

Palestine Polytechnic University

Deanship of Graduate Studies and Scientific Research
Master Program of Renewable Energy and Sustainability

Controlling of Multi-Level Inverter Under Shading Conditions Using Artificial Neural Network.

By
Abdulsami.A.A.Qawasmi

Supervisor
 Prof. Sameer Khader

Thesis submitted in partial fulfillment of requirements of the degree
Master of Science in Renewable Energy \& Sustainability

August, 2019

	$J A N M I A$		
Joint master of Mediterr	anean Initiatives energy	ren	wable and sustainable

The undersigned hereby certify that they have read, examined and recommended to the Deanship of Graduate Studies and Scientific Research at Palestine Polytechnic University and the Faculty of Science at Al-Quds University the approval of a thesis entitled:

Controlling of Multi-Level Inverter Under Shading Conditions Using Artificial Neural Network.

Submitted by

Abdulsami.A.A.Qawasmi

In partial fulfillment of the requirements for the degree of Master in Renewable Energy \& sustainability.

Graduate Advisory Committee:

Prof. Sameer Khader
(Supervisor), University (typed)
Date:
Signature:
Prof./ Dr.
(Co-supervisor), University (typed)
Date:
Signature: \qquad
Prof. Abdel Karim Dauod
(Internal committee member), University (typed).
Date:
Signature: \qquad
Dr.Mahran Quran
(External committee member), University (typed).
\qquad

Thesis Approved by:

Name: Dr.Murad Abu Subeih
Dean of Graduate Studies \& Scientific Research
Palestine Polytechnic University
Signature: \qquad
Date: \qquad

Controlling of Multi-Level Inverter Under Shading Conditions Using Artificial Neural Network.

By Abdulsami.A.A.Qawasmi

Abstract

In real life the PV sources can't supply multilevel inverters with equal and constant DC voltage. The variation of irradiation affects the output voltage of PV's which in turn vary the switching angles required to switch Multi level Inverter MLI to achieve minimum contents of output voltage profile , so the harmonic elimination's equations must be solved for each set of input DC voltages. This research present how can we use genetic algorithm (GA) to solve harmonic elimination equations of 11 level CHB inverter with equal and non-equal DC sources, then artificial neural network (ANN) is used to switch CHB with suitable angles for any set of input DC sources .

The partial shading of PV modules from clouds, obstacles are responsible for unequal DC supply for multilevel inverter.

A set of mathematical equations representing the general output waveform of the multilevel inverter with non-equal DC sources is formulated using Fourier series, then GA is used to solve the none linear equations to get the optimal set of switching angles which minimize the total harmonic distortion (THD) of eleven level inverter to acceptable limit, after that ANN is trained to generate these angles in any case of DC voltage variation in short time including constant DC sources when no shading

FFT analyses are carried out for output voltage profile to prove that this technique is reliable for MLI; the proposed technique is validated through simulation by matlab Simulink Ra2013.

GA and ANN technique achieve minimum THD for both equal and unequal DC sources, and can be applied for any kind of level inverter. According to calculations it is found that THD for equal DC sources was 9.38%, and for variable DC sources was 10.26% when input DC maximum variation was 4.47 volts, and 12.93% when input $D C$ maximum variation was 11.43 volts.

The results showed the effectiveness of GA in solving mathematical equations and the effectiveness of the neural network in giving excellent results that reach 99% of the real values.
Joint master of Mediterranean Initiatives on enenewable and sustainable
energy

دراسة استخدام الثبكة العصبونية للتحكم في Multi-Level Inverter عند وجود الظل

اعداد: عبداللسميع عبدالفتاح القواسمة

ملخص

اصبح ربط مزارع الخلايا الثمسية بشبكة الكهرباء لغة العصر، ولكن المشكلة تكمن في تحويل مصـادر الجهـ والتنيار الثابتين (الى موجات جيبية (Sine Wave) لتتو افق مع موجة الكهرباء الجيية، لقد تم استخدام انواع مختلفة من العاكسات (Inverters) لكل نو ع حناته وسيئتاته ومعظمها يعتمد عاى ان مصادر فرق الجهّ ثابتة، ولكن في حالة وجود الظل يصبح ناتج هذه العاكسات محمال ب (Harmonics) التي تؤذي الاحمال المربوطة بالشبكة ولعلاج هذه المشكلة تم استخدام انواع الفلاتر المختلفة للحد من هذه الظاهرة في هذا البحث تم در اسة استخدام عاكس متعدد المستويات (Multi-Level Inverter) كاحد الانواع التي يككنها من تقليل ظاهرة الهارمونيك على الثبكة عن طريق قلح الترانزستورات (IGBTs) بزو ايا مناسبة سواء كانت مصادر الجهد ثابتة ام متغيرة

لقد تم استخذام جينيتيك الجوريثم (Genetic Algorithm) لحل المعادلات الغير خطية المرتبطة بايجاد افضل زوايا القدح، ، ثم تم تدريب الثبكة الحصبونية على النتائج التي حصلنا عليها من GA لتستطيع توليد زوايا القدح مهما تغيرت مصادر الجهر في حالة وجود ظل على الخلايا الثمسية

تم استخدام برنامج Matlab Ra2013 لكتابة برنامج GA وتندريب الثبكة العنكبوتية و تصميم نموذج محاكاة ربط خمس خلايا شمسية ب (Single Phase Eleven level Inverter) لقد اظهرت النتائج ان (THD) انخفض الى فيمة 9.3\% بدون استخدام الفلاتر في حالة تساوي مصادر الجهـ المزودة للعاكس، وارتفعت قيمته من 10.26\% عندما اصبحت قيمة التغير في مصادر الجهد نتيجة وجود الظل يساوي 4.47 فولت ووصل الى 12.94\% عندما اصبحت قيمة التغير في الجهـ يساوي 11.43 فولت لقد اظهرت النتائج فعالية (GA) في حل المعادلات الرياضية وفعالية الشبكة العصبونية في اعطاء نتاج ممتازة تصل دقتها الى 99\% من القيم الحققية .

DECLARATION

I declare that the Master Thesis entitled" Controlling of Multi-Level Inverter under Shading Conditions Using Artificial Neural Network." is my own original work, and herby certify that unless stated, all work contained within this thesis is my own independent research and has not been submitted for the award of any other degree at any institution, except where due acknowledgement is made in the text.

Student Name: Abdulsami.A.A.Qawasmi

Date:

Signature:

STATEMENT OF PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for the joint Master's degree in Renewable Energy \& Sustainability at Palestine Polytechnic University and Al-Quds University, I agree that the library shall make it available to borrowers under rules of the library.

Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgement of the source is made.

Permission for extensive quotation from, reproduction, or publication of this thesis may be granted by my main supervisor, or in his absence, by the Dean of Graduate Studies and Scientific Research when, in the opinion of either, the proposed use of the material is for scholarly purposes.

Any coping or use of the material in this thesis for financial gain shall not be allowed without my written permission.

Student Name: Abdulsami.A.A.Qawasmi

Signature:
Date:

ACKNOWLEDGEMENT

All Praise is due to Allah, the Lord of the worlds.
Whoever is not thankful to the people, then he is not thankful to Allah. Therefore, I would to take this opportunity to express my sincerest gratitude to all the people who have been supporting me to go forward in my research and studies.

I would like to thank my supervisor, Prof. Sameer Khader, for his ongoing help and supervision during my research. Also, I would like to thank the staff of Faculty of Engineering for their assistance.

Finally, I am glad to thank my friends, family for their help and encouragement.

LIST OF ABBREVIATIONS

PV: Photovoltaic.
MLI: Multi-Level Inverter
CHB: Cascaded H-Bridge
GA: Genetic Algorithm
ANN: Artificial Neural Network
PWM: Pulse Width Modulation
IGBT: Insulated Gate Bipolar Transistor
THD: Total Harmonic Distortion
RE: Renewable Energy
AC: Alternative Current
DC: Direct Current
SDCS: Separated DC Sources
BPA: Back Prorogation Algorithm
MI: Modulation Index
FA: Firefly Algorithm
PSO: Particle Swarm Optimization Algorithm
ABCA: Artificial Bee Colony Algorithm
TLBO: Teaching-Learning-Based Optimization Algorithm

| Joint master of Mediter ranean Initiatives on renewable and |
| :---: | :---: |
| sustainable energy |

LIST OF FIGURES

Fig .(3.1): MLI Topologies 8
Fig (3.2): Diode-clamped five-level bridge multilevel inverter. 10
Fig (3.3): Output voltage waveforms of a diode clamped five-level inverter 11
Fig (3.4): Single-phase, five-level FCMLI. 12
$\begin{array}{ll}\text { Fig (3.5): MMC Topology } & 14\end{array}$
Fig (3.6): Single-Phase Cascaded H-Bridge Multilevel Inverter 15
Fig (3.7): Generation of quasi-square waveform 16
$\begin{array}{ll}\text { Fig.(3.8): weight comparison between MLI topologies } & 16\end{array}$
$\begin{array}{ll}\text { Fig.(3.9): cost comparison between MLI topologies } & 16\end{array}$
Fig (3.10): (a) IGBT symbol, (b) IGBT specification 17
Fig (3.11): The conduction sequences to produce 11 level staircase 19
Fig.(3.12): Matlab Simulation for single phase CHB 20
Fig. (3.13): P-N junction 21
Fig. (3.14): p-n junction diode 21
Fig. (3.15): simple equivalent circuit for a photovoltaic cell. 22
Fig.(3.16) PV Short-circuit current ($I_{S C}$) and Open-circuit voltage ($V_{O C}$). 22
Fig.(3.17) PV cell practical equivalent circuit 23
Fig.(3.18): Effects of series and parallel resistances on I-V curve 23
Fig. (3.19) (a) n cells exposed to sun; (b) one cell under shading. 24
Fig.(3.20): Effect of shading one cell on I-V curve 25
Fig.(3.21) bypass diode principle of operation 25
Fig.(3.22): (a) solar cell Symbol, (b) solar cell specification. 26
Fig.(3.23): Six PV modules with three bypass diodes 27
Fig. (3.24): (a) I-V curve, (b) PV-curve 27
Fig. (4.1): first level of output voltage 30
Fig. (4.2) (a) Output waveform for balanced DC source; (b) unbalanced DC source 31
Fig. (4.3): GA flow chart 34
Fig.(4.4): GA average and best fitness 35
Fig.(4.5): ANN topology 36
Fig (4.6): Multilayer feed forward ANN topology 37
Fig (4.7) ANN Training 38
Fig (4.8) ANN Training performance 39
Fig (4.9): ANN Training regression 39
Fig (4.10): pulse generation diagram 40
Fig (4.11): PWM diagram in Matlab Simulink 40
Fig (4.12): generated pulses for one cycle 42
Fig.(5.1): proposed model block of the tested MLI 45
Fig.(5.2): The output voltage of the cascaded multilevel inverter at equal DC sources 47
Fig.(5.3): FFT analysis of cascaded multilevel inverter output voltage at equal DC sources 47
Fig.(5.4): The output voltage of the cascaded multilevel inverter at unequal DC sources 49
DC variation $=4.47$ volts)
Fig.(5.5): The output voltage of the cascaded multilevel inverter at unequal DC sources 49
$(\mathrm{DC}$ variation $=11.43$ volts $)$
Fig.(5.6): FFT analysis of cascaded multilevel inverter output voltage at unequal DC sources 50$(\mathrm{DC}$ variation $=4.47$ volts $)$
Fig.(5.7): FFT analysis of cascaded multilevel inverter output voltage at unequal DC sources 50
$(\mathrm{DC}$ variation $=11.43$ volts $)$
Fig.(5.8): Fitness when parameters are set right 51
Fig.(5.9): Fitness if each individual when parameters are set right 51
Fig.(5.10): Fitness when parameters are set wrong 52
Fig.(5.11): Fitness if each individual when parameters are set wrong 52
Fig.(5.12) ANN training using wrong algorithm 53
Fig.(5.13) ANN training using write algorithm 53
Fig.(6.1) THD results from GA firing angles 58
Fig.(6.2) THD results from ANN firing angles 59
Fig.(6.3) THD results from GA when DC sources are unequal 61
Fig.(6.4)THD results from ANN when DC sources are unequal 61
Fig.(6.5)THD results from ANN when DC sources are unequal 62
Fig.(6.6)THD results from GA when DC sources are unequal 62

LIST OF TABLES

Table (3.1) voltage levels of Diode-Clamped and their switch status 10
Table (3.2): voltage levels of FCMLI and their switch status 13
Table (3.3) number of devices needed per leg for 11 level inverters 17
Table (3.4): The output voltage, current, and power under different values of irradiation 28
Table (4.1): GA outputs results 35
Table (4.2): Conduction time, delay time, and switch status 40
Table (5.1) a set of five equal DC sources, output RMS voltage, THD, and PV irradiation 46
Table (5.2) a set of five unequal DC sources, output RMS voltage, THD, and PV irradiation 48
Table (6.1): Modified Newton-Raphson and Pattern Generation Methods 55
Table (6.2): Newton-Raphson Method 55
Table (6.3): Different Techniques 56
Table (6.4): Newton-Raphson Methods with ANN 56
Table (6.5): Proposed Technique (GA and ANN) 56
Table (6.6) Set of five equal DC sources, output RMS voltage, THD, and PV irradiation 58 without and with ANN

Table (6.7) Set of five unequal DC sources, output RMS voltage, THD, and PV irradiation 60 without and with ANN

TABLE OF CONTENT

ABSTRACT I I I
ملخص IV
DECLARATION V
STATEMENT OF PERMISSION TO USE VI
ACKNOWLEDGEMENT VII
LIST OF ABBREVIATIONS VIII
LIST OF FIGURES IX
LIST OF TABLES XI
Chapter One: Introduction
1.1. Introduction 2
1.2. Problem statement 2
1.3. Objectives 2
1.4. Thesis structure 3
1.5. Chapter Summary 3
Chapter Two: Literature review and objectives
2.1. Previous studies related to Multilevel Inverters 5
Chapter Three: Multilevel Inverter (MLI) and Photovoltaic cell (PV
3.1. Introduction: 8
3.2. MLI topologies 8
3.3. Diode-Clamped Multilevel Inverter 9
3.4. Flying Capacitor Multilevel Inverter 11
3.5. Modular Multilevel Converter 13
3.5.1. Features of Cascaded voltage H Bridge Multilevel Inverter 14
3.5.2. Cascaded voltage single phase H Bridge Multilevel Inverter 14
3.6. Comparison of Multilevel Converters 16
3.7. Eleven-Level Cascaded H Bridge Simulation 17
3.8. PV characteristic and model. 20
3.8.1. Photovoltaic 20
3.8.2. PV equivalent circuit and $I-V$ curve 22
3.8.3. Shading impacts on $I-V$ curve. 23
3.8.4. Bypass diode for shade mitigation. 25
3.8.5. PV simulation 26
3.9. Chapter Summary 28
Chapter Four: mathematical analysis and simulation
4.1. The Fourier Series 30
4.2. Selective Harmonic Elimination 31
4.3. Genetic Algorithm (GA) 32
4.4. Artificial Neural Network (ANN) 36
4.5. Pulse Width Modulation 40
4.6. Chapter Summary 43
Chapter Five: Results and discussions
5.1. Results and discussion 45
5.2. Genetic Algorithm Parameters Tuning 51
5.3. Neural Network Training Settings 52
Chapter Six: Conclusion 54
6.1. Comparison 55
6.2. The impact of ANN at shading conditions: 57
6.3. Conclusion 63
6.4. Recommendation 63
6.5. Future Work 64
References 65
Appendices 69

Chapter One Introduction

1.1. Introduction 2
1.2. Problem statement 2
1.3. Objectives 2
1.4. Thesis structure. 3
1.5. Chapter Summary 3

1.1. Introduction:

PV power which considered as one of the most RE sources should be converted to AC in order to be connected to electrical network at a desired voltage and frequency.

Inverters are the most important devices used to do that, many different types of inverters are used, each has advantages and disadvantages. Multilevel Inverters (MLI) take place in medium and high power applications, due to lower voltage stress on power semiconductor switches, also it minimizes THD to be more closer to sine wave output, while conventional power inverters can produce two levels output voltages profile.

Multilevel inverter must connected to PV string where shading could change the voltage of given level which in turn cause additional THD generated and voltage Stress across devices

This problem has to be solved by applying programmable PWM for CHBMLI using Artificial Neural network which respond to change in level voltage by adjusting the switching angles of MLI to maintain minimum THD.

1.2. Problem statement

Scientific literature does not contain any reports that deal with wide range of DC source variation caused by shading; most researchers consider 10% of source variation only, therefore, this research
generate switching angles for eleven CHBI Using ANN under wide range of input DC variation up to 40% (18 to 40 volts)

1.3. Objectives:

- We investigate the capability and accuracy of GA to solve nonlinear equations
- We investigate the reliability and accuracy of ANN to generate the CHB 11 level inverter switching angles under different sets of variable DC sources.
- We investigate the output voltage THD at balanced and unbalanced DC sources
- We study the GA and ANN parameters setting effects on output voltage of 11 level inverter

1.4. Thesis structure

A- Build 12×6 solar cells and simulate IV+PV curve.
B- Build 11 level single phase CHBI and drawing the conduction sequence.
C- Using Fourier series to Derive SHE Equations.
D- Write GA algorithm, Set, run, and check THD in CHB.
E- Design suitable ANN topology, train, set parameters and Run.
F- Build PWM Build, calculate conduction and delay time.
G- Build matlab model and simulate.
H- Analyze the results using FFT analysis.

1.5. Chapter Summary

This chapter includes the problem statement which is generating switching angles for eleven CHBI Using ANN under wide range of input DC variation up to 40% (18 to 40 volts), the working steps to achieve this target was listed in thesis structure, 8 steps will be implemented to fulfill this thesis.

Chapter Two Literature Review

2.1. Previous studies related to Multilevel Inverters

2.1. Previous Studies Related to Multilevel Inverters

1- O. Bouhali, F Bouaziz, N. Rizoug and A. Talha,(2013), reported a way of Solving Harmonic Elimination Equations in Multi-level Inverters by using feed forward Artificial Neural Networks (ANNs) based on Back-propagation Algorithm (BPA), but harmonic 11 was high.

2- Priyal Mandill and Dr. Anuprita Mishra, (2014)/ Minimization of THD in CMLI using weight improved particle swarm optimization (WIPSO), THD for three phase eleven-level inverter was 4.759%, the single phase was not included

3- Sarika D Patil and Surbhi Patil (2016) a method for calculating switching angles for firing circuit by using Newton -Raphson method, microcontroller IC ATMEGA16 is used to generate pulses but THD is not calculated

4- Mitali Shrivastava and Mrs. Varsha Singh, Dr. Swapnajit Pattnaik (2012) reported a way of training ANN off-line using Back Propagation Algorithm (BPA) for many values of MI, THD for three phase eleven-level inverter at MI=0.8 was 9.79%, Newton Raphson method was used to solve the harmonic elimination equations.

5- V.Joshi Manohar, M.Trinad, K.Venkata Ramana (2016) reported comparative analysis of NR and TBLO Algorithms in Control of Cascaded MLI, THD for three phase seven-level inverter at MI=0.95 was 8.86%, for NR and 6.95% for TBLO

6- S. Chatterji and S. L. Shimi (2013) apply Artificial Intelligent (AI) Based Cascade multi-Level Inverter for Smart Nano Grid, THD for three phase eleven-level inverter was 7.34%

7- Faete Filho, Leon M. Tolbert, Yue Cao and Burak Ozpineci,used genetic algorithms to determine the optimal switching angles for 11-level MLI to keep the fundamental output voltage constant, the output voltage variation is kept around (1\%) but THD couldn't be minimized to be 26.7\%

8- Mohammed Al-Hitmi, Salman Ahmad, Atif Iqbal ,, Sanjeevikumar Padmanaban and Imtiaz Ashraf (2018), Used Modified Newton-Raphson and Pattern Generation methods to determine the optimal switching angles for three phase11-level MLI, THD was 7.25%

9-Nitesh Kumar Gupta, Dr.R. Mahanty (2015), used (GA) and (PSO) algorithms to generate the best firing angles for single phase 9-level MLI, THD was 12.98% for GA and 12.25% for PSO, and for three phase 9-level MLI, THD was 9.76% for GA and 8.43% for PSO

10- Sihem. Ghoudelbourk, D. Dib, B. Meghni, and M. Zouli (2017), Modified Newton-Raphson Method to determine the optimal conducting angles for single and three phase11-level MLI, THD was 8.56% for single phase and 7.46% for three phase

11-Kirti, Manish Kumar Thukral and Vishnu Goyal (2017), implemented an Algebraic method Based Selective Harmonic Elimination of 7-level MLI, then used Artificial neural Networks to fire switching angles, THD was 11.16 \% at 0.8 modulation index

12- E. Anandha Banu1 and D. Shalini Punithavathani (2016) used GA to calculate the switching angles then ANN to fire the three phase nine-level Uninterruptible Power supplies (UPS) inverter, THD was 11.83 \%

Chapter Three

Multilevel Inverter (MLI)

\&

Photovoltaic Cell (PV)

3.1. Introduction: 8
3.2. MLI topologies 8
3.3. Diode-Clamped Multilevel Inverter 9
3.4. Flying Capacitor Multilevel Inverter 11
3.5. Modular Multilevel Converter 13
3.5.1. Features of Cascaded voltage \mathbf{H} Bridge Multilevel Inverter 14
3.5.2. Cascaded voltage single phase H Bridge Multilevel Inverter. 15
3.6. Comparison of Multilevel Converters 17
3.7. Eleven-Level Cascaded H Bridge Simulation. 18
3.8. PV characteristic and model 20
3.8.1. Photovoltaic 21
3.8.2. PV equivalent circuit and $I-V$ curve 22
3.8.3. Shading impacts on $I-V$ curve. 23
3.8.4. Bypass diode for shade mitigation. 25
3.8.5. PV simulation 26
3.9. Chapter Summary 28

3.1 Introduction

The voltage-source inverters are two levels, i.e. the output voltage either 0 or \pm VDC [3].
To get a high quality output Voltage or a current waveform with a minimum amount of THD; they require high switching frequency, many different switching strategies [4] are applied to do so

The problem when using them in high-power and voltage applications is the high modulation frequency, which increases switching losses, also device ratings are determinant. In addition the series and parallel combinations are used to handle high voltages and currents. Due to previous limitations [5] the interest of power industry point to multilevel inverters, in the field of transportation, renewable energy. They are good for use in reactive power compensation; their structures control device voltage stresses which allow producing a high-power and voltage.

To increase the power supplied by MLI you can increase only the number of voltage levels without changing the devices which stand higher voltage or power rating. The special structure of voltage source MLI can produce high voltages with minimum harmonics [6-13].; transformers are not needed as with series devices connected to synchronize switching.

When adding more and more input DC levels, the output voltage waveform harmonic decreases more and more, in single phase CHB inverter which is studied here, we can move from 9-Level to 11-level by adding a block of 4 IGBT's and so on, also the THD will drop.

3.2 MLI Topologies

There are three common MLI Topologies [14] as in Fig.(3.1)
1-Diode-Clamped Multilevel Inverter.
2-Flying-Capacitors Multilevel Inverter.
3-Modular Multi-Level Converter (MMC)

Fig .(3.1) MLI Topologies

3.3. Diode-Clamped Multilevel Inverter

The structure of diode-clamped multilevel (DCMLI) exactly consists of ($m-1$) capacitors on the DC voltage side and produces m levels on the Ac voltage side.

Fig.(3.2a) shows one leg, and Fig. (3.2b) shows a full bridge five-level DCMLI. The switching devices order is $S a_{1}, S a_{2}, S a_{3}, S a_{4}, S^{\prime} a_{1}, S^{\prime} a_{2}, S^{\prime} a_{3}$, and $S^{\prime} a_{4}$.

The four capacitors on DC side marked as, C_{1}, C_{2}, C_{3}, and C_{4}, the input DC voltage is divided on four capacitors, so each capacitor voltage is fourth of VDC, as with voltage stress through clamping diodes.

The number of devices needed for leg of m-level inverter is:
1- Capacitors $(m-1), \quad 2-S w i t c h i n g ~ d e v i c e s ~ 2(m-1), \quad 3-$ clamping diodes $(m-1)(m-2)$.

Principle of Operation

A leg of five DCMLI is shown in Fig.(3.2a), and single phase two legs bridge is shown in Fig.(3.2b).

To explain the construction of output voltage staircase let us consider the DC rail 0 is the reference point.

To produce five-level staircase voltage we do the following:

1. For $V a o=V D C$, switches $S a_{1}$ through $S a_{4}$ are turned on.
2. For Vao $=3 V D C / 4$, switches $S a_{2}$ through $S a_{4}$ and one lower switch $S^{\prime} a_{1}$ are turned on.
3. For Vao $=V \mathrm{DC} / 2$, switches $S a_{3}$ through $S a_{4}, S^{\prime} a_{1}$ and $S^{\prime} a_{2}$ are turned on.
4. For Vao $=V \mathrm{DC} / 4$, switch $S a_{4}$ and switches $S^{\prime} a_{1}$ through $S^{\prime} a_{3}$ are turned on.
5. For Vao $=0$, switches $S^{\prime} a_{1}$ through $S^{\prime} a_{4}$ are turned on.

Fig (3.2) Diode-clamped five-level bridge multilevel inverter [2].

Table (3.1) shows the output voltage levels and switches operation. It is shown that 4 switches conduct each cycle. The complimentary pairs for one leg are $\left(S_{a 1}, S_{a 1}^{\prime}\right),\left(S_{a 2}, S_{a 2}^{\prime}\right),\left(S_{a 3}, S_{a 3}^{\prime}\right)$, and $\left(S_{a 4}, S_{a 4}^{\prime}\right.$), no one pairs is turned on together in one cycle ,for example if $S_{a 1}$ is switched on $S_{a 1}^{\prime}$ will be switched off and so on.

Table (3.1) Voltage levels of Diode-Clamped and their switch status

	Switch Status								
Output Voltage $\left(\mathrm{V}_{\text {out }}\right)$	$S_{a 1}$	$S_{a 2}$	$S_{a 3}$	$S_{a 4}$	$S_{a 1}^{\prime}$	$S_{a 2}^{\prime}$	$S_{a 3}^{\prime}$	$S_{a 4}^{\prime}$	
$\mathrm{V}_{\text {out }}=0$	Off	Off	Off	Off	ON	ON	ON	ON	
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DC} 14}$	Off	Off	Off	ON	ON	ON	ON	Off	
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DC} 12}$	Off	Off	ON	ON	ON	ON	Off	Off	
$\mathrm{V}_{\text {out }}=3,4 \mathrm{~V}_{\mathrm{DC}}$	Off	ON	ON	ON	ON	Off	Off	Off	
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DC}}$	ON	ON	ON	ON	Off	Off	Off	Off	

The output phase voltage of five-level inverter is shown in Fig.(3.3). The line voltage consists of nine levels. So output voltage of single phase DCMLI consists of m-level and for three phases consists of a $(2 m-1)$ levels.

Fig (3.3) Output voltage waveforms of a diode clamped five-level inverter.

3.4. Flying Capacitor Multilevel Inverter (FCMLI).

A single phase, full-bridge, five-level flying capacitors multilevel inverter (FCMLI) is shown in Figure (3.4).

The switching device order is $S_{a 1}, S_{a 2}, S_{a 3}, S_{a 4}, S_{a 4}^{\prime}, S_{a 3}^{\prime}, S_{a 2}^{\prime}, S_{a 1}^{\prime}$.
Capacitors, C_{1} through C_{4} are connected to DC side and have the same voltage.
Capacitors $C_{a 1}, C_{a 2}, C_{a 3}$ are balancing capacitors for leg a, and $C_{b 1}, C_{b 2}, C_{b 3}$ are balancing capacitors for leg b.

The ordering number of switches are different from diode clamped inverter, the reason that the sequence of switching conduction are different, which will be explained thoroughly.

There is no difference between diode clamped and flying capacitors inverters, both of them produce the same voltage level, the phase and line voltage have levels are same .

All capacitors and switching devices rate the same voltage; the DC side requires capacitors for an m-level inverter equal to $(m-1)$. For AC side the capacitors needed for one phase is calculated as follows:
$N C=\sum_{\boldsymbol{j}=\mathbf{1}}^{\mathbf{m}}(\mathbf{m}-\mathbf{j})$, thus, for $m=5, N C=10$.

Fig (3.4) A single-phase, five-level FCMLI [2].

Principle of Operation

Referring to Fig.(3.4), the output voltage staircase can be produced considering the DC rail 0 is the reference point as follows.

1-For Vao $=V D C, S a 1$ to $S a 4$ are turned on.
2-For Vao $=3 \mathrm{VDC} / 4$, there are 4 ways:
a. For Vao $=V D C-V D C / 4$, switches $S a 1, S a 2, S a 3, S^{\prime} a 4$ have to conduct.
b. For Vao $=3 V D C / 4$, switches $S a 2, S a 3, S a 4, S^{\prime} a 1$ have to conduct.
c. For Vao $=V D C-3 V D C / 4+V D C / 2$ switches $S a 1, S a 3, S a 4, S^{\prime} a 2$ are turned on.
d. For $\mathrm{Vao}=V \mathrm{DC}-V \mathrm{DC} / 2+V \mathrm{DC} / 4$ switches $S a 1, S a 2, S a 4, S^{\prime} a 3$ are turned on.
3. For $\mathrm{V} a o=V \mathrm{DC} / 2$, there are 6 ways:
a. For Vao $=V D C-V D C / 2$, switches $S a 1, S a 2, S^{\prime} a 3, S^{\prime} a 4$ have to conduct.
b. For Vao $=V D C / 2$, switches $S a 3, S a 4, S^{\prime} a 1, S^{\prime} a 2$ have to conduct.
c. For Vao $=V \mathrm{DC}-3 V \mathrm{DC} / 4+V \mathrm{DC} / 2-V D C / 4$, switches $S a 1, S a 3, S^{\prime} a 2, S^{\prime} a 4$ have to
conduct.
d. For Vao $=V \mathrm{DC}-3 V \mathrm{DC} / 4+V \mathrm{DC} / 4$, switches $S a 1, S a 4, S^{\prime} a 2, S^{\prime} a 3$ have to conduct.
e. For Vao $=3 V \mathrm{DC} / 4-V \mathrm{DC} / 2+V \mathrm{DC} / 4$, switches $S a 2, S a 4, S^{\prime} a 1$, and $S^{\prime} a 3$ have to conduct.
f. For Vao $=3 V D C / 4-V D C / 4$, switches $S a 2, S a 3, S^{\prime} a 1, S^{\prime} a 4$ have to conduct.
4. For $\mathrm{V} a o=V \mathrm{DC} / 4$, there are 4 ways:
a. For Vao $=V D C-3 V D C / 4$, switches $S a 1, S^{\prime} a 2, S^{\prime} a 3, S^{\prime} a 4$ have to conduct.
b. For Vao $=V D C / 4$ switches $S a 4, S^{\prime} a 1, S^{\prime} a 2, S^{\prime} a 3$ have to conduct.
c. For Vao $=V \mathrm{DC} / 2-V \mathrm{DC} / 4$ switches $S a 3, S^{\prime} a 1, S^{\prime} a 2, S^{\prime} a 4$ have to conduct.
d. For Vao $=3 V D C / 4-V D C / 2$ switches $S a 2, S^{\prime} a 1, S^{\prime} a 3, S^{\prime} a 4$ have to conduct.
5. For Vao $=0$, switches $S^{\prime} a 1$ to $S^{\prime} a 4$ have to conduct.

Table (3.2): voltage levels of FCMLI and their switch status

	Switch Status								
Output $\mathrm{V}_{\text {out }}$	$S_{a 1}$	$S_{a 2}$	$S_{a 3}$	$S_{a 4}$	$S_{a 4}^{\prime}$	$S_{a 3}^{\prime}$	$S_{a 2}^{\prime}$	$S_{a 1}^{\prime}$	
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DC}}$	ON	ON	ON	ON	OFF	OFF	OFF	OFF	
$\mathrm{V}_{\text {out }}=3 \mathrm{~V}_{\mathrm{DC} 4} 4$	ON	ON	ON	OFF	ON	OFF	OFF	OFF	
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DC} / 2}$	ON	ON	OFF	OFF	ON	ON	OFF	OFF	
$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DC} / 4}$	ON	OFF	OFF	OFF	ON	ON	ON	OFF	
$\mathrm{V}_{\text {out }}=0$	OFF	OFF	OFF	OFF	ON	ON	ON	ON	

3.5. Modular Multi-Level Converter (MMC)

The MMC topology is shown in Figure (3.5), it consists of six arms, each arm includes N submodules (SMs) connected in series and one inductor

Each SM has two power switches (two IGBTs with anti-parallel diodes) and one capacitor C depending on its gating signals, the SM can provide two different voltage levels.

When S 1 is ON and S 2 is OFF, the SM provides voltage Vc , the capacitor can therefore be charged or discharged depending on the current direction, if S1 is OFF and S2 is ON, the SM provides 0 volt at the output and the capacitor voltage remains unchanged.

In the blocked state: S1 and S2 are OFF, the capacitor may charge through S1 and cannot discharge.

Figure (3.5) MMC Topology [32]

3.5.1 Features of Cascaded voltage H Bridge Multilevel Inverter

The main features can be summarized in the following points:

- Cascaded H bridge inverters need separate DC sources depending on number of its input levels.
- It can be used for different RE sources as hydrogen cells, PV cells, and biomass, because it is supplied from separate DC sources.
The main advantages of the CMLI can be listed as follows:
- It needs the fewest number of devices in comparison with DCMLI or FCMLI to produce the same voltage levels.
- Its structure allow to package each 4 switching devices together as one unit, which facilitate upgrading the number of voltage levels
- Minimum switching losses since it is switched at low frequency.

The main disadvantage of CMLI is it needs separate DC sources, which affect using it.

3.5.2 Cascade Multilevel Inverter Motivation in Solar Applications

A CMLI can be built by connecting series of H-bridges, the number of output levels depend on number of bridges, for m input DC sources an $(2 \mathrm{~m}+1)$ output levels produced.

It can be supplied from different separate DC sources (SDCSs), such as PV cells, fuel cells, or batteries; a cascaded H-bridge inverter structure for a single-phase is shown in Figure (3.6a).

This simplified structure without clamping diodes or balancing capacitors make it under interest

Fig (3.6) Single-Phase Cascaded H-Bridge Multilevel Inverter [2].

Principle of Operation

The output voltage waveform of a single phase five level CHBI is shown in Figure (3.6b). Four input DC sources are connected to the bridges, the output voltage is produced by adding input voltages, i.e. $\mathrm{Van}=\mathrm{V} a_{1}+\mathrm{V} a_{2}+\mathrm{V} a_{3}+\mathrm{V} a_{4}$, any level can be controlled to produce positive, negative or zero voltage, by switching the needed switches from S_{1}, S_{2}, S_{3}, and S_{4}.

If S_{1} and S_{4} are turned on the voltage produced will be +VDC , if S_{2} and S_{3} are turned on the voltage produced will be - VDC, finally if all switches conduct the voltage will be 0 VDC

If m considered as the number of input DC sources, the output voltage level for single phase is N $=(2 m+1)$, so, an eleven-level cascaded inverter has to be supplied from 5 input sources,

When CHBI fired with suitable angles the output harmonic distortion can be minimized, in the next chapters we will present the ANN algorithm as technique to minimize THD. The output voltage of CHBI is nearly sinusoidal and the frequency for switching devices is the fundamental frequency.

Figure (3.7b) shows the switching sequence to produce quasi-square wave by firing switches at needed time.

The switching angles or conduction time for each bridge enable it to generate desired voltage level width, by shifting the starting time for each bridge the output voltage will be staircase, each switching device conducts half cycle, which make device stress equal.

Fig (3.7) Generation of quasi-square waveform [2].

3.6. Comparison of Multilevel Converters

The weight comparison between MLI topologies [15] is shown in Fig.(3.8), it is shown that CHB is the lightest one, then DCMLI, and FCMLI is the heaviest one, also for cost they have the same order as in weight as shown in Fig.(3.9)

Fig.(3.8) weight comparison between MLI topologies [15]

Fig.(3.9) cost comparison between MLI topologies [15]

The number of devices needed for 11 level inverters for 3 topologies are shown in table (3.3)
Table (3.3) Number of devices needed per leg for 11 level inverters

Inverter topology	DCMLI	FCMLI	CHBI
Switching devices	$(11-1) \times 2=20$	$(11-1) \times 2=20$	$(11-1) \times 2=20$
Switch diodes	$(11-1) \times 2=20$	$(11-1) \times 2=20$	$(11-1) \times 2=20$
Clamping diodes	$(11-1) \times(11-2)=90$	0	0
DC bus capacitors	$(11-1)=10$	$(11-1)=10$	$(11-1) / 2=5$
Balancing capacitors	0	$(11-1) \times(11-2) / 2=45$	0

3.7. Eleven-Level Cascaded H Bridge Simulation

Eleven-Level CHB Inverter is built using 20 IGBTs (Fig 3.10a) using Matlab library with specifications as in Fig (3.10b)


```
IGBT/Diode (mask) (link)
Implements an ideal IGBT, Gto, or Mosfet and antiparallel diode.
Parameters
Internal resistance Ron (Ohms) :
1e-3
Snubber resistance Rs (Ohms) :
    1e5
Snubber capacitance Cs (F):
    inf
    Show measurement port
```

(a) IGBT symbol
(b) IGBT specifications

Fig (3.10) IGBT symbol and specifications.

The conduction sequences to produce desired staircase 11 level are illustrated in Fig (3.11) (a-j)

The zero- level which is repeated 3 times requires no switch to conduct.

(a) $\mathrm{V}_{\mathrm{DC} 1}$

d) $\mathrm{V}_{\mathrm{DC} 1+} \mathrm{V}_{\mathrm{DC} 2+} \mathrm{V}_{\mathrm{DC} 3+} \mathrm{V}_{\mathrm{DC} 4}$

(b) $\mathrm{V}_{\mathrm{DC} 1}+\mathrm{V}_{\mathrm{DC} 2}$

e) $\mathrm{V}_{\mathrm{DC} 1+} \mathrm{V}_{\mathrm{DC} 2+} \mathrm{V}_{\mathrm{DC} 3+} \mathrm{V}_{\mathrm{DC} 4+} \mathrm{V}_{\mathrm{DC} 5}$
f) $-V_{D C}$

Fig (3.11): The conduction sequences to produce 11 level staircase

Matlab Simulation circuit for single phase CHB is shown in Fig.(3.12), (complete circuit is in appendix 7)

Fig.(3.12) Matlab Simulation circuit for single phase CHB

3.8. PV characteristic and model

3.8.1. Photovoltaic

Converting light energy into electric energy using semiconducting materials is said to be photovoltaic[1].

Sun light photons when hit an electrons in a semiconductor materials deliver them with energy force them to leave their orbits to be free. If a voltage difference is applied, they move in one direction to emerge a current.

The first step of manufacturing semiconductors devices was pure crystalline silicon (Si), also Germanium (Ge) is another element is used as a semiconductor material in some devices, both of them have 4 electrons in their orbit, the pure Si and Ge must be doped with boron and phosphorus to perform positive and negative materials.

Semiconductor materials are used to convert sunlight into electricity, nowadays hundreds of electronic and power electronic devices such as diodes, transistors, IGBT's, which are used in renewable energy converters.

Two layers of semiconductor material are made to perform P-N junction, an N-type material is made by doping a silicon atoms with small amounts of Antimony and a P-type material is made by
doping a silicon atoms with small amounts of Boron, the two layers then joined together to produce what is generally known as (P-N junction), as shown in Fig. (3.13)

Fig .(3.13) P-N junction
A well known Shockley diode equation (3.1), describes the $(p-n)$ junction voltage-current characteristic curve for
$I_{d}=I_{0}\left(e^{q V d k T}-1\right)$
where: $I d$ is the diode current (A),
V_{d} is the voltage across the diode terminals from the p-side to the n-side,
I_{0} is the reverse saturation current (A),
q is the electron charge $\left(1.60210^{-19} \mathrm{C}\right)$,
k is Boltzmann's constant $\left(1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$,
T is the junction temperature (K).
When substituting the above constants in Eq. (3.1) gives
$\frac{q V d}{K T}=\frac{1.602 \times 10^{-19}}{1.381 \times 10^{-23}} \cdot \frac{V d}{T}=11600 \frac{\mathrm{Vd}}{T}$
A standard junction temperature of $25 \mathrm{C}^{0}$ is used; this minimize (3.2) equation to be
$I_{d}=I_{0}\left(e^{38.9 \mathrm{Vd}}-1\right) \quad\left(\right.$ at $\left.25^{\circ} \mathrm{C}\right)$

(a) p-n junction diode
(b) real diode symbol
(c) diode I-V characteristic curve

Fig. (3.14): P-N junction diode

3.8.2. PV Equivalent Circuit:

As shown in Fig.(3.15) the modeling of basic equivalent circuit of the photovoltaic cell can be represented by ideal current source with real diode in parallel with, the solar irradiation is the source of current generation in current source, the lack of irradiation highly affect the current emerged by current source.

Fig.(3.15): A photovoltaic cell simple equivalent circuit.

Practically two PV parameters must be taken in consideration, first one is known as the shortcircuit current, $I_{S C}$, which represent the current delivered by PV when the load is zero (short circuit), second one is the open circuit voltage, $V_{O C}$ which measure the voltage across the terminals at no load. The two parameters are shown in Fig. (3.16)

(a) Short-circuit current ($I_{S C}$)

(b) Open-circuit voltage $\left(V_{O C}\right)$

Fig.(3.16) PV Short-circuit current $\left(I_{S C}\right)$ and Open-circuit voltage ($V_{O C}$).

The simple equivalent PV circuit is not used in practical; two elements must be added to make it practical, a series (Rs) and parallel (Rp) resistances as shown in Fig. (3.17), so the equation expresses voltage and current is
$I=I_{S C}-I_{0}\left\{\exp \left[\frac{q(V+I R s)}{K T}\right]-1\right\}-\left(\frac{V+I R s}{R p}\right)$

Fig.(3.17) PV cell practical equivalent circuit [Ref. 1]
When the standard condition of a $25^{\circ} \mathrm{C}$ cell temperature is considered equation (3.4) becomes

$$
\begin{equation*}
\mathrm{I}=I_{S C}-I_{0}\left[e^{38.9(V+I R s)}-1\right]-\frac{1}{R p}(V+I R s) \quad \text { at } 25^{\circ} \mathrm{C} \tag{3.5}
\end{equation*}
$$

The I-V characteristic curve plot of Eq. (1.5) is shown in Fig. (3.18).

Fig. (3.18) Effects of series and parallel resistances on I-V curve

3.8.3. Shading Impacts on I-V Curve

To clarify concealing marvel significance, consider Fig.(3.18) where a n-cell module with current I and yield voltage V gives one cell isolated from the others (appeared as the top cell, however it tends to be any phone in the string). The identical circuit of the top cell has been drawn utilizing its equal circuit while the other $(\mathrm{n}-1)$ cells in the string are appeared as only a module with current I and yield voltage Vn -1

In Fig. (3.19a), the entire of the cells are in the sun and since they are in arrangement, a similar current I pass through every one of them. In Fig.(3.19b), be that as it may, the top cell is concealed and its present source $I_{S C}$ has been decreased to zero.

(a) n cells exposed to sun

(b) One cell under shading

Fig. (3.19) (a) n cells exposed to sun; (b) one cell under shading [1].
The voltage drop across R_{P} as current flows through it causes the diode to be reverse biased, so the diode current is also (essentially) zero. That means the entire current flowing through the module must travel through both R_{P} and R_{S} in the shaded cell on its way to the load. That means the top cell, instead of adding to the output voltage actually reduces it.

Consider the case when the bottom ($\mathrm{n}-{ }_{1}$) cells still have full sun and still somehow carry their original current I, so they will still produce their original voltage $\mathrm{Vn}{ }_{-1}$. This means that the output voltage of the entire module V_{SH} with one cell shaded will drop to
$V_{S H}=V n-1-I\left(R_{P}+R_{S}\right)$
where
$V n-1=\left(\frac{n-1}{n}\right) V$
add (1.6) to (1.7) gives
$V_{S H}=\left(\frac{n-1}{n}\right) V-I\left(R_{P}+R_{S}\right)$
The drop voltage $\Delta \mathrm{V}$ due to the shaded cell, is given by
$\Delta \mathrm{V}=\mathrm{V}-V_{S H}=V-\left(\frac{n-1}{n}\right) V-I\left(R_{P}+R_{S}\right)$
$\Delta V=\left(\frac{V}{n}\right)+I\left(R_{P}+R_{S}\right)$
As a result, the module output voltage (V) will be $(\mathrm{V}-\Delta V)$.
Fig.(3.20) shows the extreme impact on I-V curve, where Rs considered to be zero

Fig. (3.20) Effect of shading one cell on I-V curve

3.8.4. Bypass Diode for Shade Mitigation

To mitigate the effect of shading external diodes are added to the PV modules. The goal of those bypass diodes is eliminate the voltage drop on shaded cells and find a way for current to flow, which in turn enhance PV output power and voltage .

They are added in parallel with modules to find new way for current, usually three diodes are added since it difficult to add a diode for each cell.

The bypass Diode operates only when solar cell shaded, when the voltage drop increases on shaded cell it conducts permitting the current flows through it, which mean the voltage drop is not more 0.6 volt while if it is not exist high voltage drop occur,

When there is no shading bypass diode will cut off, letting the cell operate normally and the current pass through,

In practical one bypass diode is connected between two series 12 cells terminals, so if one or all of them are shaded the 24 cells will be out of works

Fig (3.21) illustrates the principle of operation for bypass diode

Fig.(3.21) Bypass diode principle of operation.

3.8.5 PV Simulation

The solar cell Fig.(3.22a) is chosen from matlab library with specifications shown in Fig (3.22b)

Solar Cell	Parameterize by:	By s/c current and o/c voltage, 5 parameter		
	Short-circuit current, ISC:	7.34	A	\checkmark
	Open-circuit voltage, Voc:	0.6	V	\checkmark
	Irradiance used for measurements, Ir0:	1000	W/m^2	\checkmark
	Quality factor, N:	1.5		
	Series resistance, Rs:	0	Ohm	,

(a) Solar cell Symbol
(b) Solar cell specification

Fig. (3.22) Solar cell symbol and specifications.

Each PV panel consists of 6 modules and each module includes 12 solar cells, three bypass diodes added to PV as in Fig (3.23)

Fig.(3.23) Six PV modules with three bypass diodes
The simulation result for PV module according to Fig.(3.24) under $1000 \mathrm{~W} / \mathrm{m}^{2}$ irradiation produce I-V curve Fig (3.24a) and P-V curve Fig. (3.24b)

Fig. (3.24) I-V curve and PV-curve

The output voltage, current, and power under different values of irradiation are listed in table (3.4), 8Ω load is chosen to show clearly the voltage drop due to shading

Table (3.4): The output voltage, current, and power under different values of irradiation

Irradiation(W/m)	Voltage (volt)	Current(A)
1000	40.02	5.003	200.2
800	37.99	4.749	180.4
600	33.47	4.184	140
400	23.44	2.93	68,68
200	11.74	1.468	17.24

3.9. Chapter Summary

This chapter has provided a brief summary of multilevel inverter circuit topologies and their Switching status, but cannot cover or reference all MLI topologies; the fundamental principle of basic multilevel inverters has been introduced systematically. The intention is simply to provide groundwork to readers.

A comparison of components requirements per leg is done between these three MLI topologies as shown in (Table 3.3)

The concentration was on CHB inverter since it is targeted in this thesis; output voltage levels and switching status are drawn (Fig.3.11 a-j), and Matlab Simulation circuit is implemented as shown in (Fig.3.12)

Chapter Four

 Mathematical

 Mathematical}

Analysis

\&

Simulation

4.1. The Fourier Series. 30
4.2. Selective Harmonic Elimination 31
4.3. Genetic Algorithm (GA) 32
4.4. Artificial Neural Network (ANN) 36
4.5. Pulse Width Modulation. 40
4.6. Chapter Summary 43

4.1. The Fourier Series

A method used to write any periodic mathematical function in the form of a sequence or sum of sine and cosine functions multiplied by a given coefficient [16].

Its name is attributed to the French scientist Joseph Fourier in recognition of his outstanding work in trigonometric series. For any periodic integrable function $f(x)$ in the interval $[0,2 \pi]$, $f(\omega t)$ can be written as a sum of sine and cosine functions

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N}\left(a_{n} \cos (\mathrm{n} \omega \mathrm{t})+b_{n} \sin (\mathrm{n} \omega \mathrm{t})\right) \tag{4.1}
\end{equation*}
$$

Where Fourier coefficients are given by:

$$
\begin{align*}
& a_{0}=\frac{1}{\mathrm{~T}} \int_{0}^{T} f(t) d t \\
& a_{\mathrm{n}}=\frac{2}{\mathrm{~T}} \int_{0}^{T} f(t) \cos (n \omega t) d t \\
& b_{\mathrm{n}}=\frac{2}{\mathrm{~T}} \int_{0}^{T} f(t) \sin (n \oplus t) d t \tag{4.2}
\end{align*}
$$

It is shown from Eq.(4.1) that a periodic function can be decomposed into an infinite number of trigonometric components each is multiple of $w(n w)$. These components are fundamental frequency $(n=1)$, a DC component $\left(a_{0}\right)$, and harmonic components ($n \geq 2$). For the output square wave of MLI shown in Figure (4.1a), under equal DC sources, the output voltage for first level shown in fig. (4.1) can be written as follows

$$
\begin{aligned}
& a_{0}=0, \text { because of wave form symmetry } \\
& a_{\mathrm{n}}=0, \text { because of odd symmetry } \\
& b_{1}=\frac{2}{\pi} \int_{\theta 1}^{\pi-\theta 1} V d c \sin (n \oplus t) d \Phi t \\
& b_{1}= \\
& \frac{2}{\pi} \int_{\theta 1}^{\pi-\theta 1} V d c \sin (n \oplus t) d \oplus t \\
& b_{1}=\frac{-2 V d c}{\pi}\left[\operatorname{cosn}(\pi-\theta 1)-\operatorname{cosn}\left(\theta_{1}\right)\right] \\
& b_{1}=\frac{-2 V d c}{\pi}\left[-2 \cos n\left(\theta_{1}\right)\right]
\end{aligned}
$$

Fig.(4.1) first level of output voltage

$$
\begin{equation*}
b_{1}=\frac{4 V d c}{\pi}\left[\operatorname{cosn}\left(\theta_{1}\right)\right] \tag{4.3}
\end{equation*}
$$

Substituting (4.3) in (4.1) gives

$$
\begin{equation*}
V(\Phi t)=\frac{4 V d c}{\pi} \sum_{n=1,3,5}^{N} \frac{\operatorname{cosn}(\theta 1) \sin (n \omega t)}{n} \tag{4.4}
\end{equation*}
$$

For an eleven-level CHB which needs five switching angles, the output voltage with balanced input sources as shown in figure (4.2a) become:
$V(\omega t)=\sum_{n=1,3,5}^{N}\left[\frac{4 V d c}{n \pi}((\cos n(\theta 1)+\cos n(\theta 2)+\cdots+\operatorname{cosn}(\theta 4)+\cos n(\theta 5))] \sin (n \omega t)\right)$
For unbalanced input DC sources as shown in figure (4.2b) the output voltage will be:
$V(\oplus t)=\sum_{n=1,3,5}^{N}\left[\frac{4}{\mathrm{n} \pi}((\mathrm{VDC} 1 \cos n(\theta 1)+\mathrm{VDC} 2 \cos n(\theta 2)+\cdots+\mathrm{VDC} 5 \cos n(\theta 5))] \sin (n \omega t)\right)$

(a) Output waveform for balanced DC source
(b) Output waveform for un balanced DC source

Figure (4.2) Output waveform for 11 level CHBI

4.2 Selective Harmonic Elimination for balanced and Unbalanced DC Sources

Referring to Eq.(4.6), the output voltage can be written to have the fundamental voltage when $(\mathrm{n}=1)$ and harmonic components when ($\mathrm{n}>1$). Each harmonic of the output voltage can be expressed by:
$V_{\text {nth }}(\omega t)=\sum_{n=1,3,5}^{\infty}\left[\frac{4}{n \pi}\left(\left(V_{D C 1} \cos n\left(\theta_{1}\right)+V_{D C 2} \cos n\left(\theta_{2}\right)+\cdots+V_{D C 5} \cos n\left(\theta_{5}\right)\right) \sin (n \omega t)\right)\right]$
where $\mathrm{V}_{\mathrm{DC} 1}$ is the voltage level of first DC source, θ_{1} is the switching angle of first DC source ($\mathrm{V}_{\mathrm{DC}} 1$), θ_{2} is the switching angle for second DC source (VDC2), and so on. The five angles θ_{1} to θ_{5} in Eq. (4.7) will be used to formulate the five equations needed to find the
fundamental voltage and minimize the first four harmonics [17], in unbalance DC sources modulation index is not targeted since the set of switching angles vary corresponding to DC sources variation, so the fundamental harmonic will be set to 110 V or 120 V as in Eq.(4.8).
$\mathrm{Vfun}_{(\mathrm{rms})}(\Phi t)=\frac{4}{\pi \sqrt{2}}\left(\left(\mathrm{VdC1}_{\mathrm{D}} \cos \left(\theta_{1}\right)+\mathrm{Vdc}_{\mathrm{d} 2} \cos \left(\theta_{2}\right)+\cdots+\mathrm{Vdc}_{\mathrm{D}} \cos \left(\theta_{5}\right)\right)=120 \mathrm{~V}\right.$

In three phase inverter 3rd and 9th harmonics are cancelled directly, but in single phase they must be included, since we focus on eleven level inverter, five equations can be solved, they are the first four harmonics 3rd, 5th, 7th, and 9th in addition to fundamental equation.

The set of equations are Eq.(4.8) for fundamental and Eq.(4.9) for harmonics
$\mathrm{Vk}(\mathrm{rms})(\Phi t)=\frac{4}{\mathrm{k} \pi \sqrt{2}}((\mathrm{VDC1} \cos (\mathrm{k} \theta 1)+\mathrm{VDC2} \cos (\mathrm{k} \theta 2)+\cdots+\mathrm{VDC5} \cos (\mathrm{k} \theta 5))=0 \mathrm{~V}$
Where $\mathrm{K}=\{3,5,7,9\}$
The above equations are nonlinear; therefore, when they are solved many sets of solutions will appear.

In GA, the problem with local minima will increase numbers of trials to get the best solution, but GA will generate approximate solution if the exact solution are not exist while numerical methods can't do that.

4.3. Genetic Algorithm (GA)

Genetic algorithm is a method of optimization and research. This method can be categorized as an evolutionary algorithm [18] that relies on the imitation of nature's work from a Darwinian perspective.

The GA uses a search technique to find controlled or approximate solutions that optimize. It is classified as global search heuristics. It is also a specific class of evolutionary algorithms, also known as evolutionary computation, which uses technology inspired by evolutionary biology [19] such as inheritance, mutations, selection and crossover.

In our problem, different analytical algorithms were used, as Newton-Raphson, but those methods can't return an answer if there is no exact solution for the equations.

Genetic Algorithm is used to deal with complex problems when analytical methods are impractical [20-21].

The code written in GA allows it to find the closest solution (set of angles) if the exact solution is not existing, GA operator will minimize the total harmonic distortion THD not cancelling it, this
mean no probabilities to receive no solution, but many trials must done to get best fitness value which is closest to zero, fitness value zero means the exact solution is achieved.

The GA program is written in m-file using Matlab R2013a, it's divided into three parts, fitness file, constraints file, and main file
a) Fitness file includes the total harmonic distortion (THD) which to be minimized

$$
\begin{equation*}
\mathrm{THD}=\frac{1}{\mathrm{~V} 1}\left(\sum_{n=3,5, \ldots}^{\mathrm{N}} \quad \mathrm{~V} n^{2}\right)^{1 / 2} \tag{4.13}
\end{equation*}
$$

where V_{1} is the fundamental harmonic voltage, $\mathrm{V}_{3} ; \mathrm{V}_{5} ; \ldots ; \mathrm{V}_{\mathrm{n}}$ are the $3 \mathrm{rd} 5 \mathrm{th} ; 7 \mathrm{th} ; \ldots$; nth order is harmonic voltages. The Matlab file is shown in appendix (1)
b) Constraints file includes the constraints conditions, first the 3 rd 5 th ; 7th; 9th harmonic equations equal zero and second the switching angles satisfy the condition

$$
0<\theta 1<\theta 2<\theta 3<\theta 4<\theta 5<\frac{\pi}{2}
$$

The Matlab file is shown in appendix (2)
c) Main function includes GA operator and parameters like crossover, mutation, population size and generation, The Matlab file is shown in appendix (3)

GA flowchart that solve the problem is given in Fig (4.3)
Many trials of setting parameters and running program had been done so the program doesn't stop or fall in local minima, and return best result, it found the population size and generation must be changed each set of input voltage DC as $(800,70)$ or $(750,30)$ respectively, since not any values can give the best results.

When the program stops, a fitness value of $3.28 * 10^{-6}$ is returned, when its value equal zero this mean an exact value of solution reached, but here an approximate value were got and the program stops and generate the best set of angles, here, the number of generation is set to be the stopping parameter.

Fig (4.3) GA flow chart

After 20 generations, an approximate solution is done, but since no stopping parameter, the program continue to next generations to enhance the results, until finishing after 70 generation, Fig.(4.4) shows the algorithm best and mean fitness .

Fig .(4.4) GA average and best fitness
The output results for sample sets of voltages and their angles are shown in table (4.1), those voltages and angles sets will be used to train the ANN

Table (4.1): GA outputs results

	$\mathbf{V}_{\text {DC (} \text { (volt) }}$	$\boldsymbol{\theta}_{\text {(degree) }}$	Fitness Value		$\mathbf{V}_{\text {DC (volt) }}$	$\boldsymbol{\theta}_{\text {(degree) }}$	Fitness Value
	39	8.560	0.0187		31	9.093	0.0277
	38	21.601			33	19.384	
	37	38.131			35	36.246	
	36	59.154			37	58.392	
	35	88.742			39	89.000	
	18.35	8.772	0.052	$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \frac{\stackrel{\rightharpoonup}{0}}{0} \end{aligned}$	39	8.738	0.231
	22.22	14.084			39	20.753	
	27.19	18.221			39	37.421	
	40.03	36.940			39	58.73	
	38.56	60.202			39	88.788	

4.4. Artificial Neural Network (ANN)

ANN is computational techniques which simulate the human brain [22] way dealing with tasks through a massive parallel processing, made up of simple processing units, it stores practical knowledge and empirical information to enable user adjusting the weights.

ANN is used in engineering many applications, like pattern recognition, control, classification, and other applications [23-26], It is used here due to its capability to fit nonlinear complicated problems that need intensive calculation [27]. Artificial neural network architecture is how to connect neurons to each other, which is related to the training algorithm.

Each neuron has a collector joint that combines the weighted input with the displacement to form the numerical output of the neuron, as a result, the neuron layer output compounds form the output beam (a single-column array), and the relationship that gives this output.

So instead of using a lookup table to store the large amount of informations, ANN will be alternative.

The problem you will face is to know how many hidden layers needed and how many neurons in each layer to train ANN which depend on your problem, there is no one topology for all problems. The complexity of relation between input and output, and number of inputs and outputs are the main factors, you can't determine those factors directly, and you have to try many times to achieve the desired topology. GA can used to solve a specific number of set of input voltage, and it is impossible to find all suitable angles for all DC variation, thus ANN is used to generate a suitable set of firing angles depending on any variation in DC input voltage.

The training process consume too much time, tens of trials may be done to get best result, but when apply it in matlab it will generate the angles quickly.

After tens of trials, the final topology was a feed forward ANN, consists of two hidden layers. The final topology is shown in Fig.(4.5)

Fig.(4.5) ANN topology

The network training program is written in m-file using Matlab R2013a, many parameters were set to get best training. The two hidden layers have 10 neurons with TANSIG activation function for both, while PURELIN activation function is used for output layer as shown in Fig (4.6), mean squared error (MSE) can give help you to judge if you are right or not.
$M S E=\frac{1}{p}=\sum_{i=1}^{p}\left|y^{i}-d^{i}\right|^{2}$
Where,
p: data entries number
y: ANN output vector
d: needed output vector

Fig (4.6) Multilayer feed forward ANN topology

The training parameters and Algorithms are changed repeatedly to achieve the best training performance, and many training trials were done to get the best one, traingda (Gradient Descent with Adaptive Learning Rat) gives the best regression we need, while the other training algorithms don't satisfy the best regression.

Fig (4.7) ANN Training

The ANN code including parameters is shown in appendix (4)
The training process is shown in Fig (4.7), it stopped after 117 iterations when validation checks is achieved, the training performance is shown in Fig (4.8), the final regression was 99% as shown in Fig (4.9)

Fig (4.8) ANN Training performance

Fig (4.9) ANN Training regression

4.5. Pulse Width Modulation

The ANN are trained to produce five firing angles in radian depending on the DC sources levels as shown in Fig (4.10) [8], the number of IGBT's needed for eleven level inverter are 20 IGBT's $(2 n+1)$ pulse width modulator will generate the conduction, delay time for each IGBT

Fig (4.10) Pulse generation diagram

PWM is run in Matlab as shown in Fig (4.11), the output of PWM is shown in Fig (4.12)

Fig (4.11) PWM diagram in Matlab Simulink

The conduction time，delay time，and switch status are shown in Table（4．2）

Table（4．2）Conduction time，delay time，and switch status

2010	198／20＇0．02\％	9E／Z0＇0．61日	9E／Z0＇0．81日	198／ZO＇0．L1日	9£／Z0＇0．91日	9£／Z0＇0．S1日	9£／Z0＇0．＊レ＊	9£／Z0＇0．E1＊	9£／Z0＇0．Z1日	9E／20＇0．11日			
098	$1 \boldsymbol{\theta}^{-09 \varepsilon}$	ても－09£	£ ${ }^{-09 \varepsilon}$	ャө－09¢	Se－09£	S $9+081$	te＋081	£ ${ }^{+081}$	2ө＋081	1 1 +081			
0	IJPへ－	23PA－	£ア¢	tJPN＊	SアP＾－	top／－	£ア¢－	て3P介－	TכPA－	0			
											09£／Z0＇0．0Ze	1－0．098	020
											09ع／Z0＇0．61日	2e－09¢	619
											09ع／20 0．81日		810
											09¢／20＇0．L1日	5ө－098	210
											09ع／20 0．91e	$5 \Theta^{-098}$	910
											09¢／Z0＇0．S10	$\mathrm{Se}+08 \mathrm{~L}$	S10
										ε	09¢／20\％0．จ1日	te＋08	$t 10$
										L		$\varepsilon \Theta+08 \mathrm{~L}$	عเө
										\downarrow	09£／20＇0．Z1日	$2 \Theta+08 \downarrow$	210
										Sl	09をIZ0＇0＋11日	1 1 +081	150
									02861	＇91＇Zレ＇8＇\％	09¢／20＇0．01 0	$1{ }^{-} \cdot 081$	010
											09E／Z0＇0．6e	$2 \theta^{-081}$	68
										Ll	09£／20＇0．8日	$\varepsilon \theta^{-081}$	88
										EV	09£／Z0＇0．L日	pe－081	$L \theta$
										6	09£／z0＇0．9e	99^{-081}	98
										9	09¢／Z0＇0．5e	ELZ＇LS．Se	ce
									8188	$b^{\prime} 0 b^{\prime} 9^{\prime} Z^{\prime} \downarrow$	09E／Z0＇0．te	ELZ＇LS．＊日	＋
										รауगuMs	09E／Z0＇0．E日		$\varepsilon \Theta$
98／Z0＇0．01日	09E／Z0＇0．6Ө	09£／Z0＇0．8e	09E／Z0＇0．LE	09£／Z0＇0．9	09£／Z0＇0．5e	09£／Z0＇0．be	09£／ZO＇0．8ө	09£／ZO＇0．Z日	09£／Z0＇0．1e	วแ1］	09£／Z0＇0．Zө	¢LZ＇LS． 2θ	2θ
$1 \mathrm{~L}^{\text {－081 }}$	2Ө－081	$\varepsilon \Theta-081$	50．081	Se－08！	ELZ＇LG．Se	عLZ＇LS．ท日	£LZ＇LG．$¢ \theta$	£LZ＇LS．Z日	әәбэр	203ue	）	3د．⿰习习	pez
ITPA	23PA	£．p／	\dagger PPA	5．PA	¢P⿳⺈	£．P＾	Z3PA	ITPA	0				गดّ̆uy

The output pulses of PWM are shown in Fig.(4.12)

Fig (4.12a) generated pulses for first half cycle

Fig (4.12b) generated pulses for second half cycle

Fig (4.12c) projected pulses for one cycle

4.6. Chapter Summary

The output voltage formulas for balance and unbalance DC sources are derived using Fourier series, the nth harmonics equation (4.15-4.20) are used to build GA algorithm, the GA algorithm main principles, flow chart and parameters were illustrated. The GA algorithm running process and results were shown to verify its efficiency to find firing angles. Sample of output results are shown in table (4.1), due to large amount of results

The ANN principles, topology, and training were presented and explained, the number of hidden layer performance, and regression are shown in Fig.(4.6) and Fig.(4.7).

PWM is built and simulated in Matlab, the conduction time, delay time, and switch status
Are calculated in Table (4.3), its output pulses are verified as shown in Fig.(4.10)

Chapter Five Results

\&

Discussions

5.1. Results and discussion 45
5.2. Genetic Algorithm Parameters Tuning 51
5.3. Neural Network Training Settings. 52

5.1. Results and Discussion

The proposed GA - ANN technique was tested on a single phase 11-level cascade H-bridge inverter using MATLAB R2013. In the proposed method, at first GA is used to solve the nonlinear equations and supply the desired switching angles.

Next, ANN is trained on the generated angle set produced by GA, which optimizes the switching angles of 11 level inverter so that $3_{\mathrm{rd}}, 5_{\mathrm{th}}, 7_{\mathrm{th}}$, and 9_{th} harmonics are minimized. The proposed model block of the tested MLI is shown in Fig.(5.1).

The Simulink model is shown in appendix 8

Fig.(5.1) proposed model block of the tested MLI

The output voltages and harmonics content depend on the generated switching angles produced by ANN, from the SIMLINK model is analyzed for different DC voltage levels, at first equal DC voltages are analyzed, Table (5.1) include a set of five equal DC sources, output RMS voltage, THD, and PV irradiation using 3Ω resistive load.

It is shown from table (5.1) that THD for equal voltage sources has a value of 9.3% whatever the DC voltage values are changed.

Table (5.1) Set of five equal DC sources, output RMS voltage, THD, and PV irradiation

irradiation (W/m2)	VDCs	Volt	Vout(rms)	R-Load	THD \%
1000	v1	43.2	126.9	3	9.38\%
1000	v2	43.2			
1000	v3	43.2			
1000	v4	43.2			
1000	v5	43.2			
800	v1	42.58	125.1	3	9.36\%
800	v2	42.58			
800	v3	42.58			
800	v4	42.58			
800	v5	42.58			
500	v1	41.28	120.8	3	9.36\%
500	v2	41.28			
500	v3	41.28			
500	v4	41.28			
500	v5	41.28			
100	v1	36.81	106.2	3	9.39\%
100	v2	36.81			
100	v3	36.81			
100	v4	36.81			
100	v5	36.81			

The output voltage of the cascaded multilevel inverter at equal DC sources is shown in Fig.5.2, and the FFT analysis of output voltage is shown in Fig.5.3.

It is shown from Fig.5.2 that all the lower harmonics were minimized; the target harmonics (3rd, 5th, 7 th and 9 th) were in the percentage of 1.4% of fundamental voltage which mean they around zero values

Fig.(5.2) The output voltage of the CMLI at equal DC sources

Fig.(5.3) FFT spectrum of CMLI output voltage at equal DC sources

Secondly unequal DC voltage sources are analyzed, Table (5.2) include a set of five unequal DC sources, output RMS voltage, THD, and PV irradiation using 3Ω resistive load

Table (5.2) a set of five unequal DC sources, output RMS voltage, THD, and PV irradiation

VDCs	Volt	Vout(rms)	R-Load	THD \%
v1	36.81	110.4	3	9.84\%
v2	36.81			
v3	36.81			
v4	41.28			
v5	41.28			
v1	36.81	123.3	3	9.90\%
v2	36.81			
v3	43.2			
v4	43.2			
v5	43.2			
v1	36.81	120.2	3	10.26\%
v2	36.81			
v3	41.28			
v4	42.58			
v5	43.2			
v1	24.54	105.3	3	12.94\%
v2	24.54			
v3	27.52			
v4	35.46			
v5	35.97			

It is shown from table (5.2) that THD for unequal voltage sources increases when the DC sources variation increases, it starts from 9.84% when the variation equal to 4.47 [41.28-36.81] volts and increase to 12.94% when DC variation equal to 11.43 [35.97-24.54] volts.

The output voltage of the CMLI at unbalance DC sources is shown in Fig.(5.4) and Fig.(5.5) for DC variation of 4.47 and 11.43 respectively, the FFT analysis of output voltage of both cases are shown in Fig.5.6 and Fig.(5.7) respectively.

Fig.(5.4) The output voltage of the CMLI at unequal DC sources ($D C$ variation $=4.47$ volts)

Fig.(5.5) The output voltage of the CMLI at unequal DC sources (DC variation $=11.43$ volts)

Fig.(5.6) FFT spectrum of CMLI output voltage at unequal DC sources
(DC variation $=4.47$ volts)

FFT settings
Start time (s): 0.01845
Number of cycles: 1
Fundamental frequency (Hz): 50
Max frequency (Hz): 1000
Max frequency for THD computation:
Nvauist freauencv Display style: Bar (relative to fundamental) Base value: 1.0 Frequency axis: Harmonic order Display

Fig.(5.7) FFT analysis of CMLI output voltage at unequal DC sources (DC variation $=11.43$ volts)

It is shown from Fig.5.6 and Fig.5.7 that the target harmonics (3rd, 5th, 7th and 9th) were in the percentage of 1.1% to 3.7% of fundamental voltage at maximum DC variation

5.2. Genetic Algorithm Parameters Tuning

The main problem with GA that the population size and generations must be set each trial of solution, by observing fitting procedure and fitness of each individual it can be determined if setting parameters are right and GA doesn't fall in local minima, or parameters have to be reset again, and since there are tens of sets of input voltage, too much time is consumed, the difference between two cases are shown in Fig.5.8 and Fig. 5.9, for best setting of parameters which produce switching angles ($0.1646,0.4638,0.8826,1.5110,1.5708$)

But when the parameters are set wrong as shown in Fig.5.10, and Fig.5.11, the switching angles produced are ($0.1648,0.4642,0.8837,1.5401,1.5429$)

Fig.(5.8) Fitness when parameters are set right

Fig.(5.9) Fitness if each individual when parameters are set right

Fig.(5.10) Fitness when parameters are set wrong

Fig.(5.11) Fitness if each individual when parameters are set wrong

5.3. Neural Network Training Setting

Many parameters and algorithms control the ANN training accuracy, at first choosing number of hidden layers and their activation functions, secondly number of neurons in each hidden layer, thirdly the training algorithm function and its special parameters since the default parameters can't work with random relation between inputs and outputs, all these parameters must be chosen exactly to get high training regression,

An example of miss choosing wrong algorithm will result with bad performance as shown in Fig.(5.12), while choosing right algorithm will result good performance as shown in Fig.(5.13).

Fig.(5.12) ANN training using wrong algorithm

Fig.(5.13) ANN training using right algorithm

Chapter Six

Conclusion

6.1. Comparison. 55
6.2. The impact of ANN at shading conditions: 57
6.3. Conclusion 63
6.4. Recommendation. 63
6.5. Future Work 64

6.1. Comparison

Many algorithms are used to solve SHE equations for 11 level CHB MLI, we browse here the results were got by researchers and compare with this research technique, tables (6.1, 6.2, and 6.3) researchers uses their techniques to solve SHE equations and apply to pulse generators directly and don't use ANN, so the THD must be low since ANN can't give exact results.

Table (6.4) researcher used Newton Raphson method to solve the equations and then trained ANN using BPA and got 9.79% THD for equal DC sources, however our proposed technique (GA and ANN) in table (6.5) gives 9.38% THD at equal DC sources.

Table 6.1: Modified Newton-Raphson and Pattern Generation Methods

According to Ref [28]				
Modified Newton-Raphson and Pattern Generation Methods/ ANN is not used				
$V_{D C}(\mathrm{v})$	$\begin{gathered} \text { Angle } \\ \text { (rad) } \end{gathered}$	Angle (degree)	THD	$\mathrm{V}_{\text {rms }}$
35	0.622	35.62	9.8\%	94.3
35	0.8333	47.726		
35	1.049	60.079		
35	1.313	75.199		
35	1.561	89.403		

Table 6.2: Newton-Raphson Method

According to Ref [29]				
Newton-Raphson Method /ANN is not used				
$V_{D C}$ (p.u)	$\begin{gathered} \text { Angle } \\ \text { (rad) } \end{gathered}$	Angle (degree)	THD	$\mathrm{V}_{\text {rms }}$
1	0.137	7.859	8.56\%
1	0.338	19.372		
1	0.518	29.652		
1	0.833	47.680		
1	1.104	63.212		
V_{DC} (p.u)	angle	degree	THD	$\mathrm{V}_{\text {rms }}$
1.1	0.155	8.894	8.2\%
1.05	0.354	20.250		
1	0.564	32.310		
0.95	0.878	50.260		
0.9	1.112	63.690		

Table 6.3: Different Techniques

According to Ref [30]							
(PSO/ABCA/FA)/ANN is not used							
Technique	MI	$\theta 1$	$\theta 2$	$\theta 3$	$\theta 4$	$\theta 5$	THD \%
PSO	0.47	37.71	52.81	68.2	86.25	89.4	44.98
ABCA		12.79	35.79	58.99	87.61	90	14.83
FA		12.59	34.85	58.59	88.98	89.98	14.56
PSO	0.7	16.73	36.03	56.24	88.37	88.37	21.39
ABCA		11.98	24.17	38.56	59.49	59.49	13.75
FA (proposed)		3.08	15.33	33.74	84.24	84.24	12.88

Table 6.4: Newton-Raphson Methods with ANN

According to Ref [31]				
Newton Raphson method /ANN is trained using BPA				
V_{DC} (p.u)	Angle (rad)	Angle (degree)	THD	Vrms
1	0.067	7.859		
1	0.222	19.372	9.79%	65.4
1	0.425	29.652		
1	0.662	47.680		
1	0.963	63.212		

Table 6.5: Proposed Technique

Proposed Technique					
Genetic Algorithm method /ANN is feed forward trained					
	VDC (v)	Angle (rad)	Angle (degree)	THD	Vrms
$\begin{aligned} & \text { Equal DC } \\ & \text { Sources } \end{aligned}$	43.2	0.151	8.660	9.38\%	126.9
	43.2	0.366	20.973		
	43.2	0.656	37.594		
	43.2	1.028	58.888		
	43.2	1.550	88.767		
Unequal DC Sources	36.81	0.149	8.56	10.26\%	110.4
	36.81	0.377	21.601		
	36.81	0.666	38.131		
	41.28	1.033	59.154		
	41.28	1.549	88.742		
Proposed Technique					

Genetic Algorithm method /ANN is feed forward trained					
	VDC (v)	Angle (rad)	Angle (degree)	THD	Vrms
Unequal DC Sources	24.54	0.153	8.772		
	24.54	0.246	14.084		12.94%
	27.52	0.318	18.221	3	
	35.46	0.645	36.94		
	35.97	1.051	60.202		

6.2. The impact of ANN at shading conditions:

Due to shading conditions, significant change occur in the PV current and voltage, which is equivalent to change in the actual radiations strikes the panel surface. The following descriptions, present a brief comparison for the generated values of MLI firing angles without and with applying ANN comparing with another GA algorithms.

ANN can reduce THD under shading conditions, since it can amend the firing angles of MLI, if a set of equal DC sources firing angles are fed to MLI and considered as optimum to minimize THD, they will be unuseful when shading happens since they are a solution of one case not all cases, but ANN can supply MLI with best set of firing angles for all cases within training range.

As an example GA best firing angles for equal DC are (8.161, 20.251, 37.284, 57,759, 89.689) when supplied directly to PWM, the output voltage THD is 9.55% and RMS $=126.7$ volt. But when DC sources varies due to shading the THD will increase depend on DC variation while ANN can control the THD to be minimum as possible by supplying the MLI with correct (adjusted) firing angle.

Table (6.6) compares between output THD and RMS value without and with using ANN when DC sources are equal, and table (6.7) compares between output THD and RMS value without and with using ANN when DC sources are unequal.

Table 6.6 Set of five equal DC sources, output RMS voltage, THD, and PV irradiation without and with ANN

Control strategy	Without ANN				With ANN		
Irradiation (W/m²)	$\begin{aligned} & \hline \text { VDC } \\ & \text { (volt) } \end{aligned}$	GA firing angles	$\begin{gathered} \hline \text { GA } \\ \text { THD } \end{gathered}$	$\begin{gathered} \hline \text { GA } \\ \text { RMS } \\ \text { (volt) } \end{gathered}$	ANN firing angles	$\begin{aligned} & \hline \text { ANN } \\ & \text { THD } \end{aligned}$	ANN RMS (volt)
1000	43.2	8.659	9.55\%	126.7	8.161	9.43\%	127
1000		20.973			20.251		
1000		37.594			37.284		
1000		58.888			57.759		
1000		88.767			89.689		
1000							

The obtained results of table (6.6) are shown in Fig.(6.1) and Fig.(6.2)

Available signals-

Refresh
Name:
ScopeData11
Input:
innut 1

Signal number: 1
Displav: © Signal

FFT window

$\left[\begin{array}{l}\text { FFT settings } \\ \text { Start time (s): } 1.1028 \\ \text { Number of cycles: } 1 \\ \text { Fundamental frequency (Hz } 50 \\ \text { Max frequency (Hz):1000 } \\ \text { Max frequency for THD computation: } \\ \hline \text { Nvaniss freauenc: } \\ \text { Display style: } \\ \hline \text { Bar (relative to fundamental) } \\ \text { Base value: } 1.0 \\ \text { Frequency axis: Harmonic order } \\ \hline \text { Display } \\ \hline\end{array}\right.$

Figure (6.1) THD results from GA firing angles

Figure (6.2) THD results from ANN firing angles

Table (6.7) Set of five unequal DC sources, output RMS voltage, THD, and PV irradiation without and with ANN

The obtained results of first two cases illustrated in table (6.7) are shown in Fig.(6.3) to Fig.(6.6)

Fig.(6.3) THD results from GA when DC sources are unequal

$\left[\begin{array}{l}\text { Available signals- } \\ \text { Refresh } \\ \text { Name: }{ }_{\text {ScopeData11 }} \\ \text { Input: } \quad \text { input } 1 \\ \text { Signal number: } 1 \\ \text { Disblav: © Signal } \\ \text { OFFT window }\end{array}\right.$

Fig.(6.4)THD results from ANN when DC sources are unequal

Fig.(6.5)THD results from ANN when DC sources are unequal

Fig.(6.6)THD results from GA when DC sources are unequal

6.3 Conclusion

The following conclusions can be stated:

1. By applying GA nonlinear equations of SHE were successfully resolved, GA algorithm must run many times to get the best solution, you can note that through value of generated angles.
2. Main parameters such as Population and generation size, operator and fitness function have to be set again when the input DC voltage are changed . tuning crossover a bit little speed up the run
3. A feed forward (ANN) proves that it can generate the desired switching angles however the voltage level changed by keeping the fundamental while eliminating the target harmonics.
4. GA and ANN technique achieve minimum THD for both equal and unequal DC sources, and can be applied for any kind of level inverter. According to our calculations to find THD for fixed DC sources we obtain 9.38%, while in previous researches used ANN the best THD obtained was 9.8%, and for variable DC sources we obtained 9.84% THD

6.4. Recommendation

For enhancing the quality of generated pulse patterns and reducing the calculation time, we do recommend the following:

1. Use GA to solve the nonlinear equations, it is useful technique to achieve exact or approximate solution when analytical methods can't help you.
2. Set the GA parameters and active function exactly to get best results.
3. Choose ANN topology that fit your data complexity, number of hidden layers and activation function depend on relation between input and output data.
4. Choose a set of input voltages that not vary more than 15%, you will get better result and facilitate ANN training
5. Use three phase MLI so you can eliminate the $11^{\text {th }}$ and $13^{\text {th }}$ harmonics, $3^{\text {rd }}$ and $9^{\text {th }}$ harmonics cancelled automatically, which decreases the THD.

6.5. Future Work

For completing the already started work, we do advise:

1. Controlling the ANN bias to fit the load variation, so the switching angles can be adjusted depends on DC inputs and load variation.
2. Studying the running time delay of ANN and its effect on THD
3. Using ANN with maximum power point tacking to achieve maximum output power.
4. Apply the results practically for comparison between simulation and experimental results

References

[1] Gilbert M. Masters Copyright, 2004 by John Wiley \& Sons, Inc., Hoboken, New Jersey. All rights reserved, Published by John Wiley \& Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada
[2] Muhammad H. Rashid "Power Electronics Devices, Circuits, and Applications" fourth edition, pp 441-466
[3] J. Rodriguez, J. Lai, F. Z. Peng, "Multilevel inverters: a survey of topologies, control and applications," IEEE Transactions on Industrial Electronics, vol. 49, no. 4, pp.724-738, Aug. 2002.
[4] A. Pandey, B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, D. P. Kothari, "A review of multilevel power converters," Institute of Engineers Journal (India), pp.220-231, vol. 86, March 2006.
[5] S. Kouro,M. Malinowski, K. Gopakumar, J. Pou, L. G. Franquelo, B. Wu, J.Rodriguez, M. A. Perez, J. I. Leon, "Recent advances and industrial applications of multilevel converters, " IEEE Transactions on Industrial Electronics, vol. 57, no. 8, pp. 2553-2580, Aug. 2010.
[6] R. Rangarajan, F. E. Villaseca, "A switching scheme for multilevel converters with non-equal DC sources, " 39th North American Power Symposium, pp. 308-313, Sept.2007. [7] B. Ozpineci, L. M. Tolbert, J. N. Chiasson, "Harmonic optimization of multilevel converters using genetic algorithms," IEEE Power Electronics Letters, vol. 3, no. 3, pp. 92-95, Sept. 2005. [8] J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, Z. Du, "A unified approach to solving the harmonic elimination equations in multilevel converters," IEEE Transactions onPower Electronics, vol. 19, no. 2, pp. 478-490, Mar. 2004.
[9] J. N. Chiasson, L. M. Tolbert, K. J. McKenzie, Z. Du, "Elimination of harmonics in a multilevel converter using the theory of symmetric polynomials and resultants," IEEE Transactions on Control Systems Technology, vol. 13, no. 2, pp. 216-223, March 2005. [10] Z. Du, L. M. Tolbert, J. N. Chiasson, H. Li, "Low switching frequency active harmonic elimination in multilevel converters with unequal DC voltages," Annual Meeting of the IEEE Industry Applications Society, pp. 92-98, Oct. 2005. [11] Z. Du, L. M. Tolbert, J. N. Chiasson, "Active harmonic elimination for multilevel converters," IEEE Transactions on Power Electronics, vol. 21, no. 2, pp. 459-469,March 2006. [12] D. Ahmadi, Jin Wang, "Selective harmonic elimination for multilevel inverters with unbalanced DC inputs," IEEE Vehicle Power and Propulsion Conference, pp. 773-778, Sept. 2009.128
[13] M. Dahidah, V. G. Agelidis, "Selective harmonic elimination multilevel converter control with variant DC sources," IEEE Conference on Industrial Electronics and Applications, pp. 33513356, May 2009.
[14] L. G. Franquelo, J. Rodriguez, J. I. Leon, S. Kouro, R. Portillo, M. A. M. Prats, "The age of multilevel converters arrives," IEEE Industrial Electronics Magazine, vol. 2,no. 2, pp. 28-39, June 2008
[15] Xue, Y. Ge, B, and Peng. F. Z, "Reliability, efficiency, and cost comparisons of MW-scale photovoltaic inverters", IEEE Energy Conversion Congress and Exposition (ECCE), 2012
[16] M. S. A. Dahidah, V. G. Agelidis, "Selective harmonic elimination PWM control for cascaded multilevel voltage source converters: A generalized formula," IEEE Transactions on Power Electronics, vol. 23, no. 4, pp. 1620-1630, July 2008
[17]. F. J. T. Filho, L. M. Tolbert, Y. Cao, B. Ozpineci, —Real time selective harmonic minimization for multilevel inverters connected to solar panels using artificial neural network angle generation, IEEE Energy Conversion Congress and Exposition, pp. 594-598, Sept. 2010.
[18] M. Srinivas, L. M. Patnaik, "Genetic algorithms: a survey, " IEEE Computer Society Press., vol. 27, no. 6, pp. 17-26, Jun 1994.
[19] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. MA: Addison-Wesley, 1989.
[20] K.F. Man, K.S. Tang, S. Kwong, "Genetic algorithms: concepts and applications [in engineering design]," IEEE Transactions on Industrial Electronics, vol.43, no.5, pp.519-534, Oct 1996.
[21] C. R. Houck, J. A. Joines and M. G. Kay, "A genetic algorithm for function optimization: A Matlab implementation," Technical Report NCSU-IE-TR-95-09, North Carolina State University, Raleigh, NC (1995).
[22] J. J. Hopfield, "Artificial neural networks," IEEE Circuits and Devices Magazine, vol. 4, no. 5, pp. 3-10, Sep. 1988.129
[23] R. Aggarwal, Y. Song, "Artificial neural networks in power systems II: types of artificial neural networks," Power Engineering Journal, vol. 12, no. 1, pp. 41-47, Feb. 1998. [24] R. Aggarwal, Y. Song, "Artificial neural networks in power systems I: general introduction to neural computing," Power Engineering Journal, vol. 11, no. 3, pp. 129-134, Jun. 1997. [25] M. J. Willis, C. Di Massimo, G. A. Montague, M. T. Tham, A. J. Morris, "Artificial neural networks in process engineering," IEE Procedings in Control Theory and Applications, vol. 138, $\begin{array}{llllll}\text { no. } 3, & \text { 256-266, } & \text { May } & 1991 .\end{array}$
[26] A. K. Jain, Jianchang Mao, K. M. Mohiuddin, "Artificial neural networks: a tutorial," Computer, vol. 29, no. 3, pp. 31-44, Mar 1996.
[27] Mohammed Al-Hitmi, Salman Ahmad, Atif Iqbal , Sanjeevikumar Padmanaban and Imtiaz Ashraf." Selective Harmonic Elimination in a Wide Modulation Range Using Modified Newton-Raphson and Pattern Generation Methods for a Multilevel Inverter, Energies 2018, 11, 458
[28] V.Joshi Manohar, M.Trinad, K.Venkata Ramana, "Comparative Analysis of NR and TBLO Algorithms in Control of Cascaded MLI at Low Switching Frequency, Elsevier B.V, 2016, 18770509
[29] A. K. Jain, Jianchang Mao, K. M. Mohiuddin, "Artificial neural networks: a tutorial," Computer , vol. 29, no. 3, pp. 31-44, Mar 1996.
[30] Dr. R. K. Singh," Artificial Neural Network Based Harmonic Optimization of Multilevel Inverter to Reduce THD", Proc. of the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering Editor, 2012, ISBN: 978-981-07-1847-3
[31] Sihem. Ghoudelbourk, D. Dib, B. Meghni, and M. Zouli," Selective harmonic elimination strategy in eleven level inverter for PV system with unbalanced DC sources", (2017) AIP Conference Proceedings 1814, 020008
[32] A. Zama , S. Ait Mansour , D. Frey, A. Benchaib , S. Bacha, and B. Luscan," A Comparative Assessment of Different Balancing Control Algorithms for Modular Multilevel Converter (MMC)", Super Grid Institute SAS, 130 Leon Blum, BP 1321, 69611 Villeurbanne, France Université Grenoble Alpes-Laboratoire G2Elab, 21 avenue des Martyrs, 38031 Grenoble, France.

Appendices

Appendix (1): GA Fitness function

```
Function y = my Fitness(x)
y=(1/120)*sqrt((.300105*(39*\operatorname{cos}(3*x(1))+39*\operatorname{cos}(3*x(2))+39*\operatorname{cos}(3*x(3))+39*\operatorname{cos}(3*x(4))+39*
cos(3*x(5)))))^2
+
(.18*((39*\operatorname{cos}(5*x(1))+39*\operatorname{cos(5*x}(2))+39*\operatorname{cos}(5*x(3))+39*\operatorname{cos}(5*x(4))+39*\operatorname{cos}(5*x(5)))))\mp@subsup{)}{}{\wedge}2
+
(.128*((39*\operatorname{cos}(7*x(1))+39*\operatorname{cos}(7*x(2))+39*\operatorname{cos}(7*x(3))+39*\operatorname{cos}(7*x(4))+39*\operatorname{cos}(7*x(5)))))^2+
(.1*((39*\operatorname{cos}(9*x(1))+39*\operatorname{cos}(9*x(2))+39*\operatorname{cos}(9*x(3))+39*\operatorname{cos}(9*x(4))+39*\operatorname{cos}(9*x(5))))\mp@subsup{)}{}{\wedge}2);
```

End

Appendix (2): GA constraints function

Function[c,c_eq] = my Constraints (x)
$\mathrm{c}=[(.903 *(39 * \cos (\mathrm{x}(1))+39 * \cos (\mathrm{x}(2))+39 * \cos (\mathrm{x}(3))+39 * \cos (\mathrm{x}(4))+39 * \cos (\mathrm{x}(5)))-120) ;$.
$0.30010 *(39 * \cos (3 * x(1))+39 * \cos (3 * x(2))+39 * \cos (3 * x(3))+39 * \cos (3 * x(4))+39 * \cos (3 * x(5))) ;$.
$0.18 *(39 * \cos (5 * x(1))+39 * \cos (5 * x(2))+39 * \cos (5 * x(3))+39 * \cos (5 * x(4))+39 * \cos (5 * x(5))) ;$
$0.1286 *(39 * \cos (7 * x(1))+39 * \cos (7 * x(2))+39 * \cos (7 * x(3))+39 * \cos (7 * x(4))+39 * \cos (7 * x(5))) ;$
$0.1 *(39 * \cos (9 * x(1))+39 * \cos (9 * x(2))+39 * \cos (9 * x(3))+39 * \cos (9 * x(4))+39 * \cos (9 * x(5)))]$; c_eq = [];

End

Appendix (3): GA Main Function

ObjFcn $=@$ myFitness;
nvars $=5$;
$\mathrm{A}=[1-1000 ; 01-100 ; 001-10 ; 0001-1 ; 000000$;
$\mathrm{b}=[0 ; 0 ; 0 ; 0 ; 0]$;
$\mathrm{LB}=\left[\begin{array}{llll}0 & 0 & 0 & 0\end{array} 0\right]$;
$\mathrm{UB}(1: 5)=\mathrm{pi} / 2$;
ConsFcn $=@$ myConstraints;
options = gaoptimset(@ ga);
options $=$
gaoptimset(options,'PlotFcn', \{ @ gaplotbestf,@ gaplotstopping, @gaplotdistance, @gaplotscores, @g aplotselection, @gaplotexpectation, @gaplotscorediversity\},'Display','diagnose',
'MutationFcn',@mutationadaptfeasible,'Tolcon',
1e-39,'PopulationSize',800,'Generations',70);
$[\mathrm{x}, \mathrm{fval}]=\mathrm{ga}($ ObjFcn,nvars,A, $\mathrm{b},[\mathrm{]},[\mathrm{]}, \mathrm{LB}, \mathrm{UB}$, ConsFen,options $) ;$

Appendix (4): ANN Algorithm

$\mathrm{v} 1=40.94$;
$\mathrm{v} 2=40.19$;
$\mathrm{v} 3=39.72$;
v4=36.7;
v5=34.64;
v6=27.19;
v7=40.43;
v8=35.93;
v9=39.95;
v10=22.01;
v11=34.02;
v12=40.68;
v13=36.49;
v14=39.48;
v15=35.29;
v16=37.34;
v17=36.78;
v18=29.36;
v19=29.17;
$\mathrm{v} 20=28.93$;
v21=18.35;
$\mathrm{v} 22=22.22$;
v23=27.19;
v24=40.03;
v25=38.56;
v26=39;
v27=38;
$v 28=37 ;$
v29 = 36;
$\mathrm{v} 30=45$;
$\mathrm{v} 31=35$;
$v 32=34 ;$
v33=33;
$v 34=32$;
$v 35=31$;
v36=31;
v37=33;
v38=35;
v39=37;
$v 40=39 ;$
$\mathrm{v} 41=32$;
$v 42=34 ;$
$v 43=36 ;$
v44=38;
$\mathrm{v} 45=40$;
v46=39;
$\mathrm{v} 47=39$;
$v 48=39 ;$
v49 $=39$;
$v 50=39$;
a1 $=0.1457$;
$a 2=0.3763$;
a3 $=0.6685$;
a4=1.0334;
a5=1.5445;
$\mathrm{a} 6=0.1359$;
$\mathrm{a} 7=0.3362$;
a8 $=0.6408$;
a9 $=1.027$;
$\mathrm{a} 10=1.5457$;
a11 $=0.1467$;
a12 $=0.3545$;
$\mathrm{a} 13=0.6508$;
a14=1.0261;
a15=1.5532;
a16=0.1512;
a17 $=0.3116$;
a18 $=0.6186$;
a19 $=0.7656$;
$\mathrm{a} 20=1.412 ;$
$\mathrm{a} 21=0.1531$;
a22 $=0.2458$;
$\mathrm{a} 23=0.318$;
a24 $=0.6447$;
a25=1.0507;
a26=0.1494;
$a 27=0.377$;
a28 $=0.6655$;
a29=1.0324;
$\mathrm{a} 30=1.5488$;
a31 $=0.1495$;
a32 $=0.3785$;
$\mathrm{a} 33=0.6673$;
a34=1.0328;
a35=1.5482;
a36=0.1587;
a37=0.3383;
a38=0.6326;
a39=1.0191;
$\mathrm{a} 40=1.5533$;
$\mathrm{a} 41=0.1549$;
a42 $=0.3444$;
$\mathrm{a} 43=0.6359$;
$a 44=1.024 ;$
$\mathrm{a} 45=1.555$;
a46=0.1525;
$\mathrm{a} 47=0.3622$;
$\mathrm{a} 48=0.6531$;
a49=1.025;
a $50=1.5496 ;$

```
v={[v1, v6, v11, v16, v21, v26, v31, v36, v41, v46;
    v2, v7, v12, v17, v22, v27, v32, v37, v42, v47;
    v3, v8, v13, v18, v23, v28, v33, v38, v43, v48;
    v4, v9, v14, v19, v24, v29, v34, v39, v44, v49;
    v5, v10, v15, v20, v25, v30, v35, v40, v45, v50]};
a={[a1, a6, a11, a16, a21, a26, a31, a36, a41, a46;
    a2, a7, a12, a17, a22, a27, a32, a37, a42, a47;
    a3, a8, a13, a18, a23, a28, a33, a38, a43, a48;
    a4, a9, a14, a19, a24, a29, a34, a39, a44, a49;
    a5, a10, a15, a20, a25, a30, a35, a40, a45, a50]};
net1= newff(v,a,{10 10},{'tansig' 'tansig' 'purelin'});
view (net1);
rng('default');
net1.trainParam.epochs = 2000;
net1.trainParam.Momentum = 0.9;
net1.trainParam.InitialLearnRate = 1e-5;
net1.trainParam.L2Regularization = 0.09;
net1.trainParam.MiniBatchSize = 5;
net1.trainParam.Iter = 5000;
net1.trainParam.lr_inc = 1.09;
net1.trainParam.lrgdm=0.01;
net1.trainParam.goal=1e-40;
net1.trainParam.min_grad = 1e-30;
net1.trainParam.max_fail=6;
```

```
net1.performParam.regularization =0.5;
net1.divideParam.trainRatio = 75/100;
net1.divideParam.valRatio =25/100;
net1.divideParam.testRatio =25/100;
net1.trainParam.show = 5;
net1.performFcn = 'msereg';
net1.trainParam.mu=1e-50;
net1.trainParam.mu_inc = 1.005;
net1.trainParam.mc = 0.8;
stream = RandStream.getGlobalStream;
reset(stream);
perf = mse(net1, v, a, 'regularization', 0.02);
net1.performFcn
[net1,tr] = traingda(net1,v,a);
y = net1(v);
[r,m,b] = regression(a,y);
plotregression(a,y)
outputs = net 1(v);
errors = gsubtract(a,y);
performance = perform(net 1,a,y);
figure, ploterrhist(errors);
gensim(net1,1);
```

Appendix (5): Solar Module

Appendix (6): Pulse Width Modulator

Appendix (7): Eleven-Level Inverter

Appendix (8): The SIMULINK Model of Multilevel Inverter (left half)

Appendix (8): The SIMULINK Model of Multilevel Inverter (right half)

