchlorinated water that was used in hydrocoolers and to make ice in the packing area where the parsley was grown. Shigella contamination is of particular concern because of the low infectious dose of about 10 cells, giving these bacteria the potential to cause large outbreaks. Overall, the number of foodborne pathogens that are associated with fresh produce has been increasing, with E. coli O157:H7 being the most common pathogen associated with them. In addition to E. coli O157:H7, Salmonella spp and Listeria monocytogenes are the most common pathogens that contaminate leafy green vegetables.

1.8 Fresh herbs (mint and parsley) in Palestine west bank:

The agricultural sector is one of the most important sources of economic growth and employment in Palestine. It is known as economic backbone of the majority of the local

population, which, in addition to fulfilling the populations basic nutritional needs, directly benefits 50% percent of the population. For many centuries, the richness of Palestinian soil made it possible to produce of rich crops including fresh-herbs that provided the ingredients for delicious and healthy Palestinian cuisine. This sector carries much promises, but it faces a number of substantial obstacles, as growing herbs requires access to fresh water, technical expertise, and specially trained workers to prevent contamination with foodborne pathogens (Butterfield, 2000).

2. Problem Statement and Objectives

2.1 The main objective of the present study is:

To our knowledge, there is limited information available about the microbiological quality of fresh herbs available in the market in Palestine. Therefore, this study was designed to assess the microbiological quality of fresh parsley and mint in Hebron and Bethlehem and to identify potential risks for the consumers.

2.2 Specific objectives:

1. Explore the content of latent internal microbes

2. Identify the bacteria present in the samples, to determine if bacteria include pathogenic or non-pathogenic species.

CHAPTER TWO

Materials and Methods:

This study was conducted in the microbiology laboratory of Palestine-Korea biotechnology center at Palestine Polytechnic University, Hebron, Palestine.

2.1 Media preparation:

The following media were prepared and used in the experimental parts in this study:

2.1.1 M-Endo Agar LES (Total coliform):

M-Endo agar LES (HI Media Laboratories, 2019), was prepared according to the manufacturer's instructions, by weighting of 51.05 grams of M-Endo agar LES powder in 980.0 ml deionized water containing 20.0 ml of 95% ethanol, mixed and boiled thoroughly to complete dissolve the powder. the membranes of filtration samples were transferred to the surface of the M-Endo Agar medium in the Petri dishes. the plates were incubated in the inverted position at 37° C for 22 ± 2 hours in the total coliform. Colonies that are red and have a metallic sheen were observed and counted.

2.1.2 M-FC Agar Rosolic acid (Fecal coliform):

M-FC Agar media (HI Media Laboratories, 2019), was prepared according to the manufacturer instructions, by weighting 52.0 g of the media powder in 1.0 L of deionized water mixed them thoroughly and heat it in the microwave with a frequent agitation and boil for 1.0 minute to complete dissolve the powder. Then added 10.0 mL of a 1.0% solution of rosolic acid in 0.2 NaoH with continue heating for 1.0-minute, pH was adjusted to 7.4 the membranes of filtration samples were transferred to the surface of the M-FC Agar medium in the Petri dishes, the plates were incubated in the inverted position at 44.5 ± 0.5 °C for 22 ± 2 hours. colonies of fecal coliform that are blue, was observed and counted.

2.1.3 LB Agar, Miller medium

(Luria- Betrani) broth liquid medium, was prepared according to the manufacturer instructions, by weighting 25.0g LB broth, Miller and 15.0g agar in liter of deionized water ,10.0g tryptone, 10.0g sodium chloride (Nacl), and 5.0g yeast extract, mixed them thoroughly to complete dissolve the powder, the pH was adjusted to 7.0, The medium was autoclaved at 121°C for 15 min in regular autoclave. Then Glycerol stock was prepared by using freshly grown overnight culture of bacterial species (50-50% v/v) glycerol stock prepared by taking 500.0 μ l of bacteria to 500.0 μ l of autoclaved glycerol, mixed thoroughly before being stored at -80°C to be used in the future experiments.

2.2 Sample collection

Fresh parsley and mint were obtained from local groceries in Hebron city from Al-Helman Farms source (7 samples), neighboring markets (Rami-Levy market) (11 samples), and from home garden grown source in Hebron and Bethlehem cities (4 samples). Samples were transferred to the microbiology lab.

2.3 Sample processing

From each sample parsley and mint, (25.0 g) were examined as the following procedures:

- a) Plants material was washed with 125.0 mL of 5.0% of sodium hypochlorite which was mixed with 375.0 mL deionized autoclaved water, followed by surface sterilization which was accomplished by using Ethanol 70% for less than 30 sec in order to ensure and eliminate epiphytic bacteria (Warakagoda and Subasinghe, 2011) followed by three times washing with 500.0 mL deionized autoclaved water.
- b) The water of the washed samples was run through a membrane with a pore size of 0.45 µm to ensure that there were no external bacteria on the surface of the plant.
- c) 5.0 grams of plant parts were grinded with sterilized mortar and pestle, in case of dried plants extract 500.0 µl of deionized autoclaved water were added and mixed well to facilitate grinding.

- d) Serial dilution was carried out at 10- fold dilutions of the plant extract.
- e) Freshly prepared bacterial cultures were grown overnight incubation, on fecal media Petri dish plates at 44°C, and total media Petri dish plates at 37°C for 24 hours.
- f) After 24 hours, some colonies from the grown bacteria were picked with a loop and transferred to LB agar media plates as enrichment step.

2.4 Molecular characterization

2.4.1 Isolation of total genomic DNA

Bacterial total genomic DNA was extracted using a plant DNA purification kit (Norgen Biotek Crop, Ontario, Canada) according to the manufacturer's instructions.

2.4.2 Primer sequences used in this study:

Table 2.1: Sequence names, p	primer codes,	and primer sec	quences used in this study
------------------------------	---------------	----------------	----------------------------

Primer code	Primer Sequence	Reference
16S rDNA	Forward 5' agt ttg atc ctg gct cag 3'	Barghouthi, S.A., 2011
16S rDNA	Reverse 5' gga cta cca ggg tat cta at 3'	Barghouthi, S.A., 2011

2.4.3 Polymerase Chain Reaction (PCR) conditions

The PCR protocol used to amplify 16S rDNA region was as follows: PCR mixture (final volume of 25.0µl) which contained 17.4µl molecular grade H₂O, 2.5 µl of 10x PCR buffer, 2.5µl of (20 mM MgSO₄), 0.5µl of (10 µM dNTPs mixture) (Fermantus/DNTp100), 1.0µl of each forward and reverse primer working stock, 1.0 µl DNA template-from colony, and 0.125 µl of Taq-DNA -Polymerase (5units/ µl)(Hy-labs Ltd. Item number HTD0078). The negative control was composed of all the components of the PCR reaction except DNA template. The PCR reactions were carried out in an Applied Biosystem 2720 thermal cycler under the following settings: 95°C for 5.00 min; 34 cycles of 95°C for 1:00 min, 52°C for 1:00 min, 72°C for 1:30 min, and a final elongation at 72°C for 10:00 min.

2.4.4 Agarose Gel Electrophoresis

A 1.4% (w/v) agarose was prepared by dissolving 2.1 g agarose (Ultrapure agarose- Invitrogen REF#16500) in 150 ml 1X TBE buffer and 9.0 μ l ethidium bromide (Fluka/46065) was mixed in the gel solution right before casting. Samples (25.0 μ l) were then loaded. A100bpDNA ladder (GeneDireX/ DM001-r500) was run with the samples for size approximation. Electrophoreses was performed initially at 80V for 15 min. then changed to final constant power of 120 V for 1:00 hour. The gel was visualized using a Bio-Rad Molecular Imager® Gel DocTM XR+.

2.4.5 DNA Purification

Purification of DNA was done as the following visualization of PCR bands; strong bands were directly purified from the gel, otherwise weak bands it was purified from the PCR product.

2.4.5.1 Gel Purification

The targeted bands for sequencing were cut from the gel, and then the DNA was purified using Nucleo Spin Gel and PCR Clean-up purification kit. Briefly, the gel containing the DNA was dissolved to get rid of it. Then a mini-column was used to separate the DNA from the degraded gel fragments. DNA was washed and then collected using DNAse- RNAse free water.

2.4.5.2 PCR product purification

Purification of the PCR product was done by Nucleo Spin Gel and PCR Clean-up purification kit. Briefly, buffers were added in proportion to the PCR reaction volume as detailed in the kit. The mixture was transferred to a binding column, which were used to adsorb the target DNA and get rid of other residues such as excess primers. The DNA was washed using the buffers from the kit and then collected.

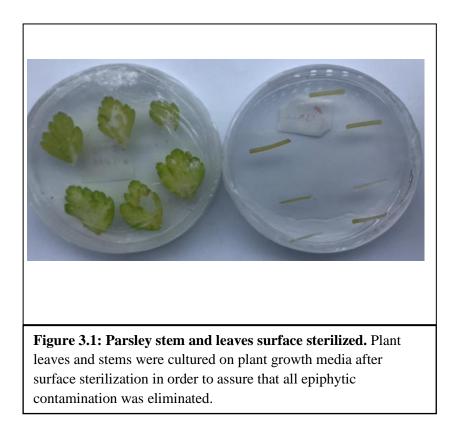
2.4.6 Sequencing of 16S rDNA

DNA sequencing was performed at Augusta Victoria Labs by sanger sequencing, the samples were sequenced using sequencing PCR program under the following settings:95°C for 1 min, (25 cycles): 95°C for 10 sec, 52°C for 5 sec, 60°C for 4 min, 4°C for ∞ .

Purification of the PCR product was done by (Big Dye X-Terminator Purification Kit Protocol P/N 4374403). Briefly, SAM solution and Big Dye X-Terminator Solution were added in

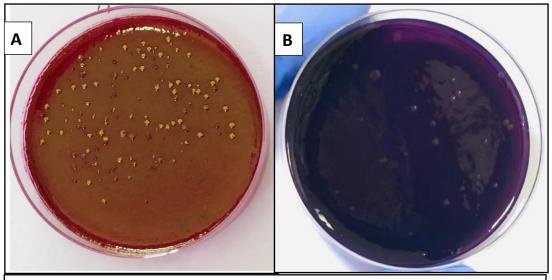
proportion to the PCR reaction volume as detailed in the kit. Followed by mixing the contents for 30 minutes and centrifuge at 1000 rpm for 2 min.

2.5 Data analysis and software


The computer programs were used during this study, Microsoft Excel Office 2010 was the main computer program used. The sequences analysis done with BLASTn. and the resulting sequences were edited visually by using Sequencher v.4 software.

CHAPTER THREE

The presence of parsley and mint endophytic associated bacteria was revealed by screening various samples of plant material from different sources (Rami Levy, Hebron market, and home garden grown samples) The plant extract from some samples showed heavy contamination in both total coliform and fecal coliform media.


3.1 Isolation of Endophytic Bacteria

After surface sterilization procedure, samples were cultured for 72 h, and no contamination arising from the surface was evident (Figure 3.1). Thus, it was clear that the surface sterilization procedure eliminated all epiphytic bacteria, this was noted by (Warakagoda and Subasinghe, 2011) and all subsequent experiments were done on samples subject to the same procedure, and plant extracts were assumed to contain only endophytic bacteria.

3.2 Qualitative Analysis

Serial dilutions of samples were plated on total coliform and fecal coliform media. It was observed that total coliform media supported more microbial growth than fecal coliform media (Figure 3.2). Typical coliform genera were identified visually according to the manufacturer's instructions: *E. coli* - Pink to rose-red, green metallic sheen; *Enterobacter/Klebsiella* - Large, mucoid, pink; *Salmonella* - Colorless to pale pink; *Pseudomonas* - Irregular, colorless; *Pantoea* - Yellow pigmented. The number and percentage of positive samples for each genus out of eleven samples from Rami Levy and seven samples from Hebron market are found in Table 3.1. In addition to the above-mentioned genera which were mentioned in the manual, other rod-shaped and beige-pigmented colonies were also observed. These colonies were later identified as a strain of *Lelliottia*. Samples were taken from individual colonies for further molecular identification procedures.

Figure 3.2: Endophytic bacteria on total coliform and fecal coliform media. Plant extracts containing endophytic bacteria were cultured on (A) total coliform and (B) fecal coliform media.

		En	dophytic Ba	acteria				
Genus of bacteria	Herb source							
	Rami levy				Hebron markets			
	P(F)	P(T)	M(F)	M(T)	P(F)	P(T)	M(F)	M(T)
Pseudomonas no. (%)		1(9%)	3(27%)					
Pantoea no. (%)	4(36%)			2(18%)				
Enterobacter no. (%)	2(18%)	2(18%)		1(9%)	1(14%)	2(28%)		3(42%)
Lelliottia no. (%)								1(14%)
Escherichia coli no. (%)	1(9%)				3(42%)			
Klebsiella no. (%)							4(57%)	
Salmonella no. (%)	1(9%)							
Note						1	1	1
P:(Parsley), M:(Mint) F:(Fecal coli	form) T:(To	tal coliform	ı)				

Table (3.1) shows the number of positive samples followed by the percentage of positive samples for each bacterial genus for each herb and source. The most prevalent genus from both commercial sources was *Enterobacter*, which was found in 11 samples, followed by *Pantoea*, which was found in 6 samples, *Klebsiella* in 4 samples, and *E. coli* and *Pseudomonas* in 4 samples. *Salmonella* and *Lolliottia* were each found in only 1 sample.

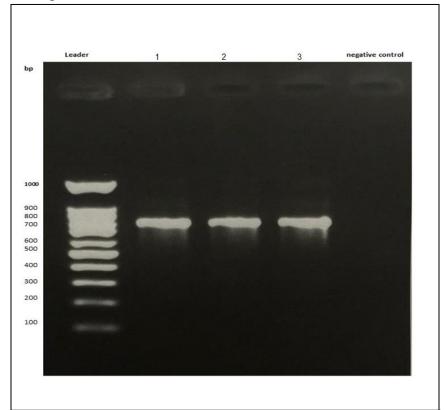
Source	Total col	iform media	Fecal coliform media		
	Median	Range	Median	Range	
Rami Levy	5.66*	4.81 - 5.88	5.06	4.58 - 5.54	
Hebron market	5.82	5.36 - 6.27	4.65	4.53 - 4.78	
Home garden grown	0.0	0.0	0.0	0.0	
Rami Levy	5.98	5.94 - 6.03	4.96	4.81 - 6.11	
Hebron market	5.60	4.96 - 6.99	4.70	4.58 - 4.82	
Home garden grown	0.0	0.0	0.0	0.0	
Negative control	0.0	0.0	0.0	0.0	
	Rami Levy Hebron market Home garden grown Rami Levy Hebron market Home garden grown	MedianRami Levy5.66*Hebron market5.82Home garden grown0.0Rami Levy5.98Hebron market5.60Home garden grown0.0	Median Range Rami Levy 5.66* 4.81 – 5.88 Hebron market 5.82 5.36 – 6.27 Home garden grown 0.0 0.0 Rami Levy 5.98 5.94 – 6.03 Hebron market 5.60 4.96 – 6.99 Home garden grown 0.0 0.0	Median Range Median Rami Levy 5.66* 4.81 – 5.88 5.06 Hebron market 5.82 5.36 – 6.27 4.65 Home garden grown 0.0 0.0 0.0 Rami Levy 5.98 5.94 – 6.03 4.96 Hebron market 5.60 4.96 – 6.99 4.70 Hebron market 0.0 0.0 0.0 0.0	

Table 3.2: Microbial load in the samples

Log10 CFU/g*

Note: Samples that were not in the range of enumerated CFU per plate were excluded as they could not be reliably enumerated

3.3.1 Total Coliform Counts


No significant difference in total coliform level was found between the two commercial sources for either herb. The microbial load observed in mint was generally lower in samples taken from Rami Levy, which were found to have a total coliform count ranging from $4.81 - 5.88 \text{ Log}_{10}$ CFU/g, compared to $5.36 - 6.27 \text{ Log}_{10}$ CFU/g in samples taken from Hebron market. As for parsley samples, the opposite was true, Samples from Rami Levy contained $5.94 - 6.03 \text{ Log}_{10}$ CFU/g, and samples from Hebron market contained $4.96 - 6.99 \text{ Log}_{10}$ CFU/g. Parsley evidently contained more total coliform endophytic bacteria than mint, but the difference is not significant. No coliforms were found in the samples taken from the home garden source or the negative control.

No significance difference in fecal coliform level was found between the two commercial sources in both herbs. The microbial load observed in mint was generally higher in samples taken from Rami Levy, which were found to have a fecal coliform count ranging from $4.58 - 5.54 \log_{10} CFU/g$, compared to $4.53 - 4.78 \log_{10} CFU/g$ in samples taken from Hebron market. As for parsley samples, the opposite was true, with samples from Rami Levy containing $4.81 - 6.11 \log_{10} CFU/g$, and samples from Hebron market containing $4.58 - 4.82 \log_{10} CFU/g$. No coliforms were found in the samples taken from the home source or the negative control.

3.4 Molecular Identification of Parsley and Mint Endophytic Bacteria

3.4.1 16s rDNA PCR, Gel electrophoresis and Sequencing

Samples from selected colonies were subjected to PCR using 16S rDNA primers. The amplification of the 16S rDNA region produced band at about 800 bp (Figure 3.3), and the purified bands were sequenced.

Figure 3.3: Agarose gel electrophoresis of the 16S rDNA region amplified by PCR. Leader - molecular 100 bp ladder; Lane 1,2,3results of amplification of 16S rDNA region; Last lane - negative control.

Purified samples of the amplified PCR products were sent to Victoria Augusta Hospital in Jerusalem, Palestine for sequencing. DNA sequences were assembled from the forward and reverse sequences and chromatogram data was investigated and showed a single nucleotide signal. The product of the reverse sequence showed clear signals up to a particular point. On the other hand, the product from the forward primer showed double peaks which means there's more than one species in the same colony. Sequences were edited and evaluated visually in sequencher v.4 software. The sequences were subjected to BLAST search on the NCBI (National center of Biotechnology Information) database to explore similarity.

3.4.2 BLASTn Results

The sequences were subjected to BLASTn which identified similar bacterial species that had 100% sequence homology and 100-99% query coverage as shown in the following table (Table 3.5). Twenty-four different strains of bacteria were identified, belonging to seven different bacterial groups.

Table 3.3 Bacteria genera isolated from parsley and mint extract from both commercial sourcesbased on BLASTn analysis of 16s rDNA sequencing data

Sequence number	Reverse sequence Length (after cleaning)	Mint or parsley	First BLASTn result	Query cover	Family	Notes/Pathogenicity
1	492 bp	Mint	Pseudomonas koreensis strain SS NBRI 17	100%	Pseudomonadaceae	• Inhibited a certain fungal plant pathogen
2	479 bp	Mint	Pseudomonas sp. strain COR10	100%	Pseudomonadaceae	No information
3	191 bp	Mint	Pseudomonas sp A7-2	100%	Pseudomonadaceae	 Causative agents of fish diseases Reduced nitrate to nitrite
4	213 bp	Parsley	<i>Pseudomonas putida</i> strain C1-1	100%	Pseudomonadaceae	 Associated with immunocompromised state Fish diseases
5	366 bp	Parsley	Pantoea agglomerans strain NA131	99%	Erwiniaceae	• Cause of diseases in a range of cultivable plants
6	439 bp	Mint	Pantoea agglomerans strain HTP	100%	Erwiniaceae	• Tumorigenic, inducing gall formation on table beet, an ornamental plant gypsophila
7	400 bp	Parsley	Pantoea agglomerans strain +Y43	99%	Erwiniaceae	 Opportunistic human infections Cause of equine abortion and placentitis and a
8	451 bp	Parsley	Pantoea agglomerans strain AA2	100%	Erwiniaceae	haemorrhagic disease in dolphin fish
9	350 bp	Mint	Pantoea ananatis strain PC2	99%	Erwiniaceae	 Plant pathogen Capable of infecting humans
10	432 bp	Parsley	Pantoea sp strain B26	100%	Erwiniaceae	• Exhibit plant growth promoting abilities

11	424 bp	Parsley	Pantoea vagans strain+Y42	100%	Erwiniaceae	• Strain C9-1, is commercially registered as a biological control agent against fire blight
12	426 bp	Parsley	Enterobacter cloacae strain BHWSL4.2	100%	Enterobacteriaceae	• Causative agent of Chili pepper seedling
13	551bp	Parsley, mint	Enterobacter cloacae strain 3849	100%	Enterobacteriaceae	-
14	295 bp	Parsley	Enterobacter hormaechei strain SU103	100%	Enterobacteriaceae	Nosocomial pathogenInvasive infections
15	357 bp	Mint	Enterobacter cancerogenus strain ILQ201	100%	Enterobacteriaceae	• Associated with urinary tract infections in human
16	265 bp	Mint	Uncultured <i>Enterobacter</i> sp. clone 65-160B-CB90	99%	Enterobacteriaceae	No information
17	252 bp	Mint	<i>Lelliottia</i> sp. strain S2E38	100%	Enterobacteriaceae	• Play significant roles in environmental and agricultural sustainability
18	213 bp	Parsley	<i>Escherichia coli</i> strain 188	100%	Enterobacteriaceae	No information
19	261 bp	Parsley	<i>Escherichia coli</i> strain SCU-397	100%	Enterobacteriaceae	Carrying antibiotic resistance genes
20	200 bp	Parsley	<i>Escherichia coli</i> strain EcPF5	100%	Enterobacteriaceae	Urinary tract infection
21	444 bp	Mint	<i>Klebsiella pneumoniae</i> strain G-A-TGW	100%	Enterobacteriaceae	Important pathogens in nosocomial infections
22	376 bp	Mint	klebsiella pneumoniae subsp. pneumoniae strain SU101	100%	Enterobacteriaceae	 Antimicrobial-resistant and multidrug-resistant Causes foodborne outbreak
23	474 bp	Mint	Klebsiella quasipneumoniae subsp. similipneumoniaestrain 2437	100%	Enterobacteriaceae	

24	99 bp	Parsley	Salmonella enterica strain SA20083039	100%	Enterobacteriaceae	•	Associated with foodborne illnesses, causing hospitalizations and deaths
							•

3.4.3 Discussion of BLASTn Results

The various bacterial species identified in this study are widely dispersed throughout the environment and can be found in soil, water, plants, and some in the gastrointestinal tract of animals and humans.

Isolated Bacteria Belonging to Pseudomonadaceae (Sequences 1-4)

Four of the sequences attained belong to the family Pseudomonadaceae, and all were of the genus Pseudomonas. BLASTn results revealed high similarity with 100% query cover included: *Pseudomonas koreensis strain SS NBRI, Pseudomonas sp. strain COR10, Pseudomonas sp A7-2, and Pseudomonas putida strain C1-1.*

The genus *Pseudomonas* contains more than 140 species, all of which are Gram-negative and aerobic bacilli, and most of which are saprophytic. More than 25 species are associated with humans. Most pseudomonads known to cause disease opportunistic infections in humans, including *Pseudomonas putida* (Baron, 1996). Some *Pseudomonas* species have been reported to be causative agents of disease in fish (SHIOSE et al., 1974).

Following is the available information about the BLASTn results.

Pseudomonas koreensis strain SS NBRI 17 (Sequence 1)

This strain is an isolate taken from agricultural soil in Korea, and reported in a study title "Suppression of disease in tomato infected by *Pythium ultimum* with a biosurfactant produced by *Pseudomonas koreensis*", where it was found to produce compounds that inhibit a certain fungal plant pathogen (Hultberg et al., 2010).

Pseudomonas sp A7-2 (Sequence 3)

This is a new *Pseudomonas* species, for which the name *Pseudomonas plecoglossicida* is proposed, and was isolated from the cultured fish ayu (*Plecoglossus altivelis*) with bacterial haemorrhagic ascites. The causative agent was similar to *Pseudomonas putida* biovar A in its phenotypic characteristics and on the basis of 16S rRNA gene sequence analysis, but it reduced nitrate to nitrite (Nishimori et al., 2000).

Pseudomonas putida strain C1-1 (Sequence 4)

P. putida is a flagellated member of the fluorescent group of pseudomonads, and is found throughout the natural environment. *P. putida* is an uncommon cause of skin and soft tissue infections, which is often associated with trauma or an immunocompromised state (Thomas et al., 2013).

Isolated Bacteria Belonging to Erwiniaceae (Sequences 5 – 11)

The second bacterial group consisted of 12 bacterial colonies with similar morphotypes, all belong to the *Erwiniaceae* family and genus *Pantoea* based on BLASTn results revealed a high similarity between 99% to 100% query cover which included: *Pantoea agglomerans* strain NA131, *Pantoea agglomerans* strain HTP, *Pantoea agglomerans* strain +Y43, *Pantoea agglomerans* strain AA2, *Pantoea ananatis* strain PC2, *Pantoea* sp. strain B26, and *Pantoea vagans* strain +Y42.

Species of the genus *Pantoea* are usually isolated from fecal matter, plants, and soil, where they exist as either pathogens or commensals.

No information is available about the specific strains obtained by BLASTn belonging to this family. Following is information available about the various bacteria identified at the species level.

Pantoea agglomerans (Sequences 5-8)

Pantoea agglomerans is a bacteria known to be associated with plants. *P. agglomerans* usually occurs in plants as an epi- or endophytic mutualistic symbiont, but nevertheless, this species has also been identified as a cause of diseases in a range of cultivable plants, such as cotton, sweet onion, rice, maize, sorghum, bamboo, walnut, an ornamental plant called Chinese taro (Alocasia cucullata), and a grass called onion couch (Arrhenatherum elatius). Some plant-pathogenic strains of *P. agglomerans* are tumourigenic, inducing gall formation on table beet, an ornamental plant gypsophila (*Gypsophila paniculata*), and wisteria vines (Dutkiewicz et al., 2016)

While it is not an obligate infectious organism in humans, it can be a cause of opportunistic human infections, mostly in infected wounds caused by plant material, or as a hospital-acquired infection, which occurs mostly in immunocompromised individuals. *P. agglomerans* bacteremia has also been documented in association with the contamination of various materials, such as

intravenous fluid, total parenteral nutrition, the anesthetic agent propofol, and other blood products (Cruz et al., 2007).

There are few reports of infectious diseases caused by *Pantoea agglomerans* in vertebrate animals other than humans. It has been identified as a possible cause of equine abortion and placentitis and a haemorrhagic disease in dolphin fish (Coryphaena hippurus). *P. agglomerans* strains also occur commonly, usually as symbionts, in insects and other arthropods.

Pantoea ananatis (Sequence 9)

Pantoea ananatis is a bacteria that occurs in diverse ecological niches. It is most significantly a plant pathogen, infecting monocotyledonous and dicotyledonous plants, causing disease in a wide range of economically important agricultural crops and forest tree species. It is considered an emerging pathogen based on the increasing number of reports of disease occurring on new hosts in different parts of the world. Unlike the majority of plant pathogenic microbes, *P. ananatis* is capable of infecting humans (Coutinho & Venter, 2009).

Disease symptoms in plants usually include the appearance of leaf blotches and spots, and stalk, fruit, and bulb rot. Center rot of onion was first described in Georgia in 1997. The disease was devastating and accounted for 100% loss in some fields. Since its discovery, *P. ananatis* has been responsible for sporadic losses of onion crops in Georgia, but it has been particularly severe in certain late-maturing cultivars. In addition to onions, the bacteria has been reported to infect cantaloupe, Eucalyptus, honeydew melons, muskmelons, pineapple, and Sudangrass. It has also been associated with a condition known as graywall in the tomato (Gitaitis et al., 2003)

Pantoea sp (Sequence 10)

Pantoea sp. Reported as having the ability to vigorously colonize rice and to exhibit plant growth promoting abilities such as N2 fixation, phytohormone production and phosphate solubilization etc. (Verma et al., 2001) this can be potentially useful for rice plants.

Pantoea vagans (Sequence 11)

Pantoea vagans is closely related to Pantoea agglomerans, and these two species are often isolated from similar environments.

Pantoea vagans is a Gram-negative enterobacterial plant epiphyte of a broad range of plants. One strain Pantoea vagans, strain C9-1, is commercially registered as a biological control agent against fire blight, a disease of pear and apple trees. (Smits et al., 2010)

Isolated Bacteria Belonging to Enterobacteriaceae (Sequences 12 – 24)

Sequences from the remaining morphotypes exhibited high homology, and the BLASTn results matched with *Enterobacteriaceae* bacterial family with 99%-100% query cover. The results included the following species: *Enterobacter cloacae* strain BHWSL4.2, *Enterobacter cloacae* strain 3849, *Enterobacter hormaechei* SU103, *Enterobacter cancerogenus* ILQ201, Uncultured *Enterobacter* sp. clone 65-160B-CB90, *Lelliottia* sp. strain S2E38, *Escherichia coli* strain 188, *Escherichia coli* SCU-397, *E. coli* EcPF5, *Klebsiella pneumoniae* G-A-TGW, *Klebsiella pneumoniae* subsp. *pneumoniae* strain SU101, *Klebsiella quasipneumoniae* subsp. *similipneumoniae* strain 2437, *Salmonella enterica* SA20083039.

In cases where the is limited information about the particular strain obtained in the BLASTn result, information is included about the bacteria at the species level.

Enterobacter cloacae (Sequences 12 and 13)

A previously unreported bacterial disease on chili pepper (*Capsicum annuum* L.) seedlings affecting as many as 4% of seedlings was observed in greenhouses in Chihuahua, Mexico. Disease symptoms began as small irregular spots and necrosis on leaf tips, and advanced to defoliation. A Gram negative, rod-shaped bacterium was isolated from diseased chili pepper seedlings. *Enterobacter cloacae* was later identified as the causative agent of this outbreak (García-González et al., 2018).

Enterobacter hormaechei SU103 (Sequence 14)

E. hormaechei is a nosocomial pathogen that can infect vulnerable hospitalized patients, particularly neonates in intensive care units (Wenger et al., 1997)

The Netherlands witnessed a nationwide outbreak with a strain of E. hormaechei. The strain spread through hospitals, despite implementation of internationally accepted infection-prevention guidelines, and caused invasive infections in more than 100 patients (Paauw et al., 2006).

Virulence traits have been tested and all studied strains were shown to have the ability invade gut epithelial, and blood-brain barrier endothelial cells, and to persist in macrophages. Due to misidentification, it has been suggested that E. hormaechei may be an under-reported cause of

infection, especially in neonates. Its isolation from various sources, including powdered infant milk formula, also makes it a cause for concern. (Townsend et al., 2008).

Enterobacter cancerogenus (Sequence 15)

A study documented four cases of *E. cancerogenus* infection associated with septicemia in two elderly men and two urinary tract infections in patients with underlying medical complications. (Abbott & Janda, 1997).

Lelliottia (Sequence 17)

As for *Lelliottia*, it is a genus that has been associated with corn roots inoculated with Canadian woodland soils. It is also known to play significant roles in environmental and agricultural sustainability, and the versatility of this bacterial group allows it to colonize diverse environmental spheres such as the plant rhizosphere, water, and soils. In addition to the ability to adapt in new environments, it also exhibits a wide spectrum of phenotypic traits, including the production of active secondary metabolites (Tchagang et al., 2018).

Escherichia coli strains (Sequences 18 – 20)

Escherichia coli forms part of the normal flora in the gut of humans and other animals. Most *E. coli* are harmless to humans. However, certain pathogenic *E. coli* strains can infect the gut and cause severe illness (Croxen et al., 2013).

E. coli is a commonly used fecal indicator organism. Its presence in food generally indicates direct or indirect fecal contamination. Substantial numbers of E. coli in food suggests a general lack of cleanliness in handling and improper storage. In ready to eat foods it is suggested that a satisfactory level of *E. coli* is <20 CFU/g ((Food & Department, 2014). This study did not enumerate E. coli, but the presence of E. coli warrants further study to quantify the amount, and indicates that there is some form of fecal contamination.

E. coli strain SCU-397 (Sequence 19) has been identified as carrying antibiotic resistance genes (Stephens et al., 2020).

Escherichia coli strain EcPF5 (Sequence 20) was identified as uropathogenic in clinical cases of postmenopausal women with recurrent urinary tract infections (Sharon et al., 2020).

Enterohemorrhagic *Escherichia coli* O157:H7 is a major foodborne pathogen that causes severe disease in humans worldwide (Lim et al., 2010).

E coli O157 does not cause disease in cattle and can be found in the feces of healthy cattle, and is transmitted to humans by the fecal-oral route through contaminated food, water, and direct contact with infected people or animals. Human infection, in addition to causing asymptomatic shedding in some individuals, can also be associated with a wide range of clinical illness, including non-bloody diarrhea, haemorrhagic colitis, haemolytic uraemic syndrome, and death (Mead & Griffin, 1998).

Interestingly, for all of the three sequences that were identified as *E. coli* in the BLASTn search, *E. coli* O157:H7 was identified as a secondary result with the same identity and query parameter percentages. The presence of this foodborne pathogen is considered unacceptable, and food safety guidelines suggest that this strain should not be detected in 25 g of ready to eat food (Food & Department, 2014). Without further study it is impossible to know if this foodborne pathogen was present or not.

Klebsiella pneumoniae (Sequences 22 and 23)

Being part of the normal animal and human flora, contamination of food with *K. pneumoniae* may not represent as a public health risk. However, this bacteria can cause destructive changes to human and animal lungs if aspirated, resulting in bloody, brownish or yellow colored jelly like sputum. In the clinical setting, it is the most significant member of the genus *Klebsiella*. In recent years, *Klebsiella* species have become important pathogens in nosocomial infections. This bacteria has also been reported as the cause of a foodborne outbreak (Calbo et al., 2011). This bacterial species is also of concern because of the multiple reports of the presence of antimicrobial-resistant and multidrug-resistant (MDR) *K. pneumoniae* strains in the food chain (Guo et al., 2016)

Some strains have also been reported that have acquired resistance to last-line antibiotics (i.e., carbapenems) (Pitout et al., 2015).

The existence of *K. pneumoniae* isolates that carry antimicrobial resistance genes could potentially be an indirect public health hazard, regardless of their pathogenicity, because they increase the available genetic pool of resistance genes.

Other studies have also found *K. pneumoniae* in fresh produce. A study carried out in Singapore found *K. pneumoniae* in 58% (50 of 86) of raw vegetables (Hartantyo et al., 2020)

Another study reported lower *K. pneumoniae* prevalence rates on raw vegetables from wet markets, compared with those from supermarkets (Puspanadan et al., 2012).

This difference was attributed to quicker turnover of products, suggesting that prolonged storage of vegetables in humid conditions should also be avoided.

Considering the prevalence of this bacteria in food, and the possibility of infection from this bacteria that is known to often have antibiotic resistance, it is not overcautious to suggest additional food safety measures need to be practiced downstream, at retail and in the home.

Klebsiella quasipneumoniae subsp. similipneumoniaestrain (Sequence 23)

K. quasipneumoniae was distinguished from *K. pneumoniae* as new species in 2004., whereas they were previously classified *K. pneumoniae* phylogroup KpII, since then isolates have been obtained from clinical samples (Garza-Ramos et al., 2016). and have been reported to have resistance to antibiotics ((Furlan et al., 2020).

Salmonella enterica (Sequence 24)

According to the CDC, *Salmonella* accounts for an estimated 1.35 million infections, 26,500 hospitalizations, and 420 deaths in the United States every year (NM, AL, & RI). Most people who get ill from *Salmonella* have diarrhea, fever, and stomach cramps. It is the third most common agent associated with foodborne illnesses, and the No. 1 foodborne pathogen causing most hospitalizations and deaths in the United States.

Salmonella lives in the intestines of most livestock and many wild animals, and is naturally present in the environment. This makes it an important food safety challenge. In the guidelines for foodstuff in some countries, *Salmonella* contamination is not tolerated. For example, in Canada, any ready-to-eat food found to contain *Salmonella* spp. would most likely fall under the classification of a health risk 2 concern and would lead to a food recall. (Ngueng Feze et al., 2018).

CHAPTER FOUR

Conclusions and Future Work

4.1 Conclusions

In this study a considerable amount and diversity of endophytic bacteria was found in the parsley and mint samples studied. Twenty-four different bacterial strains were successfully isolated and identified based on their 16S rDNA sequences. This is in agreement with other studies that also found a rich diversity of endophytic bacteria in fresh produce (Machado-Moreira et al., 2019).

This emphasizes the fact that plant endophytic bacteria are a natural phenomenon and that this association is not restricted to a certain group of plants. As for the source of this endophytic bacteria, these bacterial species could originate from a number of sources, including soil, irrigation water, manure, seeds, workers, insects, bird's feces, and many other factors that affect the bacterial presence in plants.

While most of the bacterial species found in this study are part of the normal flora found in soil and plants, and are only considered opportunistic pathogens, the probable presence of *E. coli O104:H4* and *Salmonella enterica* is concerning, considering the possible implications for human health. Outbreaks of these bacteria over the past decade have been attributed to the consumption of contaminated uncooked foods. Also, the identification of *E. coli* strains in the plant extract means that the samples were exposed to direct or indirect fecal contamination, which could be from the irrigation water, soil, manure, or other sources.

Pathogenic *E. coli* is not only known to cause huge economic losses, but also impacts human health and in some cases even causes death. Infections and intoxication as a result of foodborne outbreaks also cause billions of dollars' worth of damage, public health problems, and agricultural product loss. A considerable portion of these outbreaks is caused by foodborne pathogens on fresh produce. An *E. coli O104:H4* outbreak in Germany in 2011attracted great attention to foodborne outbreaks caused by contaminated fresh produce, and highlighted vulnerability and gaps in the early warning and notification networks in surveillance systems all around the world (Yeni et al., 2016).

It is possible that the source of the bacteria from irrigation water. It has been well-established that raw grey water (GW) is contaminated with pathogens (although less than "full" domestic wastewater) and other chemical contaminants, and thus should be treated before reuse. Potential health risks associated with the spread of pathogenic organisms through the use of treated GW are critical issues. In fact, a number of pathogens are occasionally found in raw GW (RGW), including fecal coliforms, fecal *enterococci*, fecal streptococci, *Klebsiella pneumoniae*, and *Pseudomonas aeruginosa*, among others. Interestingly, contradicting results regarding increasing levels of fecal coliforms in soils following long term greywater irrigation were

reported. Studies concluded that disinfection of treated greywater may reduce the risks not only from the potential presence of pathogens but also from the presence of ARB and antibiotic resistance genes (Troiano et al., 2018).

The striking difference in results between commercial sources of parsley and mint and home garden grown parsley and mint also need an explanation. The absence of endophytic bacteria in home garden grown parsley and mint could be due to the soil quality and irrigation water used. People usually water plants in and around their home garden using municipality water. Chlorine is widely used by municipal water systems to disinfect water from bacteria, viruses and other microorganisms that cause diseases. The use of this treated water to irrigate home garden grown plants may inadvertently kill coliform bacteria that would otherwise be left to colonize the plant. This effect has been demonstrated in experiments on spinach irrigated with water containing chlorine dioxide (Truchado et al., 2018).

Interestingly, the bacteria that were found to be particularly susceptible to the disinfected water belonged to the *Pseudomonaceae* and *Enterobacteriaceae* bacterial families, to which most of the bacteria identified in this study belong.

On the other hand, the assessment of the natural microbiome of consumable plants is important, as natural microbial communities may reduce the likelihood of pathogen colonization or survival. For example, reduced levels of *Salmonella enterica* colonization have been observed in lettuce that had a more diverse endophyte community. The mechanism for the reduction in pathogen numbers with increased endophyte diversity is not conclusively known, but may be due to an increased likelihood of the presence of antagonists to *S. enterica* being present with an increase in overall diversity.

Additional support for this concept comes from a study examining the viability of *E. coli* O157:H7 in romaine lettuce, where the phyllo-sphere bacterial diversity in plants that had culturable *E. coli* O157:H7 cells differed from that on plants where the *E. coli* was no longer viable. Native plant-associated microorganisms can act as competitors to potential human pathogens such as *Salmonella* species and *E. coli* O157:H7, suggesting that even in the absence of specific antagonistic interactions, natural phyllo-sphere and endophytic communities may limit the presence and abundance of pathogenic bacteria by simply outcompeting them in the living plant. Determining the structure of these communities might therefore provide insights into produce-borne outbreaks of disease, and even lead to the development of tools to assess the likelihood of these outbreaks occurring. Intentional inoculation of competitive native microbiota has even been proposed as a potential method to reduce pathogenic contamination of fresh produce (Jackson et al., 2015).

4.2 Future Work

Consumers have the right to be informed and must be warned about any health hazard in their food and household products. Greater attention should be paid to the prevention and control of foodborne pathogens, as well as the identification of outbreaks. Thus, it is very important to develop a rapid and reliable method for foodborne pathogenic bacteria detection.

Being that this preliminary study produced concerning results, such as the presence of *E. coli* and *Salmonella*, it is suggested that further inclusive and intensive screening of the soil, irrigation water, manure, and plants is carried out to pinpoint the source of the fecal coliform bacteria. Surveys should be expanded to include more samples, taken from other markets and sources.

It is also suggested to do more intensive screening of epiphytic as well as endophytic bacteria associated with raw plants, especially those that have close contact to the soil surface. Researchers can use selective media for known pathogenic bacteria, and can use *E. coli* as an indicator for fecal contamination. Whole genome sequencing should also be carried out on samples to characterize the bacteria more precisely.

Further studies should also be carried out to elucidate if the endophytic microflora may benefit the plants. Identifying the interactions between environment and bacterial organisms should be investigated to know what is behind these interactions and any benefits for human or animal health.

References:

- Abbott, S. L., & Janda, J. M. (1997). Enterobacter cancerogenus ("Enterobacter taylorae"): Infections Associated With Severe Trauma or Crush Injuries. American journal of clinical pathology, 107(3), 359-361.
- Al-Sum, B. A., & Al-Arfaj, A. A. (2013). Antimicrobial activity of the aqueous extract of mint plant. Sci J Clin Med, 2(3), 110-113.
- Atidégla, S. C., Huat, J., Agbossou, E. K., Saint-Macary, H., & Glèlè Kakai, R. (2016). Vegetable contamination by the fecal bacteria of poultry manure: case study of gardening sites in Southern Benin. International Journal of Food Science, 2016.
- Augustin, C., & Rahman, S. (2010). Composting animal manures: a guide to the process and management of animal manure compost.
- Barghouthi, S.A., 2011. A universal method for the identification of bacteria based on general PCR primers. Indian journal of microbiology, 51(4), pp.430-444.
- Barker-Reid, F., Harapas, D., Engleitner, S., Kreidl, S., Holmes, R., & Faggian, R. (2009). Persistence of Escherichia coli on injured iceberg lettuce in the field, overhead irrigated with contaminated water. Journal of food protection, 72(3), 458-464.
- Baron, S. (1996). Alphaviruses (Togaviridae) and Flaviviruses (Flaviviridae)--Medical Microbiology: University of Texas Medical Branch at Galveston.
- Berg, G., Eberl, L., & Hartmann, A. (2005). The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environmental microbiology, 7(11), 1673-1685.
- Berger, C. N., Sodha, S. V., Shaw, R. K., Griffin, P. M., Pink, D., Hand, P., & Frankel, G. (2010). Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environmental microbiology, 12(9), 2385-2397.
- Buchholz, A. L., Davidson, G. R., Marks, B. P., Todd, E. C., & Ryser, E. T. (2012a). Quantitative transfer of Escherichia coli O157: H7 to equipment during small-scale production of fresh-cut leafy greens. Journal of food protection, 75(7), 1184-1197.
- Buchholz, A. L., Davidson, G. R., Marks, B. P., Todd, E. C., & Ryser, E. T. (2012b). Transfer of Escherichia coli O157: H7 from equipment surfaces to fresh-cut leafy greens during processing in a model pilot-plant production line with sanitizer-free water. Journal of food protection, 75(11), 1920-1929.
- Butterfield, D. (2000). Impacts of water and export market restrictions on Palestinian agriculture. Toronto: McMaster University and Econometric Research Limited, Applied Research Institute of Jerusalem (ARIJ). http://www. socserv. mcmaster. ca/kubursi/ebooks/water. htm.

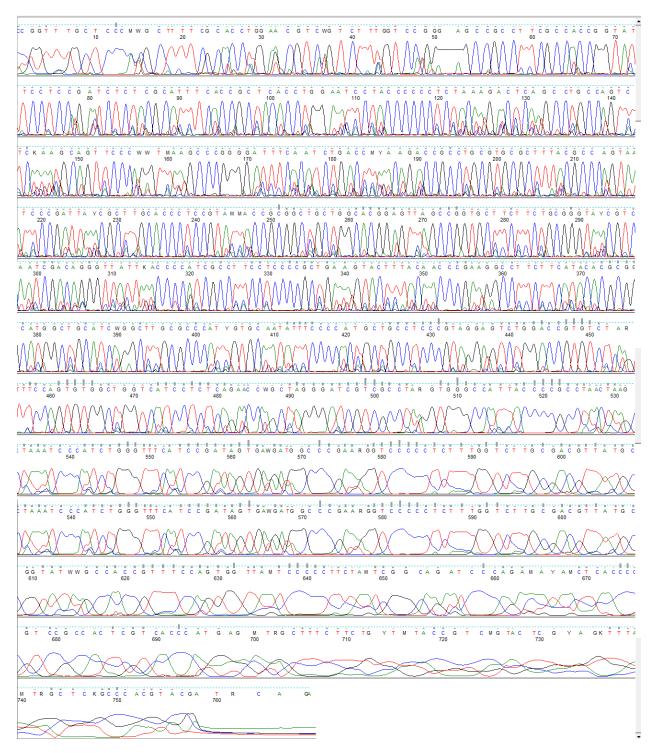
- Calbo, E., Freixas, N., Xercavins, M., Riera, M., Nicolás, C., Monistrol, O., . . . Garau, J. (2011). Foodborne nosocomial outbreak of SHV1 and CTX-M-15–producing Klebsiella pneumoniae: epidemiology and control. Clinical infectious diseases, 52(6), 743-749.
- Carlsen, M. H., Halvorsen, B. L., Holte, K., Bøhn, S. K., Dragland, S., Sampson, L., . . . Sanada, C. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition journal, 9(1), 3.
- Clarridge, J. E. (2004). Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clinical microbiology reviews, 17(4), 840-862.
- Control, C. f. D., & Prevention. (2014). Reports of selected E. coli outbreak investigations: Centers for Disease Control and Prevention Atlanta, GA:.
- Coutinho, T. A., & Venter, S. N. (2009). Pantoea ananatis: an unconventional plant pathogen. Molecular Plant Pathology, 10(3), 325-335.
- Croxen, M. A., Law, R. J., Scholz, R., Keeney, K. M., Wlodarska, M., & Finlay, B. B. (2013). Recent advances in understanding enteric pathogenic Escherichia coli. Clinical microbiology reviews, 26(4), 822-880.
- Cruz, A. T., Cazacu, A. C., & Allen, C. H. (2007). Pantoea agglomerans, a plant pathogen causing human disease. Journal of Clinical Microbiology, 45(6), 1989-1992.
- Dong, Y., Iniguez, A. L., Ahmer, B. M., & Triplett, E. W. (2003). Kinetics and strain specificity of rhizosphere and endophytic colonization by enteric bacteria on seedlings of Medicago sativa and Medicago truncatula. Applied and environmental microbiology, 69(3), 1783-1790
- Dutkiewicz, J., Mackiewicz, B., Lemieszek, M. K., Golec, M., & Milanowski, J. (2016). Pantoea agglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects: infections of humans, animals and plants. Annals of Agricultural and Environmental Medicine, 23(2).
- Food, C. f. F. S., & Department, E. H. (2014). Microbiological guidelines for food (for ready-to-eat food in general and specific food items.
- Furlan, J. P. R., Gallo, I. F. L., de Campos, T. A., & Stehling, E. G. (2020). Genomic Characterization of a Multidrug-Resistant and Hypermucoviscous/Hypervirulent Klebsiella quasipneumoniae subsp. similipneumoniae ST4417 Isolated from a Sewage Treatment Plant. Microbial Drug Resistance.
- Gagliardi, J., Millner, P., Lester, G., & Ingram, D. (2003). On-farm and postharvest processing sources of bacterial contamination to melon rinds. Journal of food protection, 66(1), 82-87.

- García-González, T., Sáenz-Hidalgo, H. K., Silva-Rojas, H. V., Morales-Nieto, C., Vancheva, T., Koebnik, R., & Ávila-Quezada, G. D. (2018). Enterobacter cloacae, an emerging plantpathogenic bacterium affecting chili pepper seedlings. The plant pathology journal, 34(1), 1.
- Garza-Ramos, U., Silva-Sanchez, J., Catalan-Najera, J., Barrios, H., Rodríguez-Medina, N., Garza-Gonzalez, E., . . . Lozano, L. (2016). Draft genome sequence of a hypermucoviscous extended-spectrum-β-lactamase-producing Klebsiella quasipneumoniae subsp. similipneumoniae clinical isolate. Genome announcements, 4(4).
- Gitaitis, R., Walcott, R., Wells, M., Perez, J. D., & Sanders, F. (2003). Transmission of Pantoea ananatis, causal agent of center rot of onion, by tobacco thrips, Frankliniella fusca. Plant Disease, 87(6), 675-678.
- Guo, Y., Zhou, H., Qin, L., Pang, Z., Qin, T., Ren, H., . . . Zhou, J. (2016). Frequency, antimicrobial resistance and genetic diversity of Klebsiella pneumoniae in food samples. PLoS One, 11(4), e0153561.
- Haller, L., Poté, J., Loizeau, J.-L., & Wildi, W. (2009). Distribution and survival of faecal indicator bacteria in the sediments of the Bay of Vidy, Lake Geneva, Switzerland. Ecological indicators, 9(3), 540-547.
- Harris, L., Farber, J., Beuchat, L., Parish, M., Suslow, T., Garrett, E., & Busta, F. (2003). Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Comprehensive reviews in food science and food safety, 2, 78-141.
- Hartantyo, S. H. P., Chau, M. L., Koh, T. H., Yap, M., Yi, T., Cao, D. Y. H., ... Ng, L. C. (2020). Foodborne Klebsiella pneumoniae: virulence potential, antibiotic resistance and risks to food safety. Journal of Food Protection.
- Hultberg, M., Alsberg, T., Khalil, S. & ALsanius, B. (2010). Suppression of disease in tomato infected by Pythium ultimum with a biosurfactant produced by Pseudomonas koreensis. BioControl, 55, 435-444.
- Ingham, S. C., Losinski, J. A., Andrews, M. P., Breuer, J. E., Breuer, J. R., Wood, T. M., & Wright, T. H. (2004). Escherichia coli contamination of vegetables grown in soils fertilized with noncomposted bovine manure: garden-scale studies. Applied and Environmental Microbiology, 70(11), 6420-6427.
- Jackson, C. R., Stone, B. W. & Tyler, H. L. (2015). Emerging perspectives on the natural microbiome of fresh produce vegetables. Agriculture, 5, 170-187.
- Jeter, C., & Matthysse, A. G. (2005). Characterization of the binding of diarrheagenic strains of E. coli to plant surfaces and the role of curli in the interaction of the bacteria with alfalfa sprouts. Molecular plant-microbe interactions, 18(11), 1235-1242.

- Kanatt, S. R., Chander, R., & Sharma, A. (2007). Antioxidant potential of mint (Mentha spicata L.) in radiation-processed lamb meat. Food Chemistry, 100(2), 451-458.
- Kreydiyyeh, S., Usta, J., Kaouk, I., & Al-Sadi, R. (2001). The mechanism underlying the laxative properties of parsley extract. Phytomedicine, 8(5), 382-388.
- Lim, J. Y., Yoon, J. W. & Hovde, C. J. (2010). A brief overview of Escherichia coli O157: H7 and its plasmid O157. Journal of microbiology and biotechnology, 20, 5.
- Naimi, T. S., Wicklund, J. H., Olsen, S. J., Krause, G., Wells, J. G., Bartkus, J. M., . . . Besser, J. M. (2003). Concurrent outbreaks of Shigella sonnei and enterotoxigenic Escherichia coli infections associated with parsley: implications for surveillance and control of foodborne illness. Journal of food protection, 66(4), 535-541.
- Machado -Moreira, B., Richards, K., Brennen, F., Abram, F. & Burgess, C. M. (2019). Microbial Contamination of Fresh Produce: What, Where, and How? Comprehensive Reviews in Food Science and Food Safety, 18, 1727-1750
- Mead, P. S., & Griffin, P. M. (1998). Escherichia coli O157: H7. The Lancet, 352(9135), 1207-1212.
- Murphy, W. J. (1953). The Agriculture Yearbook. Journal of Agricultural and Food Chemistry, 1(16), 969-969.
- Ngueng Feze, I., Dalpé, G., Song, L., Farber, J., Goodridge, L., Levesque, R. C., & Joly, Y. (2018). For the safety of fresh produce: Regulatory considerations for Canada on the use of whole genome sequencing to subtype Salmonella. Frontiers in Sustainable Food Systems, 2, 21.
- Nishimori, E., Kita-Tsukamoto, K. & Wakabayashi, H. (2000). Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. International Journal of Systematic and Evolutionary Microbiology, 50, 83-89.
- Nm, A., Al, M., & Ri, C. Foodborne Diseases Active Surveillance Network FoodNet (2012) Surveillance Report.
- Paauw, A., Fluit, A. C., Verhoef, J., & Leverstein-van Hall, M. A. (2006). Enterobacter cloacae outbreak and emergence of quinolone resistance gene in Dutch hospital. Emerging infectious diseases, 12(5), 807.

Parthasarathy, V. A., Chempakam, B., & Zachariah, T. J. (2008). Chemistry of spices: Cabi.

Paruch, A.M. and Mæhlum, T., (2012). Specific features of Escherichia coli that distinguish it from coliform and thermotolerant coliform bacteria and define it as the most accurate indicator of faecal contamination in the environment. Ecological Indicators, 23, pp.140-142.


- Peterson, S., Lampe, J. W., Bammler, T. K., Gross-Steinmeyer, K., & Eaton, D. L. (2006). Apiaceous vegetable constituents inhibit human cytochrome P-450 1A2 (hCYP1A2) activity and hCYP1A2-mediated mutagenicity of aflatoxin B1. Food and chemical toxicology, 44(9), 1474-1484.
- Pitout, J. D., Nordmann, P., & Poirel, L. (2015). Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrobial agents and chemotherapy, 59(10), 5873-5884.
- Puspanadan, S., Afsah-Hejri, L., Loo, Y., Nillian, E., Kuan, C., Goh, S., . . . Rukayadi, Y. (2012). Detection of Klebsiella pneumoniae in raw vegetables using most probable number-polymerase chain reaction (MPN-PCR). International Food Research Journal, 19(4), 1757.
- Rai, P. K., & Tripathi, B. (2007). Microbial contamination in vegetables due to irrigation with partially treated municipal wastewater in a tropical city. International Journal of Environmental Health Research, 17(5), 389-395.
- Sharon, B. M., Nguyen, A., Arute, A. P., Hulyalkar, N. V., Nguyen, V. H., Zimmern, P. E., & De Nisco, N. J. (2020). Complete Genome Sequences of Seven Uropathogenic Escherichia coli Strains Isolated from Postmenopausal Women with Recurrent Urinary Tract Infection. Microbiology Resource Announcements, 9(33).
- Shiose, J., Wakabayashi, H., Tominaga, M. & Egusa, S. (1974). A report on a disease of cultured carp due to a capsulated Pseudomonas. Fish Pathology, 9, 79-83.
- Sivapalasingam, S., Barrett, E., Kimura, A., Van Duyne, S., De Witt, W., Ying, M., . . . Shillam, P. (2003). A multistate outbreak of Salmonella enterica Serotype Newport infection linked to mango consumption: impact of water-dip disinfestation technology. Clinical infectious diseases, 37(12), 1585-1590.
- Smits, T. H., Rezzonico, F., Kamber, T., Goesmann, A., Ishimaru, C. A., Stockwell, V. O., . . . Duffy, B. (2010). Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. Journal of Bacteriology, 192(24), 6486-6487.
- Solomon, E. B., Yaron, S., & Matthews, K. R. (2002). Transmission of Escherichia coli O157:
 H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Applied and environmental microbiology, 68(1), 397-400.
- Stephens, C., Arismendi, T., Wright, M., Hartman, A., Gonzalez, A., Gill, M., . . . Hess, D. (2020). F Plasmids Are the Major Carriers of Antibiotic Resistance Genes in Human-Associated Commensal Escherichia coli. Msphere, 5(4).
- Tchagang, C. F., Xu, R., Overy, D., Blackwell, B., Chabot, D., Hubbard, K., . . . Tambong, J. T. (2018). Diversity of bacteria associated with corn roots inoculated with Canadian woodland soils, and description of Pseudomonas aylmerense sp. nov. Heliyon, 4(8), e00761.

- Thomas, B. S., Okamoto, K., Bankowski, M. J. & Seto, T. B. (2013). A lethal case of Pseudomonas putida bacteremia due to soft tissue infection. Infectious diseases in clinical practice (Baltimore, Md.), 21, 147.
- Townsend, S. M., Hurrell, E., Caubilla-Barron, J., Loc-Carrillo, C., & Forsythe, S. J. (2008). Characterization of an extended-spectrum beta-lactamase Enterobacter hormaechei nosocomial outbreak, and other Enterobacter hormaechei misidentified as Cronobacter (Enterobacter) sakazakii. Microbiology, 154(12), 3659-3667.
- Troiano, E., Beneduce, L., Gross, A., & Ronen, Z. (2018). Antibiotic-resistant bacteria in greywater and greywater-irrigated soils. Frontiers in microbiology, 9, 2666.
- Truchado, P., Gil, M. I., Suslow, T. & Allende, A. (2018). Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PloS one, 13, e0199291.
- Uneke, C. (2007). Potential for geohelminth parasite transmission by raw fruits and vegetables in Nigeria: implication for a risk profile. Journal of Nutritional & Environmental Medicine, 16(1), 59-68.
- Verma, S. C., Ladha, J. K., & Tripathi, A. K. (2001). Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. Journal of biotechnology, 91(2-3), 127-141.
- Warakagoda, P.S. and Subasinghe, S., (2011). In vitro culture establishment and shoot proliferation of Jatropha curcas L. Tropical Agricultural Research and Extension, 12(2).
- Wenger, P. N., Tokars, J. I., Brennan, P., Samel, C., Bland, L., Miller, M., . . . Aguero, S. (1997). An outbreak of Enterobacter hormaechei infection and colonization in an intensive care nursery. Clinical infectious diseases, 24(6), 1243-1244.
- World Health Organization, (2008). Microbiological Hazards in Fresh Leafy Vegetables and Herbs: Meeting Report (Vol. 14). Food & Agriculture Org.
- Yeni, F., Yavaş, S., Alpas, H., & Soyer, Y. (2016). Most common foodborne pathogens and mycotoxins on fresh produce: a review of recent outbreaks. Critical Reviews in Food Science and Nutrition, 56(9), 1532-1544.
- Zhang, H., Chen, F., Wang, X., & Yao, H.-Y. (2006). Evaluation of antioxidant activity of parsley (Petroselinum crispum) essential oil and identification of its antioxidant constituents. Food Research International, 39(8), 833-839.

APPENDICES

Appendix A: Chromatograms

Appendix Figure 1: 16S rDNA forward chromatogram

Appendix Figure 2: 16S rDNA Reverse chromatogram

CG C CAC CG G T AT T CT C CAG R C C G T CAG T C T T T G T C CAG G G G G CYGT TTG CT CCCCACG CT TT CG CAC CTG MAA ٨٨٨ \mathbb{N} M THE THE THE TAKE A CONTRACT OF THE THE THE TAKE A CONTRACT OF TAKE A CONTRACT OF THE TAKE A CONTRACT OF TAKE A CONTRAC MA C G T T A C C C A C C C G A A G G T C C C C C ÅĞ TATTAGCTACCGTTT G C G G ČČ Å Ğ GCGACGTTAT TTTT CC C A G ACĂ TTTĂ C C G T T G C CĂĊŤĊĞ C A G C C A A A G САČ Ť ΑĠ

Č T T C C T G T T T A C C G G 710 720

Appendix C: BLASTn Results and DNA sequences

Appendix Figures: BLASTn results with the obtained 16S rDNA sequence as the query

The morphotypes were sequenced for a fragment of the 16S rDNA region and compared with published sequences using BLAST

(Rami levy mint): Pseudomonas sp strain COR10

GCTGGCGGCAGGCCTAACACATGCAAGTCGAGCGGATGAAAGGAGCTTGCTCCTGG ATTCAGCGGCGGACGGGTGAGTAATGCCTAGGAATCTGCCTGGTAGTGGGGGACAA CGATCGAAGGAACGCTAATACCGCATACGTCCTACGGGAGAAAGCAGGGGGACCTTC GGGCCTTGCGCTATCAGATGAGCCAGGTCGGATAGCTAGTTGGTGAGGTAATGGCTC ACCAAGGCGACGATCCGTACTGGCTGAGAGGAGGATGATAGTCAcCTGGAACTGAGACA CGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGGAATATTGGACAATGGGCGAAAGC CTGATCCAGCCATGCCGCGTGTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAG TTGGGAGGAAGGGTTGTAGATTAATACTCTGCAATTTGACGTTACCGACAGAATAA GCACCGGCTAACTCTGTGCCAGCAGCGC

Descriptions	Graphic Summary	Alignments	Taxonomy										
Sequences	producing significant a	lignments			I	Download	~ 1	ew Sel	lect co	lumns	✓ Sh	10w	00 🗸 📀
select all	0 sequences selected								Bank			stance tr	ee of results
	Desc	ription			Common Na	me	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Pseudomor	nas sp. strain COR10 16S riboson	nal RNA gene, partial se	quence	Pseudomo	onas sp.		845	845	100%	0.0	98.16%	1285	MT507071.1
Pseudomor	nas granadensis strain TC1 16S ri	bosomal RNA gene, pa	rtial sequence	Pseudomo	onas granaden	sis	845	845	100%	0.0	98.16%	1511	MT436423.1
Pseudomor	nas fluorescens strain HRHP17 16	S ribosomal RNA gene	partial sequence	Pseudomo	onas fluorescer	<u>15</u>	845	845	100%	0.0	98.16%	980	MT317214.1
Pseudomor	nas moraviensis strain EB284 169	ribosomal RNA gene, j	partial sequence	Pseudomo	onas moraviens	sis	845	845	100%	0.0	98.16%	1447	MH142602.1
Pseudomor	nas fluorescens isolate PfAR1 gen	nome assembly, chromo	some: 1	Pseudomo	onas fluorescer	<u>15</u>	845	5053	100%	0.0	98.16%	6251798	LR782234.1
Pseudomor	nas <u>sp. strain AO-1 16S ribosomal</u>	RNA gene, partial sequ	ience	Pseudomo	onas sp.		845	845	100%	0.0	98.16%	1485	MN720563.1
Pseudomor	nas koreensis strain shebah-500 1	I6S ribosomal RNA gen	e_partial sequence	Pseudomo	onas koreensis		845	845	100%	0.0	98.16%	1467	MN602520.1
Pseudomor Download	 GenBank Graphics 	ribosomal RNA gene, pa	artial sequence	Pseudomo	onas fluorescer	<u>15</u>	845	845	100%	0.0	98.16%	1536	MN100098.1 criptions
Range 1: 25 t Score 845 bits(457)	Expect Identitien 0.0 479/48		Gaps 8/488(1%)	Vext Strand Plus/Plu	Match A Pres	vious Match							
Query 1	GCTGGCGGCAGGCCTAACACATG	SCAAGTCGAGCGGATGA	AAGGAGCTTGCTCC	IGGATTC	60 84								
Query 61 Sbjct 85	AGCGGCGGACGGGTGAGTAATGC				118 144								
Query 119 Sbjct 145	AAGGAACGCTAATACCGCATACG				178 204								
Query 179 Sbjct 205	CTATCAGATGAGCC-AGGTCGGA				236 264								
	GATCCGTA-CTGG-CTGAGAGGA				292 324								
Query 293 Sbjct 325	CCTACGGGAGGCAGCAGTGGGGA 				352 384								
Query 353 Sbjct 385	CGCGTGTGTGTGAAGAAGGTCTTCC 	GATTGTAAAGCACTT1	TAAGTTGGGAGGAAG	SGTTGTA	412 444								
-	GATTAATACTCTGCAATTTTGAC				472 504								
2	GCAGCCGC 480 GCAGCCGC 512												

(Rami levy parsley): Pantoea agglomerans strain NA131

Descriptions	Graphic Summary	Alignments	Taxonomy								
Sequences pro	oducing significant a	lignments		Download	~	New Se	lect co	olumns	✓ SI	how 1	00 🗸 🕐
select all 0	sequences selected					Gen	Bank	<u>Graph</u>	ics Di	istance tr	ee of resul
		Description		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accessio
Pantoea agglor	merans strain NA131 16S ribos	omal RNA gene_partia	al sequence	Pantoea agglo	307	307	99%	3e-79	81.74%	950	MN006188
Pantoea agglor	merans strain LB132 16S ribos	omal RNA gene, partia	I sequence	Pantoea agglo	307	307	96%	3e-79	82.02%	950	<u>MK999934</u>
Pantoea anana	atis strain LA223 16S ribosoma	I RNA gene, partial sec	uence	Pantoea ananatis	303	303	98%	4e-78	81.64%	950	MN005955
Pantoea agglor	merans strain 254 16S ribosom	nal RNA gene, partial s	equence	Pantoea agglo	300	300	98%	5e-77	81.44%	471	MK967215
Pantoea agglor	merans strain NA121 16S ribos	omal RNA gene, partia	al sequence	Pantoea agglo	298	298	99%	2e-76	81.25%	950	MN00618
Pantoea eucaly	ypti strain LMG 24197 chromos	ome, complete genom	<u>e</u>	Pantoea eucaly	281	1919	100%	2e-71	80.66%	4035995	CP045720
Uncultured Shi	gella sp. clone K-23-14-8 16S i	ribosomal RNA gene, p	partial sequence	uncultured Shi	281	281	97%	2e-71	80.66%	657	KY816180
Pantoea sp. sw	v0106-22 16S ribosomal RNA g	jene, partial sequence		Pantoea sp. sw	281	281	97%	2e-71	80.66%	1503	KT276390
Uncultured bac	terium clone 17-12 16S ribosor	mal RNA gene, partial	sequence	uncultured bact	281	281	97%	2e-71	80.66%	1464	KT029332
Curtobacterium	n plantarum strain S2 16S ribos	omal RNA gene, partia	al sequence	[Curtobacteriu	281	281	97%	2e-71	80.66%	1499	KP099433
Pantoea sp. en	richment culture clone WW1 4	6 16S ribosomal RNA	gene, partial sequence	Pantoea sp. en	281	281	97%	2e-71	80.66%	984	<u>JQ845876</u>
Pantoea consp	icua isolate PSB25 16S riboso	mal RNA gene, partial	sequence	Pantoea conspi	281	281	97%	2e-71	80.66%	1541	HQ242738
Uncultured bac	terium clone ncd458h09c1 165	S ribosomal RNA gene,	partial sequence	uncultured bact	281	281	97%	2e-71	80.66%	1364	HM32631
Uncultured bac	terium clone BD332 16S ribos	omal RNA gene, partia	sequence	uncultured bact	281	281	97%	2e-71	80.66%	475	<u>GQ404114</u>
Uncultured bac	terium clone nbw779g06c1 16	S ribosomal RNA gene	partial sequence	uncultured bact	281	281	97%	2e-71	80.72%	1363	GQ00981
Pantoea agglor	merans strain cqsm h5 16S rib	iosomal RNA gene, par	rtial sequence	Pantoea agglo	279	279	97%	6e-71	80.56%	1497	MN82655
Pantoea anana	atis strain Xuyi 221 1 16S ribos	somal RNA gene, parti	al sequence	Pantoea ananatis	279	279	96%	6e-71	80.67%	1126	MN25190
Pantoea anglo	merans strain QYZ2 16S riboso	mal RNA gene in articl	2000000	Pantoea agglo	279	279	95%	6e-71	80.74%	1447	MK348974

Pantoea agglomerans strain NA131 16S ribosomal RNA gene, partial sequence

Sequence ID: MN006188.1 Length: 950 Number of Matches: 1

Score 307 bi	ts(166)	Expect 3e-79	Identities 300/367(82%)	Gaps 7/367(1%)	Strand Plus/Plu:	s
Query	4	GGCGGCGG	CCTAACA	CATGCAAGTCGGACGGTA	SCACAGAGG-GCTTGGTT	CCTGGGTGA	62
Sbjct	6	GGCGCGGG	CCTAACA	CATGCAAGTCGGACGGTA	SCACAGAGGAGCTTGCTC	CTTGGGTGA	65
Query	63	CGAGTGGC	çççççç	TGAGAAGTGTGTGGGGGAT	STGCCCGATAgggggggA	AAACCTGTG	122
Sbjct	66	CGAGTGGC	GGACGGG	TGAGTAGTGTCTGGGGAT	CTGCCCGATAGAGGGGGA	TAACCACTG	125
Query	123	GACACGGG	GTCAAAC	ACCGCATAATGTCACAAC	-CCAAA-AggggggggCTT	ттсосстст	180
Sbjct	126	GAAACGGT	GGCTAAT	ACCGCATAACGTCGCAAG	ACCAAAGAGGGGGGGCCTT	CGGGCCTCT	185
Query	181	CTCACTAT	CGTGAA-	AACCCATGTGGTATGAGC	TAGTGCGCGGTGTAGGGG	CCCACCTAC	239
Sbjct	186	CACTAT	CG-GATG	AACCCAGATGGGATTAGC	TAGTAGGCGGGGTAATGG	CCCCCCTAC	242
Query	240	GMCACTAT	CCATATO	TGGTCTGAGGGGAAGACC	ACCCACWCTGGMTCAGAC	ACACGGTAC	299
Sbjct	243	GCCACTAT	CCCTAGC	TGGTCTGAGAGGATGACC	ACCCACACTGGAACTGAC	ACACGGTCC	302
Query	300	ACACTCAT	ACGGGGG	ACARCAGTEGAATATATT	SCACAGTGGGCGCACGCC	TGACGCACC	359
Sbjct	303	ACACTCCT	ACGGGAG	GCAGCAGTGGGGGAATATT	SCACAGTGGGCGCAAGCC	TGATGCACC	362
Query	360	төтөссө	366				
Sbjct	363	CATGCCG	369				

(Rami levy mint): *Pseudomonas koreensis* strain SS NBRI 17 CGCTTTCGCACCTCAGTGTCAGTATCAGTCCAGGTGGTCGCCTTCGCCACTGG TGTTCCTTCCTATATCTACGCATTTCACCGCTACACAGGAAATTCCACCACCC TCTACCATACTCTAGCTTGCCAGTTTTGGATGCAGTTCCCAGGTTGAGCCCGG GGATTTCACATCCAACTTAACAAACCACCTACGCGCGCTTTACGCCCAGTAAT TCCGATTAACGCTTGCACCCTCTGTATTACCGCGGGCTGCTGGCACAGAGTTAG CCGGTGCTTATTCTGTCGGTAACGTCAAAATTGCAGAGTATTAATCTACAACC CTTCCTCCCAACTTAAAGTGCTTTACAATCCGAAGACCTTCTTCACACACGCG GCATGGCTGGATCAGGCTTTCGCCCATTGTCCAATATTCCCCACTGCTGCCTC CCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGACTGATCATCCTCTCAG ACCAGTTACGGATCG

Descriptions	Graphic Summary	Alignments	Taxonomy											
equences pro	quences producing significant alignments Download V 🚾 Select columns V Show 100 V													
Select all 0 sequences selected GenBank Graphics Distance tree of results														
	De	escription		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accessio			
Pseudomonas I	koreensis strain SS NBRI 17 1	6S ribosomal RNA gen	e, partial sequence	Pseudomonas koreensis	909	909	100%	0.0	100.00%	1223	MT629852			
Pseudomonas I	koreensis strain SS NBRI 16 1	6S ribosomal RNA gen	e, partial sequence	Pseudomonas koreensis	909	909	100%	0.0	100.00%	1231	MT629851			
Pseudomonas	koreensis strain SS NBRI 3 16	S ribosomal RNA gene	partial sequence	Pseudomonas koreensis	909	909	100%	0.0	100.00%	1244	MT629838			
Pseudomonas	moraviensis strain cqsm_g2_16	6S ribosomal RNA gene	e, partial sequence	Pseudomonas moraviensis	909	909	100%	0.0	100.00%	1475	MN826538			
Pseudomonas	sp. strain COR10 16S ribosom	al RNA gene, partial se	equence	Pseudomonas sp.	909	909	100%	0.0	100.00%	1285	MT507071			
Pseudomonas	koreensis strain JLS8 16S ribo	somal RNA gene, parti	al sequence	Pseudomonas koreensis	909	909	100%	0.0	100.00%	1399	MT501807			
Pseudomonas	sp. strain C2 RP 48 16S ribos	somal RNA gene, partia	al sequence	Pseudomonas sp.	909	909	100%	0.0	100.00%	1009	MT354189			
Pseudomonas	sp. strain C2 RP 44 16S ribos	somal RNA gene, partia	al sequence	Pseudomonas sp.	909	909	100%	0.0	100.00%	986	MT354186			
Pseudomonas	sp. strain C2 RP 27 16S ribos	somal RNA gene, partia	al sequence	Pseudomonas sp.	909	909	100%	0.0	100.00%	988	MT354176			
Pseudomonas	sp. strain C2 RP 26 16S ribos	somal RNA gene, partia	al sequence	Pseudomonas sp.	909	909	100%	0.0	100.00%	983	MT354175			
Pseudomonas	sp. strain C2 RP 24 16S ribos	somal RNA gene, partia	al sequence	Pseudomonas sp.	909	909	100%	0.0	100.00%	992	MT354173			
	sp. strain C2 RP 20 16S ribos			Pseudomonas sp.	909	909	100%	0.0	100.00%	1008	MT354169			
	sp. strain C2 RP 16 16S ribos			Pseudomonas sp.	909	909	100%	0.0	100.00%	988	MT354166			
	sp. strain C2 RP 15 16S ribos			Pseudomonas sp.	909	909	100%	0.0	100.00%	1012	MT354165			
	sp. strain C2 RP 11 16S ribos			Pseudomonas sp.	909	909	100%	0.0	100.00%	1009	MT354162			
	sp. strain C2_RP_10_16S ribos			Pseudomonas sp.	909	909	100%	0.0	100.00%	1024	MT354161			
	sp. strain C2_RP_8_16S ribos			Pseudomonas sp.	909	909	100%	0.0	100.00%	907	MT354160			
Download ~	GenBank Graphics		And the second sec	Construction of No.				Nex			Descripti			

Pseudomonas koreensis strain SS NBRI 17 16S ribosomal RNA gene, partial sequence Sequence ID: <u>MT629852.1</u> Length: 1223 Number of Matches: 1

Range 1: 193 to 684 GenBank Graphics Vext Match A Previous Match Expect 0.0 Identities 492/492(100%) Score 909 bits(492) Gaps 0/492(0%) Strand Plus/Minus CGCTTTCGCACCTCAGTGTCAGTATCAGTCC 60 Query 1 Sbjct 684 625 61 Query 120 565 Sbjct 624 Query 121 180 Sbjct 564 505 Query 181 240 Sbict 504 445 241 300 Query Sbjct 444 ACC 385 Query 301 360 384 325 Sbjct Ouery 361 420 Sbjct 324 TCAC 265 Query 421 CCTCCCGTAGGAGGTCTGGACCGTGTCTCAGTTCCAGTGTGACTGATCATCCTCT Sbjct 264 CCTCCCGTAGGAGGTCTGGACCGTGTCTCAGTTCCAGTGTCACTACTCCCTC 480 205 Query 481 Query 481 AGTTACGGATCG 492 ||||||||||||| Sbjct 204 AGTTACGGATCG 193

(Rami levy parsley): *Pseudomonas putida* strain C1-1 ACATGCAGTCGAGCGGATGACTGGTTAGCTTGCTCCTTGATTCAGCGGCGGA CGGGTGAGTAATGCCTAGGAATCTGCCCTGGTAGTGGGGGGACAACGTTTCGA AAGGAACGCTAATACCGCATACGTCCTACGGGAGAAAGCAGGGGACCTTCG GGCCCTGCGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGGTGTAA TGGCTC

Descriptions	Graphic Summary	Alignments	Taxonomy								
Sequences pro	oducing significant a	lignments		Download N	New	Selec	t colu	mns ~	Show	v 10	0 🗸 🕻
select all 0	sequences selected						n <u>k</u> G			nce tre	ee of result
	Des	scription		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Pseudomonas	putida strain C1-1 16S riboson	nal RNA gene, partial s	equence	Pseudomonas putida	359	359	100%	4e-95	97.18%	1198	MF588953.
Pseudomonas	putida strain S23 16S ribosom	<u>al RNA gene, partial se</u>	quence	Pseudomonas putida	359	359	100%	4e-95	97.18%	1435	KT380609.
Pseudomonas	putida strain S22 16S ribosom	<u>al RNA gene, partial se</u>	quence	Pseudomonas putida	359	359	100%	4e-95	97.18%	1434	KT380608.
Pseudomonas	<u>sp. A7-2 16S ribosomal RNA g</u>	ene, partial sequence		Pseudomonas sp. A7-2	359	359	100%	4e-95	97.20%	1063	<u>GQ497241</u>
Pseudomonas	putida strain GBRS03 16S ribo	osomal RNA gene, part	ial sequence	Pseudomonas putida	357	357	100%	1e-94	97.18%	1419	MT373557.
Pseudomonas	putida strain BSN7 16S riboso	mal RNA gene, partial	sequence	Pseudomonas putida	357	357	100%	1e-94	97.18%	1448	MT310834
Pseudomonas	plecoglossicida strain BRN7 10	6S ribosomal RNA gen	<u>e, partial sequence</u>	Pseudomonas plecoglossicida	357	357	100%	1e-94	97.18%	1444	MT310827
Pseudomonas	putida strain NWPZ-10 16S rib	osomal RNA gene, par	tial sequence	Pseudomonas putida	357	357	100%	1e-94	97.18%	1423	MT184822
Pseudomonas	sp. strain SbB1 16S ribosomal	RNA gene, partial seq	uence	<u>Pseudomonas sp.</u>	357	357	100%	1e-94	97.18%	1442	MT102940
Pseudomonas	putida strain Os_Ep_PPA_18 1	16S ribosomal RNA ger	<u>ne, partial sequence</u>	Pseudomonas putida	357	357	100%	1e-94	97.18%	1409	MN932304
Pseudomonas	hunanensis strain XM14 16S r	ibosomal RNA gene, pa	artial sequence	Pseudomonas hunanensis	357	357	100%	1e-94	97.18%	1442	MT023391
Pseudomonas	monteilii strain 16S_DB10 16S	ribosomal RNA gene,	<u>partial sequence</u>	Pseudomonas monteilli	357	357	100%	1e-94	97.18%	1432	MN889012
Pseudomonas	monteilii strain 16S_DB8 16S r	ribosomal RNA gene, p	artial sequence	Pseudomonas monteilli	357	357	100%	1e-94	97.18%	1434	<u>MN889010</u>
<u>Pseudomonas</u>	sp. strain OXDC12 16S riboso	mal RNA gene, partial	sequence	<u>Pseudomonas sp.</u>	357	357	100%	1e-94	97.18%	1448	MN336228

La <u>Lownload</u> ← <u>GenBank</u> <u>Graphics</u>

Pseudomonas putida strain C1-1 16S ribosomal RNA gene, partial sequence

Sequence ID: MF588953.1 Length: 1198 Number of Matches: 1

Range 1: 25 to 235 GenBank Graphics

▼ Next Match ▲ Previous Match

▼ <u>Next</u> ▲ <u>Previous</u> < <u>Descriptions</u>

Score			Expect	Identities	Gaps	Strand
359 bi	ts(194)	4e-95	207/213(97%)	2/213(0%)	Plus/Plus
Query	1	ACATGCA	GTCGAGCGG	ATGACTGGTTAGCTTGCTCC	TTGATTCAGCGGCGGAC	GGGTGAG 60
bjct	25	ACATGCA	GTCGAGCGG	ATGAC-GGGAAGCTTGCTCC	TTGATTCAGCGGCGGAC	GGGTGAG 83
uery	61	TAATGCC	TAGGAATCT	GCCCTGGTAGTGGGGGGACAA	CGTTTCGAAAGGAACGC	TAATACC 120
bjct	84	TAATGCC	TAGGAATCT	G-CCTGGTAGTGGGGGGACAA	CGTTTCGAAAGGAACGC	TAATACC 142
uery	121	GCATACG	TCCTACGGG	AGAAAGCAGGGGACCTTCGG	GCCCTGCGCTATCAGAT	GAGCCTA 180
bjct	143	GCATACG	TCCTACGGG	AGAAAGCAGGGGACCTTCGG	GCCTTGCGCTATCAGAT	GAGCCTA 202
uery	181	GGTCGGA	TTAGCTAGT	TGGTGGTGTAATGGCTC 2	13	
hict	203	66tc66A	tticctict		35	

Sbjct 203 GGTCGGATTAGCTAGTTGGTGGGGTAATGGCTC 235

(Rami levy mint): *Pantoea agglomerans* strain HTP TTTCGCCACCTGACGTCAGTCTTTGTCCAGGGGGCCGCCTTCGCCACCGGTAT TCCTCCAGATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCT ACAAGACTCAAGCCTGCCAGTTTCAAATGCAGTTTCCCAGGTTAAGCCSGGG GATTTCACATCTGACTTAACAGACCGCCTGCGTGCGCTTTACGCCCAGTAATT CCGATTAACGCTTGCACCCTCCGTATTACCGCGGGCTGCTGGCACGGAGTTAGC CGGTGCTTCTTCTGCGGGGTAACGTCAATCGACAGGGTTATTAACCCCGTCGCC TTCCTCCCCGCTGAAAGTACTTTACAACCCGAAGGCCTTCTTCATACACGCGG CATGGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTGCTGCCTCC CGTAGGAGTCTGGACC

Descriptions

Graphic Summary

Alignments Taxonomy

Seq	uences producing significant alignments	Download	~ [lew Se	lect co	lumns	✓ Sł	10w	00 🗸 🧃					
	select all 0 sequences selected <u>GenBank</u> Graphics Distance tree of results													
	Description	Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession					
	Pantoea agglomerans strain HTP 16S ribosomal RNA gene, partial sequence	Pantoea agglomerans	789	789	100%	0.0	99.09%	1440	MT635441.1					
	Pantoea agglomerans strain KABNA4 16S ribosomal RNA gene, partial sequence	Pantoea agglomerans	789	789	100%	0.0	99.09%	1505	MT605813.1					
	Pantoea agglomerans strain cosm h5 16S ribosomal RNA gene, partial sequence	Pantoea agglomerans	789	789	100%	0.0	99.09%	1497	MN826559.1					
	Pantoea sp. strain R061 16S ribosomal RNA gene, partial sequence	Pantoea sp.	789	789	100%	0.0	99.09%	855	MT362048.1					
	Pantoea agglomerans strain UAEU18 chromosome, complete genome	Pantoea agglomerans	789	5527	100%	0.0	99.09%	4040629	CP048033.1					
	[Curtobacterium] plantarum strain YHM193 16S ribosomal RNA gene, partial sequence	[Curtobacterium] plantarum	789	789	100%	0.0	99.09%	661	MN492617.1					
	Pantoea sp. strain CA5 16S ribosomal RNA gene, partial sequence	Pantoea sp.	789	789	100%	0.0	99.09%	801	MN945257.1					
	Pantoea sp. strain C1 16S ribosomal RNA gene, partial sequence	Pantoea sp.	789	789	100%	0.0	99.09%	1355	MH375548.1					
	Pantoea agglomerans strain ASB05 chromosome, complete genome	Pantoea agglomerans	789	5400	100%	0.0	99.09%	4022781	CP046722.1					
	Pantoea agglomerans pv. betae strain O4 16S ribosomal RNA gene, partial sequence	Pantoea aggiomerans pv. betae	789	789	100%	0.0	99.09%	1215	MN515098.1					
	Pantoea sp. strain L12 16S ribosomal RNA gene, partial sequence	Pantoea sp.	789	789	100%	0.0	99.09%	758	MK007412.1					
	Pantoea sp. strain L1 16S ribosomal RNA gene, partial sequence	Pantoea sp.	789	789	100%	0.0	99.09%	846	MK007403.1					
	Pantoea sp. strain E5 16S ribosomal RNA gene, partial sequence	Pantoea sp.	789	789	100%	0.0	99.09%	823	MK007368.1					
	Pantoea sp. strain B3 16S ribosomal RNA gene, partial sequence	Pantoea sp.	789	789	100%	0.0	99.09%	1303	MK007354.1					
	Pantoea vagans strain PE12 16S ribosomal RNA gene, partial sequence	Pantoea vagans	789	789	100%	0.0	99.09%	1443	MN092367.1					
	Pantoea agglomerans strain S.M 124 16S ribosomal RNA gene, partial sequence	Pantoea agglomerans	789	789	100%	0.0	99.09%	1145	MG918091.1					

Sequence ID: MT635441.1 Length: 1440 Number of Matches: 1

Range 1: 290 to 727 GenBank Graphics

Vext Match 🔺 Previous Match

-						
Score 789 bit	ts(427)	Expect 0.0	Identities 436/440(99%)	Gaps 3/440(0%)	Strand Plus/Minus	
Query	1	TTTCGCCACCTGA-CG	STCAGTCTTTGTCCAGG	GGGCCGCCTTCGCCACCGG	таттсстсс	59
Sbjct	727	TTTCG-CACCTGAGCO	STCAGTCTTTGTCCAGG	GGCCGCCTTCGCCACCGG	TATTCCTCC	669
Query	60	AGATCTCTACGCATT1	CACCGCTACACCTGGA	аттстасссссстстасаа	GACTCAAGC	119
Sbjct	668	AGATCTCTACGCATT	CACCGCTACACCTGGA		GACTCAAGC	609
Query	120	CTGCCAGTTTCAAATG	GCAGTTTCCCAGGTTAA	GCCSGGGGATTTCACATCT	GACTTAACA	179
Sbjct	608	ctdccadtttcaaatd	GCAGTT-CCCAGGTTAA	GCCCGGGGGATTTCACATCT	GACTTAACA	550
Query	180	GACCGCCTGCGTGCG	TTTACGCCCAGTAATTO	CGATTAACGCTTGCACCC	TCCGTATTA	239
Sbjct	549	GACCGCCTGCGTGCG	CTTTACGCCCAGTAATTO	CGATTAACGCTTGCACCC	TCCGTATTA	490
Query	240	CCGCGGCTGCTGGCAC	GGAGTTAGCCGGTGCT	ICTTCTGCGGGTAACGTCA	ATCGACAGG	299
Sbjct	489	CCGCGGCTGCTGGCAG	GGAGTTAGCCGGTGCT	rcttctgcgggtAAcgtcA	ATCGACAGG	430
Query	300	GTTATTAACCCCGTCG	CCTTCCTCCCCGCTGA/	AGTACTTTACAACCCGAA	GGCCTTCTT	359
Sbjct	429	dttattaaccccdtcd	accttcctcccccctcA/	AGTACTTTACAACCCGAA	.ddccttctt	370
Query	360	CATACACGCGGCATG	GCTGCATCAGGCTTGCG	CCATTGTGCAATATTCCC	CACTGCTGC	419
Sbjct	369	catacacccccccatcd	sctscatcasscttscs	ccattgtgcaatattccc	cactoctoc	310
Query	420	CTCCCGTAGGAGTCTC	GACC 439			
Sbjct	309	ctcccgtaggagtctg	GACC 290			

(Rami levy parsley): *Pantoea sp* strain B26 TGCAGTCGGAGGTAGCACAGAGARCTTGCTCYCGKGTGACRAGTGGCGGACGGGGTG AGTAATGTCTGGGGATCTGCCCGATAGAGGGGGGGATAACCACTGGAAACGGTGGCTA ATACCGCATAACGTCGCAAGACCCAAGAGGGGGGGACCTTCAGGCCTCTCACTATCGG ATGAACCCAGATGGGATTAGCTAGTAGGCGGGGGTAATGGCCCACCTATGCGACAAT CCCTATCTGGTCTGAGAGGGATGACCACCCACACTGGAACTGAGACACGGTCCACAC TCCTACGGGAGGCAGCAGTGGGGGAATATTGCACAATGGGCGCACGCCTGATGCACC CMTGCCGCGTGTATGAAAAAAGCCTTCGGGTTGTAAAGTACTTTCAGCGGGGGAGGA AGGCGATGGGGTTAATAACCCCGTCGATTGACGTTACCCG

Descriptions	Graphic Summary	Alignments	Taxonomy								
Sequences pro	oducing significant a	lignments		Download 丫	New	Selec	t colu	mns ~	Shov	v 1(00 🗸 🔞
select all 0	sequences selected						nk <u>G</u>			nce tr	ee of results
		Description		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Pantoea sp. str	rain B26 16S ribosomal RNA g	ene, partial sequence		Pantoea sp.	726	726	100%	0.0	96.54%	1226	MK229045.1
Pantoea vagan	is strain A15 16S ribosomal RN	NA gene, partial sequer	nce	Pantoea vagans	726	726	100%	0.0	96.54%	1397	KM235113.1
Pantoea agglor	merans strain +Y16 16S riboso	omal RNA gene, partial	sequence	Pantoea agglo	725	725	100%	0.0	96.54%	1422	<u>JX134632.1</u>
Pantoea sp. str	rain GS18 16S ribosomal RNA	gene, partial sequence	<u>e</u>	Pantoea sp.	723	723	99%	0.0	96.53%	1402	MH884026.1
Pantoea sp. str	rain T4 16S ribosomal RNA ge	ne, partial sequence		Pantoea sp.	721	721	100%	0.0	96.31%	812	MK229130.1
Pantoea sp. CE	BE330.AF 7 16S ribosomal RI	NA gene, partial seque	nce	Pantoea sp. CB	721	721	100%	0.0	96.31%	1438	KX129755.1
Pantoea sp. TA	EU partial 16S rRNA gene, s	train TA EU		Pantoea sp. TA	719	719	100%	0.0	96.30%	1315	HG942128.1
Pantoea agglo	merans strain +Y43 16S riboso	omal RNA gene, partial	sequence	Pantoea agglo	719	719	100%	0.0	96.30%	1398	JX094942.1
Pantoea vagan	is strain +Y42 16S ribosomal F	RNA gene, partial sequ	ence	Pantoea vagans	719	719	100%	0.0	96.30%	1423	JX094941.1
Pantoea sp. str	rain GS37 16S ribosomal RNA	gene, partial sequence	2	Pantoea sp.	715	715	100%	0.0	96.08%	1443	MH884045.1
Pantoea brenn	eri strain M9-CHR-6-3-W 16S	ribosomal RNA gene, p	partial sequence	Pantoea brenneri	715	715	100%	0.0	96.08%	632	KP862698.1
Pantoea brenn	eri strain +Y31 16S ribosomal	RNA gene, partial sequ	uence	Pantoea brenneri	715	715	100%	0.0	96.08%	1424	JX113245.1
Pantoea sp. str	rain CA15-9 16S ribosomal RN	IA gene, partial sequen	ice	Pantoea sp.	713	713	100%	0.0	96.07%	1439	MH768986.1

V Next Match 🔺 Previous Match

La <u>bownload</u> ✓ <u>GenBank</u> <u>Graphics</u>

Pantoea sp. strain B26 16S ribosomal RNA gene, partial sequence

Sequence ID: MK229045.1 Length: 1226 Number of Matches: 1

Range 1: 14 to 447 GenBank Graphics

Score 726 bit	s(393)	Expect) 0.0	Identities 419/434(97%)	Gaps 2/434(0%)	Strand Plus/Plu	IS
uery	1	TGC-AGTCGGA-GGT	AGCACAGAGARCTTGCTC	YCGKGTGACRAGTGGCGGA	CGGGTGAG	58
bjct	14	TGCAAGTCGGACGGT	AGCACAGAGAGCTTGCTC	TTGGGTGACAAGTGGCGGA	CGGGTGAG	73
uery	59	TAATGTCTGGGGATC	TGCCCGATAGAGGGGGAT	AACCACTGGAAACGGTGGC	TAATACCG	118
bjct	74	TAATGTCTGGGGATC	TGCCCGATAGAGGGGGGAT	AACCACTGGAAACGGTGGC	TAATACCG	133
uery	119	CATAACGTCGCAAGA		AGGCCTCTCACTATCGGAT	GAACCCAG	178
bjct	134	cataacgtcgcaaga	.ccaaagagggggggaccttc	gggcctctcactatcggat	GAACCCAG	193
uery	179	ATGGGATTAGCTAGT	AGGCGGGGGTAATGGCCCA	CCTATGCGACAATCCCTAT	стостсто	238
bjct	194	Atgggattagctagt	AGGCGGGGGTAATGGCCCA	ċċtagġċġaċaatċċċtat	ctéétété	253
uery	239	AGAGGATGACCACCC	ACACTGGAACTGAGACAC	GGTCCACACTCCTACGGGA	GGCAGCAG	298
bjct	254	AGAGGATGACCAGCC	ACACTGGAACTGAGACAC	ĠĠŦĊĊĂĠĂĊŦĊĊŦĂĊĠĠĠĂ	ĠĠĊĂĠĊĂĠ	313
uery	299			GCACCCMTGCCGCGTGTAT	THE T	358
bjct	314			GCÁCCCATGCCGCGTGTÁT		373
uery	359			AAGGCGATGGGGTTAATAA	TITT	418
bjct	374	ĊĊŦŦĊĠĠĠŦŦĠŦĂĂĂ		AAGGCGATGGGGTTAATAA	CCCTĠŤĊĠ	433
uery	419	ATTGACGTTACCCG	432			
bjct	434	ATTGACGTTACCCG	447			

▼ <u>Next</u> ▲ <u>Previous</u> << <u>Descriptions</u>

(Rami levy parsley): Pantoea vagans strain +Y42

CCTAAACATGCAGTCGGAGGTAGCACAGAGAGCTTGCTTTCGGGTGACGAGTGGcG GACGGGTGAGTAATGTCTGGGGATCTGCCCGATAGAGGGGGGATAACCACTGtGAAC GGtGGCTAATACCGCATAACGTCGCAAGACCCCAGAGGGGGGACCTTCGGGCCTCTCA CTATCGGATGAACCCAGATGGGATTAGCTATTAGGCGGGGTAATGGGCCACCTAGG CGACAATCCCTATCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGt CCAcACTCtTACGGGAGGCASCAGTGGGGAATATTGCACAATGGGCGCACGCCTGAT GCAcCCATGCCCCGTGTATGAaAAAGGCCTTCTGGTTGTAAAGTACTTTCAGCGGGG AGGAAAGCGAtGCGGTTAATAACCGCGT

equences producing significant alignments	Downl	oad Y	New N	lanag	e Colu	mns `	/ Show	w 100	~ (
select all 0 sequences selected					<u>Bank</u>			stance tr	ee of result
Description	Scientific Common Name	Taxid	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Pantoea vagans strain +Y42 16S ribosomal RNA gene_partial sequence	PantoeaPantoea.	. 470934	680	680	98%	0.0	95.94%	1423	<u>JX094941.1</u>
Pantoea agglomerans partial 16S rRNA gene, strain LPPA 968	PantoeaPantoea.	. <u>549</u>	676	676	100%	0.0	95.31%	953	HE647624.
Pantoea sp. Fse21 16S ribosomal RNA gene, partial sequence	PantoeaPantoea.	. <u>1517667</u>	675	675	98%	0.0	95.70%	1439	KJ733873.1
Pantoea agglomerans strain +Y16 16S ribosomal RNA gene, partial sequence	PantoeaPantoea.	. <u>549</u>	675	675	98%	0.0	95.70%	1422	JX134632.1
Pantoea agglomerans strain +Y43 16S ribosomal RNA gene, partial sequence	PantoeaPantoea.	. <u>549</u>	673	673	98%	0.0	95.69%	1398	JX094942.1
Pantoea agglomerans strain ASB05 chromosome, complete genome	PantoeaPantoea.	. <u>549</u>	671	4607	100%	0.0	95.08%	4022781	CP046722.
Pantoea vagans strain LMG 24199 chromosome, complete genome	PantoeaPantoea.	. 470934	671	4630	100%	0.0	95.08%	4050173	CP038853.
Pantoea agglomerans strain L15 chromosome, complete genome	PantoeaPantoea.	. <u>549</u>	671	4679	100%	0.0	95.08%	4029228	CP034148.
Pantoea sp. strain CA15-48 16S ribosomal RNA gene, partial sequence	PantoeaPantoea.	. <u>69393</u>	671	671	99%	0.0	95.27%	1442	MH769023.
Pantoea agglomerans strain CFSAN047153 chromosome, complete genome	Pantoea Pantoea.	. <u>549</u>	671	4545	100%	0.0	95.08%	4047712	CP034469.
Pantoea agglomerans strain CFSAN047154 chromosome, complete genome	Pantoea Pantoea.	. <u>549</u>	671	4545	100%	0.0	95.08%	4047712	CP034474.
Pantoea agglomerans strain DDM 16S ribosomal RNA gene, partial sequence	PantoeaPantoea.	. <u>549</u>	671	671	100%	0.0	95.08%	1505	MH158728.
Pantoea sp. strain RP Y 3 16S ribosomal RNA gene, partial sequence	PantoeaPantoea.	. <u>69393</u>	671	671	100%	0.0	95.08%	971	MF664216.
Pantoea agglomerans strain P-3 16S ribosomal RNA gene, partial sequence	PantoeaPantoea.	. 549	671	671	100%	0.0	95.08%	1365	MG871178.

Vext Match 🔺 Previous Match

Pantoea vagans strain +Y42 16S ribosomal RNA gene, partial sequence

Sequence ID: <u>JX094941.1</u> Length: 1423 Number of Matches: 1

Range 1: 10 to 428 GenBank Graphics

Expect 680 bits(368) 402/419(96%) 1/419(0%) Plus/Plus 0.0 Query 7 CATGCAGTCGGA-GGTAGCACAGAGAGCTTGCTTTCGGGTGACGAGTGGCGGACGGGTGA 65 Sbjct 10 CATGCAGTCGGACGGTAGCACAGAGAGCTTGCTCTCGGGTGACGAGTGGCGGACGGGTGA 69 GTAATGTCTGGGGATCTGCCCGATAGAGGGGGGATAACCACTGTGAACGGTGGCTAATACC 125 Ouery 66 Sbjct 70 GTAATGTCTGGGGATCTGCCCGATAGAGGGGGGATAACCACTGGAAACGGTGGCTAATACC 129 Query 126 GCATAACGTCGCAAGACCCCAGAGGGGGGACCTTCGGGCCTCTCACTATCGGATGAACCCA 185 Sbjct 130 GCATAACGTCGCAAGACCAAAGAGGGGGACCTTCGGGCCTCTCACTATCGGATGAACCCA 189 186 GATGGGATTAGCTATTAGGCGGGGTAATGGGCCACCTAGGCGACAATCCCTATCTGGTCT 245 Query Sbjct 190 GATGGGATTAGCTAGTAGGCGGGGTAATGGCCCACCTAGGCGACAATCCCTAGCTGGTCT 249 Query 246 GAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCACACTCTTACGGGAGGCASCA 305 Sbjct 250 GAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCA 309 306 GTGGGGAATATTGCACAATGGGCGCACGCCTGATGCACCCATGCCCCGTGTATGAAAAAG 365 Ouerv Sbjct 310 GTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCACCCATGCCGCGTGTATGAAAAAG 369 Query 366 GCCTTCTGGTTGTAAAGTACTTTCAGCGGGGGGGAGGAAGCGATGCGGTTAATAACCGCGT 424 Sbjct 370 GCCTTCGGGTTGTAAAGTACTTTCAGCGGGGAGGAAGGCGATGTGGTTAATAACCGCGT 428

(Rami levy mint): Pseudomonas sp A7-2

GGTTAGCTTGCTCCTTGATTCAGCGGCGGACGGGTGAGTAATGCCTAGGAATCTGCC CTGGTAGTGGGGGACAACGTTTCGAAAGGAACGCTAATACCGCATACGTCCTACGG GAGAAAGCAGGGGACCTTCGGGCCCTGCGCTATCAGATGAGCCTAGGTCGGATTAG CTAGTTGGTGGTGTAATGGCTC

escriptions	Graphic Summary	Alignments	Taxonomy									
equences pro	oducing significant a	lignments			Download	~	New Se	lect co	olumns	~ s	how 1	00 🗸
select all 0	sequences selected							Bank				ee of resu
		Description			Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accessio
Pseudomonas	<u>sp. A7-2 16S ribosomal RNA g</u>	jene, partial sequence			Pseudomonas	335	335	97%	6e-88	98.93%	1063	<u>GQ497241</u>
Pseudomonas	<u>sp. gyq20 16S ribosomal RNA</u>	gene, partial sequence	1		Pseudomonas	329	329	100%	3e-86	97.91%	1448	FJ984613
Bacterium enri	chment culture clone ALO1 GL	LFRUDD03GGAC7 165	ribosomal RNA gene	partial sequence	bacterium enric	329	329	97%	3e-86	98.40%	398	JF689195
Uncultured Pse	udomonas sp. clone IMA12 16	6S ribosomal RNA gene	, partial sequence		uncultured Pse	327	327	97%	1e-85	98.40%	1434	MT605353
Pseudomonas	monteilii strain JM10 16S ribos	somal RNA gene, partia	l sequence		Pseudomonas	327	327	97%	1e-85	98.40%	1423	MT605299
Pseudomonas	putida strain CW1 16S riboson	nal RNA gene, partial s	equence		Pseudomonas	327	327	97%	1e-85	98.40%	1529	MT604992
Pseudomonas	sp. strain Voy50th27-1 16S rib	osomal RNA gene, par	tial sequence		Pseudomonas	327	327	97%	1e-85	98.40%	800	MT58863
Pseudomonas	sp. strain Voy50th6-7 16S ribo	somal RNA gene, parti	al sequence		Pseudomonas	327	327	97%	1e-85	98.40%	800	MT588619
Pseudomonas	putida strain 15420352 chrom	osome, complete genor	ne		Pseudomonas	327	2279	97%	1e-85	98.40%	6165619	CP04555
Pseudomonas	sp. strain Lsk 16S ribosomal R	NA gene, partial seque	nce		Pseudomonas	327	327	97%	1e-85	98.40%	1405	MT55703
Pseudomonas	sp. strain AAUGM-9 16S ribos	omal RNA gene, partial	sequence		Pseudomonas	327	327	97%	1e-85	98.40%	927	MT549901
Pseudomonas	sp. strain AAUGM-1 16S ribos	omal RNA gene, partial	sequence		Pseudomonas	327	327	97%	1e-85	98.40%	884	MT549664
	sp. strain HBUM206316 16S ri	ibosomal RNA gene, pa	artial sequence		Pseudomonas	327	327	97%	1e-85	98.40%	848	MT549181
Pseudomonas	putida strain S11-2 16S riboso	mal RNA gene, partial	sequence		Pseudomonas	327	327	97%	1e-85	98.40%	1405	MT539711
Pseudomonas	sp. strain Tm-B7 16S ribosoma	al RNA gene, partial se	quence		Pseudomonas	327	327	97%	1e-85	98.40%	1407	MT533988
Pseudomonas	sp. strain UFLA 306 16S ribos	amal BNA gana, partia	_		Pseudomonas	327	327	97%	1e-85	98 40%	1400	MN74973

Lage Anticest Sector Lage Anticest Lage Ant

Pseudomonas sp. A7-2 16S ribosomal RNA gene, partial sequence

Sequence ID: <u>GQ497241.1</u> Length: **1063** Number of Matches: **1** <u>See 1 more title(s) See all Identical Proteins(IPG)</u>

Range 1: 71 to 257 GenBank Graphics

Vext Match

▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>

Score 335 bit	s(181)	Expect 6e-88	Identities 185/187(99%)	Gaps 0/187(0%)	Strand Plus/Plus
Query	5	AGCTTGCT	CCTTGATT	CAGCGGCGGACGGGTGAGTA	АТССТАССААТСТСС	CTGGTAG 64
Sbjct	71	AGCTTGC	CCTTGATT	CAGCGGCGGACGGGTGAGTA	ATGCCTAGGAATCTGCC	CTGGTAG 130
Query	65	TGGGGGA	CAACGTTTC	GAAAGGAACGCTAATACCGC	CATACGTCCTACGGGAGA	AAGCAGG 124
Sbjct	131	TGGGGGA	CAACGTTTC	GAAAGGAACGCTAATACCGC	CATACGTCCTACGGGAGA	AAGCAGG 190
Query	125	GGACCTTO	сесссте	GCTATCAGATGAGCCTAGG	GTCGGATTAGCTAGTTGG	TGGTGTA 184
Sbjct	191	GGACCTTO	сбасстта	CCTATCAGATGAGCCTAG	tcggattagctagttgg	TGGGGTA 250
Query	185	ATGGCTC	191			
Sbjct	251	ATGGCTC	257			

(Hebron market parsley): Enterobacter cloacae strain 3849

GCTTTCGCACCTGACGTCGTCTTTGTCCGGGGGCCGCCTTCGCCCGGTATTCCTCCA GATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAGACTCTA GCCTGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGATTTCACATCCGACTT GACAGACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTC CGTATTACCGCGGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGGTAACGTC AATCGACAGGGTTATTAACCCTGTCGCCTTCCTCCCCGCTGAAAGTACTTTACAACC CGAAGGCCTTCTTCATACACGCGGCATGGCTGCATCAGGCTTGCGCCCATTGTGCAA TATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGGCT GGTCATCCTCTCAGACCAGCTAGGGATCGTCGCCTAGGTGAGCCGTTACCCCACCTA CTAGCTAATCCCATCTGGGCACATCCGATGGCAAGA

Descriptions	Graphic Summary	Alignments	Taxonomy												
Sequences pro	Sequences producing significant alignments Download 👋 🚾 Select columns 🐣 Show 100 🖍 🔞														
Select all 0 sequences selected GenBank Graphics Distance tree of results															
		Description			Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession			
Enterobacter c	cloacae strain 3849 chromosom	e <u>, complete genome</u>			Enterobacter cl	1000	7951	100%	0.0	99.28%	4599410	CP052870.1			
Enterobacter c	loacae strain BSN3 16S riboso	mal RNA gene, partial	sequence		Enterobacter cl	1000	1000	100%	0.0	99.28%	1428	MT310830.1			
Enterobacter h	tormaechei subsp. hoffmannii C	143 gene for 16S ribos	somal RNA, partial se	quence	Enterobacter h	1000	1000	100%	0.0	99.28%	1412	LC515572.1			
Enterobacter c	loacae strain Varr 1bios 16S ri	bosomal RNA gene, pa	artial sequence		Enterobacter cl	1000	1000	100%	0.0	99.28%	1058	MN135299.1			
Enterobacter s	p. strain EUL361 16S ribosoma	I RNA gene, partial se	quence		Enterobacter sp.	1000	1000	100%	0.0	99.28%	1309	MT126447.1			
Enterobacter h	ormaechei strain ER46 16S rib	osomal RNA gene, par	tial sequence		Enterobacter h	1000	1000	100%	0.0	99.28%	1405	MT124571.1			
Enterobacter c	loacae strain CnLm-1 16S ribos	somal RNA gene, parti	al sequence		Enterobacter cl	1000	1000	100%	0.0	99.28%	1403	MT074035.1			
Enterobacter h	tormaechei subsp. hoffmannii s	train LB10 16S riboson	nal RNA gene, partial	sequence	Enterobacter h	1000	1000	100%	0.0	99.28%	1424	MT071493.1			
Enterobacter h	tormaechei subsp. hoffmannii C	IPH-N069 DNA, comp	lete genome		Enterobacter h	1000	7995	100%	0.0	99.28%	4689117	AP019817.1			
Enterobacter h	tormaechei subsp. hoffmannii s	train Eh1 chromosome	<u>, complete genome</u>		Enterobacter h	1000	7990	100%	0.0	99.28%	4845040	CP034754.1			
Enterobacter c	loacae strain EC 16S ribosoma	I RNA gene, partial sec	quence		Enterobacter cl	1000	1000	100%	0.0	99.28%	1395	MN788615.1			
Enterobacter h	normaechei strain L51 chromoso	ome, complete genome	2		Enterobacter h	1000	8001	100%	0.0	99.28%	5018729	CP033102.1			
<u>Download</u> ~	GenBank Graphics	Sort by: E value	~					v <u>N</u>	ext 🔺	Previou	s ≪Des	criptions			
nterobacter o	cloacae strain 3849	chromosome	complete den	ome											

Enterobacter cloacae strain 3849 chromosome, complete genome Sequence ID: CP052870.1 Length: 4599410 Number of Matches: 8

Score		Expect	Identities	Gaps	Strand	
	its(541)	0.0	551/555(99%)	4/555(0%)	Plus/Plus	
Query	1	GCTTTCGCACCTG/	A-CGTC-GTCTTTGTCC	GGGGGCCGCCTTCGCC-	CGGTATTCCTC	56
Sbjct	239763	GCTTTCGCACCTG/	AGCGTCAGTCTTTGTCC/	AGGGGGCCGCCTTCGCCA	CGGTATTCCTC	23982
Query	57	CAGATCTCTACGC/	ATTTCACCGCTACACCT	GAATTCTACCCCCTCT	ACAAGACTCTAG	116
Sbjct	239823	CAGATCTCTACGC	ATTTCACCGCTACACCT	GAATTCTACCCCCTCT	ACAAGACTCTAG	23988
Query	117	CCTGCCAGTTTCG/	AATGCAGTTCCCAGGTT	SAGCCCGGGGGATTTCACA	CCGACTTGACA	176
Sbjct	239883	CCTGCCAGTTTCG/	AATGCAGTTCCCAGGTT	AGCCCGGGGATTTCACA	rccgacttgaca	23994
Query	177	GACCGCCTGCGTG	CGCTTTACGCCCAGTAA	TCCGATTAACGCTTGCA	CCTCCGTATTA	236
Sbjct	239943	GACCGCCTGCGTG	GCTTTACGCCCAGTAA	TCCGATTAACGCTTGCA	CCTCCGTATTA	24000
Query	237	CCGCGGCTGCTGG	CACGGAGTTAGCCGGTG	TTCTTCTGCGGGTAACG	CAATCGACAGG	296
Sbjct	240003	CCGCGGCTGCTGG	CACGGAGTTAGCCGGTG	TTCTTCTGCGGGTAACG	CAATCGACAGG	24006
Query	297	GTTATTAACCCTG		SAAAGTACTTTACAACCC	SAAGGCCTTCTT	356
Sbjct	240063	GTTATTAACCCTG	resective	SAAAGTACTTTACAACCC	SAAGGCCTTCTT	24012
Query	357	CATACACGCGGCA	IGGCTGCATCAGGCTTG	GCCCATTGTGCAATATT	CCCACTGCTGC	416
Sbjct	240123	CATACACGCGGCA	rééctécatcaééctté	GCCCATTGTGCAATATT	CCCACTGCTGC	24018
Query	417	CTCCCGTAGGAGT	TGGACCGTGTCTCAGT	CCAGTGTGGCTGGTCAT	CTCTCAGACCA	476
Sbjct	240183	CTCCCGTAGGAGT(tégéécétététékét	rccAgtgtgtggctggtcAt	CTCTCAGACCA	24024
Query	477	GCTAGGGATCGTC	SCCTAGGTGAGCCGTTA	CCCACCTACTAGCTAAT	CCATCTGGGCA	536
Sbjct	240243	GCTAGGGATCGTC	SCCTAGGTGAGCCGTTA	CCCACCTACTAGCTAAT	CCATCTGGGCA	24030
Query	537	CATCCGATGGCAAG	5A 551			
bjct	240303	CATCCGATGGCAA	5A 240317			

(Hebron market mint): Klebsiella pneumoniae strain G-A-TGW

GCTTTTCGCACCTGRCGTCGTCTTTGTCCGGGGGCCGCCTTCGCCACCGGTATTCCTC CAGATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAGACTCT AGCCTGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGATTTCACATCCGACT TGACAGACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCT CCGTATTACCGCGGCTGCTGGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGGTAACGT CAATCGACAAGGTTATTAACCTTRTCGCCTTCCTCCCCGCTGAAAGTGCTTTACAAC CCGAAGGCCTTCTTCACACACACGGCATGGCTGCWTCAGGCTTGCGCCCATTGTGCA AAATTCCCCACTGTGGCCTCCCGTGGGAATCTCGGCCGCGTGT

Descriptions	Graphic Summary	Alignments	Taxonomy								
Sequences pro	oducing significant a	lignments		Download	~	New Se	lect co	olumns	~ s	how 1	00 🗙 🔞
select all 0	sequences selected						Bank			istance t	ree of results
		Description		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Klebsiella pneu	moniae strain G-A-TGW 16S r	ibosomal RNA gene, pa	artial sequence	Klebsiella pneu	747	747	99%	0.0	97.06%	759	MG982455.1
Uncultured Klei	<u>bsiella sp. clone F5jun.6 16S ri</u>	<u>bosomal RNA gene, pa</u>	artial sequence	uncultured Kle	743	743	100%	0.0	96.64%	1465	<u>GQ416119.1</u>
Uncultured bac	terium clone NBBPI0309_13 1	<u>6S ribosomal RNA gen</u>	<u>e, partial sequence</u>	uncultured bact	741	741	98%	0.0	96.83%	1383	<u>JQ072567.1</u>
Klebsiella pneu	imoniae strain 2483 16S riboso	mal RNA gene, partial	sequence	Klebsiella pneu	737	737	99%	0.0	96.62%	1429	MT604895.1
Klebsiella pneu	moniae strain MS14393 chron	nosome, complete geno	ome	Klebsiella pneu	737	5798	99%	0.0	96.62%	5492431	CP054303.1
Enterobacter s	p. strain AAUGM-14 16S ribose	omal RNA gene, partial	sequence	Enterobacter sp.	737	737	99%	0.0	96.62%	927	MT550649.1
Klebsiella pneu	moniae strain KKP_1601 16S	<u>ribosomal RNA gene, p</u>	partial sequence	Klebsiella pneu	737	737	99%	0.0	96.62%	1402	MT549682.1
Klebsiella pneu	moniae strain KKP_1596 16S	<u>ribosomal RNA gene, p</u>	partial sequence	Klebsiella pneu	737	737	99%	0.0	96.62%	1402	MT549679.1
Enterobacter s	p. strain AAUGM-2 16S ribosor	nal RNA gene, partial s	equence	Enterobacter sp.	737	737	99%	0.0	96.62%	933	MT549676.1
Klebsiella pneu	moniae strain 7609 16S riboso	mal RNA gene, partial	sequence	Klebsiella pneu	737	737	99%	0.0	96.62%	1416	MT516162.1
Klebsiella pneu	imoniae strain BA2275 chromo	some, complete genon	ne	Klebsiella pneu	737	5713	99%	0.0	96.62%	5539612	CP053364.1
Klebsiella sp. s	train Atecer7H 16S ribosomal	RNA gene, partial sequ	ence	Klebsiella sp.	737	737	99%	0.0	96.62%	1404	MT386174.1
Klebsiella pneu	imoniae strain 5 16S ribosoma	<u>I RNA gene, partial seq</u>	uence	Klebsiella pneu	737	737	99%	0.0	96.62%	1281	<u>MT448676.1</u>

🛃 Download	<mark>d</mark> ← <u>GenBank</u> (Graphics					▼ <u>Next</u> ▲ <u>Previ</u>	ous << Descriptions
Klebsiella	pneumoniae s	train G-A-TGW 16	S ribosomal RNA	gene, pa	rtial s	equence		
Sequence ID	: MG982455.1 Le	ength: 759 Number o	f Matches: 1					
Range 1: 32	0 to 759 GenBank	Graphics		Vext	Match	Previous Match		
Score 747 bits(404	Expect 4) 0.0	Identities 429/442(97%)	Gaps 3/442(0%)	Strand Plus/Minu	s	_		
Query 4	TTTCGCACCTGRCG	rc-gtctttgtccgggggc	CGCCTTCGCCACCGGTAT	TCCTCCAGA	62			
Sbjct 759	tttccccctcacct	rcagtctttgtccgggggg	coccttcoccaccoctat	tcctccaga	700			
Query 63	TCTCTACGCATTTC	ACCGCTACACCTGGAATTC	TACCCCCCTCTACAAGAC	TCTAGCCTG	122			
bjct 699	tététkégékttté	ACCGCTACACCTGGAATTC	TACCCCCCTCTACAAGAC	tctagcctg	640			
uery 123	CCAGTTTCGAATGC	AGTTCCCAGGTTGAGCCCG	GGGATTTCACATCCGACT	TGACAGACC	182			
bjct 639	ccagtttcgaatgc/	detteccadetteadecce	GGGATTTCACATCCGACT	TGACAGACC	580			
Query 183	GCCTGCGTGCGCTT	ACGCCCAGTAATTCCGAT	TAACGCTTGCACCCTCCG	TATTACCGC	242			
bjct 579	6cct6c6t6c6ctt	racecccaetaattcceat	TAACGCTTGCACCCTCCG	TATTACCGC	520			
Query 243	GGCTGCTGGCACGG	AGTTAGCCGGTGCTTCTTC	TGCGGGTAACGTCAATCG	ACAAGGTTA	302			
bjct 519	GGCTGCTGGCACGG	déttAéccéétécttcttc	tocootaacotcaatco	Acaaddtta	460			
Query 303	TTAACCTTRTCGCCT	TCCTCCCCGCTGAAAGTG	CTTTACAACCCGAAGGCC	TTCTTCACA	362			
Sbjct 459	ttaaccttatcocct	ttcctcccccctcAAAGtc	ctttacaacccgaaggcc	ttcttcaca	400			
Query 363	CACACGGCATGGCT	GCWTCAGGCTTGCGCCCAT	TGTGCAAAATTCCCCACT	бтеесстсс	422			
Sbjct 399	cacececeteet	SCATCAGGCTTGCGCCCAT	tétécéketete	бстьсстсс	340			
Query 423	CGTGGGAATCTCGG	CGCGTGT 444						
Sbjct 339	CGTAGGAGTCT-GGA	AC-CGTGT 320						

(Hebron market mint): uncultured Enterobacter sp. clone 65-160B-CB90

CCCACCGGTATTCCTCCAGATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCC CCCTCTACAAGACTCTAGCCTGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGG GATTTCACATCCGACTTGACAGACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGA TTAACGCTTGCACCCTCCGTATTACCGCGGGCTGCTGGCACGGAGTTAGCCGGTGCTT CTTCTGCGGGTAACGTCAATCGACAAGGTCACTAAC

Descriptions	Graphic Summary	Alignments	Taxonomy									
Sequences pro	olumns	✓ SI	now 1	00 🗸 🧯								
select all 0	<u>Bank</u>				ee of result							
		Description		C	common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Uncultured Ente	erobacter sp. clone 65-160B-C	B90 16S ribosomal RN	IA gene, partial sequence	<u>un</u>	cultured Ent	483	483	99%	3e-132	99.62%	798	MF470976.1
Uncultured Ente	erobacteriaceae bacterium clor	te 55-160B-CB44 16S	ribosomal RNA gene, pa	rtial sequence une	cultured Ent	483	483	99%	3e-132	99.62%	798	MF470712.
Uncultured bac	terium clone Otu05262 16S rib	osomal RNA gene, par	rtial sequence	une	cultured bact	483	483	99%	3e-132	99.62%	465	KX995118.1
Uncultured bac	terium clone Otu01429 16S rib	osomal RNA gene, par	rtial sequence	une	cultured bact	483	483	99%	3e-132	99.62%	464	KX991684.
Uncultured bac	terium clone Otu00249 16S rib	osomal RNA gene, par	rtial sequence	une	cultured bact	483	483	99%	3e-132	99.62%	465	KX990542.
Uncultured Klet	osiella sp. clone M01598 122	000000000-ADV8A 1	1104 14765 3262 16S	ribosomal RNA g un	cultured Kleb	483	483	99%	3e-132	99.62%	465	KT300746.
Uncultured Klet	osiella sp. clone M01598 122	000000000-ADV8A 1	1103 14821 21639 165	ribosomal RNA un	cultured Kleb	483	483	99%	3e-132	99.62%	465	KT300438.
Uncultured Klet	osiella sp. clone M01598 122	000000000-ADV8A 1	1101 22107 18470 165	ribosomal RNA un	cultured Kleb	483	483	99%	3e-132	99.62%	464	KT294255.
Uncultured Klet	osiella sp. clone M01598 122	000000000-ADV8A 1	1101 17866 15453 165	ribosomal RNA un	cultured Kleb	483	483	99%	3e-132	99.62%	464	KT293805.
Uncultured Klet	osiella sp. clone M01598 122	000000000-ADV8A 1	1101 24023 8909 16S	ribosomal RNA g un	cultured Kleb	483	483	99%	3e-132	99.62%	466	KT292747.
Unidentified ma	rine bacterioplankton clone P3	-3B 94 16S ribosoma	I RNA gene, partial seque	nce uni	identified ma	483	483	99%	3e-132	99.62%	1372	KC001325.
Uncultured bac	terium clone nbw31g09c1 16S	ribosomal RNA gene,	partial sequence	une	cultured bact	483	483	99%	3e-132	99.62%	1363	<u>GQ062376</u>
Uncultured bac	terium clone BSC8H 16S ribos	omal RNA gene, partia	il sequence	une	cultured bact	483	483	99%	3e-132	99.62%	764	DQ342893
Uncultured bac	terium clone Otu00742 16S rib	osomal RNA gene, par	rtial sequence	une	cultured bact	479	479	100%	4e-131	99.25%	465	KX991030.
Uncultured Klet	siella sp. clone M01598 122	000000000-ADV8A 1	1101 25809 17409 165	ribosomal RNA un	cultured Kleb	479	479	100%	4e-131	99.25%	465	KT294094.

Range 1: 455 to 718 GenBank Graphics

Next A Previous <</p>

Uncultured Enterobacter sp. clone 65-160B-CB90 16S ribosomal RNA gene, partial sequence

Sequence ID: MF470976.1 Length: 798 Number of Matches: 1

Vext Match 🔺 Previous Match

Score 483 bit	s(261	Expect) 3e-132	Identities 263/264(99%)	Gaps 0/264(0%)	Strand Plus/Minu	IS
Query	2	CCACCGGTATTCCTCC	AGATCTCTACGCATTTCAC	CGCTACACCTGGAATT	гстасссссс	61
Sbjct	718	CCACCGGTATTCCTCC	AGATCTCTACGCATTTCAC	CGCTACACCTGGAAT	TCTACCCCC	659
Query	62	TCTACAAGACTCTAG	CTGCCAGTTTCGAATGCAG	TTCCCAGGTTGAGCCC	GGGGGATTTC	121
Sbjct	658	TCTACAAGACTCTAG	CTGCCAGTTTCGAATGCAG	TTCCCAGGTTGAGCCO	CGGGGATTTC	599
Query	122	ACATCCGACTTGACAG	GACCGCCTGCGTGCGCTTTA	CGCCCAGTAATTCCGA	ATTAACGCTT	181
bjct	598	ACATCCGACTTGACAC	ACCGCCTGCGTGCGCTTTA	CGCCCAGTAATTCCG	ATTAACGCTT	539
<u>)</u> uery	182	GCACCCTCCGTATTAC	CGCGGCTGCTGGCACGGAG	TTAGCCGGTGCTTCT	ICTGCGGGTA	241
5bjct	538	GCACCCTCCGTATTAC	CGCGGCTGCTGGCACGGAG	TTAGCCGGTGCTTCT	ICTGCGGGTA	479
Query	242	ACGTCAATCGACAAG	TCACTAAC 265			
Sbjct	478	ACGTCAATCGACAAGO	TTACTAAC 455			

(Hebron market parsley): Enterobacter cloacae strain BHWSL4.2

GCTTTCGCACCTGACGTCGTCTTTGTCCGGGGGGCCGCCTTCGCCACCGGTATTCCTCC AGATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAGACTCT AGCCTGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGATTTCACATCCGACT TGACAGACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCT CCGTATTACCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGGTAACGT CAATCGACAGGGTTATTAACCCTGTCGCCTTCCTCCCCGCTGAAAGTACTTTACAAC CCGAAGGCCTTCTTCATACACGCGGCATGGCTGCATCAGGCTTGCGCCCATTGTGCA ATATTCCCCAATGCTGCCTCCCGTAAG

Sequence	es producing significant a	lignments		Download	~	New Se	lect co	olumns	× s	how 1	00 🗸
select	all 100 sequences selected					Gen	Bank	<u>Graph</u>	iics D	istance tr	ee of resu
		Description		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accessio
Enterol	oacter cloacae strain BHWSL4.2 16S	ribosomal RNA gene, pa	artial sequence	Enterobacter cl	769	769	100%	0.0	99.07%	1200	KX212259.
Enterol	acter cloacae strain 3849 chromoson	ne, complete genome		Enterobacter cl	765	6075	99%	0.0	99.07%	4599410	CP052870.
Enterol	oacter cloacae strain BSN3 16S ribos	omal RNA gene, partial :	sequence	Enterobacter cl	765	765	99%	0.0	99.07%	1428	MT310830.
Enterol	oacter hormaechei subsp. hoffmannii (O143 gene for 16S ribos	somal RNA, partial sequence	Enterobacter h	765	765	99%	0.0	99.07%	1412	LC515572.
Enterol	oacter cloacae strain Varr 1bios 16S r	ibosomal RNA gene, pa	rtial sequence	Enterobacter cl	765	765	99%	0.0	99.07%	1058	MN135299
Enterol	oacter sp. strain EUL361 16S ribosom	al RNA gene_partial see	quence	Enterobacter sp.	765	765	99%	0.0	99.07%	1309	MT126447.
Enterol	oacter hormaechei strain ER46 16S ril	bosomal RNA gene, par	tial sequence	Enterobacter h	765	765	99%	0.0	99.07%	1405	MT124571.
Enterol	oacter cloacae strain PH8 16S ribosor	nal RNA gene, partial se	equence	Enterobacter cl	765	765	99%	0.0	99.07%	1490	MT102426.
Enterol	oacter hormaechei strain PH5 16S rib	osomal RNA gene, parti	al sequence	Enterobacter h	765	765	99%	0.0	99.07%	1511	MT102423.
Enterol	oacter cloacae strain PE12 16S riboso	mal RNA gene, partial s	equence	Enterobacter cl	765	765	99%	0.0	99.07%	1464	MT102422
Enterol	acter hormaechei strain N1 16S ribos	somal RNA gene, partial	sequence	Enterobacter h	765	765	99%	0.0	99.07%	1474	MT102415.
Enterol	oacter cloacae strain CnLm-1 16S ribo	somal RNA gene, partia	al sequence	Enterobacter cl	765	765	99%	0.0	99.07%	1403	MT074035.
Enterol	acter hormaechei subsp. hoffmannii s	strain LB10 16S riboson	nal RNA gene, partial sequence	Enterobacter h	765	765	99%	0.0	99.07%	1424	MT071493.
Enterol	acter hormaechei strain NK15 16S ril	bosomal RNA gene, par	tial sequence	Enterobacter h	765	765	99%	0.0	99.07%	770	MT044306.
Enterol	pacter hormaechei strain NK8 16S rib	osomal RNA gene, parti	al sequence	Enterobacter h	765	765	99%	0.0	99.07%	770	MT044238.
Downloa	d - GenBank Graphics						V N	lext 🔺		is ≪ <u>De</u>	scriptions

Sequence ID: KX212259.1 Length: 1200 Number of Matches: 1

Range	1: 79	to 508 GenBank	Braphics		V Next	Match 🔺 Pre
Score 769 bit	ts(416) Expect	Identities 426/430(99%)	Gaps 3/430(0%)	Strand Plus/Minus	6
Query	1	GCTTTCGCACCTGA-	-сөтс-өтстттөтсс-өө	GGGCCGCCTTCGCCACC	GGTATTCCTC	57
Sbjct	508	GCTTTCGCACCTGAG	GCGTCAGTCTTTGTCCAGG	GGGCCGCCTTCGCCACC	GGTATTCCTC	449
Query	58	CAGATCTCTACGCAT	TTCACCGCTACACCTGGA	АТТСТАСССССТСТАС	AAGACTCTAG	117
Sbjct	448	CAGATCTCTACGCA	TTCACCGCTACACCTGGA	AttetAccecetetAc	AAGACTCTAG	389
Query	118	CCTGCCAGTTTCGA/	TGCAGTTCCCAGGTTGAG	CCCGGGGGATTTCACATC	CGACTTGACA	177
Sbjct	388	CCTGCCAGTTTCGA	TGCAGTTCCCAGGTTGAG	CCCGGGGATTTCACATC	CGACTTGACA	329
Query	178	GACCGCCTGCGTGCG	GCTTTACGCCCAGTAATTC	CGATTAACGCTTGCACC	CTCCGTATTA	237
Sbjct	328	GACCGCCTGCGTGCG	ctttacgcccagtaattc	CGATTAACGCTTGCACC	ctccgtatta	269
Query	238	CCGCGGCTGCTGGC/	ACGGAGTTAGCCGGTGCTT	CTTCTGCGGGTAACGTC	AATCGACAGG	297
Sbjct	268	cccccccctcctccc	ACGGAGTTAGCCGGTGCTT	cttctgcgggtaacgtc	AATCGACAGG	209
Query	298	GTTATTAACCCTGTC	GCCTTCCTCCCGCTGAA	AGTACTTTACAACCCGA	AGGCCTTCTT	357
Sbjct	208	dttattaaccctdtd		AGTACTTTACAACCCGA	AGGCCTTCTT	149
Query	358	CATACACGCGGCATO	GCTGCATCAGGCTTGCGC	CCATTGTGCAATATTCC	CCAATGCTGC	417
Sbjct	148	CATACACGCGGCAT	GetgeAtcAgeetteege	ccattetecaatattcc	ccactectec	89
Query	418	CTCCCGTAAG 427	7			
Sbjct	88	CTCCCGTAAG 79				

(Hebron market parsley): E. coli strain 188

TACTGGAAACGGTAGCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGGACCTT CGGGCCTCTTGCCATCGGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGGTAACG GCTCACCTAGGCGACGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAA CTGAGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGGAATA

Descr	riptions	Graphic Summary	Alignments	Taxonomy									
Sequences producing significant alignments Download × 🔤 Select columns × Show 100 × 👔													
Select all 0 sequences selected													ee of results
			Description			Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
	scherichia coli	strain 188 chromosome				Escherichia coli	394	2529	100%	1e-105	100.00%	4857938	CP062967.1
<u> </u>	scherichia coli	strain 188B chromosome				Escherichia coli	394	2374	100%	1e-105	100.00%	4857938	CP062970.1
Er	nterobacter ho	rmaechei subsp. steigerwaltii	strain DSM 16691(T)	16S ribosomal RNA g	ene, partial sequence	Enterobacter h	394	394	100%	1e-105	100.00%	599	<u>MW111213.1</u>
Er	nterobacter ho	rmaechei strain Planc18 16S	ribosomal RNA gene	partial sequence		Enterobacter h	394	394	100%	1e-105	100.00%	1404	<u>MW090899.1</u>
<u>Ci</u>	itrobacter freu	ndii strain 569R1 16S ribosom	al RNA gene, partial	sequence		Citrobacter fre	394	394	100%	1e-105	100.00%	893	MW080652.1
<u> </u>	<u>higella flexneri</u>	partial 16S rRNA gene, isolat	e UFV 96			<u>Shigella flexneri</u>	394	394	100%	1e-105	100.00%	1438	LR739011.1
<u>st</u>	higella dysente	eriae partial 16S rRNA gene, is	solate UFV 83			Shigella dysent	394	394	100%	1e-105	100.00%	573	LR739008.1
	scherichia coli	partial 16S rRNA gene, isolate	e UFV 59			Escherichia coli	394	394	100%	1e-105	100.00%	1371	LR739005.1
<u> </u>	scherichia coli	partial 16S rRNA gene, isolate	e UFV 566			Escherichia coli	394	394	100%	1e-105	100.00%	1416	LR739002.1
<u> </u>	scherichia coli	partial 16S rRNA gene, isolate	e UFV 526			Escherichia coli	394	394	100%	1e-105	100.00%	1325	LR738999.1
	scherichia ferg	usonii partial 16S rRNA gene,	isolate UFV 503			Escherichia fer	394	394	100%	1e-105	100.00%	822	LR738995.1
	scherichia ferg	jusonii partial 16S rRNA gene,	isolate UFV 501			Escherichia fer	394	394	100%	1e-105	100.00%	1418	LR738994.1
<u> </u>	scherichia coli	partial 16S rRNA gene, isolate	e UFV 494			Escherichia coli	394	394	100%	1e-105	100.00%	1344	LR738992.1
	higella flexneri	partial 16S rRNA gene, isolati	e UFV 488			Shigella flexneri	394	394	100%	1e-105	100.00%	1352	LR738991.1
<u> </u>	scherichia coli	partial 16S rRNA gene, isolate	e UFV 442			Escherichia coli	394	394	100%	1e-105	100.00%	1363	LR738983.1

▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>

Escherichia coli strain 188 chromosome

Sequence ID: CP062967.1 Length: 4857938 Number of Matches: 8

core		Expect	Identities	Gaps	Strand	
	5(213)	1e-105	213/213(100%)	0/213(0%)	Plus/Minus	
iery	1	TACTGGAAACGO	STAGCTAATACCGCATAACGT	CGCAAGACCAAAGAG	GGGGACCTTCGGG	60
jct	3854923	TACTGGAAACG	STAGCTAATACCGCATAACG	CGCAAGACCAAAGAG	GGGGGACCTTCGGG	3854864
iery	61	CCTCTTGCCATO	GGATGTGCCCAGATGGGATT	AGCTAGTAGGTGGGG	TAACGGCTCACCT	120
jct	3854863	CCTCTTGCCAT	GGATGTGCCCAGATGGGATT	AGCTAGTAGGTGGGG	TAACGGCTCACCT	3854804
iery	121	AGGCGACGATCO	CTAGCTGGTCTGAGAGGATG	ACCAGCCACACTGGA	ACTGAGACACGGT	180
jct	3854803	AGGCGACGATCO	CTAGCTGGTCTGAGAGGAT	ACCAGCCACACTGGA	ACTGAGACACGGT	3854744
iery	181	CCAGACTCCTAC	GGGAGGCAGCAGTGGGGAAT	A 213		
jct	3854743	CCAGACTCCTAG	CGGGAGGCAGCAGTGGGGAAT	A 3854711		

(Rami levy parsley): Pantoea agglomerans strain AA2

GTTTGCTCCCCACGCTTTCGCACCTGACCGTCAGTCTTCGTCCAGGGGGGCCGCCTTCG CCACCGGTATTCCTCCAGATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCC CCTCTACGAGACTCAAGCCTGCCAGTTTCAAATGCAGTTCCCAGGTTAAGCCCGGGG ATTTCACATCTGACTTAACAGACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATT AACGCTTGCACCCTCCGTATTACCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCT TCTGCGGGTAACGTCAATCGGCGAGGTTATTAACCTCACCGCCTTCCTCCCCGCTGA AAGTACTTTACAACCCGAAGGCCTTCTTCATACACGCGGCATGGCTGCATCAGGCTT GCGCCCATTGTGCAATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGA

Descriptions	Graphic Summary	Alignments	Taxonomy								
Sequences producing significant alignments Download V Mer Select columns V Show 100 V @											
select all 0	sequences selected				nk G			nce tr	ee of results		
		Description		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Pantoea agglor	nerans strain AA2 16S ribosom	al RNA gene, partial s	equence	Pantoea agglo	828	828	100%	0.0	99.78%	1394	MT557015.1
Pantoea sp. str	ain AA1 16S ribosomal RNA ge	ene, partial sequence		Pantoea sp.	828	828	100%	0.0	99.78%	1397	MT557014.1
Pantoea sp. str	ain CoA11 16S ribosomal RNA	gene, partial sequence	<u>e</u>	Pantoea sp.	828	828	100%	0.0	99.78%	1453	MT557009.1
Pantoea agglor	nerans strain CoA9 16S riboso	mal RNA gene, partial	sequence	Pantoea agglo	828	828	100%	0.0	99.78%	1440	MT557008.1
Pantoea disper	sa strain AE5 16S ribosomal Ri	NA gene, partial sequ	ence	Pantoea dispersa	828	828	100%	0.0	99.78%	1469	MT540024.1
Pantoea disper	sa strain SA004 16S ribosomal	RNA gene, partial se	quence	Pantoea dispersa	828	828	100%	0.0	99.78%	1408	MN725743.
Erwinia tasman	iensis strain OsEp A&N 15A5	16S ribosomal RNA o	jene, partial sequence	Erwinia tasmani	828	828	100%	0.0	99.78%	1412	MT367838.
Pantoea eucrin	a strain OsEp Plm 30P10 16S	ribosomal RNA gene	partial sequence	Pantoea eucrina	828	828	100%	0.0	99.78%	1414	MT367823.1
Pantoea eucrin	a strain OsEp Plm 15P14 16S	ribosomal RNA gene	, partial sequence	Pantoea eucrina	828	828	100%	0.0	99.78%	1421	MT367816.
Pantoea disper	sa strain Atecer11H 16S riboso	mal RNA gene, partia	sequence	Pantoea dispersa	828	828	100%	0.0	99.78%	1388	MT386231.1
Erwinia soli stra	in Atecer4A 16S ribosomal RN	Agene, partial seque	<u>1Ce</u>	Erwinia soli	828	828	100%	0.0	99.78%	1389	MT386138.1
Pantoea disper	sa strain Atecer2N 16S riboson	nal RNA gene, partial	sequence	Pantoea dispersa	828	828	100%	0.0	99.78%	1390	MT386125.1
Pantoea disper	sa strain PSB 8 16S ribosomal	RNA gene, partial sec	uence	Pantoea dispersa	828	828	100%	0.0	99.78%	700	MT422722.
	sa strain AA2 16S ribosomal R			Pantoea dispersa	828	828	100%	0.0	99.78%		
Dantees surging strais OrEBA BIM 143 185 sibecempt DNA same partial assurance Dates surging 010 010 4001 Monor Dates Strain Stra											

Pantoea agglomerans strain AA2 16S ribosomal RNA gene, partial sequence Sequence ID: MT557015.1 Length: 1394 Number of Matches: 1

1: 278 to 728 GenBa

Range	1: 278	3 to 728 GenBank	Graphics		Vext N	latch 🔺 F
Score 828 bit	s(448	Expect) 0.0	Identities 450/451(99%)	Gaps 0/451(0%)	Strand Plus/Minus	
Query	1	TITITI	TTTCGCACCTGACCGTCAG			60
bjct	728	GTTTGCTCCCACGC				669
Query Sbict	61 668	ACCEGITATTCCTCCA	GATCTCTACGCATTTCACCO			120 609
Query	121	TACGAGACTCAAGCC	TGCCAGTTTCAAATGCAGT	TCCCAGGTTAAGCCCC	GGGGATTTCAC	180
Sbjct	608	TACGAGACTCAAGCC	TGCCAGTTTCAAATGCAGT	TCCCAGGTTAAGCCCC	GGGATTTCAC	549
Query	181	ATCTGACTTAACAGA	CCGCCTGCGTGCGCTTTAC	GCCCAGTAATTCCGAT	TAACGCTTGC	240
Sbjct	548	Atctgacttaacaga		ŚĊĊĊĂĠŦĂĂŦŦĊĊĠĂ	ttaacidettide	489
Query	241	ACCCTCCGTATTACC	GCGGCTGCTGGCACGGAGT	TAGCCGGTGCTTCTTC	TGCGGGTAAC	300
Sbjct	488	ACCCTCCGTATTACC	ĠĊĠĠĊŦĠĊŦĠĠĊĂĊĠĠĂĠŦ	tAĠĊĊĠĠŦĠĊŦŦĊŦŦĊ	tácágát AAC	429
Query	301	GTCAATCGGCGAGGT	TATTAACCTCACCGCCTTC	CTCCCCGCTGAAAGT		360
Sbjct	428	ĠŦĊĂĂŦĊĠĠĊĠĂĠĠŦ	TATTAACCTCACCGCCTTCC	ċtċċċċġċtġĂĂĂġt/	létttácaácé	369
Query	361	CGAAGGCCTTCTTCA	TACACGCGGCATGGCTGCA	TCAGGCTTGCGCCCAT	TGTGCAATAT	420
Sbjct	368	ċĠĂĂĠĠĊĊŦŦĊŦŦĊĂ	TACACGCGGCATGGCTGCA	tcaddcttdcdcccat	tgtgcaatat	309
Query	421	TCCCCACTGCTGCCT	CCCGTAGGAGTCTGGA 4	51		
Sbjct	308	tccccactectect	CCCGTAGGAGTCTGGA 2	78		

(Rami levy parsley): E. coli strain SCU-397

GTGTCACTTTCGCTTTGGCAGCAGTGTCTTGCCCGATTGCAGGATGAGTTACCAGCCACAGA ATTCAGTATGTGGATACGCCCATTGCAGGCGGAACTGAGCGATAACACGCTGGCCCTGTACG CGCCAAATCGTTTTGTCCTCGATTGGGTACGGGACAAGTACCTTAATAATATCAATGGACTG CTAACCAGTTTCTGCGGAGCGGATGCCCCACAGCTGCGTTTTGAAGTCGGCACCAAACCGGT GACGCAAACGCCA

Descrip	otions	Graphic Summary	Alignments	Taxonomy								
Sequer	Sequences producing significant alignments Download × Mer Select columns × Show 100 × (0 🗸 📀	
🗌 sele	ectall 0s	sequences selected				nBank			stance tre	ee of results		
			Description		Common	Name Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Esch	herichia coli	strain SCU-397 chromosome			Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5386154	CP054828.1
Esch	herichia coli	strain SCU-164 chromosome			Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5401338	CP054343.1
Esch	herichia coli	strain NMBU W05E18 chrom	iosome, complete gen	ome	Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5299922	CP042878.1
Esch	herichia coli	strain SCU-486 chromosome	<u>, complete genome</u>		Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5198439	CP051749.1
Esch	herichia coli	O157:H7 strain K1516 chrom	osome, complete gen	ome	Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5294558	CP049612.1
Esch	herichia coli	strain 190693 chromosome, o	complete genome		Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5151952	CP048934.1
Esch	herichia coli	strain 15.TR.026 OXA chrom	iosome, complete gen	ome	Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5260440	CP032145.1
Esch	herichia coli	strain 631 chromosome, com	<u>plete genome</u>		Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5191486	CP040263.1
Esch	herichia coli	strain CFSAN061768 chromo	some, complete geno	me	Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	4957963	CP042973.1
Esch	herichia coli	strain CFSAN061763 chromo	some, complete geno	me	Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	4958734	CP042899.1
Esch	herichia coli	strain U1 chromosome, comp	lete genome		Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5320024	CP041359.1
Esch	herichia coli	strain A1 136 chromosome, o	complete genome		Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5305706	CP040390.1
Esch	herichia coli	strain 28Eco12 chromosome,	complete genome		Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5343367	CP038505.1
Esch	herichia coli	isolate EC-1639 genome ass	embly, chromosome: 1	L	Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5059899	LR025101.1
Esch	herichia coli	strain E-1246 chromosome, c	complete genome		Escherichia	<u>coli</u> 861	861	100%	0.0	100.00%	5425761	CP025573.1
Esch	herichia coli	strain 266917 2 chromosome	e, complete genome		Escherichia	<u>i coli</u> 861	861	100%	0.0	100.00%	5492922	CP026723.1

▼<u>Next</u> ▲ <u>Previous</u> ≪<u>Descriptions</u>

Lagentric state Lagentric Sector Lagent Lagentric Sector Lagentric Sector

Escherichia coli strain SCU-397 chromosome

Sequence ID: CP054828.1 Length: 5386154 Number of Matches: 1

Range 1: 55372	28 to 554193 GenBank Graph	lics	Vext Mate	h 🔺 Previous Match
Score 861 bits(466)	Expect Identities 0.0 466/466(10	Gaps 00%) 0/466(0%)	Strand Plus/Plus	
Query 1	GTGTCACTTTCGCTTTGGCAGCA	GTGTCTTGCCCGATTGCAGGATGA	GTTACCAGCCACA	60
Sbjct 553728	GTGTCACTTTCGCTTTGGCAGCA	GTGTCTTGCCCGATTGCAGGATGA	GTTACCAGCCACA	553787
Query 61	GAATTCAGTATGTGGATACGCCC	ATTGCAGGCGGAACTGAGCGATAA	CACGCTGGCCCTG	120
Sbjct 553788	GAATTCAGTATGTGGATACGCCC	ATTGCAGGCGGAACTGAGCGATAA	CACGCTGGCCCTG	553847
Query 121	TACGCGCCAAATCGTTTTGTCCT	CGATTGGGTACGGGACAAGTACCT	ТААТААТАТСААТ	180
Sbjct 553848	TACGCGCCAAATCGTTTTGTCCT	CGATTGGGTACGGGACAAGTACCT	таатаататсаат	553907
Query 181	GGACTGCTAACCAGTTTCTGCGG	AGCGGATGCCCCACAGCTGCGTTT	TGAAGTCGGCACC	240
Sbjct 553908	GGACTGCTAACCAGTTTCTGCGG	AGCGGATGCCCCACAGCTGCGTT	TGAAGTCGGCACC	553967
Query 241	AAACCGGTGACGCAAACGCCACA	AGCGGCAGTGACGAGCAACGTCGC	GGCCCCTGCACAG	300
Sbjct 553968	AAACCGGTGACGCAAACGCCACA	AGCGGCAGTGACGAGCAACGTCGC	GGCCCCTGCACAG	554027
Query 301	GTGGCGCAAACGCAGCCGCAACG	TGCTGCGCCTTCTACGCGCTCAGG	TTGGGATAACGTC	360
Sbjct 554028	GTGGCGCAAACGCAGCCGCAACG	tectececttctacecectcae	TTGGGATAACGTC	554087
Query 361	CCGGCCCCGGCAGAACCGACCTA	TCGTTCTAACGTAAACGTCAAACA	CACGTTTGATAAC	420
Sbjct 554088	CCGGCCCCGGCAGAACCGACCTA	TCGTTCTAACGTAAACGTCAAACA	ACACGTTTGATAAC	554147
Query 421	TTCGTTGAAGGTAAATCTAACCA	ACTGGCGCGCGCGGCGGCTCGCC	466	
Sbjct 554148	ttcgttgaaggtaaatctaacca	ACTGGCGCGCGCGGCGGCTCGCC	554193	

(Rami levy parsley): salmonella enterica

GTCAGTCTTTGTCCAGGGGGGCCGCCTTCGCCACCGGTATTCCTCCAGATCTCTACGC ATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAAAC

Des	criptions	Graphic Summary	Alignments	Taxonomy								
Sec	juences pro	oducing significant al	lignments		Download	· ~	New S	elect o	olumn	s × S	how 1	00 🗸 😗
	select all 0	sequences selected						nBank		hics D	istance tr	ee of results
			Description		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
	Salmonella ent	terica strain SA20083039 chron	nosome, complete gen	ome	Salmonella ent	183	1063	100%	1e-42	100.00%	4688830	CP030223.1
	Uncultured Lac	tobacillus sp. clone CCB9976	16S ribosomal RNA ge	ne, partial sequence	uncultured Lact	183	183	100%	1e-42	100.00%	300	KY481606.1
	Uncultured Suc	ccinimonas sp. clone CCB7214	16S ribosomal RNA g	ene, partial sequence	uncultured Suc	183	183	100%	1e-42	100.00%	300	<u>KY480140.1</u>
	Enterobacter lu	udwigii strain 3.1 16S ribosomal	RNA gene, partial sec	luence	Enterobacter lu	183	183	100%	1e-42	100.00%	814	KY230609.1
	Uncultured bac	terium clone denovo40315 N2	0 28002 16S ribosom	al RNA gene, partial sequence	uncultured bact	183	183	100%	1e-42	100.00%	472	MF230686.1
	Uncultured bac	terium clone denovo10051 N2	0 28444 16S ribosom	al RNA gene, partial sequence	uncultured bact	183	183	100%	1e-42	100.00%	473	MF230418.1
	Serratia protea	maculans strain 30PF8 16S rib	osomal RNA gene, pa	rtial sequence	Serratia protea	183	183	100%	1e-42	100.00%	1282	KY963471.1
	Uncultured bac	terium clone 80B 16S ribosom	al RNA gene, partial se	equence	uncultured bact	183	183	100%	1e-42	100.00%	1332	KY432397.1
	Uncultured bac	cterium clone Otu05089 16S rib	osomal RNA gene, pa	rtial sequence	uncultured bact	183	183	100%	1e-42	100.00%	465	KX994974.1
	Uncultured Kle	bsiella sp. clone M01598 122	000000000-ADV8A 1	1103 15108 19425 16S ribosomal RN.	. uncultured Kle	183	183	100%	1e-42	100.00%	465	KT300163.1
	Uncultured Kle	bsiella sp. clone M01598 122	000000000-ADV8A 1	1103 24955 14511 16S ribosomal RN	. uncultured Kle	183	183	100%	1e-42	100.00%	465	KT299464.1
	Uncultured Kle	bsiella sp. clone M01598 122	000000000-ADV8A 1	1103 15630 4059 16S ribosomal RNA	uncultured Kle	183	183	100%	1e-42	100.00%	465	KT298040.1
	Uncultured Kle	bsiella sp. clone M01598 122	000000000-ADV8A 1	1101 26844 14287 16S ribosomal RN.	. uncultured Kle	183	183	100%	1e-42	100.00%	465	KT293632.1
	Uncultured Kle	bsiella sp. clone M01598 122	000000000-ADV8A 1	1101 23080 12097 16S ribosomal RN.	. uncultured Kle	183	183	100%	1e-42	100.00%	465	KT293280.1
	Uncultured Kle	bsiella sp. clone M01598 122	000000000-ADV8A 1	1101 28323 7967 16S ribosomal RNA	uncultured Kle	183	183	100%	1e-42	100.00%	465	KT292587.1
	Uncultured Kle	bsiella sp. clone M01598 122	000000000-ADV8A 1	1101 8866 3620 16S ribosomal RNA g.	uncultured Kle	183	183	100%	1e-42	100.00%	465	KT292024.1

×

▲ Download ➤ GenBank Graphics Sort by: E value

▼<u>Next</u> ▲ <u>Previous</u> ≪<u>Descriptions</u>

Salmonella enterica strain SA20083039 chromosome, complete genome

Sequence ID: CP030223.1 Length: 4688830 Number of Matches: 6

Range 1: 45273	336 to 4527434	GenBank Graphics		Next Match	A Previous Match
Score 183 bits(99)	Expect 1e-42	Identities 99/99(100%)	Gaps 0/99(0%)	Strand Plus/Plus	
Query 1	GTCAGTCTTT	STCCAGGGGGCCGCCTTCG	CCACCGGTATTCCTCC/	AGATCTCTACGCATT	60
Sbjct 452733	6 GTCAGTCTTT	STCCAGGGGGGCCGCCTTCG	CCACCGGTATTCCTCC	AGATCTCTACGCATT	4527395
Query 61	TCACCGCTAC	ACCTGGAATTCTACCCCCC	TCTACAAAAC 99		
Sbjct 452739	6 TCACCGCTAC	ACCTGGAATTCTACCCCCC	TCTACAAAAC 45274	434	

(Hebron market parsley): Enterobacter hormaechei

GCACCTGACGTCAGTCTTTGTCCAGGGGGGCCGCCTTCGCCACCGGTATTCCTCCAGA TCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAGACTCTAGCC TGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGGATTTCACATCCGACTTGAC AGACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCGT ATTACCGCGGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGGTAACGTCAAT TGCTGAGGT

	Des	criptions	Graphi	ic Summary	Alignments	Taxonomy										
	Seq	quences pro	ducing	significant a	lignments				Download	~	New S	elect c	olumn	s Y S	how 1	00 🗸 😮
		select all 0	sequences	s selected								nBank			istance tr	ee of results
					Description				Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
		Enterobacter h	ormaechei p	partial 16S rRNA ge	ene, clone M40.7				Enterobacter h	545	545	100%	4e-151	100.00%	763	AM990174.1
		Enterobacter m	iori strain Sl	U105 16S ribosoma	al RNA gene, partial s	equence			Enterobacter m	540	540	100%	2e-149	99.66%	1088	MT640269.1
		Enterobacter h	ormaechei s	strain SU103 16S ri	ibosomal RNA gene, p	partial sequence			Enterobacter h	540	540	100%	2e-149	99.66%	1143	MT640267.1
		Enterobacter cl	oacae strair	n ACD1 16S riboso	<u>mal RNA gene, partia</u>	l sequence			Enterobacter cl	540	540	100%	2e-149	99.66%	1440	MT613381.1
		Enterobacter a	sburiae strai	in EI1 16S ribosom	al RNA gene, partial s	sequence			Enterobacter a	540	540	100%	2e-149	99.66%	1417	MT613375.1
		Enterobacter lu	idwigii strain	ED4 16S ribosom	al RNA gene, partial s	equence			Enterobacter lu	540	540	100%	2e-149	99.66%	1467	MT613372.1
		Enterobacter s	p. strain EB3	3 16S ribosomal RI	NA gene, partial seque	ence			Enterobacter sp.	540	540	100%	2e-149	99.66%	1442	MT613370.1
		Enterobacter a	sburiae strai	in CI1 16S ribosom	al RNA gene, partial s	sequence			Enterobacter a	540	540	100%	2e-149	99.66%	1413	MT613367.1
		Enterobacter ca	ancerogenus	<u>s strain CA1 16S ri</u>	<u>bosomal RNA gene, p</u>	artial sequence			Enterobacter c	540	540	100%	2e-149	99.66%	1467	MT613365.1
		Enterobacter a	sburiae strai	in BD1 16S ribosor	<u>mal RNA gene, partial</u>	sequence			Enterobacter a	540	540	100%	2e-149	99.66%	1437	MT613364.1
		Enterobacter s	p. strain BC2	2 16S ribosomal RI	NA gene, partial sequ	ence			Enterobacter sp.	540	540	100%	2e-149	99.66%	1558	MT613363.1
		Enterobacter m	ori strain BC	C1 16S ribosomal F	<u>RNA gene, partial seq</u>	uence			Enterobacter m	540	540	100%	2e-149	99.66%	1487	MT613362.1
		Enterobacter s	p. strain KR2	2 16S ribosomal RI	NA gene, partial sequ	ence			Enterobacter sp.	540	540	100%	2e-149	99.66%	897	MT361626.1
		Enterobacter s	<u>p. strain B16</u>	6 16S ribosomal RM	NA gene, partial seque	ence			Enterobacter sp.	540	540	100%	2e-149	99.66%	1309	MT256255.1
		Enterobacter s	p. strain B8	16S ribosomal RN/	<u>A gene, partial sequer</u>	<u>1Ce</u>			Enterobacter sp.	540	540	100%	2e-149	99.66%	1332	MT256254.1
Qui	- y	Enterobacter S	0. NA11039.	gene for 16S ribos	omal RNA, partial sec			1/3	Enterobacter s	540	540	100%	2e-149	99.66%	1510	AB921276.1
			enBank (Graphics								▼ <u>Nex</u>	t A Pre	vious <	Descrip	tions
Ent	ero	bacter hor	maeche	ei partial 16S	rRNA gene, o	lone M40.7										
Sequ	ienc	e ID: <u>AM990</u>	<u>174.1</u> Le	ength: 763 Nu	mber of Matches:	1										
Ran	1e 1 :	: 453 to 747	GenBank	Graphics			Vext Match	A Pre	vious Match							
Scor 545		(295)	Expect 4e-151	Identities 295/295(10	Gap 0%) 0/2		rand us/Minus									
Quer Sbjo																
Quer Sbjo	- C	111111														
Quer Sbjo		111111			CCGGGGGATTTCACA											

 Sbjct
 567
 TGCGGGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCGTATTACCGCGGC
 508

 Query
 241
 TGCTGGCACGGAGTTAGCCGGGGCGTTCTTCTGCGGGTAACGTCAATTGCTGAGGT
 295

 Sbjct
 507
 TGCTGGCACGGAGTTAGCCCGGGCGCTTCTTCTGCGGGTAACGTCAATTGCTGAGGT
 453

Query 181 TGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCGTATTACCGCGGC 240

(Hebron market mint): lelliottia sp strain S2E38

GCACCTGACGTCAGTCTTTGTCCAGGGGGGCCGCCTTCGCCACCGGTATTCCTCCAGA TCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAGACTCTAGCC TGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGATTTCACATCCGACTTGAC AGACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCGT ATTACCGCGGCTGCTGGCACGGA

Des	criptions	Graphic Summary	Alignments	Taxonomy									
Sec	luences pro	oducing significant a	lignments			Download	~	New S	elect c	olumn	s Y SI	how 1	00 🗸 🔞
	select all 0	sequences selected							<u>nBank</u>				ree of results
			Description			Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
	Lelliottia sp. str	ain S2E38 16S ribosomal RNA	gene, partial sequence	<u>e</u>		Lelliottia sp.	466	466	100%	3e-127	100.00%	1440	MH465177.1
	Enterobacter sp	o. strain S2E16 16S ribosomal	RNA gene, partial seq	uence		Enterobacter sp.	466	466	100%	3e-127	100.00%	1435	MH465162.1
	Klebsiella pneu	moniae strain MKAS 04 16S ri	<u>bosomal RNA gene, p</u>	artial sequence		Klebsiella pneu	466	466	100%	3e-127	100.00%	1505	KP726935.1
	Enterobacter ko	<u>obei partial 16S rRNA gene, iso</u>	plate C65			Enterobacter k	466	466	100%	3e-127	100.00%	746	HF585324.1
	Klebsiella pneu	moniae strain ac3I5-1EMB 16	S ribosomal RNA gene	, partial sequence		Klebsiella pneu	466	466	100%	3e-127	100.00%	1512	JN969353.1
	Enterobacter ho	ormaechei partial 16S rRNA ge	ene, clone M40.7			Enterobacter h	466	466	100%	3e-127	100.00%	763	AM990174.1
	Klebsiella pneu	moniae strain 10634 16S ribos	somal RNA gene, parti	al sequence		Klebsiella pneu	460	460	100%	1e-125	99.60%	1399	MW116535.1
	Enterobacter sp	o. strain S4OZ126 16S riboson	nal RNA gene, partial s	equence		Enterobacter sp.	460	460	100%	1e-125	99.60%	1389	MW092938.1
	Klebsiella variio	cola strain 10913 16S ribosoma	al RNA gene, partial se	equence		Klebsiella varii	460	460	100%	1e-125	99.60%	1406	MW092594.1
	Klebsiella pneu	moniae subsp. rhinoscleromat	is strain 10291 16S rib	osomal RNA gene, pa	artial sequence	Klebsiella pneu	460	460	100%	1e-125	99.60%	1406	MW092583.1
	Klebsiella pneu	moniae subsp. rhinoscleromat	is strain 10914 16S rib	osomal RNA gene, pa	artial sequence	Klebsiella pneu	460	460	100%	1e-125	99.60%	1405	MW092457.1
	Enterobacter ho	ormaechei strain Planc18 16S	ribosomal RNA gene,	partial sequence		Enterobacter h	460	460	100%	1e-125	99.60%	1404	<u>MW090899.1</u>
	Uncultured bac	terium clone Otu1475 16S ribo	somal RNA gene, par	ial sequence		uncultured bact	460	460	100%	1e-125	99.60%	465	MW083903.1
	Klebsiella variio	cola strain 9786 16S ribosomal	RNA gene, partial sec	<u>uence</u>		Klebsiella varii	460	460	100%	1e-125	99.60%	1401	MW080504.1
	Klebsiella variio	cola strain 9785 16S ribosomal	RNA gene, partial sec	<u>uence</u>		Klebsiella varii	460	460	100%	1e-125	99.60%	1400	MW080503.1
	Klebsiella variio	cola strain 11565 16S ribosoma	al RNA gene, partial se	quence		Klebsiella varii	460	460	100%	1e-125	99.60%	1411	MW079973.1

La Download

GenBank Graphics

Lelliottia sp. strain S2E38 16S ribosomal RNA gene, partial sequence

Sequence ID: MH465177.1 Length: 1440 Number of Matches: 1

Range	1: 487	7 to 738 GenBank	Graphics		V Next	Match 🔺	Previous Mat
Score 466 bit	ts(252	Expect) 3e-127	Identities 252/252(100%)	Gaps 0/252(0%)	Strand Plus/Min	us	
Query	1	GCACCTGACGTCAGTC	TTTGTCCAGGGGGGCCGCCT	TCGCCACCGGTATTCC	TCCAGATCT	60	
Sbjct	738	GCACCTGACGTCAGTC	TTTGTCCAGGGGGGCCGCCT	TCGCCACCGGTATTCC	TCCAGATCT	679	
Query	61	CTACGCATTTCACCGC	TACACCTGGAATTCTACCC	CCCTCTACAAGACTCT	AGCCTGCCA	120	
5bjct	678	CTACGCATTTCACCGC	TACACCTGGAATTCTACCC	CCCTCTACAAGACTCT	AGCCTGCCA	619	
Query	121	GTTTCGAATGCAGTTC	CCAGGTTGAGCCCGGGGAT	TTCACATCCGACTTGA	CAGACCGCC	180	
5bjct	618	GTTTCGAATGCAGTTC	CCAGGTTGAGCCCGGGGAT	TTCACATCCGACTTGA	CAGACCGCC	559	
Query	181	TGCGTGCGCTTTACGC	CCAGTAATTCCGATTAACG	CTTGCACCCTCCGTAT	TACCGCGGC	240	
Sbjct	558	TGCGTGCGCTTTACGC	CCAGTAATTCCGATTAACG	CTTGCACCCTCCGTAT	TACCGCGGC	499	
Query	241	TGCTGGCACGGA 25	2				
Sbjct	498	TGCTGGCACGGA 48	37				

▼ <u>Next</u> ▲ <u>Previous</u> ≪ <u>Descriptions</u>

(Hebron market mint): Klebsiella quasipneumoniae subsp. similipneumoniae strain 2437

ACCTGACGTCAGTCTTTGTCCAGGGGGCCGCCTTCGCCACCGGTATTCCTCCAGATC TCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAGACTCTAGCCTG CCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGGATTTCACATCCGACTTGACAG ACCGCCGGCTGCGGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCGTATT ACCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGGTAACGTCAATCGA YRAGGTTATTAACCTTATCGCCTTCCTCCCCGCTGAAAGTACTTTACAACCCGAAGG CCTTCTTCATACACGCGGCATGGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCC CCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGGGCTGGTCA TCCTCTCAGACCAGCTA

De	scriptions	Graphic Summary	Alignments	Taxonomy									
Se	quences pro	ducing significant al	ignments			Download	~	New Se	lect co	olumns	, ∼ s	how 1	00 🗸 🔞
	select all 0 s	sequences selected							Bank				ee of results
			Description			Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
	Klebsiella quasi	pneumoniae subsp. similipneu	moniae strain 2437 16	S ribosomal RNA ge	ne, partial sequence	Klebsiella quasi	865	865	100%	0.0	99.37%	1437	MT604862.1
	Enterobacter ca	ncerogenus strain Gol8 16S ri	bosomal RNA gene, pa	irtial sequence		Enterobacter c	865	865	100%	0.0	99.37%	1401	MT263023.1
	Enterobacter sp	LU1 chromosome, complete	<u>genome</u>			Enterobacter s	865	6922	100%	0.0	99.37%	4636526	CP043438.2
	Enterobacter sp	strain InAD-123 16S ribosom	al RNA gene, partial se	equence		Enterobacter sp.	865	865	100%	0.0	99.37%	1436	MF401327.1
	Enterobacter sp	strain InAD-122 16S ribosom	al RNA gene, partial se	equence		Enterobacter sp.	865	865	100%	0.0	99.37%	1446	MF401326.1
	Enterobacter sp	strain InAD-121 16S ribosom	al RNA gene, partial se	equence		Enterobacter sp.	865	865	100%	0.0	99.37%	770	MF401325.1
	Enterobacter sp	strain InAD-066 16S ribosom	al RNA gene, partial se	equence		Enterobacter sp.	865	865	100%	0.0	99.37%	1441	MF401272.1
	Enterobacter ho	rmaechei strain E70 chromoso	ome, complete genome			Enterobacter h	865	6922	100%	0.0	99.37%	4572253	CP046271.1
	<u>Klebsiella sp. st</u>	rain Q2 16S ribosomal RNA ge	ene, partial sequence			Klebsiella sp.	865	865	100%	0.0	99.37%	1410	MN733074.1
	Enterobacter ho	rmaechei strain CPO 4.204 16	S ribosomal RNA gene	e, partial sequence		Enterobacter h	865	865	100%	0.0	99.37%	1339	MN733032.1
*	Enterobacter bo	rmaechei strain CPO 4 202 16 GenBank Graphics		a nartial servience		Enterobacter h	865	865	100%	Next A	Previo	1419 us ≪ <u>D</u> e	MN733030-1 escriptions
	•	asipneumoniae sul T604862.1 Length: 143	• •		n 2437 16S rib	osomal RNA	gen	e, pai	tial s	equen	се		
Ri	ange 1: 249 to	724 GenBank Graphics			Vext Match	A Previous Match							

-				
Score 865 bits(46	Expect 8) 0.0	Identities 473/476(99%)	Gaps 1/476(0%)	Strand Plus/Minus
Query 1	ACCTGA-CGTCAGT	TTTGTCCAGGGGGCCGG	CTTCGCCACCGGTATTCC	TCCAGATCTC 59
Sbjct 724	ACCTGAGCGTCAGT	TTTGTCCAGGGGGCCGG	CTTCGCCACCGGTATTCC	TCCAGATCTC 665
Query 60	TACGCATTTCACCG	TACACCTGGAATTCTAC	CCCCCTCTACAAGACTCT	AGCCTGCCAG 119
Sbjct 664	TACGCATTTCACCG	TACACCTGGAATTCTAC	ccccctctacaagactct	AGCCTGCCAG 605
Query 120	TTTCGAATGCAGTTC	CCAGGTTGAGCCCGGGG	ATTTCACATCCGACTTGA	CAGACCGCCT 179
Sbjct 604	tttcGAAtGCAGttc	ccaeetteaeccceee	ATTTCACATCCGACTTG	CAGACCGCCT 545
Query 180	GCGTGCGCTTTACG	CCAGTAATTCCGATTAA	CGCTTGCACCCTCCGTA	TACCGCGGCT 239
Sbjct 544	dcdtdcdctttAcdo	ccagtaattccgattaa	kédőttéckécétécétki	TACCGCGGCT 485
Query 240	GCTGGCACGGAGTT	GCCGGTGCTTCTTCTGC	GGGTAACGTCAATCGAYF	RAGGTTATTAA 299
Sbjct 484	ĠĊŦĠĠĊĂĊĠĠĂĠŦŦ		:GGGTAACGTCAATCGAC#	AGGTTATTAA 425
Query 300	CCTTATCGCCTTCC	CCCCGCTGAAAGTACT	TACAACCCGAAGGCCTTC	TTCATACACG 359
Sbjct 424	ccttAtcccttcct	cccccctcataaactact1	TACAACCCGAAGGCCTTC	ttcátácácis 365
Query 360	CGGCATGGCTGCAT	AGGCTTGCGCCCATTG	GCAATATTCCCCACTGC	GCCTCCCGTA 419
Sbjct 364	cgccatgcctgcate	addettdedeeeattd	dcaatattccccactdct	déctécédta 305
Query 420	GGAGTCTGGACCGT	TCTCAGTTCCAGTGTG	CTGGTCATCCTCTCAGAC	CAGCTA 475
Sbjct 304	GGAGTCTGGACCGT	atctcagttccagtgtg	ctggtcatcctctcagad	CÁGCTA 249

(Hebron market mint): klebsiella pneumoniae strain G-A-TGW

GCTTTTCGCACCTGACGTCGTCTTTGTCCGGGGGCCGCCTTCGCCACCGGTATTCCTC CAGATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAGACTCT AGCCTGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGGATTTCACATCCGACT TGACAGACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCT CCGTATTACCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGGTAACGT CAATCGACAAGGTTATTAACCTTATCGCCTTCCTCCCCGCTGAAAGTGCTTTA

Descriptions	Graphic Summary	Alignments	Taxonomy								
Sequences pro	oducing significant a	lignments		Download	~	New Se	lect co	olumns	× S	how 1	00 🗸
select all 0	sequences selected						Bank			istance ti	ee of resu
	D	escription		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accessio
Klebsiella pneu	umoniae strain G-A-TGW 16S r	<u>ibosomal RNA gene, p</u>	artial sequence	Klebsiella pneumoniae	617	617	99%	1e-172	99.70%	759	MG982455
Uncultured Kle	bsiella sp. clone F5jun.6 16S ri	bosomal RNA gene, pa	artial sequence	uncultured Klebsiella sp.	614	614	100%	1e-171	99.13%	1465	<u>GQ416119</u>
Enterobacter c	ancerogenus partial 16S rRNA	gene, isolate P1 AZ 7	Ζ	Enterobacter cancerogenus	610	610	99%	2e-170	99.41%	768	LN556344
Enterobacter c	ancerogenus partial 16S rRNA	gene, isolate P1_AZ_1	1	Enterobacter cancerogenus	610	610	99%	2e-170	99.41%	769	LN556338
Enterobacter c	ancerogenus partial 16S rRNA	gene, isolate P2_AZ_6	<u>5</u>	Enterobacter cancerogenus	610	610	99%	2e-170	99.41%	766	LN556323
Enterobacter c	ancerogenus partial 16S rRNA	gene, isolate P2_AZ_1	1	Enterobacter cancerogenus	610	610	99%	2e-170	99.41%	768	LN556318
Enterobacter x	iangfangensis partial 16S rRN/	Agene, isolate P2_UT	1	Enterobacter hormaechei su	610	610	99%	2e-170	99.41%	770	LN556308
Klebsiella sp. s	strain C-3 16S ribosomal RNA o	jene, partial sequence		Klebsiella sp.	608	608	99%	6e-170	99.12%	1476	MT605302
Klebsiella pneu	umoniae strain 2483 16S riboso	mal RNA gene, partial	sequence	Klebsiella pneumoniae	608	608	99%	6e-170	99.12%	1429	MT604895
Klebsiella pneu	umoniae strain MS14393 chron	nosome, complete gen	ome	Klebsiella pneumoniae	608	4769	99%	6e-170	99.12%	5492431	CP054303
Enterobacter s	p. strain AAUGM-14 16S riboso	omal RNA gene, partial	sequence	Enterobacter sp.	608	608	99%	6e-170	99.12%	927	MT550649
Klebsiella pneu	umoniae strain KKP 1601 16S	ribosomal RNA gene, j	partial sequence	Klebsiella pneumoniae	608	608	99%	6e-170	99.12%	1402	MT549682
Klebsiella pneu	umoniae strain KKP 1596 16S	ribosomal RNA gene, j	partial sequence	Klebsiella pneumoniae	608	608	99%	6e-170	99.12%	1402	MT549679
Enterobacter s	p. strain AAUGM-2 16S ribosor	nal RNA gene, partial s	sequence	Enterobacter sp.	608	608	99%	6e-170	99.12%	933	MT549676
Klebsiella pneu	umoniae strain 7609 16S riboso	mal RNA gene, partial	sequence	Klebsiella pneumoniae	608	608	99%	6e-170	99.12%	1416	MT516162
Klebsiella nnei	umoniae strain BA2275 chromo	some complete genor	ne	Klebsiella pneumoniae	608	4679	99%	6e-170	99.12%	5539612	CP053364

Klebsiella pneumoniae strain G-A-TGW 16S ribosomal RNA gene, partial sequence Sequence ID: <u>MG982455.1</u> Length: **759** Number of Matches: **1**

Range 1: 422 to 759 GenBank Graphics

Vext Match 🔺 Previous Match

Score 517 bit	s(334)	Expect 1e-172	Identities 337/338(99%)	Gaps 1/338(0%)	Strand Plus/Minu	s
uery	4	TTTCGCACCTGACG	TC-GTCTTTGTCCGGGGGG	CCGCCTTCGCCACCGGTA	TTCCTCCAGA	62
bjct	759	TTTCGCACCTGACG	TCAGTCTTTGTCCGGGGGG	CGCCTTCGCCACCGGTA	TCCTCCAGA	700
uery	63	TCTCTACGCATTTC	ACCGCTACACCTGGAATTC	TACCCCCCTCTACAAGA	CTCTAGCCTG	12
bjct	699	TCTCTACGCATTTC	ACCGCTACACCTGGAATTC	TACCCCCCTCTACAAGA	CTCTAGCCTG	64
uery	123	CCAGTTTCGAATGC	AGTTCCCAGGTTGAGCCCG	GGGGATTTCACATCCGAC	TTGACAGACC	18
bjct	639	CCAGTTTCGAATGC	AGTTCCCAGGTTGAGCCCG	GGGGATTTCACATCCGAC	TTGACAGACC	58
uery	183	есстесетесестт	TACGCCCAGTAATTCCGAT	TAACGCTTGCACCCTCC	GTATTACCGC	24
bjct	579	GCCTGCGTGCGCTT	TACGCCCAGTAATTCCGAT	TAACGCTTGCACCCTCC	GTATTACCGC	52
uery	243	GGCTGCTGGCACGG	AGTTAGCCGGTGCTTCTTC	TGCGGGTAACGTCAATC	GACAAGGTTA	30
bjct	519	GGCTGCTGGCACGG	AGTTAGCCGGTGCTTCTTC	CTGCGGGTAACGTCAATCO	GACAAGGTTA	46
uery	303	TTAACCTTATCGCC	TTCCTCCCCGCTGAAAGTG	SCTTTA 340		
bjct	459	TTAACCTTATCGCC	TTCCTCCCCGCTGAAAGTC	SCTTTA 422		

(Rami levy mint): Pantoea ananatis strain PC2

escriptions	Graphic Summary	Alignments	Taxonomy								
equences pro	ducing significant a	lignments		Download	d Y 🕻	lew Se	lect co	lumns	⊻ Sł	now 1	00 🗸 (
select all 0	sequences selected						Bank			stance tr	ee of resul
	Desc	ription		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Pantoea anana	tis strain PC2 16S ribosomal F	<u>RNA gene, partial sequ</u>	ence	Pantoea ananatis	606	606	100%	2e-169	97.72%	1452	MK905441
Pantoea aggion	nerans strain +Y16 16S ribosc	omal RNA gene, partial	sequence	Pantoea agglomerans	606	606	100%	2e-169	97.72%	1422	<u>JX134632.</u>
Pantoea vagan:	s strain +Y42 16S ribosomal F	RNA gene, partial seque	ence	Pantoea vagans	606	606	100%	2e-169	97.72%	1423	<u>JX094941.</u>
Pantoea agglon	nerans strain +Y43 16S riboso	omal RNA gene, partial	sequence	Pantoea agglomerans	604	604	99%	8e-169	97.71%	1398	<u>JX094942.</u>
Pantoea sp. str	ain GS36 16S ribosomal RNA	gene, partial sequence	2	Pantoea sp.	603	603	100%	3e-168	97.44%	1447	MH884044
Pantoea agglor	nerans strain PPA1 16S ribos	omal RNA gene, partial	sequence	Pantoea agglomerans	601	601	100%	1e-167	97.44%	1392	MN914042
Pantoea sp. str	ain GS18 16S ribosomal RNA	gene, partial sequence	2	Pantoea sp.	601	601	99%	1e-167	97.70%	1402	MH884026
Pantoea sp. str	ain CA15-51 16S ribosomal R	NA gene, partial seque	nce	Pantoea sp.	601	601	100%	1e-167	97.44%	1440	MH769026
Pantoea sp. str	ain CA15-6 16S ribosomal RN	IA gene, partial sequen	<u>ce</u>	Pantoea sp.	601	601	100%	1e-167	97.44%	1437	MH768983
Pantoea eucaly	pti strain TC1 16S ribosomal I	RNA gene, partial sequ	ence	Pantoea eucalypti	601	601	100%	1e-167	97.44%	660	MF521612
Pantoea sp. Fs	e21 16S ribosomal RNA gene	partial sequence		Pantoea sp. Fse21	601	601	100%	1e-167	97.44%	1439	<u>KJ733873</u> .
Pantoea sp. TA	EU partial 16S rRNA gene, s	train TA EU		Pantoea sp. TA EU	601	601	100%	1e-167	97.44%	1315	HG942128
Pantoea agglon	nerans strain +Y48 16S ribosc	omal RNA gene, partial	sequence	Pantoea agglomerans	601	601	100%	1e-167	97.44%	1428	<u>JX094947.</u>
Pantoea anana	tis strain PM2 16S ribosomal I	RNA gene, partial sequ	ence	Pantoea ananatis	597	597	100%	1e-166	97.16%	1457	MK905439
Pantoea sp. str	ain L30 16S ribosomal RNA g	ene, partial sequence		Pantoea sp.	597	597	100%	1e-166	97.16%	1448	MK560035
La Download	 GenBank Graph 	nics						▼ <u>Next</u>	A Prev	ious ୶	Descriptio

Score 606 bit	s(328)	Expect 2e-169	Identities 343/351(98%)	Gaps 1/351(0%)	Strand Plus/Plu	IS	
Query	1	CATGCAG	TCGGA-GGT	AGCACAGAGAGCTTGCTC	TCGGGTGACGAGTGGCGG	ACGGGTGA	59	
Sbjct	20	CATGCAG	tcggacggt	AGCACAGAGAGCTTGCTC	TCGGGTGACGAGTGGCGG	ACGGGTGA	79	
Query	60	GTAATGT	CTGGGGATC	TGCCCGATAGAGGGGGAT	AACCACTGKAAACGGTGG	CTAATACC	119	
Sbjct	80	GTAATGT	CTGGGGATC	TGCCCGATAGAGGGGGGAT	AACCACTGGAAACGGTGG	GETAATACC	139	
Query	120	GCATAAC	GTCGCAAGA	CCCAAGAGGGGGGGCCTTC	GGGCCTCTCACTATCGGA	TGAACCCA	179	
bjct	140	GCATAAC	GTCGCAAGA	CAAAGAGGGGGGACCTTC	GGGCCTCTCACTATCGGA	TGAACCCA	199	
Query	180	SATGGGA	ТТАССТАСТ	AGGCGGGGGTAATGGCCCA	CCTATGCGACAATCCCTA	тстеетст	239	
bjct	200	GATGGGA	TTAGCTAGT	AGGCGGGGTAACGGCCCA	CCTAGGCGACAATCCCTA	GCTGGTCT	259	
Query	240	GAGAGGA	TGACCAGCC	ACACTGGAACTGAGACAC	GGTCCACACTCCTACGGG	AGGCAGCA	299	
bjct	260	GAGAGGA	TGACCAGCC	ACACTGGAACTGAGACAC	GGTCCACACTCCTACGG	AGGCAGCA	319	
Query	300	GTGGGGA	ATATTGCAC	ATGGGCGCACGCCTGAT	GCACCCATGCCGCGTGT	350		
Sbjct	320	GTGGGGA	ATATTGCAC	ATGGGCGCAAGCCTGAT	GCACCCATGCCGCGTGT	370		

(Rami levy parsley): Pantoea agglomerans strain +Y43 CATGCAGTCGGAGGTAGCACAGAGAGCTTGCTCYCGGGTGACGAGTGGCGGACGGG TGAGTAATGTCTGGGGGATCTGCCCGATAGAGGGGGGATAACCACTGGAAACGGTGGC TAATACCGCATAACGTCGCAAGACCCAAGAGGGGGGACCTTCGGGCCTCTCACTATC GGATGAACCCAGATGGGATTAGCTAGTAGGCGGGGGTAATGGCCCACCTATGCGACA ATCCCTAGCTGGTCTGAGAGGATGACCACCCACACTGGAACTGAGACACGGTCCAC ACTCCTACGGGAGGCAGCAGTGGGGGAATATTGCACAATGGGCGCACGCCTGATGCA CCCATGCCGCGTGTATGAAAAAAGCATTCGGGTTGTAAAGTACTTTCAGCGGGGAG GAAGGCGA

Sequences pro	oducing significant a	lignments		Downloa	ad Y 🛛	ew Se	lect co	lumns	× sł	now 1	00 🗸 🛛 🕻
equences pro	significant a	ugiments			•				0.		
select all 0	sequences selected				Bank <u>G</u>		<u>bis</u>	tance tr	ee of re	sults I	/ISA View
	Desc	ription		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Pantoea aggion	merans strain +Y43 16S riboso	omal RNA gene, partial s	sequence	Pantoea agglomerans	695	695	99%	0.0	98.00%	1398	JX094942.1
Pantoea anana	tis strain PC2 16S ribosomal R	<u>RNA gene, partial seque</u>	nce	Pantoea ananatis	693	693	99%	0.0	97.99%	1452	MK905441.
Pantoea sp. TA	EU partial 16S rRNA gene, st	train TA EU		Pantoea sp. TA EU	691	691	100%	0.0	97.76%	1315	HG942128.
Pantoea agglon	merans strain +Y16 16S riboso	mal RNA gene, partial	sequence	Pantoea agglomerans	691	691	100%	0.0	97.76%	1422	JX134632.1
Pantoea aggion	merans strain +Y48 16S riboso	mal RNA gene, partial s	sequence	Pantoea agglomerans	691	691	100%	0.0	97.76%	1428	<u>JX094947.1</u>
Pantoea vagan:	s strain +Y42 16S ribosomal R	RNA gene, partial seque	nce	Pantoea vagans	691	691	100%	0.0	97.76%	1423	<u>JX094941.1</u>
Pantoea aggion	merans strain PPA1 16S riboso	omal RNA gene, partial	sequence	Pantoea agglomerans	689	689	99%	0.0	97.75%	1392	MN914042.
Pantoea sp. stra	ain CA15-51 16S ribosomal RI	NA gene, partial sequer	ice	Pantoea sp.	689	689	99%	0.0	97.75%	1440	MH769026.
Pantoea vagan	s strain A15 16S ribosomal RN	NA gene, partial sequen	ce	Pantoea vagans	688	688	100%	0.0	97.51%	1397	KM235113.1
Pantoea sp. str	ain GS18 16S ribosomal RNA	gene, partial sequence		Pantoea sp.	686	686	99%	0.0	97.74%	1402	MH884026.
Pantoea sp. stra	ain CA15-46 16S ribosomal RI	NA gene, partial sequer	ice	Pantoea sp.	686	686	99%	0.0	97.51%	1444	MH769021.1
Pantoea sp. Fs	e21 16S ribosomal RNA gene,	partial sequence		Pantoea sp. Fse21	686	686	100%	0.0	97.51%	1439	KJ733873.1
Pantoea sp. ST	Y26 16S ribosomal RNA gene	e partial sequence		Pantoea sp. STY26	686	686	99%	0.0	97.51%	1445	HQ220148.1
Pantoea sp. AT	Y75 16S ribosomal RNA gene	, partial sequence		Pantoea sp. ATY75	686	686	99%	0.0	97.51%	1440	HQ219994.
Pantoea sp. stra	ain CA15-48 16S ribosomal R!	NA gene, partial sequer	ice	Pantoea sp.	684	684	99%	0.0	97.50%	1442	MH769023.
🕹 Downlo	oad v GenBank Gra	aphics						▼ Ne	ext A P	revious	Descrip

Pantoea agglomerans strain +Y43 16S ribosomal RNA gene, partial sequence

Sequence ID: <u>JX094942.1</u> Length: 1398 Number of Matches: 1

Deceriptions Graphic Summany Alignments Taxonomy

1: 9 to	0 408 GenBank Gr	aphics		Next Match	Previous Ma
s(376) Expect	Identities 392/400(98%)	Gaps 1/400(0%)	Strand Plus/Plus	
2	ATGCAGTCGGA-GGT	AGCACAGAGAGCTTGCTCY	CGGGTGACGAGTGGCGG	ACGGGTGAG 60	
9	ATGCAGTCGGACGGT	AGCACAGAGAGCTTGCTCT	CGGGTGACGAGTGGCGG	ACGGGTGAG 68	
61	TAATGTCTGGGGATC	TGCCCGATAGAGGGGGGATA	ACCACTGGAAACGGTGG	CTAATACCG 120	
69	TAATGTCTGGGGATC	TGCCCGATAGAGGGGGGATA	ACCACTGGAAACGGTGG	CTAATACCG 128	
121	CATAACGTCGCAAGA	CCCAAGAGGGGGGACCTTCG	GGCCTCTCACTATCGGA	TGAACCCAG 180	
129	CATAACGTCGCAAGA	CCAAAGAGGGGGGACCTTCG	GGCCTCTCACTATCGGA	TGAACCCAG 188	
181	ATGGGATTAGCTAGT	AGGCGGGGTAATGGCCCAC	CTATGCGACAATCCCTA	GCTGGTCTG 240	
189	ATGGGATTAGCTAGT	AGGCGGGGTAATGGCCCAC	CTAGGCGACAATCCCTA	GCTGGTCTG 248	
241	AGAGGATGACCACCC	ACACTGGAACTGAGACACG	GTCCACACTCCTACGGG	AGGCAGCAG 300	
249	AGAGGATGACCAGCC	ACACTGGAACTGAGACACG	GTCCAGACTCCTACGGG	AGGCAGCAG 308	
301	TGGGGAATATTGCAC	AATGGGCGCACGCCTGATG	CACCCATGCCGCGTGTA	TGAAAAAAG 360	
309	TGGGGAATATTGCAC	AATGGGCGCAAGCCTGATG	CACCCATGCCGCGTGTA	TGAAAAAAG 368	
361	CATTCGGGTTGTAAA	GTACTTTCAGCGGGGAGGA	AGGCGA 400		
369	CCTTCGGGTTGTAAA	GTACTTTCAGCGGGGAGGA	AGGCGA 408		
	ss(376 2 9 61 69 121 129 181 189 241 249 301 309 361	Expect (s(376) 0.0 2 ATGCAGTCGGA-GGT 9 ATGCAGTCGGAGCGGT 61 TAATGTCTGGGGATC 69 TAATGTCTGGGGATC 121 CATAACGTCGCAAGA 122 CATAACGTCGCAAGA 123 CATAACGTCGCAAGA 124 AGAGGATTAGCTAGCT 125 AGAGGATGACCACCC 241 AGAGGATGACCACCC 291 TGGGGAATATTGCACC 309 TGGGGAATATTGCACC 361 CATTCGGGTTGTAAA	Expect Identities (s(376) 0.0 392/400(98%) 2 ATGCAGTCGGA-GGTAGCACAGAGAGCTTGCTCY 9 ATGCAGTCGGA-GGTAGCACAGAGAGCTTGCTCY 9 ATGCAGTCGGACGGTAGCACAGAGAGCTTGCTCY 9 TAATGTCTGGGGATCTGCCCGATAGAGGGGGATA 69 TAATGTCTGGGGATCTGCCCGATAGAGGGGGACCTTCC 129 CATAACGTCGCAAGACCCAAGAGGGGGGACCTTCC 129 CATAACGTCGCAAGACCCAAGAGGGGGGATATGGCCCAA 180 ATGGGATTAGCTAGTAGGCGGGGTAATGGCCCCAC 189 ATGGGATTAGCTAGTAGGCGGGGAATAGGCCCCAC 241 AGAGGATGACCACCCACACTGGAACTGGAGCACCC 242 AGAGGATGACCACCACACACACGGAACCTGGAACTGAGACACC 301 TGGGGAATATTGCACAATGGGCGCAACCCTGATC 302 TGGGGGAATATTGCACAATGGGCGCAAGCCTGATC 304 TGGGGGAATATTGCACAATGGGCGCAAGCCCTGATC 361 CATTCGGGTTGTAAAGTACTTTCAGCGGGGGAGAGA	Expect Identities Gaps (s(376) 0.0 392/400(98%) 1/400(0%) 2 ATGCAGTCGGA-GGTAGCACAGAGAGCTTGCTCYCGGGTGACGAGTGGCGG 9 ATGCAGTCGGA-GGTAGCACAGAGAGCTTGCTCYCGGGTGACGAGTGGCGG 9 ATGCAGTCGGACGGTAGCACAGAGAGCTTGCTCYCGGGTGACGAGTGGCGG 9 ATGCAGTCGGACGGGGATCACCCGAGAGGGGGGGGGGGG	Expect Identities Gaps Strand (s(376) 0.0 392/400(98%) 1/400(0%) Plus/Plus 2 ATGCAGTCGGA-GGTAGCACAGAGAGCTTGCTCYCGGGTGACGAGTGGCGGACGGGTGAG 60 9 ATGCAGTCGGA-GGTAGCACAGAGAGCTTGCTCYCGGGTGACGAGTGGCGACGGGTGAG 68 61 TAATGTCTGGGGATCTGCCCCGATAGAGGGGGGATAACCACTGGAAACGGTGGCTAATACCG 120 69 TAATGTCTGGGGATCTGCCCCGATAGAGGGGGGATAACCACTGGAAACGGTGGCTAATACCG 128 121 CATAACGTCGCAAGACCCAAGAGGGGGGCACACCTTCGGGCCTCTCACTATCGGATGAACCCAG 188 129 CATAACGTCGCAAGACCCAAGAGGGGGGTAATGGCCCACCTTCGGCCTCTCACTATCGGATGAACCCAG 188 181 ATGGGATTAGCTAGTAGGCGGGGTAATGGCCCACCTTGCGGCGACAATCCCTAGCTGGTCTG 248 241 AGAGGATGACCACCCACACTGGAACTGGACACGGTCCACACTCCTACGGGAGGAGCAGCAG 308 301 TGGGGAATATTGCACAATGGGCCGACCTGAGCGACCACCCAC

(Hebron market mint): Enterobacter cancerogenus Strain ILQ201

CATGCAAGTCGAGCGGTAGCACAGGGAGCTTGCTCCTGGGTGACGAGCGGCGGACG GGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGGATAACTACTGGAAACGGTA GCTAATACCGCATAACGTCGCAAGACCAAAGAGGGGGGACCTTCGGGCCTCTTGCCA TCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGA CGATCCCTAGCTGGTCTGAGAGGATGACCAGCCACACTGGAACTGAGACACGGTCC AGACTCCTACGGGAGGCASCAGTGGGGAATATTGCACAATGGGCGCAAGCCTGATG CACCCATGCCGCGTGTATGAA

scriptions Graphic Summary Alignments Taxonomy								
quences producing significant alignments	Download	~	New Se	lect co	olumns	~ s	how 1	100 🗸
select all 0 sequences selected		nk <u>G</u>			tance tr	ee of re		MSA View
Description	Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accessio
Enterobacter cancerogenus strain ILQ201 16S ribosomal RNA gene, partial sequence	Enterobacter cancerogenus	651	651	100%	0.0	99.44%	1436	MN826153
Enterobacter sp. strain DBM-Z3 16S ribosomal RNA gene, partial sequence	Enterobacter sp.	651	651	100%	0.0	99.44%	1502	MT321506
Enterobacter sp. strain DBM-Z1 16S ribosomal RNA gene, partial sequence	Enterobacter sp.	651	651	100%	0.0	99.44%	1501	MT321481
Enterobacter sp. NA11017 gene for 16S ribosomal RNA, partial sequence	Enterobacter sp. NA11017	651	651	100%	0.0	99.44%	1510	AB921264
Enterobacter asburiae strain H336 16S ribosomal RNA gene, partial sequence	Enterobacter asburiae	651	651	100%	0.0	99.44%	1455	MH669296
Enterobacter sp. strain M368 16S ribosomal RNA gene, partial sequence	Enterobacter sp.	651	651	100%	0.0	99.44%	1471	MH669128
Leclercia sp. strain 6AM.194 16S ribosomal RNA gene, partial sequence	Leclercia sp.	651	651	100%	0.0	99.44%	1420	MT084586
Leclercia sp. strain 1AM-TX 16S ribosomal RNA gene, partial sequence	Leclercia sp.	651	651	100%	0.0	99.44%	1420	MT084585
Enterobacter asburiae strain P32 16S ribosomal RNA gene, partial sequence	Enterobacter asburiae	651	651	100%	0.0	99.44%	1020	MN988904
Enterobacter sp. SA 136 AN 47 gene for 16S rRNA, partial sequence	Enterobacter sp.	651	651	100%	0.0	99.44%	723	LC509083
Enterobacter sp. SA 136 AN 43 gene for 16S rRNA, partial sequence	Enterobacter sp.	651	651	100%	0.0	99.44%	722	LC509079
Enterobacter sp. SA 136 AN 39 gene for 16S rRNA, partial sequence	Enterobacter sp.	651	651	100%	0.0	99.44%	722	LC509075
Enterobacter sp. SA 136 AN 16 gene for 16S rRNA, partial sequence	Enterobacter sp.	651	651	100%	0.0	99.44%	720	LC509052
Enterchaster achuriae str. AEDO0, complete conome	Enterohactor achuriae	651	5116	10004	0.0	00 4404	A740641	CD046610
La <u>bownload</u> ✓ <u>GenBank</u> <u>Graphics</u>				▼ <u>N</u>	<u>ext</u> ▲ P		 ■Des 	<u>criptions</u>
Enterobacter cancerogenus strain ILQ201 16S ribosomal RNA Sequence ID: <u>MN826153.1</u> Length: 1436 Number of Matches: 1 Range 1: 7 to 363 <u>GenBank</u> <u>Graphics</u>	Vext Match Previous Match							
Score Expect Identities Gaps 651 bits(352) 0.0 355/357(99%) 0/357(0%)	Strand Plus/Plus							
Query 1 CATGCAAGTCGAGCGGTAGCACAGGGAGCTTGCTCCTGGGTGACGAGCGGCGGA Sbjct 7 CATGCAAGTCGAGCGGTAGCACAGGGAGCTTGCTCCTGGGTGACGAGCGGCGGAG	11111							
Query 61 AGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGC	TAATAC 120							
Sbjct 67 AGTAATGTCTGGGAAACTGCCTGATGGAGGGGGATAACTACTGGAAACGGTAGC	TAATAC 126							
Query 121 CGCATAACGTCGCAAGACCAAAGAGGGGGGACCTTCGGGCCTCTTGCCATCAGAT	GTGCCC 180							
	11111							
Sbjct 127 CGCATAACGTCGCAAGACCAAAGAGGGGGGACCTTCGGGCCTCTTGCCATCAGAT								
Query 181 AGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAG	CTGGTC 240							
Query 181 AGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAG	 CTGGTC 246							
Query 181 AGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAG Sbjct 187 AGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAG	 CTGGTC 246 GGCASC 300 							

Sbjct 307 AGTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAA 363

(Hebron market mint): klebsiella pneumoniae subsp. pneumoniae strain SU101

CATGCAAGTCGAGCGGTAGCACAGTAGAGCTTGCTCTCGGGTGACGAGCGGCGGAC GGGTGAGTAATGTCTGGGAAACTGCCTGATGGAGGGGGGATAACTACTGGAAACGGT AGCTAATACCGCATAACGTCGCAAGACCAAAGTGGGGGGACCTTCGGGCCTCATGCC ATCAGATGTGCCCAGATGGGATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCG ACGATCCCTAGCTGGTCTGAGAGGAGGATGACCAGCCACACTGGAACTGAGACACGGTC CAGACTCCTACGGGAGGCAGCAGTGGGGGAATATTGCACAATGGGCGCAAGCCTGAT GCASCCATGCCGCGTGTGTGAAGAAGACCCTTCGGGTTGTA

scriptions	Graphic Summar	y Alignments	Taxonomy								
quences p	roducing significar	nt alignments		Dow	/nload 丫	New S	electic	olumns	s × S	how 1	00 🗸 (
select all	0 sequences selected				<u>GenBank</u>			stance t	ree of re		MSA View
		Description		Common Name	Ma Sco		Query Cover	E value	Per. Ident	Acc. Len	Accession
Klebsiella pn	eumoniae subsp. pneumoni	iae strain SU101 16S ribo	somal RNA gene, partial	Klebsiella pneumoniae subs	s <u>p. pne</u> 68	4 684	100%	0.0	99.47%	1102	MT640265.
Klebsiella pn	eumoniae strain KP20194a	chromosome, complete o	<u>jenome</u>	Klebsiella pneumoniae	68	4 5475	100%	0.0	99.47%	5448829	CP054780.
Klebsiella pn	eumoniae strain KP20194a2	2 chromosome, complete	genome	Klebsiella pneumoniae	68	4 5475	100%	0.0	99.47%	5447900	<u>CP054774.</u>
Klebsiella pn	eumoniae strain KP20194b	chromosome, complete o	<u>jenome</u>	Klebsiella pneumoniae	68		100%	0.0	99.47%		CP054768.
Klebsiella pn	eumoniae strain KP20194c4	4 chromosome, complete	genome	Klebsiella pneumoniae	68		100%	0.0	99.47%		<u>CP054744.</u>
	eumoniae strain KP20194c5			Klebsiella pneumoniae	68		100%	0.0	99.47%		CP054738.
	eumoniae strain KP20194c3			Klebsiella pneumoniae	68		100%	0.0	99.47%		CP054750.
	eumoniae strain KP20194d eumoniae strain KP20194e			Klebsiella pneumoniae Klebsiella pneumoniae	68 68		100% 100%	0.0 0.0	99.47%		<u>CP054732</u> . <u>CP054726</u> .
Score	to 378 GenBank Grap	Identities	Gaps	Vext Match A Prev	<u>vious Match</u>						
684 bits(37	,	374/376(99%)	1/376(0%)	Plus/Plus							
Query 1 Sbjct 4											
Query 61	GAGTAATGTCTGGGAAA										
Sbjct 63			GATAACTACTGGAAACGG								
Query 121	CCGCATAACGTCGCAAG	GACCAAAGTGGGGGGACCT	TCGGGCCTCATGCCATC	AGATGTGCC 180							
Sbjct 123			TCGGGCCTCATGCCATC								
Query 181	CAGATGGGATTAGCTAG	GTAGGTGGGGGTAACGGCT	CACCTAGGCGACGATCO	CTAGCTGGT 240							
Sbjct 183											
Query 241	. CTGAGAGGATGACCAGC	CACACTGGAACTGAGAG	ACGGTCCAGACTCCTAC	GGGAGGCAG 300							
Sbjct 243	CTGAGAGGATGACCAGC	CACACTGGAACTGAGAC	CACGGTCCAGACTCCTAC	GGGAGGCAG 302							
Query 301	CAGTGGGGAATATTGCA			GTGTGAAGA 360							
Sbjct 303	CAGTGGGGAATATTGCA		GATGCAGCCATGCCGCGT	GTGTGAAGA 362							
Ouerv 361	AGGCCTTCGGGTTGTA	376									
Query 361											

Sbjct 363 AGGCCTTCGGGTTGTA 378

Descriptions	Graphic Summary	Alignments	Taxonomy								
Sequences pro	oducing significant al	lignments		Downlo	oad Y	New S	elect c	olumn	s Y S	how 1	00 🗸 😮
select all 0	sequences selected				<u>ıBank</u> (MSA View ^{New}
	Descr	iption		Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Escherichia co	li strain EcPF5 chromosome, co	omplete genome		Escherichia coli	370	2565	100%	2e-98	100.00%	5147412	CP054236.1
Escherichia co	li strain EcPF7 chromosome, co	omplete genome		Escherichia coli	370	2526	100%	2e-98	100.00%	4996527	CP054232.1
Escherichia co	li strain EcPF14 chromosome, o	complete genome		Escherichia coli	370	2565	100%	2e-98	100.00%	5129852	CP054230.1
Escherichia co	li strain EcPF18 chromosome, o	complete genome		Escherichia coli	370	2537	100%	2e-98	100.00%	5010549	CP054219.1
Escherichia co	li strain EcPF40 chromosome, (complete genome		Escherichia coli	370	2582	100%	2e-98	100.00%	5025664	CP054214.1
Escherichia co	ii THO-015 DNA, complete gen	ome		Escherichia coli	370	2537	100%	2e-98	100.00%	5047339	AP022549.1
Escherichia co	ii THO-006 DNA, complete gen	ome		Escherichia coli	370	2543	100%	2e-98	100.00%	5052545	AP022533.1
Escherichia co	ii THO-003 DNA, complete gen	ome		Escherichia coli	370	2559	100%	2e-98	100.00%	5255588	AP022525.1
Enterobacter h	ormaechei STN0717-64 DNA, (complete genome		Enterobacter hormaechei	370	2924	100%	2e-98	100.00%	4979003	AP022510.1
Enterobacter c	loacae STN0717-60 DNA, com	plete genome		Enterobacter cloacae	370	2946	100%	2e-98	100.00%	4853939	AP022509.1
Escherichia co	li strain UTI89 chromosome, co	mplete genome		Escherichia coli	370	2548	100%	2e-98	100.00%	5065741	CP062228.1
Escherichia co	li strain AE 16-5 16S ribosomal	RNA gene, partial sequ	<u>ience</u>	Escherichia coli	370	370	100%	2e-98	100.00%	980	<u>MW045451.1</u>
Escherichia co	li strain EF 20-5 16S ribosomal	RNA gene, partial sequ	<u>ience</u>	Escherichia coli	370	370	100%	2e-98	100.00%	979	MW045196.1
Escherichia co	li strain AS 13-2 16S ribosomal	RNA gene, partial sequ	<u>ience</u>	Escherichia coli	370	370	100%	2e-98	100.00%	980	<u>MW044635.1</u>
Escherichia co	li strain IF 20-12 16S ribosomal	RNA gene, partial seg	uence	Escherichia coli	370	370	100%	2e-98	100.00%	980	MW044632.1

	nload 🗸	<u>GenBank</u> (•			THEAL	Previous «	<u>zeaenpiion</u>
		oli strain Ec			· ·	-	me					
Sequen	ice ID: CPO	054236.1 Ler	igth: 514 7	412 Numb	er of Mato	ches: /						
Range	1: 156883	1 to 1569030	<u>GenBank</u>	Graphics				Next Match	Previous Match			
Score 370 bit	s(200)	Expect 2e-98	Identities 200/200		Gaj 0/2	ps 200(0%)		Strand Plus/Plus				
Query	1	CATGCAAGTCG	AACGGTAAC	CAGGAAGCAGC	ттөстөст	TTTGCTGACG	AGTG	GCGGACGGG	60			
5bjct	1568831	CATGCAAGTCG	AACGGTAAC	CAGGAAGCAGC	TTGCTGC	TTTGCTGACG	AGTG	GCGGACGGG	1568890			
Query	61	TGAGTAATGTC	TGGGAAACT	IGCCTGATGGA	GGGGGAT/	ACTACTGGA	AACG	GTAGCTAAT	120			
Sbjct	1568891	TGAGTAATGTC	TGGGAAACT	GCCTGATGGA	GGGGGAT	ACTACTGGA	AACG	GTAGCTAAT	1568950			
)uery	121	ACCGCATAACG	TCGCAAGAG	CAAAGAGGGG	GACCTTC	GGCCTCTTG	CCAT	CGGATGTGC	180			
5bjct	1568951	ACCGCATAACG	TCGCAAGAG	CAAAGAGGGG	GACCTTC	SGGCCTCTTG	ĊĊĂŦ	CGGATGTGC	1569010			
Query	181	CCAGATGGGAT	TAGCTAGTA	200								
5bict	1569011	CCAGATGGGAT	thecthet	1569030								

(Rami levy parsley): Enterobacter cloacae strain 3849

GCTTTCGCACCTGACGTCGTCTTTGTCCGGGGGCCGCCTTCGCCACCGGTATTCCTCC AGATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAGACTCT AGCCTGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGATTTCACATCCGACT TGACAGACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCT CCGTATTACCGCGGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGGTAACGT CAATCGACAGGGTTATTAACCCTGTCGCCTTCCTCCCCGCTGAAAGTACTTTACAAC CCGAAGGCCTTCTTCATACACGCGGCATGGCTGCATCAGGCTTGCGCCCATTGTGCA ATATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGGG CTGGTCATCCTCTCAGACCAGCTAGGGATCGTCGCCTAGGTGAGCCGTTACCCCACC TACTAGCTAATCCCATCTGGGCACATCCGATGGCAA

Descriptio	ns Graphic Summary	Alignments	Taxonomy									
Sequence	s producing significant a	lignments			Download	~	New Se	lect co	olumns	× s	how 1	00 🗸 🔞
select	II 0 sequences selected					<u>ık G</u>				ree of re		MSA View ^{New}
		Description			Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Enterol	acter cloacae strain 3849 chromoson	ne, complete genome			Enterobacter cloacae	1002	7966	100%	0.0	99.46%	4599410	CP052870.1
Enterot	acter cloacae strain BSN3 16S ribos	omal RNA gene, partial	sequence		Enterobacter cloacae	1002	1002	100%	0.0	99.46%	1428	MT310830.1
Enterot	acter hormaechei subsp. hoffmannii (O143 gene for 16S ribo	somal RNA, partial sec	quence	Enterobacter horma	1002	1002	100%	0.0	99.46%	1412	LC515572.1
Enterot	acter cloacae strain Varr 1bios 16S r	ribosomal RNA gene_pa	artial sequence		Enterobacter cloacae	1002	1002	100%	0.0	99.46%	1058	MN135299.1
Enterol	acter sp. strain EUL361 16S ribosom	al RNA gene, partial se	quence		Enterobacter sp.	1002	1002	100%	0.0	99.46%	1309	MT126447.1
Enterol	acter hormaechei strain ER46 16S ri	<u>bosomal RNA gene, pa</u>	rtial sequence		Enterobacter horma	1002	1002	100%	0.0	99.46%	1405	MT124571.1
Enterot	acter cloacae strain CnLm-1 16S ribo	osomal RNA gene, parti	al sequence		Enterobacter cloacae	1002	1002	100%	0.0	99.46%	1403	MT074035.1
Enterot	acter hormaechei subsp. hoffmannii s	strain LB10 16S ribosor	mal RNA gene, partial	sequence	Enterobacter horma	1002	1002	100%	0.0	99.46%	1424	MT071493.1
Enterot	acter hormaechei subsp. hoffmannii	OIPH-N069 DNA, comp	olete genome		Enterobacter horma	1002	8010	100%	0.0	99.46%	4689117	AP019817.1
Enterot	acter hormaechei subsp. hoffmannii s	strain Eh1 chromosome	e, complete genome		Enterobacter horma	1002	8004	100%	0.0	99.46%	4845040	CP034754.1
Enterot	acter cloacae strain EC 16S ribosom	al RNA gene, partial se	quence		Enterobacter cloacae	1002	1002	100%	0.0	99.46%	1395	MN788615.1
Enterot	acter hormaechei strain L51 chromos	some, complete genom	e		Enterobacter horma	1002	8016	100%	0.0	99.46%	5018729	CP033102.1
Enterot	acter hormaechei strain E5 chromos	ome, complete genome	1		Enterobacter horma	1002	8016	100%	0.0	99.46%	4841070	CP042571.1
Enterot	acter hormaechei strain 32-a blue 16	iS ribosomal RNA gene	partial sequence		Enterobacter horma	1002	1002	100%	0.0	99.46%	1453	MN208204.1

Download	GenBank Graphics Sort by: E value	Next A Previous A Description
	er cloacae strain 3849 chromosome, complete genome	
equence ID: 9	CP052870.1 Length: 4599410 Number of Matches: 8	
ange 1: 2397	763 to 240315 GenBank Graphics Vext	Match A Previous Match
icore 1002 bits(542)	Expect Identities Gaps Strand) 0.0 550/553(99%) 3/553(0%) Plus/Plu	IS
uery 1	GCTTTCGCACCTGA-CGTC-GTCTTTGTCC-GGGGGGCCGCCTTCGCCACCGGTATTCC	TC 57
bjct 23976	GCTTTCGCACCTGAGCGTCAGTCTTTGTCCAGGGGGCCGCCTTCGCCACCGGTATTCC	TC 239822
uery 58	CAGATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAGACTCT	AG 117
bjct 23982		AG 239882
uery 118	CCTGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGATTTCACATCCGACTTGA	CA 177
bjct 23988	3 CCTGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGATTTCACATCCGACTTGA	
uery 178	GACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTCCGTAT	
bjct 23994		
uery 238 bict 24000	CCGCGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGTAACGTCAATCGACA 	11
uery 298	GTTATTAACCCTGTCGCCTTCCTCCCCGCTGAAAGTACTTTACAACCGAAGGCCTTC	
bjct 24006		
uery 358	CATACACGCGGCATGGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTGCT	
bjct 24012	CATACACGCGGCATGGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTGCT	 5C 240182
uery 418	CTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGGCTGGTCATCCTCTCAGAC	CA 477
ojct 24018	3 CTCCCGTAGGAGTCTGGACCGTGTCTCAGTTCCAGTGTGGCTGGTCATCCTCTCAGAC	 EA 240242
uery 478	GCTAGGGATCGTCGCCTAGGTGAGCCGTTACCCCACCTACTAGCTAATCCCATCTGGG	
ojct 24024		
uery 538	CATCCGATGGCAA 550	
bict 24030	3 CATCCGATGGCAA 240315	

(Hebron market mint) Enterobacter cloacae strain 3849

CGCACCTGACCGTCAGTCTTTGTCCAGGGGGCCGCCTTCGCCACCGGTATTCCTCCA GATCTCTACGCATTTCACCGCTACACCTGGAATTCTACCCCCCTCTACAAGACTCTA GCCTGCCAGTTTCGAATGCAGTTCCCAGGTTGAGCCCGGGGGATTTCACATCCGACTT GACAGACCGCCTGCGTGCGCTTTACGCCCAGTAATTCCGATTAACGCTTGCACCCTC CGTATTACCGCGGGCTGCTGGCACGGAGTTAGCCGGTGCTTCTTCTGCGGGGTAACGTC AATCGACAGGGTTATTAACCCTGTCGCCTTCCTCCCCGCTGAAAGTACTTTACAACC CGAAGGCCTTCTTCATACACGCGGCATGGCTGCATCAGGCTTGCGCCCATTGTGCAA TATTCCCCACTGCTGCCTCCCGTAGGAGTCTGGACCGTGTCTCA

Descriptions	Graphic Summary	Alignments	Taxonomy									
Sequences pro	oducing significant a	lignments			Download	~	New Se	elect co	olumns	~ s	how 1	00 🗸 📀
select all 0	sequences selected							Bank		ics Di		ee of results
		Description			Common Name	Max Score	Total Score	Query Cover	E value	Per. Ident	Acc. Len	Accession
Enterobacter of	loacae strain 3849 chromosom	ne, complete genome			Enterobacter cl	813	6459	100%	0.0	99.77%	4599410	CP052870.1
Enterobacter of	loacae strain BSN3 16S riboso	mal RNA gene, partial	sequence		Enterobacter cl	813	813	100%	0.0	99.77%	1428	MT310830.1
Enterobacter h	ormaechei subsp. hoffmannii C	0143 gene for 16S ribo	somal RNA, partial se	quence	Enterobacter h	813	813	100%	0.0	99.77%	1412	LC515572.1
Enterobacter of	loacae strain Varr 1bios 16S ri	ibosomal RNA gene, pa	artial sequence		Enterobacter cl	813	813	100%	0.0	99.77%	1058	MN135299.1
Enterobacter s	p. strain EUL361 16S ribosoma	al RNA gene, partial se	quence		Enterobacter sp.	813	813	100%	0.0	99.77%	1309	MT126447.1
Enterobacter h	ormaechei strain ER46 16S rib	osomal RNA gene, pa	rtial sequence		Enterobacter h	813	813	100%	0.0	99.77%	1405	MT124571.1
Enterobacter h	ormaechei strain PH5 16S ribo	somal RNA gene, part	ial sequence		Enterobacter h	813	813	100%	0.0	99.77%	1511	MT102423.1
Enterobacter of	loacae strain PE12 16S riboso	mal RNA gene, partial	sequence		Enterobacter cl	813	813	100%	0.0	99.77%	1464	MT102422.1
Enterobacter of	loacae strain CnLm-1 16S ribo	somal RNA gene, parti	al sequence		Enterobacter cl	813	813	100%	0.0	99.77%	1403	MT074035.1
Enterobacter h	ormaechei subsp. hoffmannii s	train LB10 16S ribosor	nal RNA gene, partial	sequence	Enterobacter h	813	813	100%	0.0	99.77%	1424	MT071493.1
Enterobacter h	ormaechei strain NK15 16S rib	osomal RNA gene, pa	rtial sequence		Enterobacter h	813	813	100%	0.0	99.77%	770	MT044306.1
Enterobacter h	ormaechei strain NK8 16S ribo	somal RNA gene, part	ial sequence		Enterobacter h	813	813	100%	0.0	99.77%	770	MT044238.1
Enterobacter h	ormaechei subsp. hoffmannii (DIPH-N069 DNA, comp	lete genome		Enterobacter h	813	6503	100%	0.0	99.77%	4689117	AP019817.1
Enterobacter h	ormaechei subsp. hoffmannii s	train Eh1 chromosome	e, complete genome		Enterobacter h	813	6498	100%	0.0	99.77%	4845040	CP034754.1
Enterobacter o	loacae strain EC 16S ribosoma	al RNA gene, partial se	quence		Enterobacter cl	813	813	100%	0.0	99.77%	1395	MN788615.1

▲ Download ➤ GenBank Graphics Sort by: E value ➤

▼ <u>Next</u> ▲ <u>Previous</u> << <u>Descriptions</u>

Enterobacter cloacae strain 3849 chromosome, complete genome Sequence ID: <u>CP052870.1</u> Length: 4599410 Number of Matches: 8

Range	1: 23976	8 to 240210 GenBank Gr	aphics		▼ <u>Next Mate</u>	h 🔺 Previous Match
Score 813 bit	ts(440)	Expect Identitie: 0.0 442/44		Gaps 0/443(0%)	Strand Plus/Plus	
Query	1	CGCACCTGACCGTCAGTCTT	TGTCCAGGGGGCCG	CTTCGCCACCGGTATT	CCTCCAGAT	60
Sbjct	239768	CGCACCTGAGCGTCAGTCTT	TGTCCAGGGGGGCCG	CTTCGCCACCGGTAT	CCTCCAGAT	239827
Query	61	CTCTACGCATTTCACCGCTA	CACCTGGAATTCTA	CCCCCTCTACAAGACT	CTAGCCTGC	120
Sbjct	239828	CTCTACGCATTTCACCGCTA	CACCTGGAATTCTA	ccccctctacaagact	CTAGCCTGC	239887
Query	121	CAGTTTCGAATGCAGTTCCC	AGGTTGAGCCCGGG	GATTTCACATCCGACTT	GACAGACCG	180
Sbjct	239888	CAGTTTCGAATGCAGTTCCC	AGGTTGAGCCCGGG	GATTTCACATCCGACT	GACAGACCG	239947
Query	181	CCTGCGTGCGCTTTACGCCC/	AGTAATTCCGATTA	ACGCTTGCACCCTCCGT	ATTACCGCG	240
Sbjct	239948	cctgcgtgcgctttacgccc/	AGTAATTCCGATTA	ACGCTTGCACCCTCCG	ATTACCGCG	240007
Query	241	GCTGCTGGCACGGAGTTAGC	CGGTGCTTCTTCTG	GGGTAACGTCAATCGA	CAGGGTTAT	300
Sbjct	240008	GCTGCTGGCACGGAGTTAGC	contecttettete	GGGTAACGTCAATCGA	CAGGGTTAT	240067
Query	301	TAACCCTGTCGCCTTCCTCC	CCGCTGAAAGTACT	TACAACCCGAAGGCCT	TCTTCATAC	360
Sbjct	240068	TAACCCTGTCGCCTTCCTCC	ccecteAAAetAct	TACAACCCGAAGGCCT	tetteatae	240127
Query	361	ACGCGGCATGGCTGCATCAG	GCTTGCGCCCATTG	IGCAATATTCCCCACT	стесстссс	420
Sbjct	240128	ACGCGGCATGGCTGCATCAG	GCTTGCGCCCATTG	tecaatattececaete	schecchece	240187
Query	421	GTAGGAGTCTGGACCGTGTC	TCA 443			
Sbjct	240188	GTAGGAGTCTGGACCGTGTC	TCA 240210			

Appendix D:

Data

	Volume of culture	Dilution	Colony			
Plate id	plated (ml)	factor	count	CFU/g	Pate type	LOG 10 CFU/g
Mint rami levy	0.05	100	48	38400	F*	4.58E+00
Mint rami levy	0.05	1000	43	344000	F	5.54E+00
Mint rami levy	0.05	1000	57	456000	T*	5.66E+00
Mint rami levy	0.05	1000	95	760000	Т	5.88E+00
Mint rami levy	0.03	1000	123	64000	Т	4.81E+00
Parsley rami levy	0.03	100	32	92000	F	4.96E+00
Parsley rami levy	0.03	100	46	64000	F	4.81E+00
Parsley rami levy	0.03	100	32	1296000	F	6.11E+00
Parsley rami levy	0.05	1000	108	864000	Т	5.94E+00
Parsley rami levy	0.05	1000	133	1064000	Т	6.03E+00
Mint Hebron	0.05	100	42	33600	F	4.53E+00
Mint Hebron	0.03	100	30	60000	F	4.78E+00
Mint Hebron	0.05	1000	233	1864000	Т	6.27E+00
Mint Hebron	0.05	100	288	230400	Т	5.36E+00
Parsley Hebron	0.05	100	258	206400	Т	5.31E+00
parsley Hebron	0.05	100	115	92000	Т	4.96E+00
parsley Hebron	0.05	1000	95	760000	Т	5.88E+00
parsley Hebron	0.05	10000	123	9840000	Т	6.99E+00
parsley Hebron	0.05	100	48	38400	F	4.58E+00
parsley Hebron	0.03	100	33	66000	F	4.82E+00
Parsley home	0.03	0	0	0	Т	0.00E+00
Mint home	0.05	0	0	0	Т	0.00E+00
Parsley home	0.03	0	0	0	F	0.00E+00
Mint home	0.05	0	0	0	F	0.00E+00
Parsley control	0.05	0	0	0	Т	0.00E+00
Parsley control	0.05	0	0	0	F	0.00E+00

*F (Fecal coliform) *T (Total coliform)

Data

File Home	Insert	Page La	yout	Form	ulas Data	Review	View	Help	Q Tell me what	you want to do								P₄ Shar
	elibri I <u>U</u> ≁	• 11				≫ - ⊧¶ - E≣ -∋≣	-	rap Text erge & Cen	General ter • \$ • %	2 .00 →.0	Conditional Format as Cell		k lete For	mat T	AutoSum 👻 Fill 🕶 Clear 🗝	Z T Sort &	Find & Select *	
lipboard 🗔		Font		5		Alignme	ent		lis Nur	nber 🗔	Styles	C	ells		Edif	ting		
333 👻	: ×	√ fs	κ															
A	В		c	D	E	F	G	н		KL	м	N	0	P	Q	R	S	т
	volume of	culturedilu	ution o d	olony	cfu/ml				cfu per g	LOG 10 CFU/g		p value	-		-		_	-
Mint rami levy		0.05	100	48	96000		F	M/R/F	38400	4.58E+00 G1/F	Mint fecal	0.51731		Median	Me	dian		
Mint rami levy		0.05	1000	43	860000		F	M/R/F	344000	5.54E+00 G1/F	mint total	5.84E-01		4.65E+00	5.0	6E+00		
Mint rami levy		0.05	1000	57	1140000		т	M/R/T	456000	5.66E+00 G1/T				5.82E+00	5.6	6E+00		
Mint rami levy		0.05	1000	95	1900000		т	M/R/T	760000	5.88E+00 G1/T	Parsley fecal	3.99E-01		4.70E+00	4.9	6E+00		
Mint rami levy		0.03	1000	123	4100000		т	M/R/T	64000	4.81E+00 G1/T	Parsley total	0.51264		5.60E+00	5.9	8E+00		
parsley rami levy		0.03	100	32	106666.6667		F	P/R/F	92000	4.96E+00 G2/F								
parsley rami levy		0.03	100	46	153333.3333		F	P/R/F	64000	4.81E+00 G2/F	mint and Parsley fecal	0.39904						
parsley rami levy		0.03	100	32	106666.6667		F	P/R/F	1296000	6.11E+00 G2/F	mint and Parsley total	0.47612						
parsley rami levy		0.05	1000	108	2160000		Т	P/R/T	864000	5.94E+00 G2/T								
parsley rami levy		0.05	1000	133	2660000		т	P/R/T	1064000	6.03E+00 G2/T								
mint hebron mar		0.05	100	42	84000		F	M/H/F	33600	4.53E+00 G3/F								
mint hebron mar		0.03	100	30	100000		F	M/H/F	60000	4.78E+00 G3/F								
mint hebron mar		0.05	1000	233	4660000		т	M/H/T	1864000	6.27E+00 G3/T		p value						
mint hebron mar		0.05	100	288	576000		т	M/H/T	230400	5.36E+00 G3/T	Mint	0.66872						
parsely hebron n		0.05	100	258	516000		т	P/H/T	206400	5.31E+00 G4/T								
parsley hebron n		0.05	100	115	230000		т	P/H/T	92000	4.96E+00 G4/T	Parsley	0.50656						
parsley hebron n		0.05	1000	95	1900000		Т	P/H/T	760000	5.88E+00 G4/T								
parsely hebron n		0.05	10000	123	24600000		Т	P/H/T	9840000	6.99E+00 G4/T	Both	0.42393						
parsley hebron n		0.05	100	48	96000		F	P/H/F	38400	4.58E+00 G4/F								
parsley hebron n		0.03	100	33	110000		F	P/H/F	66000	4.82E+00 G4/F								
Parsley home pla		0.03	0	0	0		Т	P/Home/	0	0.00E+00 G5/F								
mint home plant		0.05	0	0	0		т	m/Home	0	0.00E+00 G5/F								
Parsley home pla		0.03	0	0	0		F	P/Home/	0	0.00E+00 G5/T								
mint home plant		0.05	0	0	0		F	m/Home	0	0.00E+00 G5/T								
parsley control p		0.05	0	0	0		Т	p/contro	0	0.00E+00 G6/F								
Mint control plar		0.05	0	0	0		т	m/contro	0	0.00E+00 G6/F								
Parsley control p		0.05	0	0	0		F	p/contro	0	0.00E+00 G6/T								
0		0.05		-	-		e.	/		0.005.00.00/7								
	Sheet4	Sheet2	Sheet	1	(+)						•							