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Abstract

With the high-growing demands of modern life and industry on electricity, and with the
very rapid growth of renewable energy generation and distribution technologies rise a
need of an integrated platform to manage electricity services in more efficient, reliable
and intelligent way. Smart Grid Network (SGN) is one of the creative technologies that
controls efficient and intelligent traditional and non-traditional resources of energy with
respect to electric power generation, consumption, transmission and distribution. The
stability of the distribution grid with fail-over techniques and consumer bill reduction are
among the main goals of SGN. However, electricity consumers may input the extra stored
electricity that they do not consume into the smart grid for sale to reduce peak-time
electricity usage. Time-varying pricing schemes have become a main part of smart grids,
by managing both sides from the electricity sold to consumers and the electricity pushed
from the consumer. Such SGN’s can gather information, such as weather forecasts,
storage level and the peak-time. Thus, by using this data, future levels of electricity
generation (e.g., the energy from Photovoltaics (PV), which is mainly affected by the

weather status) can be predicted with high accuracy.

SGN needs to exchange the information between the consumers and the power supply
companies. Smart meters are considered as SGN consumer device and will be suggested
to be an Internet of Things (IoT) device to be used to record consumption of electric
energy in intervals of an hour or less and send that information back to the company
in a timely fashion for monitoring, controlling or billing purposes. Through this thesis,
a load forecasting model will be presented, in which more than one source of energy is
combined with a local grid control system. This model aims to estimate the electrical
load of the consumers based on their previous readings. To achieve this prediction, A
time series model and stochastic model were applied with a live sample of load profile

data. This data was not used previously by any researcher.

Different case studies has been run in order to ensure that the proposed model give the
expected results, and investigating the results in different months during the year. To
perform such a study, the analysis of the collected data transferred will be experimented
and presented so as to minimize the load at the peak time by comparing the expected
load level using the Markov Decision Process (MDP) algorithm and the Auto-Regressive
Moving Average (ARMA) algorithm. Conclusions show that using the ARMA algorithm
give an error percent of 3.7% for one day ahead forecasting. While for one day ahead
forecasting, the MDP algorithm gives a range of readings according to the load con-

sumption group.
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Chapter 1

Introduction

Nowadays, with the high demand of energy consumption rises new visions of energy
management and demand response. Smart grid (SG) is a highly automated and in-
tegrated power system, Real-Time information flow through network, thus customers
can forecast their load consumption and then schedule their behaviors, according to the
change of electricity price depending on the history of the load consumption and price
profile. Some tools are needed to achieve this forecasting to collect information and

analyze it such as Internet of Things (IoT)[8].

IoT is a new technology that takes part in different fields of smart technologies such as
Smart Homes, Smart City and Smart Grid Networks (SGN) [9, 10]. These programmable
network based devices are used to monitor and control things to perform certain tasks.
As SGN and smart city features, loT devices are used in converting the traditional grid
into a smart grid [11]. Monitoring and managing grids in an automated way are the
main goals of IoT devices in smart grids. Secure data transmission is needed in this
grid; however, hacking the data across the network will affect the work and may cause
damage in the grid. The power grid moves the generated electricity from power plants
to consumers. Such grids are connected for commercial purposes and more reliable net-
works that enhance the management and planning of electricity demand and supply.
Depending on the International Renewable Energy Agency (IRENA) report[12], renew-
able energy generation is rapidly growing worldwide [12]. from 2012 to 2017, Palestine
generated about 1, 1, 3, 12, 14, 18 MW respectively from renewable energy resources,
mainly from solar energy [12]. This growth is inconsistent with the international growth,

where generated power increased from 2012 to 2017 from 1.5 TW to 2.2 TW [12].

The smart grid network is the network that connects to the electricity grid, in order to
get information about the power generation, transmission and distribution across all grid

operations, using a variety of components [8] including the Smart meter. This can be

1



CHAPTER 1. INTRODUCTION 2

an IoT device that records power consumption in a specific time period and sends that
information back to the utility for monitoring and billing [13]. Such research primarily
focuses on developing smarter control centers and SGN, along with security and other
similar concerns. For providers, studies primarily focus on time varying pricing schemes
so they can get the best price at a specific time (e.g., to reduce peak-time electricity
consumption under certain terms and conditions). Support for high peak-time electricity
consumption requires a high sunk cost (initial investment) [1].

Demand Side Management (DSM) is one application of SGN[14]. DSM is the process of
modifying the energy consumption on the demand side, typically the consumer grid, in

ordering to improve the performance of SGN, thus reducing the peak demand.[14].

Nowadays, customers not only consume electricity, they also convert energy from green
resources, such as solar and wind energy, into electricity for their online usage. They also
can store the excesses of their demand for future use or sell it to the providers using smart
grid, as shown in figure 1.1, which is designed and reviewed from three PhD instructors at
Palestine Polytechnic University. Usually, the smart grid owner sets time-varying prices
for the sale of electricity to consumers and the purchase of electricity from consumers to
reduce peak-time electricity usage and to encourage consumers to sell electricity during
peak times. Consumers decide whether to sell their electricity at specific times based
on the current storage status, a time varying electricity retail price, known as real-time
pricing (RTP)[15], is one of the solutions which predicts future electricity generation

and consumption [1].

Figure 1.1 illustrates the generic integration between the renewable energy resources
and other parts to the grid. Regardless of the technology used, a complete energy
storage system, for example, can operate in an off-grid mode or be connected to the
network ”on-grid mode”. Such system has three main components: storage system,
control switching system, and switching and synchronizing system. The design of these
components is strongly based on the application of energy storage, which is monitored
by the controlling system. The controller will read the level of the storage, put the
minimum level for local use, and direct the flow of electricity from and to the storage.
According to the state of electricity flow, the controller then activate the needed blocks

9

of the system. For example, if the controlling system ”after applying the forecasting
algorithm” decided to charge the storage from the provider grid, the AC/DC changer
will be activated in this case. The blue arrows in figure 1.1 illustrate the relationship
of data flow between different system parts and the controlling system. Switching and
synchronizing system used here to match the speed and frequency of the power source
to a running network.An AC generator can only deliver power to an electrical grid if it is
operating at the same frequency as the grid. In this diagram, there is at least three types

of generators: PV generators, Wind turbine generator and the provider generator. This
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diversity of electricity sources with a storage system, ensures the greatest continuity and
availability in the supply of electricity to the consumer. with the applying of forecasting
algorithm, it also will reduce consumption bill based on the power profile of the consumer

and the statues of the electricity cost from the provider.

SGN with RTP aims to help customers decide when to sell their generated electric-
ity, when to purchase from the grid and at exactly what amount. Smart meters and
in-home display units aim to help customers in reducing their Cost of Energy Consump-
tion (CoEC) [15] and control their appliances on a regular basis, also the demands for
production services are shifting from the high response and highly efficiency to the safety
and high reliability [16].

1.1 Thesis objective

By using several types of energy resources, like natural gas and renewable energy, new
challenges of a sustainable energy future appears highlighted by a recent surge of interest

in alternative energy resources, including wind, solar, bio-fuel and geothermal energy.
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SGN is one of the new applications in which Information and Communications Technol-
ogy (ICT) is applied to provide consumers with electricity in a more intelligent, stable

and efficient manner, thus attracting increasing attention [1].

The objective of this study is to enhance the transformation of the consumer’s infor-
mation to the SGN, thus maintain a reliable and secure infrastructure that can support
the future load growth and achieve the characteristics of a smart grid. A time series
analysis forecasting algorithms will be used in this study, such as Auto-Regressive In-
tegrated Moving Average (ARIMA) model and compare the results with a stochastic
model like Markov decision process (MDP), in order to deploy a smart, stable and cost
effective grid. Time series forecasting models are used to predict future values based on
previous values[17]. Stochastic models refers to the sequence of random variables [1], in
order to describe the behavior of the systems that follow a chain of linked events, where
the following events depend only on the current state of the system. The forecasting
model is used as a tool to help improve consumers behaviors with the defined objective
of enhance the consumers benefit. The dynamic programming and branch-and-bound
algorithm design paradigms are applied to reduce the computational complexity. The
proposed management scheme can be implemented in each consumers energy generation
system to promote better smart grid utilization and attract consumer investment in new

energy generation systems [1].

1.2 Thesis motivation

Smart Grid is a new term, that expounds on many meanings of Smart. Smart gener-
ation, includes renewable energy integration. In transmission part, smart transmission
networks will plan to enhance situational awareness in a secure fashion, like promoting
the best design for the customer to purchase from or to the grid. Sending information to
the management system, demand response, micro-grid and load balancing can achieve
distribution in a smart way [1]. For the end-user, smart metering and smart appliances
are the main devices, which will be an IoT device that needs to be part of the SGN.
With such devices, customers can participate by taking the decisions of routing data

through the grid and receiving RTP from companies.

With this motivation, It is aimed to develop a mathematical model using ARIMA to

understand how to get the best offer from the SGN with a resalable and stable service.
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1.3 Contributions

Overall, the contributions of this thesis are as follows:

e To help predict future levels of electricity consumption using consumer power
profile with sensors like weather sensors and consumer’s behavior, that are attached

into the smart grid system.

e To schedule consumers behaviors using forecasting models in order to enhance
their benefits- such models help the consumers take decision that reduces their
CoEC [15].

e To compare between the forecasted results that are generated from the forecasting

models, and get the percentage error for each.

1.4 Research methodology

This thesis proposes a method for improving the performance of SGN. To achieve this
goal, a code of forecasting models will be run using a real load data. The consumer
can send and receive his information among SGN using different technologies like smart
meter. Load consumption history and other variables like storage level and consumption
price index is one of the data that are transited along the SGN. The forecasting models
can help the consumers of taking the decision about which energy source that make the
best price effort with maximum benefit of local resources.

After collect data from providers, forecasting models will be applied with this data
as input data. Time series forecasting models like the ARIMA model, and Discrete
Stochastic models like the MDP will be selected to perform the prediction process. The
results from the two models will be compared with the real data in order to get the
resolution of each one. Then using the same results to compare between the ARIMA
model and the MDP model, and put suggestions for the providers at Palestine to get

benefits from such studies.

1.5 Summary and rod map

This chapter introduce an introduction about SGN. Time-varying price is one of the
strategies that are used to reduce the peak time. In this thesis, a forecasting models will
be applied to predict the future load of the consumer using load profile data. Six chapters

will take part in this thesis to present my study. Chapter one give an introduction
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about the case study. Chapter two present a general background about the SGN and
the forecasting models. Literature review about related studies will be displayed in
chapter three. The next chapter will present the methodology of this thesis. The last
two chapters will give the thesis experiments, results and the conclusions of the proposed

scheme and the future works.



Chapter 2

Background

In this part, an overview of the electricity system concept for the smart grid system will
be presented, in which electricity consumers can also participate in generating electricity.
It first introduces the pricing model designed by the electricity plants, including the
prices at which they sell electricity to consumers and the prices at which they purchase
electricity for consumers. The assumptions made will be concerning electricity and
consumers electricity generation and consumption, which will be mentioned at the end

of this section.

2.1 Smart grid

Due to the new challenges of the power systems field and the size of investment that
has been made in the field, significant changes appear to solve the new challenges[18].
In this study, we design a model for an electrical system of a networked smart grid, in
which most buildings have the ability to converting solar energy or energy from other
green sources, such as wind, into electricity. Capacities such as batteries for electricity
storage are added to the electricity generating system in order to allow the generated
electricity to be stored in self-use or sale. A monopoly market is considered, in which

there is only one electricity plant.

Referring to figure 2.1, the system has a single plant that generates electricity[2], which
is transmitted via the smart grid. They divide users into three categories: always-
insufficient consumers such as large factories (who demand more electricity than they can
generate), always-sufficient consumers (who always generate more electricity than their
demands) like small house, and other consumers (such as certain residential consumers).

Each consumer has a solar generator in order to generate electricity, an electrical storage
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TR Electricity planet

Factory Residential Residential Residential
house house house

Factory

Solar generation station

FIGURE 2.1: Tllustrations of an electricity system for the smart world[1]

unit, where the additional generated electricity can be stored for future use or for sale
to the grid [1].

In order to model the smart grid, several renewable energy sources can be used, such as
solar PV, wind and biomass energy. The designed system that considers the different
behaviors of customer consumption analyzes the consumption at two different month’s
in Norway, April and July. In April 2018 the average temperature recorded was about 24
degrees Celsius, while in July, the average temperature recorded was about 30 degrees
Celsius, with average consumption parameters values. The Matlab application tool used
to generate an hour by hour load profile for a load in Norway[6][19], which will be the
input for the algorithms.

The converter consists of a rectifier and an inverter. A battery is used as a storage
system in order to store the extra energy generated by the consumer (when the system
is considered in off grid phase by the controller) and supplies it back to the grid when
needed, according the system’s decisions as it mentioned in figure 1.1. Such part tacks
the main parts of the consumer grid at the smart grid, Figure 2.2 shows the block

diagram of the smart grid where monitoring and energy storage are used for design.

Unlike the related studies discussed above, this study considers a system in collecting
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FIGURE 2.2: Block diagram of Smart Grid

data from IoT devices (such as a temperature sensor) which will be used to predict future
levels of electricity generation in a networked smart grid. This model is considered as
a tool that improves consumer behavior, with the objective of maximizing their overall

benefit by predicting the potential fluctuations in users’ electricity consumption [1].

2.2 Forecasting models

Forecasting models are a frameworks used to predict future events by using past data[20].
There are many models available to use. in this thesis, a time series analysis forecasting
models and Discrete stochastic models were chosen. The test is based on the nature of
the data, since the data used is not based on a mathematical equation, it were taken
from readings for consumption in a given load. They are random and unstable, and
therefore need prediction algorithms that take advantage of previous readings to form a

certain format of equations[21].
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2.2.1 Time series analysis forecasting models

Time series analysis is a set of ordered observations on a quantitative characteristic of
phenomena based on a set of measured time series data[22]. It is mainly a statistical
method that deals with time series data, which is data set in a series of intervals. Time
series analysis aims to forecast future values based on existing series. Its used for storage,
show and analysis of data across a wide range of different domains[22]. There are many
possible fields of research based on time series, such as engineering, economics and load

prediction.

For one day load forecasting, time series assumes that the load data has inherent rules,

such as hourly difference, to forecast 24 hour load[18].

2.2.1.1 ARMA models

Auto-Regressive Moving Average (ARMA) models are used to predict future data in a
time series, which is in time domain finite parameter models[17]. ARMA consists of two
parts; Auto-Regression model (AR model) and Moving Average model (MA model).
AR models are an illustration of a type of random process, used to describe certain
time-varying processes in different fields such as signal processing, depending linearly on
the previous values[18]. The AR(p) model is defined as [23]:

p
Xt =c+ Z SOiXt—i + & (21)
=1

Where ¢1,..,¢, are parameters that can help in defining or classifying a particular
system, c is a constant, and e; is the random variable for white noise. Moving-average
models (or process[17]) of order ¢ MA(q) are an extension of the white noise process, by
trying to capture the shock effects observed such as noise[24]. The MA model is defined
as [23]:

q
Xe=p+e+ Y O (2.2)
=1

Where 01, ..,0, are parameters, p is the expectation of Xy, p often assumed to equal 0
[24].

ARMA (p,q) contains the AR(p) and MA(q) models, The ARMA model is defined as
[23]:



CHAPTER 2. BACKGROUND 11

p q
Xt =c+ée+ Z (piXt_i + Z QiEt_i (23)
=1 i=1

2.2.1.2 ARIMA models

Auto-Regressive Integrated Moving Average model ARIMA is used to predict annual
and hourly electricity consumption. In this thesis it will predict electricity consumption

for an hourly load using ARIMA models, as shown below [25]:

pl 4q
1= L' | Xy = (1 +> HiH) & (2.4)
i=1 i=1

Where L is the lag operator (or back-shift operator ”B”) which operates as the AR
coefficients[26], a; are the parameters of the AR part of the model, 6; are the parameters

of the MA part and the &, are white noise terms.

Figure 2.3 shows the process of ARIMA modelling.In the identification part, previous
data are often non-stationary, while the covariance changes over time. To make the time
series stationary, data transformation is often used. To determine whether the series is
stationary or not, The Auto-Correlation Function (ACF) and Partial Auto-Correlation
Function (PACF) are used to identify the appropriate parameters, which also examines

the white noise acceptability until a fitting model is selected.

2.2.1.3 ARMAX models

As ARMAX model maintains simplicity as the conventional ARIMA model, ARMAX is
more general and flexible than the ARIMA model. It will improve the forecast accuracy

of power consumption over the ARIMA model[26].

p q b
Xy =¢er+ Z piXi—; + Z Oiet—i + Z Nidi—; (2.5)
i=1 i=1 i=1

where b exogenous input term and 7,...,nm, are the exogenous (d;) input parameter .
2.2.2 Discrete stochastic models

Stochastic process is a set of points in time that are associated with or recorded by a set

of numbers. These points are randomly changing over time, such as fuel minimization
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FIGURE 2.3: ARIMA flowchart

for diesel generators [27]. Discrete-time Markov chains is an effective model in dealing

with complex problems that have uncertainty.

2.2.2.1 MDP model

Markov chain refers to the sequence of random variables, such process moves through,
in order to describe the behavior of the systems that follow a chain of linked events,

where the future behaviors depends only on the current state[28].

As shown in Figure Figure 2.4, the possible values of Xi form a countable set S called the
state space of the chain. A discrete-time Markov chain is a sequence of random variables

(set), S={ s1, ... ,8» }. The process starts with one of these variables and moves from
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FIGURE 2.4: MDP Illustration|[2]

one state to another. If the chain is currently in state s;, then it moves to state s; with
a probability denoted by transition probabilities p;;. This probability depends only on
the present state and does not depend on which state the chain was in before the current

state. If a Markov chain has n states, then[29]:

n
Pij = Y _ DikPkj (2.6)
k=1

Where p;; is an entry in the transition matrix P.

2.2.2.2 HMM model

Markov models are often used to predict long-term steady-state probabilities of the
system with a finite number of states, using inter-state transition probabilities like pre-
dicting electricity pool prices[30]. Many models of the main Markov were derived to
perform several applications. Hidden Markov Model (HMM) is one of the advanced
forms of the Markov model with a hidden system state. The output depends on the
internal states. Let y;be the observed process depending on the current state and x¢ be

the input state variables in a standard HMM, then[30]:

n

(20, L1, ey Ty Y1, Y20 oY) = P(2o) [] pl@ilai1)p(yirs,) (2.7)
i=1
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2.3 Summary

Throughoute this chapter, a theoretical background was introduced about SG and sev-
eral forecasting algorithms that predict the future level of hourly load consumption. In
this thesis, time series analysis forecasting models and discrete stochastic model will be
proposed using real hourly load consumption and pricing data to compare the results in

order to choose the optimal hourly forecasting model.

Daily and hourly data pose a challenge for a different reason, often involving multiple
patterns, so we need to use a model that handles such changing on data. If the time
series is relatively short so that there is only one type of predictable fluctuation, it is
possible to use one of the time series models that was discussed previously (for example,
ARIMA model). However, when time series are long enough for some longer periods
to become apparent, we need to use other forecasting models like discrete stochastic

models.



Chapter 3

Literature review

3.1 Overview

The load forecasting process is a process that depends on load profile. Such forecasting
can be applied in SGN, so that it will improve the consumers behaviors specially at the
peak-time. Time series forecasting models and discrete stochastic models are used to
predict the future level of loads, these models can be run on embedded systems, like IoT
devices. Also, IoT’s can be used to transfer data such as wind speed and temperature,

from different stations and use it in the forecasting process.

3.2 Smart Grid Network "SGN”

In the future of SG, there will be many sources and applications that will be connected to
the network, such as distributed generators of renewable energy resources, smart meters
and sensors. After integrating these components with the network, the network become
intelligent, efficient and more complicated. Data exchange between these components is
therefore required, increasing SG’s flexibility, scalability and security. The SG system
addresses the margin between the energy source and information technology systems.
Such information helps to improve grid utilization[31], as well as gathering online in-
formation help the grid to be stable during the peak time. By using urgent situations
for communication, the efficiency of power distribution will improve[31]. A smart grid
will be the next generation of power grid, with a more intelligent, flexible, reliable,
self-balancing, and interactive network that enables economic growth, environmental

oversight, operational efficiency, energy security, and increased consumer control[31].

15
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By using Markov Decision Process MDPJ1] in SG, the results serve as the optimal
scheme. Comparing dynamic programming by MDP with the ordinary one (greedy
scheme). The MDP executing time decided by the level of the horizon H and the
number of cases at a time[l]. As shown in the paper results [1], the results when the
time horizon H = 4, the total running time is around 52.1% of the case without using

MDP. So applying MDP scheme in SG greatly overcomes the greedy scheme[1].

The authors of this paper[l] introduce for us a scheme with no specific parameters,
taking the results and comparing it with other schemes. The experiments were for one
day of electricity usage. They divided the day into tow intervals (peak and off-peak
time), and gave each part of the day weight, which was used by the algorithm MDP.
In the same way, they divided the possible weather conditions into sunny, normal, and

rainy, and gave each of them value to be used by MDP.

The next step was to know the amount of electricity that the consumer needed from the

plant minus the amount of consumed electricity generated by the consumer.

MDP scheme performs superior to the greedy scheme and somewhat around the optimal
scheme when using it for two coming days and different weather situations. This result

is because of the inaccurate weather predictions for more than two days.

When the probability of the next two days is sunny, the amount of electricity generated
becomes larger for this period, which gives a higher overall benefit. On the other hand,
as the prediction accuracy decreases, the performance degrades, which can mislead the

decision making process][1].

3.3 Power Management

Multi-objective Power Management on Smart Grid [10] is another paper where the
authors describe the power management on smart grid. They start with the Wide Area
Monitoring System (WAMS) which can face the new challenges of traditional network-
based state-of-the-art data retrieval technology. Its real-time dynamic monitoring utility
networks use sensors that can provide synchronized measurements along the Global
Positioning Satellite systems (GPS).

They study the power management and present optimization models that will enhance
the operations on smart grid. Supervisory Control And Data Acquisition (SCADA) is
a computer based system which is like a control Center that manages balancing supply
and demand of the power energy, controls and supervises generation by obtaining the

power, current and voltage real time data from the Remote Terminal Units (RTU). The
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RTU will communicate objects in the physical world with SCADA systems, and provide
it to the Energy Management System (EMS) .

A I A A
R . 2 e e e .

I | |
1 [} [}

[Electricity Supplier} [Electricity Supplier] [Electricity Supplier]
1 2 . ° . M

= = = Communication Link
-+ Electricity Line

FIGURE 3.1: Diagram of a smart grid system composed of M electricity suppliers, N
households with smart meters, DSM center, electricity lines, and communication links.

[32]

As it is shown in Figure 3.1 [32], Smart grid system with M power source serving N
customers . The group of electricity source and customers is set by M={1, ..., M} and
N={1, ..., N} respectively.Day is divided into time slots T, which is divided as T={1,
..., T}, and electricity suppliers are supposed to compete to provide customers with
electricity to meet the demand for load all the time slots[32].

Customers are also expecting the price; therefore, they are competing to maximize their

reward considering the impact of their work on the value of electricity price[32].

The goal of the power system is to generate power and deliver it to consumers by
transmission and distribution networks, in a reliable, efficient, and economical way. So,

traditional power plants are located near places where there are large numbers of people.

Table 3.1 show a comparison between traditional and SGN is more flexible in adding
new components that help the grid to stay stable. Such grids also can distribute AC-DC
and DC-DC. where most of renewable energy source give DC power, it’s also can manage
the storage components, it’s level and place with advanced communication infrastructure

and technologies.
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TABLE 3.1: A comparison between traditional and smart power grid[7]

System \Titel Generation Transmition Distribution Storage
Traditional Grid Centralized  tough AC-DC Traditional low capacity
Smart Grid Distributed  adaptable DC-DC \AC-DC Smart energy storage

In ”"Energy Management System in Smart Grid using Internet of Things” paper, the au-
thors take the unpredictable accident to the specialists who pay more attention to various
issues in energy management. They talk about the changes of connected devices, stor-
age units and the new environmental restrictions. By connecting Phasor Measurement
Units (PMUs) to the grid bus and presenting models for the concern of limitation of bud-
gets, This paper proposes a multi-objective optimization model for the PMU placement
problem[10].

3.4 Energy Management in Smart Building

Research efforts in this category generally focus on improving energy consumption or
reducing the operating cost of smart energy buildings by managing different types of
controllable power sources and loads. In ” An energy management system for building
structures using a multi-agent decision-making control methodology” [33],a description
of the structure of a Cyber Enabled Building. The objective of this paper is to minimize
the energy cost of a building while satisfying the occupants set lighting and cooling
system points using a driven control . A case study used a typical food service centre as
an experimental intention has been executed to explain the applicability of this system
as a commercial buildings[34]. they proposed an intelligent system to minimize building
energy consumption. The system consists of a central coordinator-agent that coordinates
the energy dispatch to local controller-agents, and three local controller-agents that
use a fuzzy controllers to satisfy different modes of users demands. Within the range
of set points for temperature, illumination level, and CO2 concentration given by the
users, this system derives the optimal modes to balance power consumption and comfort
demands[34].

Another study[35] proposed the EMS for smart homes to get two modes of comfortability:
preferred comfort or cost . They conducted a case study with certain energy prices and

verified that EMS significantly reduces cost with both solutions.
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3.5 Internet of Things

Internet of Things IoT is one of the newer terms that appears in different fields, such
as smart homes, smart city and data communication[9]. Its a programmable network
based device that can read and send data according to the network, thus performing a
certain task[36]. As Smart Grid is one of smart city features [11], adding IoT devices
to smart grid can be used for monitoring and managing issues. With such devices,
the management of the grid will be more powerful and the cost of automation and
management of the grid will be reduced[37]. However, IoT devices can be attached to

the grid either on the consumer side or the provider side.

Some previous studies use the term Big Data for the collected data from the different
nodes, the paper [3] says that deploying a private cloud, we assure the optimization of
resource usage[3]. They use the IoT device as a sensor device so it will collect data and
send it to the data store cloud that is suggested to be a third party. The system will
decide on either sorting energy or using it. The decision is based on production and
storage levels, and the current expected consumption levels [3]. The data gathered will

be sent to the cloud using wireless Mesh Sensor Network as shown in figure 3.2.

Home Energy Management System (HEMS) is another system that uses IoT with smart
grid in order to maximize the benefit in smart grid [4]. Figure 3.3 shows the purpose
of HEMS. The system is used for the emergency based energy by collecting information
about demand and output forecast of photo-voltaic [4]. Such systems will encourage

consumers to generate more renewable energy and buy back from it.

Four different types of sensors were used in this study; Weather conditions, Electricity
consumption, Electricity production and The storage level. This data will be sent to
The Big Data Analytic Platform (BDAP) servers controller so that the system will make

the appropriate control decisions [3].

The system will gather information like a weather temperature and the storage battery
level, and send it to the Community Energy Information System (CEMS), in order to

shift in peak and load parameters based on the information[4].

3.6 Forecasting models

Another use of forecasting models is to use various Artificial Neural Networks (ANN)
for forecasting hourly solar radiation. It’s based on combines ANN with wavelet analysis

to forecast total daily solar radiation [26] . ANN models predict solar irradiance based
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FIGURE 3.2: Wireless Mesh Sensor Network for Data Acquisition [3]

on the previous data and atmospheric data .However, the time series method is a data-
driven method . Compared to ANN, the time series models are less complicated than

ANN and time series forecasting models contain only a few model parameters[5].

Many models were used for forecasting the power output of a grid connected Photo
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FIGURE 3.3: Purpose of HEMS [4]

Voltaic system (PV), including the ARIMA model. ARIMA is a time series model
where AR terms denotes to lags of the differenced series appearing in the forecasting
equation, and MA terms are lags of the forecast errors[5].

In order to build an ARIMA model, diagnostic checking is used to calculate the sample
Auto-Correlation Coefficient (ACC) and Partial Auto-Correlation Coefficient (PACC),
which determines the orders p and ¢ of the ARIMA models, based on the transformed
time series[5]. There are many evaluators to estimate ARIMA coefficients.

ARIMA also makes forecasts with a clear sky model[26], which is designed with physical

parameters defined for the atmosphere, and a random cloud cover component[26].

The ARMAX model includes useful common parameters in the ARIMA model, where
these external co-variables can look at the behavior of the process and thus improve the

prediction accuracy of ARIMA models[5].

”An ARMAX model for forecasting the power output of a grid connected photovoltaic
system”[5] shows a wide range of time series models to predict a day ahead with an

average daily production capacity of 2.1 kW online PV system. Such models are based
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on moving average techniques, exponential smoothing techniques, ARIMA models, and
ARMAX models[5].

An ARMAX model uses some climate variables so that these variables are used when pre-
dicting power capacity. which can improve the predictability of the ARIMA model. They
derive some climate variables that are easily accessible as external inputs in the ARMAX
model[5].
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F1cURE 3.4: Comparison of the 1-day ahead forecasts generated based on the RBF
network and ARMAX models during April 2012 [5].

Figure 3.4 shows that as a result of the study, the ARMAX model generates the best
predictive performance and significantly improves the accuracy of the ARIMA model
prediction. ARMAX shows that the information on climate variables, such as average
daily temperature, precipitation and other variables are considered to be valuable in pre-
dicting PV output power. This reveals that some easily accessible climatic information

can be used with ARIMA to enhance the prediction accuracy of time series models[5].

3.7 Summery

This chapter highlighted feedback from the literature review as part of the first stage
of the research. The reviews supported the view of how to start forecasting load using
forecasting models.

IoT is a new term that can be used as a tool on smart grid, it can collect data from
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different sensors or sites using wireless network or any other technology, and analyzes
it in order to improve the forecasting results. Such features make power generation,

delivering and management more flexible, reliable, secure,economical, and sustainable

in SG .



Chapter 4

Improving performance

4.1 Introduction

This thesis proposes ARMA and Markov forecasting models to improve the performance
of SGN and predict the future level of load consumption hourly, based on previous
load consumption records. To achieve this goal, a code of forecasting algorithms can
be run over an two months. By using the SGN data transformation techniques, the
consumer can send and receive information about the SGN statue, such as grid status
and current KWh price index provided from the regulator. Consumption history and
other variables like storage level will be monitored by the system and send its information
to the regulator. Forecasting models will use this information and then take its decision
about the energy source that gives the best effort with maximum benefit of the local

resources.

A methodology has been devised, using Matlab codes, to determine the right model that

will give a good resolution for load expecting hourly.

4.2 Method

For the implementation and testing, the follow methodologies were decided:

1. Choose the day set from 2018 in order to perform the load prediction.
2. Gather data about hourly cost and load profile for the consumer in 2018.

3. Implement the load forecasting algorithms by using the load profile readings, using
Matlab.

24
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4. Compare results with the real data.

5. Give a recommendation about the load forecasting.

4.2.1 Data gathering

The forecasting models, even time series models or discrete stochastic models, are based
on previous data. The new data will be driven from the history of data about load
consumption, and then compared the results from different models. Thus, after a long
search on internet and by connecting electricity market regulations from several areas,
Nord Pool Group[38] provided data for Europe’s leading power market, offering both
day-ahead and real-time market prices to its customers[38]. It also provided an hour by
hour price history for the market and give the peak and off peak price for each day.

We can also use this data to predict the load for short or long term, in order to perform
that, there are many challenges due to their high volatility and environment dependency,
like weather, fuel markets fluctuations and the time of demand[30]. Figure 4.1 show an
overview of the main factors that affect the electricity price in market, showing both
demand side and supply side[6]. Time of day is one of the factors that determines the

price of the electricity as shown in figure 4.1. we can notice clearly in tables 4.1 and 4.2.

) Gas Crude Coal
] Run of river [ COy | |
oo panes
Wind Wind Renewable power Thermal power g)
S generators generation plants Revisions kol
=2
\ ¢ Power <
Sun PV stations
Technical
outages
,, Power Price .
Cloud Lighting Holidays
\ Consumer U
behaviour %
cooling/heating Time of day g

FIGURE 4.1: Factors of electricity price determines [6]

I choose April 2018 and June 2018 as input for the modules, Table 4.1 provide 5 days
hour by hour price profile for a medium house as a consumer sample, from the data

attached in appendix A.
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TABLE 4.1: April hourly prices in EUR/MWh

Time Price
Su Mo Tu We Th

00-01 39,80 39,38 40,08 39,01 39,13
01-02 39,57 38,67 39,36 38,37 38,50
02-03 39,43 38,43 39,06 38,42 38,49
03-04 39,39 38,33 39,00 38,33 38,95
04-05 39,50 38,61 38,93 38,63 38,90
05-06 39,33 39,27 40,41 39,93 40,25
06-07 39,51 39,96 41,89 4254 4225
07-08 39,39 39,62 45,38 48,78 47,03
08-09 39,62 40,33 49,91 58,02 50,21
09-10 39,61 40,56 47,82 51,98 48,78
10-11 39,52 40,63 44,61 46,66 46,40
11-12 39,17 40,32 43,93 44,48 44,26
12-13 38,86 39,91 43,22 42,40 42,76
13-14 38,48 39,52 43,16 41,95 42,20
14-15 38,15 38,97 42,66 41,31 41,20
15-16 38,03 38,81 42,30 41,07 40,96
16-17 38,13 39,08 42,94 41,03 40,98
17-18 38,59 39,63 44,52 41,48 41,03
18-19 39,22 40,11 47,51 42,49 41,39
19-20 39,64 40,88 49,74 42,77 41,95
20-21 40,00 41,09 46,92 44,00 41,92
21-22 39,89 40,92 42,88 42,37 40,95
22-23 39,81 39,96 40,47 40,17 39,93
23-00 39,22 39,22 39,13 38,39 38,09
Peak 38,92 39,89 45,19 44,64 43,51

Off-peakl 39,49 39,03 40,51 40,50 40,44
Off-peak? 39,73 40,30 42,35 41,23 40,22

As it’s clear in Table 4.1,for the first five days in April 2018, the price at peak will be
the maxim, mostly 08:00 to 09:00 is the first peak time, and 21:00 to 22:00 is the second
peak time for the selected load. It seems to be the same peak time of the price system

shown in figure 4.2 for June 2018.

Also, It has been taken for the first five days in June 2018 to try the models at summer
load. Table 4.2 provide us with 5 days in June hour by hour price profile. The whole

month data can be found in appendix A.

Price tables for April and June show that the price of electricity varying during time
day. It’s ranges from the maximum price at the peak hours, and fall back on the off-
peak hours. Off-peak hours are usually when residential loads and businesses use less

electricity. It varies depending on location and load type. Mainly off-peak times are at
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TABLE 4.2: June hourly prices in EUR/MWh

Time Price
Fr Sa Su mo Tu

00-01 41,32 42,15 43,39 38,86 42,66
01-02 38,54 40,41 41,59 36,21 41,01
02-03 38,49 39,13 40,04 32,81 39,44
03-04 38,00 38,49 39,33 31,92 39,35
04-05 37,99 38,50 38,43 31,45 39,05
05-06 41,08 38,77 39,25 37,48 41,63
06-07 45,18 40,47 40,18 4490 45,90
07-08 46,22 42,24 41,39 45,62 46,84
08-09 46,96 43,45 43,08 45,74 46,92
09-10 47,29 44,32 43,57 4581 47,07
10-11 47,53 43,92 44,03 45,81 47,24
11-12 47,40 43,60 43,89 45,66 47,52
12-13 46,81 43,02 43,89 45,64 47,50
13-14 46,31 42,57 43,46 45,44 47,08
14-15 45,56 42,32 41,62 45,28 46,88
15-16 44,79 4222 40,97 45,00 46,61
16-17 44,41 42,25 41,32 44,67 46,45
17-18 44,63 43,02 42,58 4544 46,97
18-19 45,93 43,92 43,57 4598 47,82
19-20 46,00 44,46 44,50 4598 48,20
20-21 45,35 43,96 45,11 45,62 47,54
21-22 45,05 43,96 45,29 4537 47,16
22-23 44,95 43,68 44,94 4527 47,32
23-00 44,16 42,20 40,66 43,07 44,91
Peak 46,14 43,26 43,04 45,54 47,19
Off-peakl 40,85 40,02 40,45 37,41 41,99
Off-peak2 44,88 43,45 44,00 44,83 46,73

night or weekends.

27

Variations in demand, weather conditions and transmission capacity contribute to the

spot prices wide variation. There is, therefore, great financial risk associated with power

trading.

The load forecasting need mainly a load profile for a specific load. Sandels, Widn and

Nordstrm intruduse a Matlab application that include an hourly load profile for separate

houses[19]. This application generates detailed reference energy profiles for residents of

houses, includes load curves that have a similarity with practical load measurements[19].

4.2.2 Data analyses

The hourly electrical load data logged are produced for the 24-hour (one day) period

starting at 00:00 AM. The start and end times are a bit random and could be changed
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according the chosen model system in order to reflect the most efficient time of day
to train the model. Processing of previous data is performed to train the models and
improve the forecasts. The predictions will focus on the days where load profile manip-
ulation, April and June, were more effective in offsetting costs because of the change of

loads behaviors according to the climate variations.

Norwegian prices in EUR/MWh

Prices EUR/MWh

FIGURE 4.2: April 2018 in Norwegian market

Figures 4.2 and 4.3 give us as an overview about the price of electricity, that can be used
for price forecasting. Such forecasting depends on alto of parameters like the weather
and the time of the day which affect the resolution of the prediction. These parameters
were shown in figure 4.1. Figures 4.4 and 4.6 represent the consumer load profile hourly.
The full load profiles for both months can be found at appendix. This figure shows
that the first peak is from 08:00 AM to 09:00 AM and the second peak 21:00 to 22:00.
Figures 4.5 and 4.7 shows the average load consumption for the selected load. The peak

time is also as it in the previous figures.

Chapter 2 details the time series models that is applied for 24-hour ahead forecasts.

Discrete stochastic models are also used for short term forecasts. Here, the data analyses
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FIGURE 4.3: 5 days June 2018 in Norwegian market

and methods of data management are explained with more detail, as well as the method
of testing the models on out-of sample data. Figure 4.8 introduce the load of the first
peak (08:00 to 09:00) and the second peak (21:00 to 22:00) in June 2018.Generally, the
average load is about 1.2 KWh for the firs peak time and 1.4 KWh for the second peak
time. Such data, which is the input of the models, will improve the resolution of the

forecasting results.
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Load sample in KWh
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FIGURE 4.7: Electricity medium average load for June 2018
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FI1GURE 4.8: The load of two peak time clock’s over June month

4.2.3 Data preparations

Forecasting process is a history based process, which means that the future predicting
loads depends on the previous load consumption for the consumer. Forecasting models
use this data and regenerate it to its parameters so that the model can deal with it.
Time series modules data preparations and discrete stochastic models data preparations

are varying depending on the used model.

4.2.3.1 Time series modules data preparations

Time series modules need the previous data in order to perform forecasting, without
a need to group data into categories. ARMA model is referred to as the ARMA(p,q)
model; where p is the order of the auto-regressive polynomial and q is the order of the
moving average polynomial. To calculate the polynomials p and g, previously, models
were identified manually by trying low order models such as ARMA(1,1), ARMA(2,1)
and ARMA(1,2). Diagnostic checking used to calculate the sample auto-correlation



CHAPTER 4. IMPROVING PERFORMANCE 33

function (ACf) and partial auto-correlation function (PACf) plots, by comparing the
accuracy results and obtaining reduced ARMA model statistics on the data itself and
on AR model as first-stage input. In this thesis, ACF and PACF are implemented by
Matlab R2018b. They will be used also with ARIMA and ARMAX models.

Time Series

If
Statinary

Yes

Power transformation

differencing ACF / PACF

(p,d,q)

ARIMA variables

driving

White noise adequate

Prediction results J Diagnostic check

FIGURE 4.9: Time series algorithm

Figure 4.9 shows the time series algorithm that is implemented by Matlab. The selected
models will get load data for April 2018 and June 2018. These data are the main
input (previous load data) for the time series model. ARMA, ARIMA and ARMAX
coefficients will be estimated using ACF and PACF plots automatically.

Previous data that will be used in these models are the hour by hour load profile for
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April and June 2018, which are available at appendices A.1 and A.2. The input of the
models will be the load of each hour during 29 days. Usually, the temperature during

the month is around the average which is given in table 4.3.

TABLE 4.3: Norway monthly average temperature

Temp. \Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

High °C 1 2 6 9 16 20 22 20 16 10 4 -1
Low °C -7 -7 -3 1 7 11 13 12 7 4 -1 -5

The load forecasting process will be driven hour by hour during 24 hour. The results
will be compered with the real load at each hour. We also can produce day by day
load forecasting using the average load each day, or forecast the load for the peak time.
Getting such statistics can help the consumer to choose their electricity source. It can
also help the providers to estimating the energy consumption and power demand for a
short period.

For price forecasting, the same models can be applied, but price forecasting depends on
a lot of factors as it mentioned previously in figure 4.1. Such process give a very short
term prediction. Also, not all of the conditions are available for the consumer. So the

price forecasting will be inefficient for the consumers.

4.2.3.2 Stochastic models data preparations

Unlike time series modules, a stochastic model is a tool for estimating probability distri-
butions of Possible results by allowing random change in one or more inputs over time.
This change is usually based on changes in historical data for a specific period. Distri-
butions of possible outcomes are derived from a large number of simulations (stochastic
Expectations), which reflect the random change in the inputs. This process may be
repeated thousands of times to get the output, which reflects on the time of forecasting.
The Mrkov model also has the same issue. The advantage of MDP is that there is no
need for history, it depends on the current status of the system ”load consumption”.
To achieve the forecasting, the load for each hour need to be categorized into ”groups”,
usually performed by the electricity providers. It is classified depending on the consumer
load each hour. The price of each category change by the time of the category and reach

the max on the peak time.

To start with Markov, we first need to build the stochastic matrix, it’s a square matrix
used to describe the transitions of a Markov chain. Each of its entries representing a
probability. If the probability of moving from i to j is F; ;, the stochastic matrix P is
defined as:
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TABLE 4.4: April 2018 06:00 AM Load category

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Load 0.571 0.621 0.531 0.611 0.581 6.611 6.581 0.531 0.781 0.611 0.661 0.661 0.661 0.661 0.611
Category P1 P1 P1 P1 P1 P3 P3 P1 P2 P1 P2 P2 P2 P2 P1

Day 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Load 6.611 6.611 0.661 6.611 0.611 0.571 0.611 0.611 0.651 0.661 0.661 0.661 0.691 2.191
Category P3 P3 P2 P3 P1 P1 P1 P1 P1 P2 P2 P2 P2 P3

Pl,l Pl,g Pl,j PI,S

P271 P272 PQJ‘ PQ,S
P=

P,1 Py .. Pi;j .. Pig

PS,l P572 PS,j PS,S

To build a stochastic matrix, a classified of the load in certain hours per day to three
categories for 29 days was prepared. This categorization was chosen depending on the
range of consumption for the consumer. These categories are P; [0 - 0.655] KWh, Py
[0.655 - 1.31] KWh and over than 1.31 KWh P;. To complete the matrix, we need to
calculate the conditional probability functions of transfer from one category to another.

Conditional probability functions can be written as follows:

P j= Cm, i = W (4.1)
In order to explain how the algorithm works,a sample of the data was chosen in April
at 06:00 AM, and apply MDP to it. The MDP must be work if the data changed, but
the results my be changed according to the input data.

Table 4.4 is a sample of daily load profile at 06:00 AM during April 2018 [1 to 29 April
2018]. To apply Equation 4.1, we need to calculate Count (i), Count(i,i) and Count(j,1).
From this sample table 4.4, P; count is 13 times, P> count is 10 times and P count is

6 times.

To calculate Count(j, i), some assumptions was made according to the sample. Count(2,1)
means how many times P, comes after Pj, which is 3 times, Count(3,1) means how many
times P3 comes after Pj, which is two times, Count(2,3) means how many times P3 comes
after Py, which is two times also, Count(1,2) means how many times P; comes after P,
which is two times, Count(1,3) means how many times P, comes after P3, which is

also two times, Count(1,1) means how many times P; comes twice, which is 8 times,
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Count(2,2) means how many times P, comes twice, which is 6 times, Count(3,3) means

how many times P3 comes twice, which is two times.

Now, we have the following:

Py = % _ % —0.615 (4.2)
Py = % = 12—0 = 0.200 (4.3)
Py 3= (m = % =0.333 (4.4)
Py = CW = % =0.231 (4.5)
Pro = CW = % = 0.600 (4.6)
Pys = (W = % =0.333 (4.7)
Py = W _ 133 —0.154 (4.8)
Psy = W = 12—0 = 0.200 (4.9)
Pys = (W = % =0.333 (4.10)

After calculate the Conditional probability functions, the transition probability matrix
will be:

0.615 0.200 0.333
0.231 0.600 0.333
0.154 0.200 0.333
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Note that the sum of probability values from each column is equal to 1, which means
that this matrix is stochastic matrix[32]. Figure 4.10 represent the Markov diagram for

06:00 AM during April 2018.

0.615

FIGURE 4.10: Markov diagram for 06:00 AM during April 2018

Now, after Markov diagram is done, MDP will be implemented using Matlab. We need to
know that the Markov model will forecast a category from the range of data, which means
that some data will disappear due to the grouping process. This problem can be solved
by decreasing the range of each category, or by using a standard categories provided by
the supplier. Usually they give a dynamic price depending on the consumption rate.

Note that using more categories increases the dimensions of the probability matrix,

which also causes more complexity with Markov models.

4.3 Summary

In this chapter, The methodologies that were used to forecast the load were decided,
even by using Time series models like ARMA model, or using stochastic models. Also,
in this chapter, a full description of how the data are collected will be given. Such data

will be prepared to be the input of the models.
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After getting the results, a comparison will be done to calculate the errors. The compar-
ison will be with the real data from the suppliers. After that, a comparison will be made
between the different forecasting models to see which one gives the beast forecasting

results.



Chapter 5

Experiments and results

5.1 Experimental environment settings

In this chapter, the models that were described in Chapter 2 were evaluated by writing
codes using Matlab simulator. As discussed in the previous chapters, load forecasting is
a process that depends on the behaviour of the consumer. However, to complete such
forecasting, we need to collect some information about the history of the consumer load
profile. In this chapter, It has been used the forecasting for load consumption hour by
hour with previous load profile for one month. The time series forecasting model that
was used takes the load profile from the electricity providers, and then derives the load
prediction for short to medium time forecasting. For a stochastic model, the Markov

model was chosen to generate short term forecasting as discussed in chapter 4.

5.2 Time series model implementation

Tables A.1 and A.2 in Appendix A, show the daily power load consumption hour by
hour, with the average temperature, that was discussed in chapter 4, for a city in Norway
from April 1st to April 30th, and from June 1st to June 30th. The classical time series
model (ARMIA) is applied to forecast load. The prediction results of the model are
compared with the results from stochastic model (MDP).

The ARIMA model is able to identify complex patterns in the data set time and there-
fore, it is widely applied for short-term forecasts. Generally, ARIMA includes an auto-
regressive process, difference to strip the integration and moving average, where the

polynomial p is the order of the AR model, the polynomial q is the order of the MA

39



CHAPTER 5. EXPERIMENTS AND RESULTS 40

model and the polynomial d is the order of difference applied to ensure the stationary
of the data set.
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F1cUrE 5.1: Sample ACF and PACF plots for differences time series

To determine the order of (p) and (q) lags, estimated regression models with ARIMA (p,
0, q) errors by varying (p) value from 0 to 5 and (q) to 2. The best fitting model is this
case determined with the lowest Bayesian Information Criterion (BIC) value as shown
in figure 5.1, from BIC matrix. The rows represent the AR degree (p) and the columns
represent the MA degree (q). The smallest value is best.

TABLE 5.1: BIC matrix

-48.3522 -66.9589 -71.5825
-61.4723 -65.0703 -70.1814
-65.7203 -69.6967 -68.4821
-65.0468 -77.2367 -66.9326
-76.0552 -77.8930 -76.9364

As seen in table 5.1, the smallest BIC value is -77.8930 in the (5,2) position. This gives
us the best p and q for the ARIMA model to an ARIMA(5 , 0, 2) model. The real data

is shown in figure 5.2.
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Figure 5.4 shows the expected load for May 2018 after applying the ARIMA model, as
it’s clear from the figure, the forecasted load for 06:00 PM were driven from the load
from April 2018 06:00 PM.

6:00 PM load May in MWh
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F1GURE 5.4: 06:00 PM May 2018 forecasted load using ARIMA model

From figures 5.3 and 5.4, we can see the load of actual and forecasted load curves.
Table 5.2 is a comparison of the first five days in May between the real load data and
the forecasted data. We can see that the error percentage increased for the long time
forecast that generated by the ARIMA model "more than one day”, which is about 3.7%
for 1st of May and 24% for 4th of May.

Such range of error will be changed from one month to others, and also from a consumer
to another. The other parameters like the temperature and the wind speed will affect
the results.

This change on the forecasted load depends on the previous data and the change of the

load during the time of the study.
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TABLE 5.2: Error percentage for forecasted data May 2018

Date  Forecasted Actual
May MWh MWh

Error

1 0.800119341 0.831  3.716084116
2 0.826070761 1.061  22.14224684
3 0.540576013 2.231 75.76978875
4 0.599359085 0.791  24.22767573

Table 5.3 is a comparison of 5 days in July between the actual load data and the fore-
casted data. The error percentage increased for the long time forecast "more than one
day”, which is about 4.8% for 1 July and 20.1% for 4 July.

TABLE 5.3: Error percentage for forecasted data July 2018

Date  Forecasted Actual
July MWh MWh

0.800119341 0.841  4.860958312
0.826070761 2.471  66.56937429
0.540576013 0.691  21.76902847
0.599359085 0.751  20.19186613
0.774889749 0.871 11.03447198

Error

T W N =

5.2.1 Root Mean Square Error

he Root Mean Square Error (RMSE), or the root mean square deviation (RMSD) is a
commonly used measure of the difference between values forecasted by a model with the
actual values. The RMSE used to combined them into a single measure of predictive
power[39].

The RMSE of a predicted data with respect to the estimated variable X is [39]:

n

REMSE = \/Zj;l <[X(t)_w> (5.1)

Where t is current iteration, n is the number of samples, X is actual value and X is

predicted value.

Figur 5.5 shows plots that depicts predicted points by ARIMA. Regression line among
predicted and desired values clearly shows that RMSE is greater so that there is huge
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FIGURE 5.5: Forecasted load for May.

difference in desired and predicted values.it shows that the load predicting for May
valued RMSE average for the entire year was 0.22. and type 1 input valued RMSE was
0.05165.

5.2.2 Stochastic model implementation

The Markov model deals with discrete time intervals, which means that we need to
classify the load into intervals. Those intervals can be created depending on time during
the day, load consumption or KWh price. The selected categories was discussed as

previews in chapter 4, table 4.4.

April 29th, 2018 6:00 PM, the load was 2.865 KWh, which is in the last category. After
applying MDP, the next step is to be in the same category as shown in figure 5.6.
NOORD POOL data [6] shows that the load in April 30th 6:00 PM 2018 is 2.431 KWh,
which is in the same category of the previous day at the same time.

In this case, MDP will not give us the expected load, it will provide us with range of
possible load consumption that is expected to be for the next day. Figure 5.7 shows the

evolution of transition probability for each load group using the Markov model.

Error percentage from using MDP for load forecasting will not be efficient. The result
of this prediction is used, usually, in the very short term of load consumption. However,
the result is not specified by exact load consumption. Such forecasting will be useful
for power providers with a huge number of consumers, so that the load consumption for

consumers will be in Megawatt/hour or more.
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0.39

FIGURE 5.6: Markov diagram for 08:00 AM during April 2018

For 8:00 AM, which was the peak time in April 2018, the following is the MDP condi-
tional probability:

Pia CCO:Z:LEil;) =0.25 (5.2)
Pro— % — 0.200 (5.3)
Pis= % = 0.4545 (5.4)

Poy = % 025 (5.5)

Pyy— Count(2,2) — 05 (5.6)

< Count(2)
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Py = %ﬁg?) = 0.2727
Po = Gy, =03
Py = %ﬁ; =0.3
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(5.8)
(5.9)

(5.10)

After calculating the Conditional probability functions, the transition probability matrix

will be:

D
N
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FIGURE 5.8: Markov diagram for April 2018 8:00 AM

April 29th, 2018 8:00 AM, the load was 0.741 KWh, which is in category P2. According
to figure 5.8, the next step is to be in the same category. Appendix 1 shows that the load
of April 30th, 8:00 PM is also 0.741 KWh. Figure 5.9 shows the evolution of transition
probability for each load group using the Markov model.
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FIGURE 5.9: Evolution of transition probability for each load group in April 2018 8:00
AM

By using the forecasting output of ARIMA model, consumers behaviors will be improved,
their purchases from the grid and sales to it. Consumers who generate electricity can
sell their excess during the predicted peak times, when they are expected to have an
excess at a specific time, based on their predicted future levels of consumption and the
expected current storage level if they have. If the storage status is empty, a decision need
to be made from the IoT controller. Such as put the generated electricity at that time
into the grid. If the storage status is full, the controller then needs to decide whether
to consume the sorted electricity or selling it. The controller also will be sure that the

minimum amount of electricity will be supplied, even from the grid or from the storage.

An MDP model can be used to improve consumers behaviors for the long-term. As it is
shown if figure 5.9 the twill be for rang of load reading, this will be useful to maximize
the consumers behaviors for large scale of time. Such as to predict the load in the next

weekend. Usually, in weekends the peak-time is not the same as it on the working days.

D
&
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The controller in such cases can compare between the cast of the electricity on that day
and with it on the other days. If its cheaper than the cost on working days, the controller
will take a design to sort the generated electricity, and use it on other peak-times where

the price could be more expensive.
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Conclusion and future work

This thesis is focused on forecasting a load consumption for consumer in a smart grid
system network,where consumers can generate their own electricity. Such consumers
can also predict there future levels of electricity consumption with reasonable accuracy.
. The proposed method provides us with a real-time forecasting data of electricity load,
based on the previous hour by hour load profile. Such systems can help the consumers
to decide there next behavior, like sorting energy using local power storage or not. Such
forecasting can be achieved by using models like the ARIMA model and the MDP model,
which is used to improve consumers behaviours (their purchases from the smart grid and
sales to the smart grid) during each specific decision period, in order to maximize their
net benefits considering various factors. The proposed schemes(ARIMA and MDP) were
compared with the actual load data from the market, the results of extensive studies

show that the proposed scheme significantly outperforms the baseline competing scheme.

The ARIMA model provides an Acceptable level of load forecasting for short time fore-
casting. It can also give a long time load forecasting, but the error percentage in this
case will be increased. For one day forecasting, the ARIMA model gives us an error

percentage of about 3.7% to 4.8%, which is acceptable for small to medium consumers.

MDP also gives a load forecasting for the same load. It provides us with a forecasting
range for the load consumption, but it’s short time forecasting. The error rate will be
very high because the data will be categorized with limited numbers of groups. This
model quickly produces forecasting results, but it does not give an exact load, the result

will be included in range of load records.

Load forecasting can improve the way of how the electricity companies in Palestine

supply ; such studies give a future look to the future needs of Palestine, which will allow

50
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for the Palestinian Energy And Natural Resources Authority (PENRA) to put a future

plan in place for renewable resources to cover the future needs of the Palestinian market.

In addition, load forecasting can be used to limit the electricity theft in the national
grid by using the data which is used to forecast the loads. Get the expected load and
compare it with the real loads and prices, if there is a significant difference between the

real and the expected load; there is a high possibility of electricity theft or faults.

For future improvements, adding extra information to the load profile, such as weather
forecasting, can improve the data for the forecasting results. The challenge for adding
data will be in the complexity of the forecasting algorithm. More complexity needs more
hardware resources. IoT devices currently have limited hardware resources. Because of
this, we need a technological updates in our hardware to achieve such forecasting with

extra information.

Another possible option for the load forecasting is to forecast average day load consump-
tion, using the same algorithms or other forecasting algorithms. We can also predict the

future price from the energy distribution companies.



Appendix A

Appendix

52



93

APPENDIX

APPENDIX A.

199 18¢ 119 119 1€99 199 119 1999  10L I8¢ 1€99 119 1899 119 I8G 1199 18¢ 199 119 18 TI.& 119 1999 1999  TI9 199 199 1199 119 g
I8¢ 1999 1€ T19 T1€99 119 I8¢ 1899 T19 TI19 199 I8% 1199 I8¢ T199 1199 119 119 1€9 T19 T199 18 1999 1199 18 T199 199  T€Y9 199 i
119 1999 119 199 1199 1€ 199 1199 119 119 199 1199 1€5 199 1199 1999 1€%9 199 199 119 1199 119 T1€% 119 1€5 1999 1€9 T€99 I8¢ €
19 1999 199 119 1999 199 119 T199 18 I8¢  18% 1999 199 T19 T€99 1999 1999 199 1€9 199 1899 I8¢ T19 TI19 T19 T1€99 119 1999 119 4
19 1199 119 119 1649 T1€S  1€¢ 1€99 119 119 119 1899 119 119 1999 1199 1199 119 199 T1€S 1999 199 19L 199 119 1999 199 1999 119 1
I8¢ 1999 119 T119¢ 1¢6 119 119 199 119 199 199 19.9 I8¢ 199 1999 119 1€%9 119 119 119 1199 1€¢ TI8 TI8 199 1999 I8¢  T199 I8¢ 0
TCET  T6TT Te6 196 T¥P8E 1.8 T19 T€0T TLL  TLS TOOT T80T T80L 199 196 T8 1.8 128 TIPET TIIT 199 169 16 TIET TIVI TGTT 199  T€0T 199 €T
Teve I8¢l 1601 I8TT 1€k  1e6 148 TGET  T€0T Tc6 1vel  T€PT 1911 T¢Il TOET T6T1T Te8  TITT  T1SPT  TeSl 1.8 Tc0T T19vT 1691 19¥1 T0PT I8¢  TLE0T TTTI [44
TeseT  T1GPT TGET  T0ST  Te6e  TGET  I8TT  T€YPL T¢It I61T T1SPP  TI9T T199T Teel  TOST  TOPT  TSE€T  T6TT  TOST TSE€T  T10ve TOPD  TIST Tl¢T  T€¥E  TOPL T61I €L TGET 1¢
T61€ TL0T T9ST T@I€  TLAL TLST TETT  TOST TI8TT TSET TIPP TEST T¢I€ TATT I8PE T0CT TCLT 198¢ TI9T T€CT I80T TAET TEOE T99T T¥¥I I8GL 19T Tev.  1vel 02
1901 199 1601 188  1¥8 T1Gel 1911 166 186 I8TT TI11€ 1¢9T Tele 106 189%  TLL T¥PL 1911 TLZT T0CT TOGT TISTT TOTE€ T60T TELIT IveL 1€0€  TOPL 1101 61
G98¢ 199 199 Teve  T9L TI¥8C T¥PC T1¥9¢ 16 10TV 180T 168  1€8  Tg8 G.9¢ 18L Tg4c  I¥8 T1€€c  TI8L  T1€8  IP8  I88 I¥cc TETT  TLOOT 19L 188  T€L 8T
108¢ 108  Tv. 191c 1€€¢ T0IT 180F 166  1€L TI10T 1€8  1€L 1Tvec 188 Icvc  16L w6 18L I¥8 198 188  I¥8 ICIc 1¢Ic 164 T10L  18L  T1€€C 169 L1
gcyy 199 1€L  Tlge Tvve  TWL 11 Tvee 1L0¢  T€L  TLOT 8L 104 198  1€9 199 119  T1€L I8L  16L TILS T0L T19¢ 199 148 119 199 16L  10¢¢ 91
6L  18¢ TL¢ T10L Tel 108 169 T19 TPL  T€L 169 TLS  T¢9 10 169 I8G  T19 I¥9  TIWL  I8%  TeLl  TL9  TI8 199 186 19 119 8¢ 199 <1
199 199  T16L 188 161 €L 119 199 199 168 199 16¢¢ 9 199 1w, T¢9 I8¢  T10L 199 1¥8 109¢ 199 161¢  TcL  18L 119 119 119 1€9 !
.6 119 T8 T€L 199 T19 104 TT9 T19 TO8  TO8 T€ELC T€S  T99  TLG  TeL  T19 199 TP TGL  I8E  TI9 TPEC  T9L TE€CT 129 119 19 199 €T
10¢8 1.9 104 TWL T€L 199 199  I8G  1€S  TL9  IV6 T1S€V 199 TLG 199 T¥WL 19 199 1€69 1¢9 199  TLL 1L TcL  1€v¢ 1€8 189 119 102 cl
1999 119 108 1€S 108 Tel 119 199 199 104 I8¢ 118 119 108 108 T€% 199 169 1IvS8 I¥8 119 Iv6 1S9Ic 108 1669  TI.c 199 199 1.G 1T
TL08 199 TL9 108 168  Tcl Te¢ 1.9 119 104 TT9  TO8  TT9  TOL  TES 196 TSTE  TOL T689 TT99  TLG  TO8 169 199 T9L9  T196C TT199  189C T0L9 01T
199 18¢ 119 119 192 169 199  T1.G 192 19 199 169 199 1¥L9 199 S8 119  TLL  1SL 1999 119  1¢l 104 I8¢  TI89  109¢ T1.99 169 1999 6
w. 1¥8 119 1.9 TL0C 199  I8L  TI8 TLgE¢ I8¢ 1899  Tv. T0L9 71699  TOL  TIPL T9L  T9L 199 TOL9 I8¢  TI9 TOL9 1199 TT199 199 1999 169 1999 8
6L 108 TOL 199 119 19¢¢ 1€¢ 129 199  I¥8 1699  T1€S 1199 1¢99 1.9 T¢9 199 I8¢ 129 1899 199 199 1999 1199 1199 I8¢ 1199 18L 18¢8 L
161¢ 169 199 199 199 199 119 119 1.9 119 1199 199 1199 1199 119 199 199 199 199 119 I8L T1€S 1899 1199 I8¢ 119 1€9 129 1.9 9
62 8T LT 9% 514 144 €¢ [44 12 0g 6T 8T LT 9T <1 ! €T [4) 1T 01 [§ 8 L 9 g 4 € 4 1 Aeq\moy

UMIN 810¢ [1dy 10§ dgoid peo] 'y A1dV],



54

APPENDIX

APPENDIX A.

199 199 199 I8¢ 1. 199 119 119 I8¢ 199 I8¢ 19Ic 119 199 119 I8¢ 199 199 199 TOL 119 I8¢ T€S T19 119 199 119 199 g
8¢ 199 9 119 199 119 119 119 199 1€¢ 119 1€G I8G T19 199 199 199 199 1€S TT9 TT9 199 199 18G 199 119 TES  TEG i
19 189 T€¢ I8¢ 119 199 I8¢ 199 119 199 199 119 119 119 199 119 199 1€9 TI9 1€9 T19 T19 199 199 199 I8¢ 199 199 €
19 119 99 119 1€ 119 119 I8¢ 1€¢ 199 1€¢ 199 119 199 1€ 119 18 T19 119 119 199 119 1€9 119 I8¢ 119 T19 TI9 14
8¢ 119 99 199 199 119 1€ 119 119 I8¢ 199 199 1€¢ 1€ 199 I8¢ TI19 TI9 199 199 119 T€S 199 T€S 199 199 T€S  TEG T
19 119 9 1€¢ 119 1€9 119 199 199 199 119 119 I8¢ 1€ 119 119 119 I8¢ 1€9 I8¢ T19 199 T1€9 199 T1€S T€S 199 189 0
196 1921 1¢8 Teel  T1€0T  T1€0T Ivel T¢Il 126 1.8 TIvCl 128 169 TLel I8TT IVII w8 1e8 I8¢ 199 T1€0T 1.8 TIvel 1611 1.6 108 198 196 1901 €2
1€ct  Ivle 1911 166 1021 TSE€T  TOPT  1.CI 126 Tvel  TSET 166 TOPT 1991 TLET TTIT 180T 196 186 TTI1T I¥cl T€8 TI6TT TGSET Tc€T 168 196 TLOT 109 [44
TL0T 196 10¢T 16€T 1€6 I8¢T T19€T T14PT TLIT 1¢8¢ 1Tccl 1¢6 1611 T11€€ 1921 TvOT I8ST TL0T 1601 TSIT 1Pl 1Al TcIT 1891 19¢l T1.¢T 1¥PT T1€0T 186 12
1¢%¢ T1€1T  I¥8c 108 168 188 TOVI 1I€IT T1cOT 19¥¢ 10Tl 180T 186 T1¢0T Tvpe  T1¢6 1.8  19L 198 188  1€8 Tc6 116 1921 116 196 1101 168 164 0g
1.8 1v9¢ 196  1€8  TIpL 1€cc 186 1911 166 196 1T1¥8c 188 186 G€Sy 10Lc 1.8 164 108 199 186 1.8 1GL 190T T1.0T Teve  TLL TIIL 189 118 61
186 I8L GLL  TLL 199  TI.G 1611 TeL T1.ec 116 198¢c  19L  1€6  Te8 1Sve  19L 194 169 10L 164 16¢cc 1€8 1¢9¢ 119 I¥8 108 19¢¢  TI8  1IvL 8T
1.6 18L G6%¢  Iv.  IvL. 1.9 1901 16L  I8L 169 10S¢ 189 I8¢ 1I€cc 1T.¢c  1¥8 1.8 I8¢ 168 1€L 199 Tcsc 169 Iv6  T1€L 1.6 199 T1€L  T€L L1
168 1.8 198  Iv. 1¢9¢  Tv. Tloec  10L  1€8  I88 I¥Sc 109 1STc  1vL 1S¢c 198 1¥8 199 149L Tl 169 1.9 Tcee 10L¢ 164 16 199  1€S 161¢C 91
168  Tel 19L 199  TIv.l 199  T0L  T1¢L T1€L 1.8 I8G 199 199 1€ 1¥P8 199 116 1.9 1¢I¢c 1I4Tc 108 T19L 169 16L Tel 119 199 T10L  T€S 1
Teee 1€ 1.9 199 199 108  TIL I8¢ 104 169 T19 199 T.L 1€% Tcbe TWL 1€8 119 198 119  T1€5  TIvLl T€OT  T16L  T1GL I8¢ 119  T0L 188 14
%9 104 TPL  TOL 119 19L 119 119 166 1Ivcc  10L 199 1.yc 119 188 1.9 TI8 199 19L 119 119 104 199 1T0¢c 119 119 119 16¥¢ 1C¥e €1
L6 199 169 1ST¢ 199  T1€L I8¢ I8¢  I88 1€0c  T1.¢ 199 169 I8¢  19L 104 TLL 1.6 19L 199 1€L 169 169 IvL 108 TGL  TOL  TLL 108 48
TeL 1€5 199 1.9 119 TIIve 199 119 T€cc 164  T10L 199 119 119 16Pc 16€8 I8L 199 T0L T19 T0L 169 TOL 199 196€ 189  T1LG T¢Iy 108 1T
99 199 Iy 108 199 199 199 119 I¥8 169  T0L I8¢ 19I¢c 119 IpL 164 199 T.¢ T191% 189 T0L 1.9 I8L 199 T.L 199 119 1ISPC  TI9 0t
169 102 199  TGL I8¢  TOL T6L 18 I8G TP 1€¢ 119  T¥L  TO8  TLG  TI9  TPL  T@9 I8L  T6L 199 108 169 199  T0L  TOL 199  TLL  TVL 6
119 102  Tv. 129 119  T6L 16L& 199  TOL 199 I¢Te 199  T6L 199 18L& TOL  TOL  TWL  T69  T69 199 T19 TI6L  T€L  TOL  I8G T19T¢ T199¢  TOL 8
. 119 119 199 T¥ee  TPL  TOL 184  TOL  T€S 199  Tg9  TLG  Te9 119 199 119 T¥eC P8 TOL  TLL T9 199 I8G  T19 199 T0ce 199 TLG L
99  T1€C I8¢ 199 T19 T69 TLS  TG9 I8¢ 199  TOL 199 T¢9 199 TI9 I8G  T19 TL0C T99  T99 199 1¢9 TOL TOL  TWL 199 199 199  TOL 9

62 8¢ X 9¢ gz Ve €¢ [44 1¢ (114 6T 8T LT 9T a1 VI €T ¢l 1T 0t 6 8 L g i € 4 T Aeq\moy

TAIN 8T0g dun( 10§ d[goad peo :g'y ATEVL,



95

APPENDIX

APPENDIX A.

G9'¢e  16°CE  LLGE 80'GE  TVCGe LT¢ 61°S¢ C6'€e TC0e 1466 7'9¢  CG0'8C 8S6E  TGOF LLSE P¥6'9¢ T06E LSE6E 6868 T6'8¢ I86E  9¢6E  LI'8E GTOF GCOV  €6°6¢ IVOV  LT6E  €€6E 5
¥& 96'Ce T6'€E ¥9'cE 80°¢€e FO'LZ G9°LT Tee €62 €6 Q0ve 79¢ V0'6E €L'SE L'8¢ €9¢ 9I'8¢ GT6E F6'LE 6ELE F8R8E €0°6E TSLE 6'8¢ 6'8¢ €9'8¢ €6'8¢ 19'8¢ a'6e 4
€0ve  TEE€E Tree 89'T1E€ T9CE 80LT €9LT 96°'T¢ FO'6C €0¢ce TOTE TV9e 6&  9¢°8¢ 9'8¢ 9¢ CTI'8¢ GT'6E €L°LE 80L& <COR8E GLSE TE€LE G6'8¢ G6'8¢ €8¢ 6E €€8¢ 6£6¢ €
6SFE  TEEE  €TCe TTTIE  €9CE S8T'6C LSLT 96°0€ LE6C {TE 68¢E G89¢ LT6E 9T'SE G9'8¢ 6'GE  T08¢ 80'6E 8T 'LE LE T6LE TSRE  LELE 6F'SE  67'8¢  TF'SE G066 EF8E  €V6E 14
G@8%e 60TE 6£¢e  LTIE eve  LT0¢ 9L €LCE TV0E ¥6'CE STPE  €9°LE  LG6E 8C'SE  LT6E  T09E  FO'SE GI6E  99°LE  90°LE  C0'SE  L98¢  TILLE G'R¢ G'8¢  LE'RE  9€°6E L9'8¢ LG'6E T
L6°6¢  16°GE ¢6¢  69°7E  €LGE  LLTE  66°08 8LTE €¢  T10°¢E G FPR8E 666 €L8E TF6E 8G9¢ TE8E 6£6E¢ CI'8E FC'8E LG'8¢ €0°6¢ €FRE E€I6E €168 T06E 800F 8E6¢ 8°6¢ 0
LLEE  T6°GE  T09¢  €6'GE  CETFE  LLTVE TCPE  L6EE FEGE T9CE €6'7E PORE €8°6E CGTF  ST6E  TO0F  96°LE G'8¢  96'8¢ T9LE TO8E 89'8E TI98E 60'8E 608¢ 6£'8¢ €16 TC6E TT6E [44
€68 T0°LE €8LE T9LE S8F9¢  GE9¢  8T9¢ G L09¢ 9T'9¢ €0'8¢ 66°0F 69 IF S6'€F PeOF G6°0F T06¢ CI'6E €L6E F0O6E €968 1668 LE'SE €668 €66¢ LTOF LVOvF 9668 1I86¢ oC
vLGe I8¢ 6¥7'SE€ ¢C4R8¢ ¥6LE LLOE 6CLE FI9E FE€9¢ ¢’LE 9968 69CF 89¢y €9LF  CLTIV 9¢€Iv IV6E  9F6E  PS0F  166€  TOTF  89'T¥F 6068 S60F G6°0F LEThy 88Ty ¢60F  68°6¢ 1¢
TEGE TG'8E R8S'8E  8E8E  €8'8E  TO'LE 89LE 969  L¥P9E  9%°LE TLOV IVER  L6'EV  GE0¢ ¢cy oIV 8¥'6E  €8°6¢ STIV  1€0F 9LEY IS¢y c¢S0F C6'1F  C6'IV v °697 601V [0 0¢
€E°6E  GT'8E 66'8¢ TO8E G9'8¢ GT'LE PC'8¢ 16'9¢ €9¢ ¢'8¢  Iv'ev 6'FP  88°CY 996V SVIV  LETP 9966 TT0F 86°0F T6°0F GS'Sy 1907 6V0F GCS6'IF G6'TF LLCF TL6F 8807 T96¢ 61
9°Ge  G0'LE TILSE 8T'LE €E€°LE G69¢ T0'SE ©89¢ E€I'GE 8E€'8¢ 99°CF 89€Y €LSY PGLY GL6E €T OV 96¢ G9'6¢ ¥oF €L0F 109y 9F6E €968 61V 6E IV 6%Ch  1SLY 110V TC6E ST
€C°S¢  6C2°9¢ 608¢ 8¥9¢ ¢LE 8€9¢ 68°9¢ T99¢ 6S1¢ FI'LE 9TCh 6607 96'CF ¥6FF  ¥96E 268 LV6E  LV6E 9T0F €0°0F 69°€F L06E S6'8¢  €0'TF  €O'I¥F  SYIV  CSTP €968 69°SE LT
{TE TFI'GE ¢C&LE €L9¢ €0LE G €99¢ 609¢ €G6C 9LGE 768 68°6E 960V €E€TPF  6£6¢ 9068 96'8¢ LE6E  L86GE  9L6E 9L TP G8'8E LTS 86'0F 8607V €0'TF ¥6CF 8068 CI'8¢ 9T
LGPE ISTPE  99°9¢ 899¢ 969¢ GPGE  €9°9¢ €8°GE  S0°LT €€'S9¢ 6V'8¢ V9 6e 0F ¥6'F7F €€6¢ L]S8E LV'SE CE6E I86¢ TR6E CeIV 8°8¢ 908¢ 9607V 960V LOTV €'Ch  I8'8¢ €0'8¢ [
70°CE 66F7E €9°9¢ S0LE ¥LE E€FCE G€9°9¢  L9°CE TT'LC  L8'CE  €L8E  €L6E S¥VOF LLGY S8€6E 96'8¢ S6'8¢ F¥6E 668 €8°6¢ G IF 888¢ 6I'SE c1¥ ¢TIy 1€Tvy 99'C¢F  L68¢  CGI'SE 1
¢e'Ce  TI8GE  L0°LE  SVLE T8¢ LT9¢ LT'LE 9¢ F00¢ 6L9¢ 996¢ 607 L6'TF  80'S¥ ¢'6¢ TI'6E €06E L86E  STO¥ TV 67'CFv ¢I'68 89'8¢ tar4d oey S6'TV 9T'€F  TS6E  8¥'SE o1
79°¢¢  1¢9¢ 1€'8¢ T19°L¢ 6'8¢ T99¢ 9G°LE 6V9¢ LV'IE 98°LE T66E T8IV EFer L0009 68°6E LV6E  L968 TO0OF €€0F S8IV ¥6'CP  6F6E  CI6E  9L°CV  9L°TV Vey  Coev 1668 98°8¢ 145
L6°GE  86'9¢ LTOF 96°LE T9°6E 689¢ €9°8¢ L69¢ S6'€E GE€6E  CLTV  ILCY  G9CY 06 €€0¥F LL6E L¥VOF <C&0F 990v FO'I¥ €LF¥P ¥86E <CL6E 9C¥Fy 9¢Fy S¥¥P €6'€F CE&0v LI'6E T
€0°9¢  LELE VI'CP 16'8¢  9S°0F <I'LE STOV LE Sve LTIV &V 88FF CTLIY S¥ES  LG0F L]6E €Ty 16°0F 89 TP G8'IF TLLF <007 CS0F 7 or 7oF 99°9% 19F%F €907 <CS6E 0T
L6°CE  €9°LE LETY L90F GTP  G/°LE 98TV 6'9¢ LVTE 68°1F 9% 6687 80°0% LS E€T0F CT66S8 GE€CTVF ¢8IV 6€CF TIVEF LIS G86E SVOF S8LSF 8LS8Y 86'1¢ C8LF 9S°0F T196¢ 6
19°6¢  ¢689¢ ¢COSy 116y €I'ch 998¢ ¢€€¥%v CF9¢ 9¢°Ge Ter 96'6F S6°9¢ 69¢S 9¢F9 GR6E <CL6E €6Ch SE€V¥F 69FF 98TV 19 T¥6¢ 6'6¢ 11209 108 ¢08S 1667 ¢€0F <C96¢ 8
8]FE F09¢ 69TF G0ch 1607 €€8¢ C9T1F 8LSE LLFPE TPV LE6V 9IS 66'CG ¢96¢ 9668 FRSE 68Cy €9¢P 8¢y €7 G008 T6'8¢ €8'8¢ €0LF €OLY SLST 8€SGF TI96E 686 L
96°7¢ GE T98E €€LE €6'LE TPIE 9T'8E  G/FE TITEE 98'8¢ 96°0F 8STh  LLEY €6FF CI6E  TLLE €90 {07 9€°0F LLOF GLCV T0'6E 8€8¢ GCCoh STy TETh 681F 9668  TS6E 9
6G 8C LT 9¢ 614 iz4 €C [44 1c 0T 61 ST LT 91 CT 71 T 145 1T 0T 6 8 L 9 ] id ¢ 14 T %Q/Eom
YMIN/INH 810z [1dy 10§ o[gord 9011 ¢y ATAV],



o6

APPENDIX

APPENDIX A.

€Ty 10V GS'EP €E€F  967Tr  8€9E  VO'SE 6I'CE VIOV geTP VO'SE SR0F VO6E STIv €6'TF  L6VP  L6PP  ELTP €9V 6TV e6TF €OV L6E VOFP €9TF  8PLE GT6E  LL'RE  80'TH g
€826 €00V CETV TP 190V OV9E 80°0E 16LE TOSE LOGE TPFE e89E 966 STOV PLLE €0TP 8UTY G06E 900F 80TH g OF SE'Er 80P CLTR G0'6E  SGPIE  €P8E  G8E  66LE 4

8¢ €0TY 8PP 99TF  €00F PELE  LE EI'BE 9E'6E LTGE 9896 69LE TOOF LOOF 6L9E L6 9UTP 8Y6E FOOF 6ICF ETF GOEF 8FIF 8OTF  GE'GE C6'IE EEGE 6FRE  8E €
69'8¢  €9'TF I6TF 8TTF €00V 6S8E 9T6E  I'8E PRGE LL6E VELE PE®E POV T0TP  S6LE €ITH 2OTP 686 8GTP  IE'€Y  L0Th 8¢Ty oLTV Iy FP6E  I8TE P00V ET6E  6V8E 4
TP Geeh  88TF  GTEh LETF 896E  PY6E  €50F ISOF 680F TII6E GO 60TF 19T S'8E 66'FF  T0FY 6VOV  €@r G6€F  L€F ILGF  €9er 8er 10TF 1898 6CIF IFOF  bESE I
€0'EY  8OFF 96°€F GO 6ETF FOLF FOOF €0TF C0TF 90CF 8LOF OFEF PSEF I6'€F TE0F  €LF FOOF C0TH SESH V'SP 9T9F 1007 6EFF 6677 99Tk 98'8¢  GEEF  GITy  2EIR 0
€LTY  TRTY 6CSY SYVP G6€Y LT T0TTP LVLE GO'SE L6'TF ©Eer 6VIF 8PFP OFVR 9¢eh  TTP 169F TU9F TSP L0V 60'Gh 8¢LY  G9F  LUSY I6FF LO€Y 99°0F  ¢er  9TFh €2
€ULV  8OCH SOLV  PGOV  COSY €GCF  €er 9168 668 LTP €9EV PIVP  6'¢h ¢OGh 6T9F @9y PE6F P8y @GLP  6V8Y  IGLP VE6V 186V LPLY T€LY LTSV VOV 89EY  S6Th 4d
16.F OL'GP 8E'SF 6LOF FLGF 89S €9TF 6ELE SGO0F L6TF FOEF G8FF C6'Gr TS TOF 98°9F CFGY 96LF 8SLY SFSF  ES'LF FRSF PFGY 928F 9ULY LE'GF 6CSh 96'€F  SO0Gh 12
cz'8y  FLOF 6U'8F 80LF 80OF 6 69TF 6866 19TF 1CE€F 66'€F STGr LGP PGP 1E9F 6ILF  86F L8P €LLF G98F 96LF 8S'8F €G6F E€E'8F FGLF C9Gr II'Gh  96°€F  GECh 0%
8’8y 8LLY U6V POLY 6LOV  S6VF 99°Tr  LOTP GO O'€F  LLFP  TOF gU'Sh PUOF VPOV €9LP  LE0S 986V IESP 98y OV'SY  IV6Y  GR6F 9€6V  ¢8F 86'Gh G 9FFY 9 61
IW.F  L6'LY  ST6F GOS8V 169 GEFY P0Gy ISP 18T VOV VR IPOV GUVP evSh 69y 1GLF €6V €86V P8V GGUF  TF'SY  GL6V VL6V 80°6F 8LV SG'CH  LEEV  C6'€F  €6°Ch 81
YOOy 8ELY CF8Y  SLLF  PPOY 90T G61F  L6°0F 9Fer  €0'EF  €9EF  SFGP  10FF  L8FF CUOF L8'9F €6LF CF6P  POLF L9OF GTLF GF6Y  1E6F E€F8F 169 RGP 8GTF  Q0€F  €9FF L

9 89OV 8’LF G6OV GG I6€Y 8RO 610V FOTH 66'1v CO'€F TCFP SeEr €CFP  S8'Ch 16'Gh  6VLP 1006V T¢'LP 89°CH GO0V 898F €UV ¢€8F SPOV 19T €TV 8T IV 91
LEOv  6SLY  LVSV  LLLY SEOV  6'€F 90IY  6E0F  V6'e €eer VeV @6VP LTE  PVP 800F 689y TUSP 6L6V  L9LF 1Sy VOV LLSY IU6V G8'LY 199V SV L60V  Geer  GLTY a1
1697 G987 FO6F E€F8F TFLF FCFP 99T I€TF LG€F 8CEy  8'€F L0GP ITEF ISFF  99'0F TTLF  6C0¢ €6°6F 89LY IRCGH LS'OF TO6F GO8Y L8LF 8897 STGF 9P gETr  99°Gh 71
65°LF  ST6F LUGY 68 6LF PIVP G0Tr 6R'TF  8S'EP €9'EF  L6'EF CEGP  6%°EF PSVP G60F SOLP 9%°0¢ 0% 8P 9LOF 8ELP G8'6Y FOSY OS'LP 80UV VPGP OVER LETh  1€°9F €1
YO8y @€V 606V 16°8F LS'LV STV €5er €0TF  SFP TP S0FP  €E'GP  TEPP 90°Gh  1ELP S8'LP TEIE 60°0¢  198F 1LV €LLY GGGV I6'SF  LG8Y  GUV VOGP GR'EF  Q0EY  18°9F a
V687 L'6F L6'8F 96'SF CSI'SY SEFF 19Tk F6TF ISP I8FF  €CFF C6'Gr  €FFF 'GP €LLF  L6LP 20T 667 C6F EELP 90'SF  L8'TE LL6F G6GF TGLF  99'GF GREF  9€F LR I
LT6Y 9867 TO6F 6L6F 66LF 96'€F 69CF SEEr TS PRSP 19 69°0F VPR L9GP  6LF 687 FOTE 88'6Y  I'6F ITLP 18P POES €05 €66 FeLy I8Sh €0FF T6ER  €9LP ot
W6F  650¢ €687 86’8V E6'LY  €EEV 98'TP  LVEV €OV 6SCh S8TVP  IGLP  COVP PYSP VLLP ®6F G6IG €R6F VROV OVOF LISV 6'€¢ TG gh6F  LOLY IR'Gh  LEEV CETR 6LV 6
L6'8Y  LV0S 6L'8V 606 E€L°LF SOEF CTOV SE'EF IE8F  CSCF VIS 68'LF 96T 66FF  9LF €9T¢ IS¢ 6V €6V VOV €VLF  GSFE €8TS GU6Y  e69F VLY S0€F  SFEF  96°9F 8
69°LF €U6F 16LF LYSF G997 L80F  T'L€ PGP C69F €E'CF  LOSP IILF 8PP I6'€F 96'9F IF6P  1S0S 6LLP 69T C9'SP  €6°9F F0TE 1608 GF8F  FROF  Z9Gh GETF  ¥CTr  2e9F L
Teer  €ULV LELF TLV 189v  TY6E  G'€E TT6E  CLEP  6VFR  GETP e6Fh  SSOF 6V GSOF  69°9F  LGLV S99V G9LY  TER YOSy €€6F 161V 6ELF  6'G  6FF 8TOV  LPOF  8T'GY 9

6z 8 Lt 9 % ¥ €& @@ ¢ 0z 6L 8 LI 9T ¢ P e g 1T 01 6 8 L 9 g v 3 4 T feq\moy

UMIN/HNH 8T0g dunf 10§ a[gord 9L 'y HTAV],



Bibliography

[1]

Zhi Liu, Cheng Zhang, Mianxiong Dong, Bo GuP, J. Benitez, Yusheng Ji, Yoshiaki
Tanaka. ”Markov-Decision-Process-Assisted Consumer Scheduling in a Networked

Smart Grid”. IEEE Access, Volume 5,Pages 2448-458, 2017.

T. Ahmed,M.R. Ali, M.N.I. Maruf S.M. Al-imran,M.A.R. Fuad. ”Optimization
of Distributed Energy Resources to Balance Power Supply and Demand in a

Smart Grid”. 2015 3rd International Conference on Green Energy and Technol-
ogy (ICGET), 2015.

Mohamed Riduan Abid,Driss Benhaddou. "ICT for Renewable Energy Integration
into Smart Buildings: ToT and Big Data Approach”. 2017 IEEE AFRICON,pages
856 - 861, 2017.

G Muthuselvi,B. Saravanan. ” The promise of DSM in smart grid using home energy
management system with renewable integration”. 2017 Innovations in Power and
Advanced Computing Technologies (i-PACT),pages 1 - 4, 2017.

Henrik Aalborg Nielsen Peder Bacher, Henrik Madsen. ”online short-term solar

power forecasting”. Solar Energy , Volume 83,Issue 10 , Pages 1757-1932, 2009.

NOORD POOL. ”Market Data”. 2019. URL http://www.rwe.com/web/cms/en/
403722/rwe/press-news/how-the-electricity-price-is-determined/". Ac-
cessed: April 2, 2019 12:30 PM.

Pratik Kalkal , Vijay Kumar Garg. ”transition from conventional to modern grids:
Modern grid include microgrid and smartgrid”. 2017 4th International Conference
on Signal Processing, Computing and Control (ISPCC), 2017.

Mohamed Riduan Abid,Rachid Lghoul,Driss Benhaddou. ”ICT for Renewable En-
ergy Integration into Smart Buildings: IoT and Big Data Approach”. 2017 IEEFE
AFRICON, 2017.

Qinghai Ou,Yan Zhen,Xiangzhen Li,Yiying Zhang,Lingkang Zeng. ” Application of
Internet of Things in Smart Grid Power Transmission”. 2012 Third FTRA Inter-
national Conference on Mobile, Ubiquitous, and Intelligent Computing, 2012.

o7


http://www.rwe.com/web/cms/en/403722/rwe/press-news/how-the-electricity-price-is-determined/"
http://www.rwe.com/web/cms/en/403722/rwe/press-news/how-the-electricity-price-is-determined/"

BIBLIOGRAPHY o8

[10]

[12]

[16]

[17]

[20]

Ravikumar V. Jadhavl,CSandip S. Lokhande,Vijay N. Gohokar. ”Energy Manage-
ment System in Smart Grid using Internet of Things”. 2016 IEEE 1st International

Conference on Power Electronics, Intelligent Control and Energy Systems (ICPE-
ICES),pages 1 - 4, 2014.

Mitali Mahadev Raut,Ruchira Rajesh Sable, Shrutika Rajendra Toraskar. ”Internet
of Things (IOT) Based Smart Grid”. International Journal of Engineering Trends
and Technology (IJETT), Volume 34 Number 1,pages 15 - 20, 2016.

International Renewable Energy Agency (IRENA) Abu Dhabi IRENA (2018), Re-
newable capacity statistics 2018. RENEWABLE CAPACITYSTATISTICS 2018.
The International Renewable Energy Agency (IRENA), 2018.

wikipedia. ”Smart Meter”. 2018. URL "https://en.wikipedia.org/wiki/Smart_
meter". Accessed: October 21, 2018 11:30 AM.

Antimo Barbato,Antonio Capone,Lin Chen,Fabio Martignon,Stefano Paris. ”Dis-
tributed Demand-Side Management in Smart Grid: How Imitation improves power
scheduling”. 2015 IEEE International Conference on Communications (ICC),pages
6163 - 6168, 2015.

Cynthujah Vivekananthan,Yateendra Mishra, Fangxing Li. ” Real-Time Price Based
Home Energy Management Scheduler”. IEEE Transactions on Power Systems ,
Volume 30,Pages 2149 - 2159, 2015.

Shinkichi Inagaki,Tatsuya Suzuki,Mitsuo Saito,Takeshi Aoki. ”Local/global fault
diagnosis of Event-Driven Systems based on Bayesian Network and Timed Markov
Mode”. SICE Annual Conference 2007, 2007.

Varun Badrinath Krishna,Ravishankar K. Iyer, William H. Sanders. ” ARIMA-
Based Modeling and Validation of Consumption Readings in Power Grids”. 10th
International Conference on Critical Information Infrastructures Security (CRITIS
2015),pages 199 - 210, 2015.

Janaka Ekanayake , Kithsiri Liyanage , JianzhongWu , Akihiko Yokoyama , Nick
Jenkins. ”Smart Grid, Technology and applications”. Wiley, 2012.

C. Sandels,J. Widn, L. Nordstrm. ”Forecasting household consumer electricity load
profiles with a combined physical and behavioral approach”. 2014 Applied Energy
131 ,pages 267 278, 2014.

LIU Yi,XU Ke,SONG Junde. "research on forecasting and early-warning methods”.
IEEFE 9th International Conference on Mobile Ad-hoc and Sensor Networks, 2013.


"https://en.wikipedia.org/wiki/Smart_meter"
"https://en.wikipedia.org/wiki/Smart_meter"

BIBLIOGRAPHY 99

21]

[22]

[23]

[26]

31]

Yougiang Sun , Rujing Wang , Bingyu Sun , Wenbo Li , Feng Jiang. ”prediction
about time series based on updated prediction arma model”. 2013 10th Interna-

tional Conference on Fuzzy Systems and Knowledge Discovery (FSKD), 2013.

Mirjana Ivanovi, Vladimir Kurbalija ,Novi Sad. ” Time Series Analysis and Possible
Applications”. 2016 39th International Convention on Information and Commu-
nication Technology, Electronics and Microelectronics (MIPRO),pages 478 479,
2016.

Diogo Mera,Gonalo Tavares,Manuel Ortigueira. ”an alternative method for arma(p,
q) model characterization of multipath fading channels”. 2015 IEEE 81st Vehicular
Technology Conference (VTC Spring), 2015.

Eric H.K. Fung , Y.K. Wong, H.F. Ho, Marc P. Mignolet. ”modelling and prediction
of machining errors using armax and narmax structures”. Applied Mathematical
Modelling 27 (2003),pages 611627, 2003.

Mustafa Akpinar,Nejat Yumusak. ”forecasting household natural gas consumption
with arima model: A case study of removing cycle”. 2013 7th International Con-

ference on Application of Information and Communication Technologies, 2013.

Yanting Li a , Yan Su b , Lianjie Shu. ”"an armax model for forecasting the power
output of a grid connected photovoltaic system”. Renewable Energy(2014), Volume
66,pages 78-89, 2014.

wikipedia. ”Stochastic process”. 2019. URL "https://en.wikipedia.org/wiki/
Stochastic_process". Accessed: March 17, 2019 10:30 PM.

Smita Shandilya , Shishir Shandilya , Tripta Thakur , Atulya K. Nagar. ”Handbook
of Research on Emerging Technologies for Electrical Power Planning, Analysis, and

Optimization”. engineering science reference ( an imrint of IGI Global), 2016.

Timothy S. Vaughan , Management Science. ”steady-state approximation for a
vector valued markov chain”. Management Science , Vol. 36, No. 8 (Aug., 1990),
pp. 919-927, 1990.

Ouyang Wu,Tianbo Liu,Biao Huang,Fraser Forbes. ”predicting electricity pool
prices using hidden markov models”. IFAC-PapersOnLine (2015) ,pages 343348,
2015.

M. Hasanuzzaman,N. A. Rahim,A. Nahar,andM. Hosenuzzaman M. A. Islam.
”Global Renewable Energy-Based Electricity Generation and Smart Grid System
for Energy Security”. The Scientific World Journal, Volume 2014, 2014.


"https://en.wikipedia.org/wiki/Stochastic_process"
"https://en.wikipedia.org/wiki/Stochastic_process"

BIBLIOGRAPHY 60

32]

33]

[35]

[37]

Mohammad Majid Jalali,Ahad Kazemi. ”demand side management in a smart grid

with multiple electricity suppliers”. Energy , Pages 1-11, 2015.

S. , Simes M.G. Zhao, P. ; Suryanarayanan. ”an energy management system
for building structures using a multi-agent decision-making control methodology”.
IEEE Trans. Ind. Appl. 2013, 49, 322330, 2013.

R. , Wang L. Wang, Z. , Yang. "multi-agent control system with intelligent opti-
mization for smart and energy-efficient buildings”. IFEE Conference on Industrial
Electronics Society (IECON), Glendale, AZ, USA, 710 November, 2010.

H. , Ploix , S. Bacha S. Missaoui, R. , Joumaa. ”managing energy smart homes
according to energy prices: Analysis of a building energy management system”.
Energy Build, 2014.

Effy Raja Naru,Dr. Hemraj Saini,Mukesh Sharma. ”A Recent Review on
Lightweight Cryptography in IoT”. 2017 International Conference on I-SMAC
(IoT in Social, Mobile, Analytics and Cloud) (I-SMAC),Pages 887 - 890, 2017.

Viorel Miron-Alexe,Iulian Bancuta, Nicolae Vasile. ”Renewable Energy Manage-
ment Using Embedded Smart Systems”. Nearly Zero Energy Communities,pages
39 - 49, 2017.

RWE Corporate. "Market Data”. 2019. URL "https://www.nordpoolgroup.com/
", Accessed: March 29, 2019 11:30 AM.

Aqdas Naz,Nadeem Javaid,Sakeena Javaid. ”enhanced recurrent extreme learn-
ing machine using gray wolf optimization for load forecasting”. 2018 IEEE 21st
International Multi-Topic Conference (INMIC), 2018.


"https://www.nordpoolgroup.com/"
"https://www.nordpoolgroup.com/"

