Complementary Buck-Boost Converter with Variable Voltage Tracking System for Photovoltaic Applications

Sameer Khader
Electrical & Computer Engineering Department
Palestine Polytechnic University, Hebron, Palestine
E-mail: sameer@ppu.edu
Tel: +970-2-2230068; Fax: +970-2-2217248

Abstract

This paper proposed solutions for enhancing the behaviors of photovoltaic generation module (PV Array) with and without using buck-boost converter for realizing constant output voltage according to reference voltage at constant and variable solar irradiation. The proposed solutions describe single and double buck-boost (complementary) dc chopper with presence of various control strategies/modules such as pulse width modulation, maximum power point tracking strategy (MPPT) and variable voltage tracking strategy (VVT). The obtained results according to proposed models state that complementary chopper realized better performances in case of VVT strategy rather than MPPT control strategy when direct grid connection is required as major criteria for constant output voltage. As first stage Matlab/ Simulink is used to simulate the proposed models, where the obtained analytical and simulation results are going to be experimentally verified in the second stage of this work.

Keywords: Photovoltaic systems, DC Choppers, Smart Grids, PWM, Soft Switching.

1. Introduction

Photovoltaic energy resources presents alternative and friendly to the environment sources. It presents unique solution for providing remote area with clean and sustainable energy during the daytime in heating, lighting, refrigeration and water pumps systems without the need of battery system(Ho-sung et al, 2009; Tseng S.Y et al, 2008; Khaligh, 2008). While during the night time the accumulated energy can be fully or partially used to cover the energy domain. The output circuit connected to the photovoltaic system is usually dc-dc converter mainly boost chopper in order to boost the voltage to the predetermined levels.

The DC/DC converters are widely used in regulated switch mode power supplies, where the input voltage to these converters varies in wide range especially in the case of photovoltaic (PV) supply source due to unpredictable and sudden change in the solar irradiation level as well as the cell operating temperature. Several connection topologies concerning the switching systems have been proposed (Ahmed, 2005; Balkarishnan et al, 2008; Santos et al, 2006) aiming at realizing the required voltage level during different periods of day for certain applications such as pumps, motors in general and power supplies.

During the design process of PV array powered systems; a simulation must be performed for system analysis and parameter settings. Therefore an efficient user friendly simulation model of the PV
Complementary Buck-Boost Converter with Variable Voltage Tracking System for Photovoltaic Applications

array with various control strategies is always needed. The proposed model in this paper is based on circuitry model to be used with Simulink for various control strategies as follows:

- **Single and Double (Complementary) Buck-Boost Chopper:** this module boosts up the PV voltage to the predetermined levels. Conversely in case of high PV voltage, the output voltage is reduced.
- **Maximum Power Point Tracking Module (MPPT):** this module maintains the PV generated power at maximum level (Azab, 2008; Atlas and Sharaf, 2007).
- **Variable Voltage Tracking Module (VVT):** this module regulates the output chopped voltage according to predetermined level by controlling the buck chopper.
- **Variable Solar Irradiation Tracking Module (VGT):** this module generates gate pulses to the complementary boost chopper.

Figure 1 illustrates overall block diagram of the proposed simulation circuit, where the modules are connected in such a way to form the required design.

Figure 1: PV system block diagram

2. Modelling & Simulation of PV Array

Studying the behaviors of PV Array can be conducted as follows:

2.1. Characteristics of PV Array

Basically, PV cell is a P-N semiconductor junction that directly converts light energy into electricity. It has the equivalent circuit shown in Figure 2 (Chouder et al, 2006; Buresch, 1983).

Figure 2: Equivalent circuit of PV cell.
Where I_{ph} represents the cell photocurrent; R_p and R_s are the intrinsic shunt and series resistance of the cell respectively; I_d is the diode saturation current; V_o and I_o are the cell output voltage and current respectively. The following are the simplified equations describing the cell output voltage and current:

$$V_o = \frac{A.K.T_c}{q} \ln \left(\frac{I_{ph} + I_d - I_o}{I_o} \right) - R_s I_o$$ \hspace{1cm} (1)$$

$$I_o = N_p (I_{ph} - I_d \left(e^{\frac{q.V_o}{N_p.K.T_c}} - 1 \right))$$ \hspace{1cm} (2)$$

$$I_d = I_o. \left(\frac{T_c}{T_r} \right)^{\frac{q.E_g}{B.K.T_c}} \exp \left(\frac{1}{B.K.T_r} - \frac{1}{B.K.T_c} \right)$$ \hspace{1cm} (3)$$

$$I_{ph} = N_p \{ I_{sc}. \Phi_n + I_s(T_c - T_r) \}$$ \hspace{1cm} (4)$$

Where, K- Boltzman constant; N_p and N_s are the number of parallel and series connected cells respectively; E_g is the band gap of the semiconductor; T_c and T_r are the cell and the reference temperature respectively in Kelvin, A and B are the diode ideality factors where their values varied between 1 and 2; Φ_n is the normalized insulation; I_{sc} is the short circuit current given at standard condition; I_1 and I_{or} are constants given at standard conditions.

2.2. Modified Model for PV Array

With purpose simplifying the mathematical model Silvestre, Boronate, and Chouder (2009) propose modified model that takes into account the effect of changing cell temperature, solar irradiation and diode connection configuration. According to their method, for a known temperature and a known solar irradiation level, a model is obtained and then is modified to handle the different cases of temperature and irradiation level.

Let T_a and T_x are respectively ambient and actual cell temperature and G_c and G_x are reference cell irradiation and actual solar irradiation respectively, therefore their change affects both cell voltage and current leading to new obtained values as follows by applying scaling equations:

$$V_{ox} = C_{TV}.C_{GV}.V_o$$

$$I_{phx} = C_{TH}.C_{GH}.I_{ph}$$

Where C_{TV}, C_{GV}, C_{TH}, C_{GH} are scaling coefficients represents the effect of change in temperature and irradiation level over the cell voltage and current respectively. Atlas and Ashraf (2009) define the coefficients as follows:

$$C_{TV} = 1 + \beta_T(T_a - T_x)$$

$$C_{TH} = 1 + \beta_T \frac{A_T}{G_T} (T_a - T_x)$$

$$C_{GV} = 1 + \beta_G \frac{\alpha_S G_x}{G_c}$$

$$C_{GH} = 1 + \frac{1}{G_c} (G_c - G_x)$$

Where $\beta_T=0.0035$ and $\gamma_T=0.062$ are constants depends on the ambient temperature ($T_a=25^\circ$C). S_c and S_x are the actual and benchmark reference solar irradiations respectively; $\alpha_S=0.2$ is the slope of the change in the cell operating temperature due to a change in the solar irradiation level.

2.3. Maximum Power Derivation

In order to get the shape of the injected power to the grid, it is necessary to calculate the coordinates of the maximum power point (V_{MP}, I_{MP}). For this, and to simplify the model in Simulink, the coordinates of the maximum power point are given by the following equations:

$$I_{MP} = I_{ph} - I_d \left(e^{\frac{q.E_g}{B.K.T_c}} - 1 \right)$$
Complementary Buck-Boost Converter with Variable Voltage Tracking System for Photovoltaic Applications

\[V_{MPP} = V_T \ln \left(1 + \frac{I_{ph} - I_{MP}}{I_{ph}} (e^{\frac{V_{OC}}{I_T}} - 1) \right) \] \hspace{1cm} (8)

Where \(V_T \) and \(V_{OC} \) are the thermal voltage and the cell open circuit voltage respectively and given by:

\[V_T = \frac{K \cdot T_c}{q} \]

\[V_{OC} = V_T \ln \left(\frac{I_{cc}}{I_d} + 1 \right) \] \hspace{1cm} (9)

2.4. Photovoltaic Current and Power Performance

In order to study the I-V performance of the PV circuit and to look for appropriate dc chopper for boosting up the output voltage to predetermined value it is necessary to illustrate the obtained PV voltage, current and output power for single module according to specifications given in table1 at reference irradiation of 1000W/m².

Table 1: Data specification for PV Array.

<table>
<thead>
<tr>
<th>(q)</th>
<th>(K)</th>
<th>(I_{ph})</th>
<th>(I_d)</th>
<th>(R_S)</th>
<th>(R_P)</th>
<th>(T_c)</th>
<th>(I_{cc})</th>
<th>(V_{MPP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.602e-19 C</td>
<td>1.38e-23/K</td>
<td>4 A</td>
<td>0.2mA</td>
<td>1mΩ</td>
<td>10kΩ</td>
<td>25°C</td>
<td>4A</td>
<td>17.5V</td>
</tr>
<tr>
<td>(N_{pm})</td>
<td>(N_{pm})</td>
<td>(V_{pv _out})</td>
<td>(N_S)</td>
<td>(N_P)</td>
<td>(V_O)</td>
<td>(V_{DC})</td>
<td>(I_{MPP})</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>130V</td>
<td>38</td>
<td>4</td>
<td>0.6V</td>
<td>21.5V</td>
<td>3.7A</td>
<td></td>
</tr>
</tbody>
</table>

The Array voltage can be obtained by multiplying the module voltage and current by \(N_{pm} \) and \(N_{pm} \) representing number of series and parallel connected modules respectively. Figure3 illustrates the proposed PV array with R-L load built in simulink environment by using Matlab version R2008a, and the obtained results for different variation levels. From this performance it is shown that the total output PV voltage and current varies according to irradiation level with around 65W maximum power at G=1000W/m².

Figure 3: PV Array simulation model and its performances.

a) Proposed model in simulink environment
b) Solar irradiation profile.
3. Modelling and Simulation of Proposed Chopper Circuit

The reduction of output power can be attributed to many factors, but the most effected factors are the shadows and season change. Therefore, there is a need to boost up the output PV voltage to be suitable for domestic and industrial use without a need of battery during the daytime. Two circuits are proposed for this purpose:

- Single-chopper / boost converter.
- Double-chopper / boost converter.

3.1. Single Chopper PV Array

Figure 4 shows the electrical circuit of PV Array with single-chopper boost converter "Q₁" with PWM pulse generator "PG" required to boost up the PV voltage at rated values. According to Hart (2010) the boost inductance L_b is used to increase the output voltage and to maintain the current ripples within acceptable values, while the capacitor C_f is used to smooth the obtained chopped voltage. These elements depend on chopping frequency, duty ratio and circuit configuration.
Complementary Buck-Boost Converter with Variable Voltage Tracking System for Photovoltaic Applications

The output PV voltage V_{pv} fluctuates between minimum and maximum values resulting in duty cycle change in order to maintain the output voltage V_o at a fixed value. The PV voltage can be expressed as follows:

$$V_{pv} = V_o(1 - D) + \frac{V_o \cdot r_L}{R(1 - D)}$$ \hspace{1cm} (10)

Where D is the duty ratio; R is the load resistance; r_L is the inductance resistance; f_{ch} is the chopper frequency. Selecting L_b requires determination of the circuit inductance for worst variation conditions of PV voltage, current ripples and duty cycle as follows:

$$v_{pv}, l_b = V_o, I_o + I_c^2 \cdot r_L, I_o = \frac{V_o}{R}$$

$$L_{b1} = \frac{V_{pv} \min \cdot D_1}{\Delta \it{l}_{\max} \cdot f_{ch}}$$

$$L_{b2} = \frac{V_{pv} \max \cdot D_2}{\Delta \it{l}_{\min} \cdot f_{ch}} \Rightarrow L_b \geq \left (L_{b1} \text{ or } L_{b2} \right)_{\max}$$

Where V_o and I_o are total PV average voltage and load current; D_1 and D_2 are duty cycles that can be determined by solving the following equations:

$$V_{pv} \min = V_o(1 - D_1) + \frac{V_o \cdot r_L}{R(1 - D_1)} \Rightarrow D_1 = \left (D_{x1} \text{ or } D_{y1} \right)_{\min}$$

$$V_{pv} \max = V_o(1 - D_2) + \frac{V_o \cdot r_L}{R(1 - D_2)} \Rightarrow D_2 = \left (D_{x2} \text{ or } D_{y2} \right)_{\min}$$

Where D_{x1}, D_{y1}, D_{x2} and D_{y2} are corresponding roots for $V_{pv} \min$ and $V_{pv} \max$ respectively. Δl_{\max} and Δl_{\min} are maximum and minimum inductance current fluctuations that can be determined as follows:

$$I_{l_{x1}, y1} = \frac{V_{pv} \min \pm \sqrt{V_{pv} \min^2 - 4 r_L V_o I_o}}{2 r_L} \Rightarrow I_{l_{\max}} = \left (I_{l_{x1}} \text{ or } I_{l_{y1}} \right)_{\min}$$

$$I_{l_{x2}, y2} = \frac{V_{pv} \max \pm \sqrt{V_{pv} \max^2 - 4 r_L V_o I_o}}{2 r_L} \Rightarrow I_{l_{\min}} = \left (I_{l_{x2}} \text{ or } I_{l_{y2}} \right)_{\min}$$

$$\Delta l_{\min} = \Delta l_{\min} \% \cdot I_{l_{\min}} ; \Delta l_{\max} = \Delta l_{\max} \% \cdot I_{l_{\max}}$$

The required capacitor is calculated for the case of $V_{pv} \min$ and maximum duty cycle D_{\max} with expression:

$$C_f = \frac{D_{\max}}{R \left (\Delta V_o / V_o \right) \cdot f_{ch}} ; \quad D_{\max} = D_1$$

Where ΔV_o is the output voltage ripples.

3.2. Simulation Results

Single-chopper PV array analyzed for two irradiation cases 1200W/m2 and 400W/m2, where the obtained results are stated in table 2 and the simulation results are displayed in Figure 5. From these figures it can be shown that the obtained output chopped voltage differs from the reference voltage which means additional circuit modification is needed in order to compensate this difference.
Table 2: Single-chopper analyzed results.

<table>
<thead>
<tr>
<th>G, W/m²</th>
<th>V_{in}, V</th>
<th>V_{out}, V</th>
<th>R_{Ω}</th>
<th>D_{1,2}</th>
<th>L_{b1,2}, mH</th>
<th>C_{p}, nF</th>
<th>f_{ch}, kHz</th>
<th>I_{max}, A</th>
<th>I_{min}, A</th>
<th>r_{L, Ω}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1200</td>
<td>145</td>
<td>220V</td>
<td>44</td>
<td>0.71</td>
<td>1.42</td>
<td>16.1</td>
<td>20</td>
<td>3.25</td>
<td>17.6</td>
<td>7.76</td>
</tr>
<tr>
<td>400</td>
<td>77</td>
<td></td>
<td>0.36</td>
<td>3.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5: PV Array performances at various irradiations.

![PV voltage at various irradiations](image)

![Reference & actual average voltage for different irradiations](image)

a) PV voltage at various irradiations. b) Output voltage at various irradiations.

3.3. Double-Chopper PV Array

Compensating the voltage difference mentioned in previous paragraph could be achieved by adding another parallel connected inductance with complementary operated chopper (double-chopper circuit) as shown in Figure 6. Two operation modes are described concerning the current change in boost inductances as follows:

Figure 6: Complementary chopper circuit

Mode#1: Q₁=ON and Q₂=OFF; for the time 0≤t ≤D·T_{ch},

\[
(\Delta i_{L_{b1}})_{ON} = \frac{V_{pp}}{L_{b1}} D_{Q_1}.T_{ch} \]

\[
(\Delta i_{L_{b2}})_{OFF} = \frac{V_{pp} - V_o}{L_{b2}} \left(1 - D_{Q_2}\right).T_{ch} \]

Mode#2: Q₁=OFF and Q₂=ON; for the time D·T_{ch} ≤ t ≤T_{ch},

\[
(\Delta i_{L_{b1}})_{OFF} = \frac{V_{pp} - V_o}{L_{b1}} \left(1 - D_{Q_2}\right).T_{ch} \]

\[
(\Delta i_{L_{b2}})_{ON} = \frac{V_{pp}}{L_{b2}} D_{Q_2}.T_{ch} \]
Complementary Buck-Boost Converter with Variable Voltage Tracking System for Photovoltaic Applications

Where L_{b1} and L_{b2} are boost inductances for both branches respectively and they are equals each other; $T_{ch}=1/f_{ch}$ is the chopping period; and D_{Q1} and D_{Q2} are the duty cycles for Q_1 and Q_2 respectively.

According to volt-second balance principle, the current change in the inductance over the chopping period equals zero, thus:

$$\frac{V_{pp}}{L_{b1}} D_{Q1} T_{ch} + \frac{V_{pp}}{L_{b1}} - V_{o} (1 - D_{Q1}) T_{ch} = 0$$

$$\frac{V_{pp}}{L_{b2}} D_{Q2} T_{ch} + \frac{V_{pp}}{L_{b2}} - V_{o} (1 - D_{Q2}) T_{ch} = 0$$

Solving these equations yield the overall duty cycle and the known boost equation:

$$D = D_{Q1} = D_{Q2}$$

$$V_o = \frac{V_{pp}}{1 - D}$$

The actual average voltage $V_{out}'=V_{out}$ of both choppers operation can be determined as follows:

$$V_{out}' = \frac{1}{T_{ch}} \left\{ \int_0^{t_1} (V_{pp} + V_{Lb1}) dt + \int_{t_1}^{t_2} (V_{pp} + V_{Lb1}) dt \right\}$$

$$V_{Lb1} = L_{b1} \frac{di(t)}{dt}, \quad V_{Lb2} = L_{b2} \frac{di(t)}{dt}$$

$$t_1 = D T_{ch}, \quad t_2 = (1 - D) T_{ch}$$

The obtained simulation result for average output voltage V_{out} is displayed in Figure 7(a), while Figure 7(b) shows the difference in output voltage when adding the compensation contour.

Figure 7: Output voltage for both chopper circuits.

4. **Proposed Control Modules**

Knowing that the irradiation level varies during the day time, causing significant change in the output chopped voltage for series connecting arrays as shown in Figure 8 where two levels of irradiation change were taken as case study. Therefore, the task is to design a control module/s that should maintain the output voltage at constant value irrespective of irradiation level change.
Three control modules are described as follows:

4.1. Variable Voltage Tracking Module (VGT)

The actual irradiation is compared with reference value, where gate pulses are generated for controlling the boost complementary chopper according to irradiation difference. Figure 9 illustrates the designed flowchart and matlab/simulink model describing the operation of proposed module.

Figure 9: Algorithm flowchart & simulink model of VGT module

```
Start

Read GA, GR, GV

KR = GR * 2 / CE
KL = GA * CE
K2 = GA * 2 / CE
K1 = K1 + KR
K2 = K2 + KR
K3 = K3 + KR

No

Vc = K1

Yes

K >= 0

Vc = K3

V = Vp * sin(omega)

No

Yes

V >= 0

Pulse = 0

Pulse = Vc / VS

Chopper QU End
```

a) Algorithm flowchart
Complementary Buck-Boost Converter with Variable Voltage Tracking System for Photovoltaic Applications

4.2. Maximum Power Point Tracking Module (MPPT)

MPPT tracking system is used to operate the converter at maximum extracting power from the PV source by generating switching pulses with variable duty cycle. Observation and Perturbation approach is applied for present work with flowchart proposed by Azab (2009).

4.3. Conventional PG control

A Pulse width generator (PG) is used to drive the complementary chopper with \(D_{\text{max}} = 0.71 \) and chopping frequency \(f_{\text{ch}} = 20 \) kHz. The illustration of this module is just for conducting comparison between various modules, and no longer will be described.

The obtained simulation results for these modules are displayed in Figure 10, where it is shown that the average output voltage increases by increasing the irradiation but with different increment rate depending on the applied modules. Furthermore the obtained voltage is far from the predetermined reference value, which means additional buck converter should be used in order to compensate the voltage difference.

Figure 10: Output voltage at various control modules & irradiations
5. Complementary-Buck-Boost Converter

5.1. Proposed Circuit

According to obtained results in previous paragraph the chopped voltage still needs further treatment in order to maintain it at reference value. This could be achieved by applying complementary buck-boost chopper displayed in Figure 11, where additional buck converter with switch Q3 is added to the boost circuit and corresponding control model called Variable Voltage Tracker "VVT" is added to the circuit.

![Figure 11: Complementary buck-boost circuit](image)

5.2. Results & Comparison Analysis

5.2.1. Average Output Voltage

The obtained output voltage after adding buck converter is:

\[V_{out} = V_{in} \cdot D_{Q3}; \quad 0 \leq D_{Q3} \leq 1 \]

(19)

Where \(D_{Q3} \) is the duty cycle of buck converter controlled by VVT module.

The implemented control modules in previous paragraph are simulated with adding module, where the obtained results at the same conditions are displayed in Figure 12(a). It is shown...
Complementary Buck-Boost Converter with Variable Voltage Tracking
System for Photovoltaic Applications

that combination control of VGT and VVT results good coincidence between the output and reference voltage.

Furthermore, adding the capacitors results smoothing and stabilizing of V_{out} at low rate of irradiation levels as shown in Figure 12(b). These results present satisfied solution of aforementioned task.

Figure 12: Output voltage at various irradiances and control modules.

![Figure 12](image)

(a) Dynamic performance of output voltage.
(b) Output voltage vs irradiation level.

5.2.2 Constant & Variable Output Voltage

Consider shadow weather causes significant variation in irradiation levels, therefore keeping the output voltage at constant value requires regulating both D_1 and D_{Q3} throughout VGT & VVT modules.

Figure 13(a) shows the irradiation variation and output voltage and current at constant reference voltage. It is shown that these modules functioned correctly and keeping V_{out} at constant value, while Figure 13(b) shows the variation in output voltage according to the reference voltage change at constant irradiation.

Constant irradiation status found applications in heating, lighting and motor speed control without the need of battery system, and can be directly operated during the daytime.

Figure 13: Output voltage at various operation cases

![Figure 13](image)

(a) Output voltage at constant reference voltage and variable irradiation
(b) Output voltage at variable reference voltage and constant irradiation
5.3. Complete Circuit Model
The complete circuit model built in matlab/simulink environment for PV complementary buck-boost converter is illustrated in fig.14, where the PV Array, power converter, and control modules are together connected and normally functioned.

Figure 14: Complete circuit model built in matlab/Simulink

6. Conclusion
This paper introduces a simulation model for complementary buck-boost dc chopper to be used in Matlab/simulink environment. The conducted simulation procedure covers photovoltaic array model, maximum power point tracking system, variable voltage tracking system, variable irradiation tracking system and buck-boost dc converter.

The proposed model has generalized structure so that it can be used as a direct PV power generator along, or integrated with either DC or AC converter.

Introducing VGT & VVT modules realized output voltage regulation irrespective of irradiation level which is perfect solution for direct PV energizing during the daytime at shadow weather conditions or weak solar irradiations. Meanwhile the output voltage can be regulated for certain application purposes with assumed reference voltage.

Optimum operation of this circuit can be realized by appropriate selection of filtering capacitors at VVT-VGT control approach, where the rated voltage can be achieved at low rate of solar irradiations.

Excluding the battery operation during the daytime reduces the system cost, increases its efficiency and life time.

This model can be considered as a part of hybrid energy system that uses both PV and AC grid.

References
Complementary Buck-Boost Converter with Variable Voltage Tracking
System for Photovoltaic Applications