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“Islanding Detection Approach for Grid-Connected PV Inverter Using ANN Based DWT

Technique”

By Haret Ibraheem Shalalda

ABSTRACT

Islanding in electric power distribution system is a phenomena caused to the distribution
generation when the main grid shuts down, or unintentionally because of grid blackouts,
resulting in separated distribution generation working alone besides its local load. Due to safety
and stability reasons, islanding should be early detected in order to disconnect the distribution
generation.

Various types of islanding detection techniques have been applied and tested by researchers, like
passive, active, and remote communication methods, all aimed mainly to minimize the non-
detection zone at low power flow mismatch at the point of the common coupling.
This study introduces islanding detection model for PV distribution generation inverter
connected at the point of common coupling to real utility grid. The proposed islanding detection
approach combines between the discrete wavelet transform technique, and the artificial neural
networks (ANN).

A section of Hebron electric distribution grid that supplies the PPU campus has been tested at the
point of common coupling with a standard model of PV inverter.

The proposed islanding detection method can continuously test the variations of grid parameters,
mainly the voltage signals at the PCC was recorded during islanding and non-islanding events,
then produced the discrete wavelet transform (DWT) in the form of energy content for each
sample. The features function of detail coefficients was fed to ANN network in order to train it

as pattern classifier to discriminate between islanding and non-islanding states.




Tested cases in this real grid-inverter connected power system showed high relative accuracy
with average exceeded 94%, especially when events occur during low power flow between the
main grid and the local load at the point of common coupling. The results achieved IEEE

requirements for islanding regarding detection time period, and didn’t affect the power quality of
the system.
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CHAPTER 1

1. Introduction

1.1 Overview

In traditional electrical power distribution networks, there are main generation stations and
distribution generation substations supporting each other to cover the basic load, and also any
upgraded sections of future rising loads.

Fortunately, the presence of micro grids (MG) in parallel with the main network can enhance
power distribution stability and reliability, and share a part of the load in critical situations. On
the other hand, connection of theses micro grids could be harmful to overall system, basically the
main parameters of both networks; voltage, frequency must match and remain stable. Once the
utility grid turns off, local micro grid might not fulfill the local load due to different possible
reasons, therefore, the system goes under malfunctioning unstable operation, so this situation
should be detected early to disconnect it directly [1], [2].

Moreover, disconnection of the DG guarantees the safety of the humans and equipment’s, where
sometimes the electrical distribution company maintenance staffs could expose to electric

hazards while they are trying to follow and fix the fault.

1.2 Renewable Energy Distribution Generations

Recently, fast spread of renewable energy resources; PV, wind turbines, and others, RE
distribution generations or micro grids have become a significant part of the main grid.
Renewable DG’s are connected to the grid at the point of common coupling (PCC) through
inverters which flow the energy into the main grid. The DG’s have their own management,
protection, control, and monitoring systems [3]. Since there is continuous fluctuation in the
power produced from these RE stations, the power flow between the grid, DG, and load is
continuously changing even if the local load is constant. Therefore, when the grid is shut down,

the inverter must turn off also to avoid this risky situation on system parameters stability [4].

1



1.3 Islanding Phenomena

Unintentional islanding is a phenomenon occurs when the utility grid shuts down due to electric
faults, hence the distribution generation DG continues its operation supplying the local load
connected at PPC as shown in Figure 1-1, and becomes as an isolated island within the rest of the
network. Due to safety reasons for the system and operators the DG inverter must turn off as

early as possible [5].

e Circuit Breaker
Trip Relay PCC
(\J — / Utility
— Grid
Local
Load

Figure 1-1: DG station behavoiur during islanding

1.4 Anti-islanding Standards and Regulations

Interconnection between the DG and the utility grid becomes the most critical when the
power flow mismatch becomes large, at that condition, when the grid turns off due to any
fault or operation reason, the produced power from DG couldn't fulfill the load requirements,
this will cause abnormal situations at the PCC voltage and frequency, which must not last
more than 2 seconds according to IEEE 1547 standards [6].

Table 1-1 and Table 1-2 show the allowed interconnection response time periods for different
ranges of voltage and frequency variations, respectively, in terms of the number of voltage

cycles started from the event occurrence moment.



Table 1-1: 1547 IEEE standard for abnormal voltage during islanding [1]

Voltage Range (% of the base voltage) Clearing time (s)
V <60 0.16

60 < V<106 2

106 < V<132 Normal operation
132< V<144 1.0

144< V 0.16

Table 1-2: 1547 IEEE standards for abnormal frequency during islanding

DG size Frequency Range (Hz) Clearing time (s)
<30kW >60.5 0.16
<59.3 0.16
> 60.5 0.16
> 30 kW < {59.8t0 57.0} Adjustable 0.16 to 300
(adjustable to set point)
> 57 0.16

1.5 Islanding Detection Methods

There are different types of islanding detection methods where researchers categorize them

into four main classifications [2] as listed in .

Passive islanding detection techniques
Active islanding detection techniques
Hybrid islanding detection techniques

> w0 e

Remote islanding detection techniques



stating the most common and applied islanding detection methods.

Table 1-3: Islanding Detection Methods

Passive Islanding Detection Active Islanding Detection Remote Islanding Detection
Techniques Techniques Techniques
- Under/Over Voltage (UOV), and -Sandia Voltage Shift (SVS) -Transfer Trip Scheme
Under/Over Frequency (UOF) method | -Sandia Frequency Shift (SFS) -Power Line Carrier
- Voltage Phase Jump Detection (VPJ) | -Slip Mode Frequency Shift (SMFS) Communication (PLCC)
-Voltage and Current Harmonic -Frequency Jump (FJ) -Impedance Insertion
Detection. -Rate of Change of Frequency

(ROCOF)

-Detection of Impedance at Specific
Frequency.

-PLL based active method

-Active frequency drift (AFD)

Through wide investigations in researcher’s publications in the field, mostly applied

islanding detection methods are the following:

1. Over voltage and under voltage OUV, over frequency and under frequency OUF
protection:
In this method, the islanding detection monitors the PCC voltage and frequency,
threshold values are pre-set to activate relays to disconnect the inverter below minimum
values of voltage and frequency and beyond maximum values within the allowed
detection time according to the IEEE standards [6]. In chapter 2, the author introduces
more demonstration about this method with relation to P-Q model and power flow

interaction between grid, load, and inverter.




2. Phase jump detection
First of all, the voltage phase at the PCC is forced by the system (main grid), once the grid
disconnects from the PCC, and as the current of the current source inverters (CSI) behave
as reference, as demonstrated in Figure 1-2, the voltage phase jumps from its previous
state before islanding to a new point in the next zero crossing to follow the inverter
current phase, hence this phase difference is used to identify islanding. Despite VJD
method has simple implementation, it is difficult to choses the proper thresholds since it

depends on the installation site [1].

Voltage (V) \

Phase error

time

PV cdrrent

Island formed,
voltage line jumps (™.

Figure 1-2: Phase jump islanding detection operation [1]

3. Detection of harmonics
In this method, DG inverter measures the voltage total harmonics distortion at the PCC,
and compares it to threshold value to disconnect itself. Once the grid fails, the THD of
load circuit well increase since the impedance of local circuit is higher than grid
impedance. Harmonic detection method is effective and secure, but it requires careful

selection of threshold value of the THD [4].



Rate of Change of Frequency

When the grid is lost, the power imbalance at the PCC causes the frequency to deviate
within a time period, by monitoring this df/dt and comparing it to pre-set threshold
islanding detection is decided and trip signal disconnects the inverter. According to [4],

the allowed detection time period for ROCOF method is accepted between 4-6 cycles.

. Sandia Voltage Shift

The method is applied by adding positive feedback to the inverter voltage amplitude,
when the grid is no more connected, the PCC voltage reduces significantly, and islanding
decision takes place and disconnects the UVP relays [3]. The SVS method is effective

and don’t affect power quality of the power system.

. Sandia Frequency Shift

The SFS is performed by applying positive feedback to the voltage system frequency
causes the frequency to change whenever islanding event occurs, as a result, and when the
system phase angle changes out of pre-specified threshold, then islanding is detected and

UFP relays trip the inverter [3].

Impedance Insertion

When there is primary indication on islanding occurrence, adding low capacitive
impedance inside the island will change the phase and decrease the frequency
accordingly, then the under frequency protection relays disconnect the inverter
permanently. This method is expensive since it requires extra installations on the grid

side, and it has slow response [1].

8. Remote Islanding Detection Methods

These methods requires interactive communication systems between utility grid side and
distribution generation side. In power line communication method, there is continuous

low voltage signal flows through the power line from transmitter in the grid side to a
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receiver in the inverter side as shown in Figure 1-3, when this signal is lost, then the

inverter disconnects within a pre-defined time period to avoid islanding situation.

Receiver

1=

Transmitter

PCC

Load

Figure 1-3 :Remote islanding detection scenario

Also SCADA method, and transfer trip method are used. By continuous monitoring of power
distribution system parameters and switching devices, it is easy to transfer a trip signal to any
DG connected to the grid in case of islanding. In general remote detection methods are reliable
and efficient, and perform the detection with very small NDZ. On the other hand, they are costly

and risky in case of communication failure.



1.6 Methodology

Basically, the researcher proposes to build the islanding detection approaches independently, and
then to find out the parameters area (within threshold range) of each method that specify the
happening of islanding. Consequently, finding where these areas overlap as most as they

emphasize the final decision of the monitoring system.

To do so, optimization method is required, so by applying intelligent algorithm; like artificial
neural network (ANN) that computes iteratively the optimized data set to insure islanding

condition.

Continues learning process during operation can save the most important data, and can be used
later to determine islanding occurrence for similar (or closer) status in terms of system
parameters at the PCC. As time passes, the results enhance system capability for correct and

accurate decision resulting in powerful and robust detection algorithm.

From signal processing pint of view, discrete wavelet transform (DWT) is one of most applied
and powerful methods; the power, voltage and current waveform can be analyzed to detect any

disturbance and critical changes in the main parameters that describe its own status.

Figure 1-4: Thesis Methodology flowchart



1.7 Scope of the Study

The following objectives are the foundations of this research

» To simulate the power distribution system coupled with the PV inverter using
MATLAB/SIMULINK in different loading cases under islanding conditions and fault
conditions for n-samples.

» To generate the DWT of those signal samples as feature function contains of detail and
approximation coefficients.

» To find the suitable artificial intelligent network and train it to discriminate between
islanding cases and other grid normal and fault cases.

» Training the ANN at different DWT decomposition types in purpose to determine the best
DWT type that describes the system behavior accurately.

» To find out the optimal and minimum number of power voltage cycles enough to detect the

islanding situation.

1.8 Thesis Structure

This thesis is structured in five chapters after the introductory sections from the abstract to
acknowledgement; chapter one introduces the main concepts and theoretical background about
the islanding, and illustrates clearly the thesis scope and methodology. Chapter two presents a
literature review discussing previous researches and makes a comparison between papers results
which were published in the field of study. In Chapter three, the author builds the three models
of his suggested approach; power system model, DWT model, and ANN model. The Simulation
results of the three interconnected systems are presented and discussed in chapter five, while
chapter six finally summarizes and evaluates the model in terms if it's results and conditions, and

introduces authors conclusions, recommendations, and suggested future work.



CHAPTER 2

2. Literature Review

2.1 P-Q Model and Non-Detection Zone

Voltage profile and electric grid voltage frequency are affected mainly by active and reactive
power flow behavior between the power system units, traditional generation stations, RE
distribution generation, and loads, therefore any change in power flow is followed by

corresponding change in system voltage and frequency [7], [8].

Pp\- + jva AP +AjQ
Inverter > ’

> CB2 PCC N CB1

PV System

Transformer

-
o}
o
o

Figure 2-1: Power flow of grid-DG-load connected system

Since the power flow on the PCC as shown in Figure 2-1 is the most effective factor of the
system stability, and by direct monitoring upon the voltage and frequency, it will be noticed
that in case of AP and AQ are huge values, then islanding situation will be detected easily
because the utility grid shut down necessary causes big changes in V and f, where over and
under voltage relays OUV and over and under frequency OUF relays are used in [7], [9]. On
the other hand, in case of small AP and AQ, the variation in V and f is small and still within

the system normal acceptable variations. This grey area of voltage and frequency window is
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called the non-detection zone (NDZ), and islanding couldn’t be easily and accurately
detected or confirmed using passive islanding detection methods. P-Q model procedure leads
to the most interesting equations below which limit the window of V and f in P-Q frame
[10], [11].

Plond = Pog F AP oo 2.1)
Qload = QDG + AQ ........................................................................ (22)
Q¢ <1 - (fmfax)z) < % < Q¢ (1 - (fnin)z) (2.3)

((Vn‘;x)z - 1) < % « ((V:m)z - 1) ............... (2.4)

Where Q is the quality factor, Pp; and Qpg are DG inverter active and reactive power

respectively, V., and V,,;,are OUV thresholds of the NDZ, f,,.x and fiin, are OUF
thresholds of the NDZ as shown in Figure 2-2 below.

A
AQ In this region
. isNDZ
OF " Islanding is not
detected
: »
OV Uv AP
UF

Figure 2-2: None detection zone in terms of V and f
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2.2 Passive and Active Islanding Detection Method

Passive and active islanding detection methods try to test and utilize the system parameters at the
PCC such as voltage, frequency, and power flow. Passive islanding detection methods measures
that variations occur when any event takes place suddenly, and take a decision depending on
threshold limits during the event location and time period [2], [5]. Unfortunately, the non-
detection zone is quite large due to the problem of low power flow that could happen when the
load power is very close to DG inverter generated power; at this case, grid disconnection doesn't
affect the parameters at the PCC sufficiently to detect any event; fault, or even islanding as well
that happens at all. Unlike passive methods, active islanding detection methods improve NDZ,
and response time [7]. On the other hand, they reduce the power quality of the system, because
these methods are based on external signal injection into the power grid. Therefore, active
method still has the advantage because they don't affect the power quality and system parameters
at the PCC [5].

In [11], passive and active methods have been simulated; Over/under voltage and over/under
frequency method, phase locked loop based method, and active frequency drift (AFD). In the
results, the detection time in was shortened, but the frequency change needed large power
mismatch between DG and load, with purpose to trip the protection relays of anti-islanding

control system.

One of the effective islanding detection method is slip mode frequency shift (SMFS) applied in
[8] on a single phase PV inverter, the attention of the study was towards system frequency

stability during islanding situation.

Reactive power control method adopted in [14] depended on voltage deviation caused by AP,
and frequency deviation caused by AQ changing at PCC during any event. The simulation
achieved small NDZ in power mismatch cases, and shortened the detection time for high X/R
grid lines. On the other hand, it didn't present convinced results for small AP and AQ.

One of the most applied passive methods is the rate of change of frequency (ROCOF) proposed

in [15], the study results showed narrower NDZ window bounded with smaller margin of
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frequency thresholds compared to over and under frequency protection method (OUFP).
Furthermore, the active method in [16], the author monitored the voltage harmonics on the PCC,
and used to adjust the inverter reference power in order to monitor the behavior of the system
voltage as a result of power flow change. This power injection method is effective but

unfortunately affects the power flow and power quality, and disturbs the voltage at the PCC.

2.3 Recent Intelligent Islanding Detection Research’s

Distribution generation systems connected to the main utility grid have increased the complexity
of the system normal operation, and more, mal operation conditions necessarily. Traditional
solving computational models have been used to control and monitor power systems tell few
years ago became weak and ineffective. Therefore, researchers proposed many intelligent
techniques to detect islanding, they depend on intelligent iterative algorithms, and artificial
networks, rather than system normal equation solvers, which can be applied only on linear and
simple systems.

Recently, artificial and intelligent algorithms, like artificial neural networks (ANN), particle
swarm optimization (PSO), and others have been widely used in power systems.

The author in [17] proposed the non-dominated particle swarm optimization technique for
islanding scheme in a distribution system. ANN-PSO proposed in [18] tried to make use of
minimum features of the grid-inverter parameters to detect islanding events through feature

function contains AP, AQ, and df/dq, and achieved acceptable classifying performance.
In [10], the authors proposed islanding detection approach by employing the DWT as feature

extraction tool for passive detection method; over under voltage and frequency technique.
Although they achieved fast and power quality friendly method, the NDZ still large.
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CHAPTER 3

3. Modeling

3.1 Power System Modeling
3.1.1 Distribution System Description

Palestine Polytechnic University (PPU) campus in Hebron / Palestine is fed from 33kV
medium voltage feeder through 33kV/11kV transformer, as shown in Figure 3-1 below, where

the system components ratings, and operation parameters are listed in Table 3-1.

Table 3-1:Distribution Power System Components

Type Power Component Specifications Remarks
Transformer 1 33/11 kV, 13 MVA
Transformer 2 11/0.4 kV, 1000 kVA

Transformers Transformer 3 11/0.4 kV, 400 kVA
Transformer 4 11/0.4 kV, 1000 kVA PPU load transformer
Load 1 470 kVA

Loads Load 2 400 kKVA
Load 3 (PPU) 355 kVA (PCC)
Line 1 1500 m

Distribution Lines Cine s AT
Line 3 150 m
Line 4 200 m
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Figure 3-1: Tested power distribution system
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The main feeder of the utility grid is 33kV, and the X/R ratio of the source equals 10, and the

impedances of the four sections of the power distribution lines are:
Line section 1: 0.204 + 0.15] Q

Line section 2: 0.024 + 0.0175j Q

Line section 3: 0.037 + 0.028; Q

Line section 4: 0.032 + 0.023j Q

3.1.2 Grid-Inverter Connection

The Electric load of PPU buildings PV inverter is connected to the distribution lines grid
supply through PV inverter as a distribution generation station. By this coupling at the output of
1MVA transformer, the research aimed to test islanding detection at low voltage scale (400 V) as
illustrated in Figure 3-2.

PV DG
Inverter Pinv + jQinv Transformer AP + jAQ
je

PCC -~ Utility
Grid
Trip Relay

Circuit Breaker

\L Pload + jQload

PPU
Local
Load

Figure 3-2: Grid-DG-Load operation

Figure 3-3 shows the PV-based distribution generation system feeds boost converter which is
connected to 3 phase inverter provided of maximum power point tracking (MPPT) controller.

Basically, the main system component parameters are:
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> 200 kW, power PV array produces 273 V from 128 parallel strings each of 5 series
modules.

» Boost converter switched with 5 kHz control frequency with output DC bus voltage: 700
V, controlled by MPPT system.

» The 3-leg bridge inverter outputs 400 V line to line 3 phase voltage, and connected to the
utility grid through line inductor.

MPPT Voltage Sourse
Controller Controller
Boost
Converter
DC Bus
A
3.
PV || 1oBT Level |B Induc Un]j‘ty
Amay |- Bridge |¢ tor Gnd

Filter Load

Figure 3-3: PV DG inverter connected to load-grid coupling

3.1.3 Faults, and Islanding Events

In this study, the researcher proposed 140 different grid abrupt events cause system
disturbance at PCC, they are mainly divided into two categories; islanding, and non-islanding

events as listed in
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Table 3-2. These cases well be simulated at different loading and AP, certain attention is given to

situations of small AP when the load is almost supplied from the inverter.

Table 3-2: Simulation samples of power distribution system disturbance cases

Non-islanding Cases

Islanding Cases

Load Capacitors
Faults Variations/Switching Switching
64 53 11 12

3.2 Discrete Wavelet Transform Modeling

3.2.1 DWT Theory in Power Systems

Theory of wavelet transform is being applied in wide range of power systems researches, such as
faults detection, power quality studies, de-nosing power signals, and extraction of power system
features [7], [19]. DWT can produce very effective and accurate data about the power system,
and it can describe the high frequency content and changes that couldn't be identified using
traditional methods. By analyzing voltage or current waveform in terms of their details, then the
image will be very clear, hence it will be easy to distinguish between normal grid-load
variations, or acceptable operation faults, and islanding cases that need trip decision from the

control system.

3.2.2 Selecting DWT Mother Wavelet

Mostly, in power systems applications, Daubechie's family mother wavelet approaches for
decomposition of power signals analyzing has been commonly applied in [19], [20], where it
worked efficacy and accurately. Hence, Daubechie 4 (db4) shown in Figure 3-4 is selected as the
main mother-wavelet in this study analysis since it showed good compactness in power systems

research.
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Figure 3-4: Daubechie's mother-wavelet [21]

Discrete wavelet transform of signal function f(k) is defined as:

DWT, fm.m) = ) (9", () (3.1)

The mother wavelet is:

1 k—nbga{
m )

(pm.n(k) = Jam o(

(3.2)

L)
Where ag > 1 and by > 0, and m and n are positive integer numbers [20].

The m-level approximation coefficient, and m-level detail coefficient of the waveform as in
equations (3.3) and (3,4) below [20].

am (M) = Xn=19(2n — K)ay—, (k) 3.3)

dm (n) = =1 h(2n = k) dypn—y (k) (3.4)

Approximation coefficient a; represents the RMS value of the phase voltage, and the feature
vector [dy, da, ..., dn] represents the detail coefficients of the voltage signal harmonics caused by
transient behavior which increase clearly during abrupt changes and system parameters

variations.
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Figure 3-5: DWT of three level details decomposition
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In this study, the voltage signal has been decomposed to 5 levels of details, where the DWT
sampling frequency was selected to be 5kHz, hence, the details frequencies for all decomposition

levels during down sampling are shown in Table 3-3, where each level has half the frequency of

the previous one.

Table 3-3: Frequencies of DWT levels

Detail Level Frequency
1% level 5000 Hz
2" level 2500 H z
3 level 1250 Hz
4" level 625 Hz
5" level 375.5 Hz

In this case, and according to Shannon’s theorem [22], as shown in Figure 3-6, the maximum

frequency can be captured is 5 kHz.

Quitpul frequency bands

P f > [fsid - Ts/2]
x [n] HP i—.z [fs/8 - fs/4]
Input signal
¥ e 142 [fs/16 - fs/8]
2
LP
Lp &3, [0 - fs/16]
()
®
=
=
=4
<
0 fs/16 /8 fs/4 fs/2
Frequency
(b)

Figure 3-6: Signal down sampling frequencies (a) DWT sampling by LP and HP filters
(b) Filter band for each frequency.
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3.2.3 Energy Density Method Based DWT

To find the feature vector that describe every event happens at the PCC using the concept of
discrete wavelet transform, some approaches, like relative spectral energy method have been
applied in [22]. Threshold value is set to comprise between islanding and other cases. This could
give misleading information since that some high disturbance could last very short time, as a

result, the monitoring system may output wrong decision.

The proposed method in this study applied the energy density content method in [23]. Equation
(3.5) is used to calculate the parameters of the feature vector produced by the DWT. Energy
density content adopted in [23] guarantees sufficient high value in the disturbed cycle when an

event occurred.

E, —\/Z (abS(dp(l)))z (3.5)

Where E,,, is the energy content in phase p (a, b, or c), N is the number of detail coefficients in
each level of decomposition, and d,, (i) represents the i-th confident in each detail of the phase

voltage. Therefore, the three phase feature vector (F) of five levels decomposition becomes:
F ={D,, D;, D3, Dy, D5} (3.6)

Where each detail of them (D; to Ds) represents the total energy density in the corresponding sub

detail of the three phases, Ej),.

In some way, for each event voltage sample, the feature vector components form the
deterministic characteristic of the event depending on the nature of that event, location on the
network, and also on grid conditions, like grid power component parameters, and active and
reactive power flow at the PCC. Therefore, this one input matrix with its corresponding output
are introduced to the ANN to learn by training itself on the 140 samples. Not only the relative
values of (D, to Dg) describe the event characteristic, but also the pattern in which they are

arranged in the matrix.
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3.3

3.3.1

3.3.2

Artificial Neural Network Modeling

Artificial Neural Network Overview

Nowadays, complex technology produces large amount of data which statically requires
non-traditional intelligent classification methods. Artificial neural networks was inspirited
from human brain operation and data transfer between neurons [24]. Human brain and
neuron system can remember and classify any event or image or data of any shape by self-
learning through weights stored from previous experience, and by continues learning, it
utilizes this experience to distinguish any upcoming similar event, image, or data. ANN

function in brief, is to relate a set of inputs to its corresponding features output.

Artificial Neural Network Operation

In addition to the input set and network output, and for single neuron network as shown in
Figure 3-7, ANN basically is built from the nodes which gather the inputs, multiply them
by their weights and then, transfer them through neurons to nonlinear sigmoid function like
tangent function to produce the output Y,. For each set of inputs, the dynamic network

continues adjusting weights until it reaches the higher possible accuracy of classification.
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Figure 3-7: ANN general principle of operations
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Equations (3.7 — 3.8) describe the simple operation of the network.
Yin =Wy *x X1+ Wy x Xy + -+ Wy, * Xy (3.7)
Yo = F(Yin) (3.8)

Where x refers to the input, and w refers to corresponding weight. Y;,, is the summation at the

node, and Y, is the final output of the network.

While some systems learn using one layer, other systems require more sophisticated networks,
so, one or more hidden layers could be added as shown in Figure 3-8. Multilayer networks
definitely increase the learning time of the training and requires processors of higher

specifications.

Input layer
1%t Hidden neural
layer

2™ Hidden neural
layer

Figure 3-8: Example of a feed forward network with multiple layers [15]

3.3.3 Selected Feed Forward Back Propagation ANN

In general, artificial neural networks can learn during the training, but some networks are more
dedicated and fit for data type system. Many factors influences the progression of learning; input
matrix size and there dependence on each other, number of hidden layers, sigmoid weights, and
the type of activation function. Feed Forward back propagation (FFBP) network is mostly used
in power system applications, with minimum hidden layers it takes shorter time to learn.

Adopted network in this research (FFBP) has the following main parameters:
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Training function: updates weight and bias values according to the scaled conjugate
gradient (SCG) propagation method, it consumes less training time according Moller
[25].

Input: one matrix of DWT coefficients feature vector.

Layers: 2 layers.

Bias: 2 weight bias arrays.

Neurons: 40-1000, change upon simulation results training regression.

Output: one output
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CHAPTER 4

4 Simulation and Analysis

4.1 Introduction

According to the approach modeled in the previous chapters, the three subsystems have
been simulated using MATLAB/SIMULINK, where the distribution grid-DG inverter
subsystem results (islanding and non-islanding samples) form the input raw data of the
second subsystem (DWT) to produce the feature vector as the input of back propagation feed
forward artificial neural network BPFF ANN, this third subsystem is aimed to classify that

samples into islanding and non-islanding cases.

4.2 Power System Faults Simulation Results Analysis

4.2.1 Simulation Cases

To train the ANN classifier, different types of islanding and non-islanding cases have been
tested listed in Table 4-1 including:

Random switching of distribution line circuit breakers on both low and medium voltage

distribution, this tripping occurs at wide range of active power flow, and can describe the

general possible disturbance at the PCC.

= OQOrganized circuit breaker tripping in particular cases that describes small margin of
active power flow mismatch, hence, critical cases of NDZ can be tested, particularly
when AP is below 20%.

= Load switching on and switching off along the distribution lines, and also load variation.

= Switching capacitor banks connected in two positions to the grid at different values of

reactive power compensation.
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Table 4-1: Events list simulation description under islanding and non-islanding operation

Event Type Action Description Number
Islanding Tripping circuit breakers (CB1, | Tripping happens at different times along
CB3, and CB7). the voltage waveform (mainly at 0, 45, 90, | 64
and 135 degrees), at different active
power flow mismatch and at different
loading.
Phase to phase Line-line short circuit at 21
faults different locations/buses along
the distribution system.
Single phase to Line-ground short circuit at 10
ground fault different locations/buses Faults happens at different times along
before the PCC at the grid side. the voltage waveform (mainly at 0, 45,90,
and 135 degrees), at different power flow
Three phase Three phase faults, and three mismatch 22
faults phase-ground bolted short
circuit at distribution buses
before the PCC at the grid side.
Load switching Switching on or off load 1 and | Switching on and switching off circuit 11
and load load 2. breakers CB4 and CB6 to connect or
changing disconnect the load totally, and varying
the load powers to simulate the operation
of normal power changing.
Capacitor Switching on or off capacitive | Switching on and switching off circuit 12
switching power compensators 1, and 2. | breakers CB2 and CB9 to raise or lower

the capacitive power in the distribution

system.
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Figure 4-1 shows MATLAB/ SIMULINK schematic diagram of the power distribution-inverter
interconnected system corresponding to the studied system in Figure 3-1. Furthermore,
Figure 4-2 shows all measurement tools, mathematical operations, data processing, and data

transfer blocks used in simulation process.

NN

LB

Grid Main Feeder

Figure 4-1: SIMULINK diagram of the power distribution system
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Figure 4-2: SIMULINK diagram for measurements
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4.2.2 Waveform Simulation Time Frame

Simulation time frame covers 12 voltage cycles, divided into:

e First 5 voltage cycles: dedicated for grid-inverter initialization where the voltage and
current waveforms are not stable yet. Hence, no events are tested during this time, see
(Window 1) in Figure 4-3.

e From the 6" to the 10" voltage cycles: all events are tested during this time, see (window
2) in Figure 4-3. These 5 cycles represent 0.1 second; very short time period compared to
IEEE standards for islanding detection time [6].

e Cycles 11, and 12 are added to complete the 5 cycles when the event location is shifted

from the beginning (in cycle number 6).
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Figure 4-3: Three phase current waveforms; simulation time frame windows
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Figure 4-4: General 3 phase fault; current waveforms

4.3 Events Simulation

The following five cases are introduced in this chapter for discussion and analysis, they include 2

islanding cases and 3 non-islanding cases with conditions listed in Table 4-2, each with its

corresponding AP, and the absolute value of AP is taken below 10% to test the worst case of the

NDZ. All measurements are depending on choosing ‘d4’ as the mother wavelet of DWT.

Table 4-2: Energy content of detail coefficients for the 5 analyzed cases

Energy Content Coefficients of the 5
Case | Event Type Location Abs Levels of DWT
No. (AP)
D]_ D2 D3 D4 D5

1 Islanding Tripping (CB7)

(Event 116) 4.62% | 111.74 | 111.48 | 110.72 | 63.60 | 39.75
2 Three phase short At load bus, after T4,

circuit (Event 118) | on the PCC 5.22% | 8.61 13.64 | 1342 |8.81 15.49
3 Capacitor switching | Capacitor 1 (CB2)

(Event 119) 5.22% | 3.19 4.07 5.44 | 10.33 | 19.97
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Islanding Tripping (CB7)

(Event 129) 1.47% | 6.99 8.23 1354 | 24.89 |43.73
Load switching

(Event 131) Load 1(CB4) 1.47% | 1.56 2.57 5.11 10.13 | 19.96

An islanding event, case 1 represents event number 116 in Table 4-3 has been simulated by

tripping circuit breaker CB7 to disconnect the load transformer, the absolute value of AP is about

4.6%, the detail coefficients are clearly larger than case 4 which was recorded in smaller AP

(1.47%). The variations in voltage waveforms during islanding time period between case 1 and

case 4 noticed in Figure 4-5 and Figure 4-6 explain the differences between the details

coefficients shown. On the other hand, among non-islanding events, three phase short circuit

represented by case 2 has the largest energy content in its details as clearly illustrated in

Figure 4-9, Figure 4-9, Figure 4-11, Figure 4-9, and Figure 4-9 which show the voltage and

current waveforms for each case.
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Figure 4-5: Voltage waveform at the PCC, case 1
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Figure 4-6: Current waveform at the PCC, case 1

The DWT decomposition has been simulated using MATLAB applications toolbox.
Figure 4-9, Figure 4-9, Figure 4-11, Figure 4-9, and Figure 4-9 show the wide variations
between the DWT details coefficients for each case during the 5 cycles time period of the

event duration.
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Figure 4-11: Current waveform at the PCC, case 3

In cases 3 and 5, there is very low detail coefficients compared to islanding and fault cases, this

seems to be discriminative factor that can be utilized to distinguish between islanding details

pattern and the disturbances caused by such load and capacitor switching. On the other hand,

some

islanding events recorded have showed such smaller details very close numerically to load
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switching details, therefore, an intelligent method is required to classify these events, hence
adopting the ANN classifies in this study is strongly justified.
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Figure 4-12: Voltage waveform at the PCC, case 3
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Figure 4-13: Details coefficients of DWT decomposition, case 3
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Figure 4-15: Details coefficients of DWT decomposition, case 4
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4.4 ANN Training Analysis

4.4.1 ANN Training Overview

The 140 tested events listed in Table 4-3 with their corresponding 5- level DWT energy
density-based detail coefficients are introduced as one input matrix to the feed forward back
propagation artificial neural network classifier programed using MATLAB m-file editor.
The output fed to the trained ANN is a single output where indicator (1) refers to islanding

events, and indicator (0) refers to non-islanding events.

Table 4-3: The 140 tested events list, and their corresponding DWT energy density details

Event . .
Event | Abs Output DWT Energy Density Coefficients

No. | Event Location Angle | (AP) Indicator | D; D, Ds D, Ds
1

A-G Fault Bus 1 0 68.9 0 0.046 03| 0.74| 091 | 2.7
2 Bus 1

B-G Fault 0 53.3 0 0.489 | 1.88 3.1 | 1.46 | 354
3 Bus 1

C-G Fault 0 61.3 0 0517 | 184 | 447 | 194 | 3.42
4 Bus 1

A-B Fault 0 61.3 0 0.468 | 296 | 7.85| 856 | 14.8
5 Bus 1

A-B-C Fault 0 61.3 0 0583 | 3.71| 8.62| 872 | 13.9
6 Bus 1

A-B-C Fault 45 61.3 0 109.3 | 61.9| 64.6 | 60.5 | 31.7
7 Bus 1

A-B-C-G Fault 45 56.4 0 106.2 | 63.9| 71.8| 67.2 | 41.3
8 Bus 1

A-B-C-G Fault 90 61.8 0 9797 | 659 | 73.7| 64.7| 37
9 Bus 1

A-B-C-G Fault 90 392 0 68.97 | 415 | 48.6 | 45.8 | 25.7
10 Bus 1

A-B-C-G Fault 135 179 0 96.44 | 62.4| 56.9 | 60.4 | 33.3
11 Bus 1

A-B-C-G Fault 0 86.6 0 89.54 | 63.7| 70.6 | 53.8 | 32.3
12 Bus 1

A-B-C-G Fault 90 86.6 0 959 | 616 | 65.8| 58.1 |31.2
13

Islanding Bus1-CB 1 90 101 1 1696 | 0.37| 051 | 0.63 | 2.47
14

Islanding Bus 1-CB 1 90 5.8 1 0.007| 0.11| 041 051191
15 Bus 1-CB 1

Islanding 90 18.8 1 0.007 | 0.12 04| 051 |1.95
16 Bus 1-CB 1

Islanding 90 383 1 0.006 | 0.11 0.4 05| 1.79
17

Islanding Bus 8-CB 8 90 17.3 1 8.787 | 8.03 | 6.43 | 7.77 | 15.1
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18

Islanding Bus 8-CB 8 180 70.6 1 1181 | 8.09| 141 | 151|155
19

Islanding Bus 8-.B 8 45 156 1 30.8| 20.7 | 19.6 | 229|139
20

Islanding Bus 8-CB 8 180 146 1 1181 | 809 | 141 | 151|155
21

Islanding Bus 8-CB 8 90 134 1 3336 | 111 26 | 29.4 | 15.2
22

Islanding Bus 8-CB 7 90 26.6 1 2348 | 45.6 | 20.2 | 2.94 | 7.55
23

Islanding CB3 90 192 1 28.77 | 15.6 | 105 | 6.28 | 10.2
24

Islanding CB3 90 21.6 1 65.31 | 27.1| 183 | 10.9|12.7
25

Islanding CB3 90 45.5 1 58.19 | 30.2 | 17.5 9114
26

Islanding CB3 90 9.3 1 50.1| 23.2| 16.6 | 12.7 | 12.8
27

Islanding CB3 90 228 1 40.83 | 19.3| 15.8| 9.76 | 11.9
28

Islanding CB3 0 228 1 69.68 | 23.9 | 13.7 | 9.62 | 11.7
29 | Switching Off

Loadl CB4 0 47 0 1.785| 055 | 063 | 0.84 | 2.6
30 | Switching

OnlLoadl CB4 0 48.9 0 2.018 | 0.67 | 0.68 | 1.15]| 2.79
31 | Load 10n:

400Kw CB4 0 5.67 0 1.086 | 0.55| 0.66 | 0.97 | 2.64
32 | Switching Off

Loads 1 & 2

(400,291) CB4, CB6 0 33.8 0 0.014 | 0.17 | 049 | 1.01 | 4.19
33 | Switching On

Loads 1 & 2 CB4, CB6 0 33.8 0 0.011 | 0.15| 0.47 | 0.91 | 3.08
34

Off Load 2 CB6 0 33.8 0 0.011| 0.15| 045 | 0.76 | 2.84
35 | Switching Off

Loads 1 & 2

(1000,291) CB4, CB6 0 13.5 0 0.009 | 0.13| 042 | 0.62 | 2.61
36 | Switching On

Loads 1 & 2

(1000,291) CB4, CB6 0 13.5 0 0012 | 016 | 049 | 0.9 ]3.34
37

A-G Fault Bus 8 0 221 0.044 | 0.34 | 0.87 3|6.56
38 Bus 8

B-G Fault 0 221 0 0.203 | 146 | 3.65| 4.64 | 7.47
39 Bus 8

C-G Fault 0 221 0 0229 | 1.62 | 3.26 | 5.41 | 6.86
40 Bus 8

A-B Fault 180 221 0 0233 | 0.64| 1.6 | 4.87|9.02
a1 Bus 8

B-C Fault 90 221 0 0.083 | 0.52 | 1.47 | 5.08 | 9.09
42 Bus 8

A-C Fault 180 221 0 0.298 | 0.63 | 1.71| 4.91 | 8.53
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43 Bus 8

A-B-C Fault 90 221 0 056 | 142 | 1.05| 258 | 4.37
a4 Bus 8

A-B-C-G Fault 90 221 0 0.559 14| 0.78 | 1.53 | 4.14
45 Bus 8

A-G Fault 90 38.6 0 0354 | 1.41| 3.47 | 5.34 | 8.99
46 Bus 8

B-G Fault 45 38.6 0 0589 | 1.14| 2.88| 6.58 | 7.61
47 Bus 8

C-G Fault 0 38.6 0 0.228 | 161 | 3.28 | 5.53 | 7.27
48 Bus 8

A-B Fault 180 38.6 0 0.138 09| 261 | 6.64 | 13.8
49 Bus 8

B-C Fault 0 38.6 0 0.257 | 1.14| 258 | 7.88 | 14.9
50 Bus 8

A-C Fault 0 38.6 0 0.219 1.4 | 273 | 7.26 | 14.2
51 Bus 8

A-B-C Fault 180 38.6 0 0.512 | 0.87| 2.08| 6.51 | 18.9
52 Bus 8

A-B-C-G Fault 0 38.6 0 0.342 2| 2.25 6.1 | 18.9
53 Bus 8

A-G Fault 45 6.01 0 0416 | 0.85| 251 | 532 |7.73
54 Bus 8

B-G Fault 45 6.01 0 0576 | 1.11| 2.87 | 6.51 | 8.01
55 Bus 8

C-G Fault 45 6.01 0 0.216 | 0.49 | 1.39 | 3.84 | 7.77
56 Bus 8

A-B Fault 45 6.01 0 0926 | 1.33| 3.54 | 9.22 | 14.9
57 Bus 8

B-C Fault 45 6.01 0 0.73| 1.13| 3.35| 833 |14.7
58 Bus 8

A-C Fault 45 6.01 0 0.237 | 0.88 | 3.28 8.3 | 14.7
59 Bus 8

A-B-C Fault 45 6.01 1.049 | 1.04| 2.83 | 10.3|17.3
60 Bus 8

A-B-C-G Fault 45 6.01 0 1.06 1| 1.28| 2.71 |5.14
61 | Cap0. On -250

kVAR CB2:At33KV | 0 18.8 0 5209 | 7.45| 292 | 2.98 | 5.91
62

Capl. Off CB2:At33KV | 0 18.8 0 2009 | 0.93| 0.72 1.1 | 2.56
63 | Capl. 250 to 130

kVAR CB2:At 33KV | 0 6.38 0 2011 | 094 | 0.74 1.3 | 2.67
64 | Capl. 130to 250

kVAR CB2:At33KV | 0 6.38 0 3511 | 429 | 167 | 183 | 39
65 At C: At

Cap0 On 11KV 90 21 0 6.661 | 468 | 193 | 3.67| 7.1
66 At C: At

Cap0 Off 11KV 90 17.8 0 1.994 | 088 | 0.69 | 0.89 | 2.51
67 | Cap0130to250 | AtC: At

kVAR 11KV 90 20.1 0 2228 | 111 | 0.78 | 1.28 | 2.79
68 | Cap0 250 to 130 At C: At

kVAR 11KV 90 20.5 0 2016 | 097 | 0.72 | 1.29 | 2.69
69 CB11: At

Cap2 On 0.4KV 90 21.7 0 27.41| 196 | 139 | 10.7 | 6.89
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70 CB11: At

Cap2 Off 0.4KV 90 19.4 0 2.098 | 0.92| 0.76 | 1.27 | 2.69
71 | Capl50to 70 CB11: At

kVAR 0.4KV 90 22.7 0 1.998| 0.96| 0.7] 1.28| 2.7
& Islanding TrippingCB3 | 0 3.13 1 46.24 | 229| 135| 9.79| 95
73 Islanding Tripping CB3 | 45 3.13 1 45.16 24| 131 | 11.3| 123
7 Islanding Tripping CB3 | 90 3.13 1 4494 | 232 | 153 | 10.8 | 105
7 Islanding Tripping CB3 | 135 3.13 1 4274 | 218 | 16.4 | 12.2|14.2
7° Islanding Tripping CB3 | 90 3.13 1 0.819 | 0.34| 0.52 | 0.64 | 2.49
7 Islanding Tripping CB3 | 45 3.13 1 0.404 | 0.23| 041 | 0.54 | 2.15
¢ Islanding Tripping CB3 | 90 3.13 1 0391 | 0.22| 041 | 055 2.16
7 Islanding Tripping CB3 | 0 3.13 1 0.387 | 0.23 | 0.42| 0.58 | 2.26
%0 Islanding TrippingCB3 | 0 3.13 1 0418 | 023 | 042 ] 071 | 29
ot Islanding Tripping CB7 | 0 3.13 1 4194 | 4.04| 441 | 104 | 25.6
52 Islanding Tripping CB7 | 45 3.13 1 3.987 | 3.69| 455| 9.64 | 2438
5 Islanding Tripping CB7 | 45 2.68 1 0.012 | 0.16 | 0.51| 1.27 |5.13
i Islanding Tripping CB7 | 45 4 1 0.012| 0.17| 0.51 | 1.18 | 5.23
5 Islanding Tripping CB7 | 45 0.35 1 0.011)| 0.16 | 0.46 | 1.01 | 5.06
5 Islanding Tripping CB7 | 45 0.69 1 0.011| 0.16| 0.5 | 1.06|5.26
¢ Islanding Tripping CB7 | 45 141 1 0.011| 0.16| 0.5] 1.09|5.25
5% Islanding Tripping CB7 | 45 3.97 1 0012| 017| 05| 12| 53
i Islanding Tripping CB7 | 45 4 1 0.012| 0.17| 0.51 | 1.18 | 5.23
%0 Islanding TrippingCB7 | 0 1.41 1 0011 016| 05| 1.18| 52
ot A-G Fault Atbus 2 90 0.7 0 0434 | 284 | 6.64| 333|104
72 B-G Fault Atbus 2 90 1.37 0 0.263| 1.85| 4.32| 2.08 9
> C-G Fault Atbus 2 90 1.37 0 0.198 | 1.37 | 2.66 | 2.55 | 7.67
> A-B Fault At bus 2 90 1.37 0 0.623 | 3.07 | 7.47| 5.93|12.7
> A-C Fault At bus 2 90 1.37 0 0.656 | 3.85| 9.68 | 6.33|11.9
% B-C Fault Atbus 2 45 1.37 0 0.819 | 3.88| 9.7| 6.56 | 8.72

42




97

A-B-C Atbus 2 90 1.37 0 0134 | 112 | 3.28| 4.8]10.7
%% A-B-C-G Fault At bus 2 90 1.37 0 1.753 | 15.3 | 405 15 | 15.8
> Islanding TrippingCB3 | 0 1.37 1 0.008 | 0.12 | 041 | 0.62 | 2.25
100 Islanding Tripping CB3 | 90 1.37 1 0.007 | 0.11| 041 | 0.61 | 2.45
1ot Islanding Tripping CB3 | 90 88.5 1 0.008| 0.12 | 0.39 | 0.65 | 2.34
102 Islanding Tripping CB3 | 90 83 1 0.007| 0.11| 0.41| 0.67 | 2.18
103 Islanding Tripping CB3 | 135 577 1 0.009| 012| 04| 092|317
104 Islanding Tripping CB3 | 45 577 1 0.009| 012| 04| 0.93|3.18
105 Islanding Tripping CB3 | 90 577 1 0.009 | 0.12 04| 0.92 | 3.17
106 Islanding Tripping CB3 | 45 577 1 3.947 | 156 | 2.03 3.3 | 149
107 Islanding Tripping CB3 | 45 577 1 3229 | 1.73| 228 | 3.71 | 16.5
108 A-B-CFaultatC | C 90 577 0 53.88 | 32.2 | 34.2 | 34.8 | 25.7
109 A-B-CFaultatC | C 0 16.9 0 59.68 50| 442 | 19.1 | 11.2
1o Islanding TrippingCB1 | 0 16.9 0 33.04 | 30.1| 22.2 | 10.8 | 16.1
e A-B-C Fault Bus 1 16.9 0 91.37| 71.9| 52.4 | 29.1| 30.1
1 A-B-C Fault Bus 1 0 14.3 0 116.8 | 67.4 | 64.1| 30.8 | 23.2
1 Islanding TrippingCB1 | 0 14.3 1 46.82 | 325| 305 | 145|204
e Fault Bus 8 0 14.3 0 11.62 | 19.5 13| 8.74 21
o Islanding TrippingCB3 | 0 14.3 1 9273 952 | 136 | 79.1 | 374
e Islanding TrippingCB3 | 0 4.61 1 87.58 | 114 | 124 | 75.2 | 343
Y A-B Bus 8 0 5.23 0 23.66 | 884 | 116 | 125 16
e A-B-C Fault Bus 8 5.23 0 3.896 | 14.8| 134 4.4 | 18.5
1 C1 Switching ON | CB2 0 5.23 0 2.008 | 386 | 252 | 191|322
120 | C2 Switching Off

30% CB9 0 5.23 0 1312 | 1.24| 0.73| 0.75 | 2.52
121 | Switching Off

Load 2 CB6 0 5.23 0 2251 | 0.69| 0.72 | 1.04 | 2.67
122 A-B-C-G Fault Bus 8 0 5.23 0 10.09 | 4.68 | 3.55| 3.45|7.82
123 A-B Fault Bus 8 0 5.23 0 15.29 9.1| 8.86| 9.07 | 11.2
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124

Islanding TrippingCB3 | 0 5.23 48 | 20.2 | 13.3| 9.12|9.18
125

Islanding Tripping CB3 | 90 1.47 45.01 | 20.7| 143 | 7.77 | 9.33
126

Islanding Tripping CB3 | 90 1.47 38.13 22 | 135 | 10.1 | 9.94
127

Islanding Tripping CB3 | 45 1.47 38.17 | 20.4 | 13.7 | 8.83 | 7.94
128

Islanding Tripping CB3 | 135 1.47 38.74 | 19.2| 133 | 9.16 | 8.4
129 CB7: Load

Islanding bus 45 1.47 5588 | 539 | 53| 128 | 25
130 CB7: Load

Islanding bus 90 1.47 4427 | 549 | 591 | 12.6 | 24.2
131 | Load 1 On:

400Kw CB4 0 1.47 092| 034| 05| 0.72 | 259
132 | Load 2 OFF:

291Kw CB6 45 1.47 2.298 | 0.68 | 0.69 | 0.96 | 2.63
133

Islanding CB3 0 1.47 4595 | 20.7 | 14.6 | 9.01 | 9.56
134

Islanding CB3 45 1.47 38.06 | 16.6 | 12.7 | 7.73|9.41
135

Islanding CB3 90 1.47 45.01 | 20.7 | 143 | 7.77 | 9.33
136 CB7: Load

Islanding bus 135 3.13 04| 022 | 042 | 0.68 | 2.82
137

Islanding CB3 135 3.95 24.63 | 13.8| 11.2 | 851 7.63
138 CB7: Load

Islanding bus 0 3.95 2438 | 358 | 567 | 159 | 31.2
139 CB7: Load

Islanding bus 45 5.35 2.856 | 3.56 | 5.18 | 12.6 | 27.6
140

Islanding CB3 45 5.35 0.401 | 0.22 | 0.42 | 0.63 | 2.55
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4.4.2 ANN Training Simulation
The neural network classifier shown in Figure 4-18 receives the 5 inputs, and arranged as 1-input

matrix representing the 5-energy details (D1 — Ds) of each event sample, 1 hidden layer with 100

neurons, and one output layer.

MNeural Network

Input

100 1

Figure 4-18: MATLAB schematic of the trained FFBP ANN

The 140 input samples are divided as follows:

- 70 %: for training, which equals 98 samples.
- 15%: for validation, which equals 21 samples.

- 15% for testing, which equals 21 samples.

e Training Case 1: 40 Neurons Network

After 32 iteration, the validation is 95.2%, and the total regression accuracy of the training is
92.1% as shown in regression matrices displayed on Figure 4-19.
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Training Confusion Matrix Validation Confusion Matrix

o 49 1 98.0% o 12 0 100%
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al L% (=Y N
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Figure 4-19: ANN regression results with number of neurons n=40

Performance of the training shown in Figure 4-20 illustrates that the best validation performance

is 0.197, and the best training of this case lays on epoch 26 of training history.

Best Validation Performance is 0.19689 at epoch 26

Train
Walidation
Test

Cross-Entropy (crossentropy}

10t ‘ . .
0 5 10 15 20 25 30

32 Epochs

Figure 4-20: Performance of ANN training, n=40 neurons
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e Training Case 2: Comparison between 500 and 600 Neurons Networks

Changing the neurons to 600 has raised the iterations to 41, and consequently improved the
training regression to 98.6% according the confusion matrix shown in Figure 4-21. The best

validation performance is reduced to 0.0305, as shown in Figure 4-22.

Training Confusion Matrix Validation Confusion Matrix
o 54 0 100% o 1 0 100%
55.1% 0.0% 0.0% 52 4% 0.0% 0.0%
w w
w w
] =
o 0 44 100% o 0 10 100%
-1 N 1 .
2 0.0% 44.9% 0.0% 2 0.0% 47 6% 0.0%
- o
3 3
o o
100% 100% 100% 100% 100% 100%
0.0¢ 0.09 0.0% 0.0% 0.0% 0.0%
3 N S N
Target Class Target Class
Test Confusion Matrix All Confusion Matrix
7 12 1 92.3% 7 77 1 98.7%
57.1% 4.8% 7.7% 55.0% 0.7% 1.3%
w w
w w0
] =
o 1 7 87.6% o 1 61 98.4%
-] - -
3 4.8% 33.3% 1259 2 0.7% 43.6% 1.6%
= =
3 =1
o o
3 87.5 90.5% 98.7% 98.4% 98.6%
7.7 12.5% 9.5% 1.3 1.6 1.4%
° W Q [N
Target Class Target Class

Figure 4-21: ANN regression results, neurons n=600

Best Validation Performance is 0.030503 at epoch 35

Train
Validation
Test

Best

Cross-Entropy (crossentropy}

] 5 10 15 20 26 30 35 40
41 Epochs

Figure 4-22: Performance of ANN training, n=600 neurons
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4.4.3 Multilayer ANN Training

Changing the number of the hidden layers of the ANN sometimes applied to enhance the training
results, hence as a result, the network complexity increases and the training time increases also.
By using two hidden layers in the ANN applied in this study which schematic is shown in
Figure 4-23, the training performance gets worse, where the average accuracy still below 90%

and varies according to the chosen neurons value in each case.

Neural Network

Hidden Layer 1 Hidden Layer 2

Vol ol

Figure 4-23: MATLAB schematic of the 2 hidden layers ANN

At 40 neurons, the average training regression is 89.3% as shown in Figure 4-24, and with very

little improvement in training results; which is 90% in average at 600 neurons, as shown in
Figure 4-25.
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Training Confusion Matrix Validation Confusion Matrix
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Figure 4-24: ANN Training regression for 2 hidden layers network, neurons=40
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Training Confusion Matrix Validation Confusion Matrix
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Figure 4-25: ANN Training regression for 2 hidden layers network, neurons=600

4.4.4 ANN Training at Low Power Mismatch

Referring to Table 4-3, and considering the events (53-100) and (109-140) when the power
mismatch is below 20%, the training produced valuable results as seen in Figure 4-26, 97.5%

accuracy is too close to whole events training accuracy with similar ANN parameters.
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Figure 4-26: ANN Training regression at low power mismatch
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Figure 4-27: Performance of ANN training at low power mismatch

51



CHAPTER 5

5 Conclusions, Recommendations, and Future Work

5.1 Summary

In this study, real section of electrical distribution grid connected to PV DG inverter is tested to

recognize its response against abnormal and abrupt system events. Intelligent approach including

DWT based ANN islanding detection techniques is applied, and 140 different cases have been
simulated using MATLAB/SIMULINK and m-file editor. Results generated the feature
characteristic which describes the interconnected power system response to such events.

Consequently, the ANN pattern classifier produced high accuracy detection, and within the

islanding regulations according to IEEE 1547 standards.

5.2 Conclusions

According to the conducted study, and the simulation results, the following conclusions can be

stated:

>

The obtained results present an average accuracy of 90% — 98% in islanding detection
according the simulation done for different training parameters.

Appling the intelligent methods; like ANN with DWT on real grid-DG system is efficient
technique in islanding detection. On the other hand, it is important to realize that the training
is dependent of many factors, not only the input matrix pattern, but also the number of
neurons and hidden layers, and activation function selected. Hence, the complexity would
vary, and the training time as well.

The variety events which are simulated mostly within small AP at PCC in order to rich ANN
with different possible cases, and most critical states.

Detection time of the islanding cases is within IEEE 1547 standard, six voltage cycles time
period (0.12 seconds) is very short time compared to 2 seconds.
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» The proposed method in islanding detection can work properly inside the NDZ in case of low

power mismatch on the PCC, without affecting the PQ like active detection methods.

5.3 Recommendations

» The proposed method can be used in PV inverters as effective islanding detector, simply by
insertion the system parameters into the mathematical simulated model of this method.

» The ANN can be trained in different real systems according to privacy of every electrical
network topology, components, and related system parameters.

» Since this kind of methods is not able to be tested over large grid-inverter real time operation,
a similar small scale power system could be built to test, record, and simulate similar events.

This would investigate the performance, and in force the validation of this approach.

5.4 Future Works

» For upcoming follow up of this research, it could be worthy to start the procedure by de-
noising the voltage samples collected from the power system before inserting them into
DWT. This may remove the common THD content in the signal, hence, it could reduce the
ANN complexity and training time.

» While the DWT detail coefficients feature vector is the main factor used to train the ANN
classifier, it is suggested for future work to investigate the correlation factors between the sub
details with purpose to remove dependent details in order to reduce the ANN complexity and
training time.

> As recent researchers recommend [26], especially in smart grids, islanding detection
technique embedded inside inverter microcontroller chip should be more intelligent and
flexible, the IDM should become adaptive with the grid topology, and conditions of
operation. The tested grid in this study produced its own characteristic against islanding, this
requires an IDM capable to adapt with the grid installation and could moderate itself

continuously while the grid is upgrading.
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