Palestine Polytechnic University

College of Engineering & Technology
Mechanical Engineering Department

Graduation Project
Design and Building of Furnace for Testing
Fire Rated Doors

Project Team
Mohammed Abu-Iram
Ismael Khlawi

Project Supervisor
Eng. Mohammad Awad

Hebron-Palestine
January - 2009
Acknowledgment

Our thanks go first to our advisor Eng. Mohammad Awad. His guidance and support made this work possible. His constant encouragement, intuitive wisdom, and resolute leadership were instrumental in completing this work.

We wish to thank Eng. Kathem Osily and Dr. Ishaq Sider. We sincerely believe that their work would not exist without his inspiration.

And, finally, our ultimate thanks go to all lecturers, doctors, engineers, and laboratories supervisors. For their efforts and their nice dealing with us improved our characters to become successful Engineers in the future, and a special thanks to Eng. Zuheir Wazwaz, and Dr. Maher Al-Jabari their great helping in preparing this project.
Abstract

Today's our life is full of fire risks, Which encouraged all interesting persons in this field to think of ways of minimizing in our country investment in this field like other manufacturers in other countries and according to then, those doors are carefully designed to provide the appropriate level of fire resistance in the most cost effective light quality package possible.

The lack of testing furnace in the filed of the corresponding organization, (Palestinian Standard Institution); which is responsible for giving the approval certificate for such product and the light cost of testing these products in foreign countries, make it necessary and benefit to design and build a furnace to help us and the interesting persons in performing an extensive fire resistance testing and engineering analyses to show whether those doors are able to perform as claimed or not.

In this project a comprehensive and detailed analysis and discussion of fire resisting doors, testing methods, design and building of the testing devices and furnace in accordance with the national and other international standard, in: regards with those products is performed and presented.
Table of Contents

Chapter One

INTRODUCTION

1.1 General Introduction .. 2
1.2 Time Table .. 4

Chapter Two

FIRE RESTRICTING DOORESET

2.1 Introduction ... 6
2.2 Fire Resistance of Dourest ... 6
2.3 The Fire resisting Doorset .. 7
2.4 In Tunescent Strip ... 8
2.5 Items of Ironmongery .. 8
2.6 Fire Door Instillation ... 10
2.7 Fire Door Construction .. 10
Chapter Three

NORMS AND STANDARDS

4. 1 General Introduction ... 14
3. 2 Definitions .. 14
3. 3 Test Equipment ... 15
3. 4 Furnace .. 16
3. 5 Temperature .. 16
3. 6 Plate Thermometers .. 19
3. 7 The PT is Sensitive to Radiation 19
3. 11 Furnace pressure .. 21
3. 12 Furnace Oxygen Concentration 22
3. 13 Furnace Velocity Distribution 23
3. 14 Gas Temperature Measurements 24
3. 15 Furnace Lining Material 24
3. 16 Minimum Furnace Depth 26
3. 17 Secondary Air Capability 27
3. 18 Exhaust Control ... 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Four</td>
<td></td>
</tr>
<tr>
<td>Furnace Dimensions and Design Conditions</td>
<td></td>
</tr>
<tr>
<td>4.1 Furnace Dimensions and Design Conditions</td>
<td>13</td>
</tr>
<tr>
<td>4.2 Furnace Conditions</td>
<td>29</td>
</tr>
<tr>
<td>4.2.1 Furnace Ceiling</td>
<td>30</td>
</tr>
<tr>
<td>4.2.2 Furnace Floor</td>
<td>31</td>
</tr>
<tr>
<td>4.2.3 Furnace Walls</td>
<td>32</td>
</tr>
<tr>
<td>4.4.4 U-Value For the Door</td>
<td>33</td>
</tr>
<tr>
<td>4.3 Heat loss Calculation</td>
<td>34</td>
</tr>
<tr>
<td>4.3.1 Convection and Conduction Heat loss</td>
<td>34</td>
</tr>
<tr>
<td>4.3.2 Radiation Heat loss</td>
<td>36</td>
</tr>
<tr>
<td>4.3.3 Sensible heat</td>
<td>37</td>
</tr>
<tr>
<td>4.4 Type of Burner</td>
<td>40</td>
</tr>
<tr>
<td>4.5 Burner Fuel</td>
<td>41</td>
</tr>
<tr>
<td>4.6 Control</td>
<td>42</td>
</tr>
<tr>
<td>4.7 Test Report</td>
<td>42</td>
</tr>
<tr>
<td>4.8 Summary of Recommendation</td>
<td>44</td>
</tr>
<tr>
<td>4.8.1 Furnace Instrumentation Recommendations</td>
<td>44</td>
</tr>
<tr>
<td>4.8.2 Furnace Operations Recommendations</td>
<td>44</td>
</tr>
</tbody>
</table>
Appendix

Appendix 1 Super Nemex company .. 51
Appendix 2 Flexible in tumescent seal 54
Appendix 3 Ideal Gas Specific Heats Various Gases 57
Appendix 4 Same properties of Air 59
Appendix 5 Flam Temperature of Same Gases 60
Appendix 6 Eco Flam Catalogs ... 61

References ... 51

List of Figures

Chapter Two

FIRE RESTRICTING DOORESET

Figure (2.1) The Fire Resisting Doorset 7
Figure (2.3) Deadbolt .. 9
Figure (2.4) Glazing .. 9
Figure (2.5) Fire Door Construction 10
Chapter Three

NORMS AND STANDARDS

Figure (3.1) Standert Time Temperature Curve ..17
Figure (3.2) Plate Thermometers placement ..19
Figure (3.3) Plate Thermometers ...20
Figure (3.4) Basic Design ..20
Figure (3.3) Pressure Sensing Heads ..21

Chapter Four

Furnace Dimensions and Design Conditions

Figure (4.1) Furnace Dimension ...21
Figure (4.7) Construction of the Ceiling ..31
Figure (4.2) Construction of the Floor ...32
Figure (4.3) Construction of Walls ..33
Figure (4.4) Construction of Door ...43
Figure (4.4) The Relation Between (Q&t) ...50

Chapter Four

Furnace Dimensions and Design Conditions

Table (4.1) Overall Heat Transfer Coefficient for the Ceiling
Table (4.2) Overall Heat Transfer Coefficient for the Floor
List of Tables

Chapter One
INTRODUCTION

Table (1.1) Time Table ... 4

Chapter Two
FIRE RESTRICTING DOORESET

Chapter Three
NORMS AND STANDARDS

Chapter Four
Furnace Dimensions and Design Conditions

Table (4.1) Overall Heat Transfer Coefficient for the Ceiling 32
Table (4.2) Overall Heat Transfer Coefficient for the Floor 32
List of Symbols

- Q: Total load
- A: Area
- U: Overall heat transfer coefficient
- T: Temperature
- R_0: The total Thermal Resistant
- v: Velocity
- C_p: Specific heat at constant pressure
- h: The convection heat transfer coefficient
- ε: Emissivity of the surface
- P: Pressure
- ε: Stefan Boltzmann constant
- t: Time
- ρ: The density of the air
- V: The volume of the furnace
- R: Ideal gas constant
- M: Mass
Chapter One

INTRODUCTION
INTRODUCTION

1.1 General Introduction

The concept of keeping the occupants of some domestic and most commercial buildings safe in case of fire relies upon separating whole buildings into smaller compartments, thereby keeping the fire in the compartments where it starts, and or creating safe, fire protected routes to aid escape.

This is done by making the walls, ceiling, doors etc. of the compartment or escape route "fire resisting". Of course, as people go about their day-to-day business they will want pass from compartment to the other, hence the need for fire doors. It is obvious that, for fire safety to be maintained, these door sets must have the same fire resistance as the rest of the compartment or requirements for the door sets will be stated in the appropriate national building regulations and other regulations or requirements in this regards that may be found in the Palestinian standards.

Today, any one can easily notice the increase demand of installing the fire rated (fire resisting) doors in both the private and public establishments especially hospitals, schools, office buildings etc. This demand make some interested people in the industrial section to think in manufacturing such a product.

Super Nimer Industry and Investment Company is the first and the leading factory in our country in this field, this factory which was established since in many years tried to develop and innovate its products using today's technology and was
succeeded in producing a different type and models of doors from among is the fire rated doors.

For this and other firms producing such a product, and in order to get the authorized (supervision or quality) certificate from the Palestinian standard institution, they need to build a furnace, to test their products. As there is no such possibilities available in our country, they used to send their products to foreign countries for testing which costs them too much (10 to 15 thousands of dollars for each test in a rate of at least two times per year).

The goal of this project is to identify the needed capabilities, design and build of a special furnace to be used in testing the fire rated doors in comparatively economic and efficient way in compliance with the international standards. The major contributions and studies made in each chapter cab be:

The introduction to fire restricting door sets, structure and component of the fire rated door, ironmongery, in tumescent strips, glazing, and glossary of terms that may be encountered in association with fire resisting doors are identified and presented in chapter two.

In the next chapter, the national and other international standards and regulations or requirements related to this topic will be explained and studied. The test equipments and testing methods are also discussed. Theory and calculations for the design of the furnace, construction of furnace walls, ceiling, floor and the selection of burner capacity and fuel type used in the furnace are analyzed and discussed in chapter four.

The next chapter will discuss the cost of building the furnace, testing cost and the result obtained from the tests and the capability of getting the supervision certificate for the door from Palestinian Standard Institution.
The appendices give the details of views of the factory and furnace and the catalogues used for the selection of the burner.

1.2 Timetable

Table 1.1: Time Table

<table>
<thead>
<tr>
<th>Subject</th>
<th>Week #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correcting the introduction</td>
<td></td>
</tr>
<tr>
<td>General study about the project</td>
<td></td>
</tr>
<tr>
<td>Search of sources</td>
<td></td>
</tr>
<tr>
<td>Study of Palestinian and global standard</td>
<td></td>
</tr>
<tr>
<td>Design prototype and system selection</td>
<td></td>
</tr>
<tr>
<td>Studying economic parameter</td>
<td></td>
</tr>
<tr>
<td>Preparing presentation</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER TWO

FIRE RESTRICTING DOORSETS
2.1 Introduction

As mentioned before, the need for fire doors is to keep the fire in the zone or the compartment where it starts and preventing it from spreading to the neighbor compartment. Also, the smoke and hot gases are not allowed to pass to the neighbor compartments or escape routes for period of time till the civil defense reaches the place.

2.3 Fire Resistance of Door set

The fire resistance of a door set is specified in terms of minutes, normally expressed as two separate figures. One figure is the time for which, in a fire resistance test, the door set would hold back the passage of flames and hot gases "integrity", the other figure being the time for which the door face that is not exposed to the fire would keep its temperature below a specified value "insulation". Doors are fire resistance tested by installing complete door sets (doors and frames, capable of normal operation) into a wall (normally masonry partition) forming one side of a furnace chamber. The furnace is lit, and its temperature is carefully controlled to comply with the requirements of the standard test method. The temperature reaches around 850°C in a half-hour test, and 950°C (or about 4 times as a domestic oven) in a one-hour test.

The testing laboratory will issue a test report, with details of the door construction tested and the test results. These documents are often referred to as 'certificates', when requested by building control or fire officers. Fire test reports
strictly only cover the exact specimens (samples) that were tested and it is, of course, impractical to test all product that are to be sold. For this reason, as we will see in the next chapter, the related standard introduce a "Certificate of Approval" within certain limitations to fully cover the complete range of doors from which the sample was chosen.

2.4 The Fire Resisting Door set

The door set consist of the door leaf itself plus frame and all the ironmongery essential for it to work normally (hinges, door closer and possibly a latch).

![Figure 2.1]

It is important to realize that a fire door leaf on its own, no matter how well made cannot be expected to provide its full fire resistance performance unless it is properly installed. This will usually require it being hung on hinges that will provide enough support, that will not melt or transmit too much heat through the leaf, in a
frame, which is of the appropriate good quality, using the appropriate edge protection to the leaf in the form of tumescent strips.

2.5 In tumescent Strip:

A strip of noncombustible material, which is installed (in a pre-grooved sleeve) in the edge of a leaf or in a frame reveal around a fire resisting door leaf. Strips are not normally fitted to the bottom edges of door leaves. When exposed to heat (from a fire) the strip swells up (expands at least 10 times its initial thickness), sealing the gaps around the leaf to stop the passage of smoke and hot gases and helping to hold it into the frame when the door closer and/or latches have stopped functioning. There are various types of tumescent strips, each of which has its own characteristics when it activates. Appendix 1 shows the specification of strip used in Super-Nimer fire doors. These strips are normally an essential part of any fire door that is to provide 30 minutes fire resistance or more.

2.6 Items of Ironmongery:

Hinges: should be made of metal with a melting point greater than 800°C.

Figure (2.2) Shows the size and type of hinge used in Super-Nimer doors.

Figure 2.2
Latches: having a square or rectangular case, fully enclosed in a mortice cut from the edge of the door leaf. Latches hold a door closed, and may or may not be lockable.

Deadbolt: A locking mechanism, normally operated by a removable key, may be similar in appearance and installation to knob sets or mortice latches.

Figure (2.3) Shows the type of Deadbolt used in Super-Nimer door.

Figure 2.3

Glazing: Glazing apertures cut in fire doors will affect the behavior of those doors when subjected to a fire (Figure 2.4). As with any fire door, the positions and sizes of these apertures must be within limits that are appropriate to the door. The cast or clear wired glass for use in fire doors must be a fire resisting type.

Figure 2.4
2.7 Fire Door Installation:

The correct installation of fire doors and door sets is fundamental to the overall performance they will achieve in the event of a fire and should only be carried out by competent and experienced professionals.

2.8 Fire Door Construction:

The fire door is constructed from two galvanized steel sheets of 1.5 mm thickness with a U or Z shaped supports of 1.5 mm thickness in between at 12cm apart. The space between the two sheets is filled with a fire resisting rock wool; the overall thickness of the door leaf is 5 cm. Figure 2.5 shows a cross section in the door leaf.

![Figure 2.5](image)

The steel sheets are first cut and shaped according to the required size, then the supports are shaped and welded to one face from inside, then the rock wool is placed in between the supports to fill the whole inside of the leaf, then the other face is welded to the supports. Although, width and height of the door leaf is fixed in
accordance with the customer request, there are generally some standard sizes of the doors specified in accordance with some regulations.

As not all sizes and shapes are to be tested before being sold, all standards and regulations in this regard suggest that the manufacturer can produce a different size of doors varies from the specimen (sample tested) size with 10 – 15 % in width and height as will be seen in the next chapter.

CHAPTER THREE

NORMS AND STANDARDS
CHAPTER THREE

NORMS AND STANDARDS
3.1 Introductions

The international organization for standardization (ISO) is worldwide federation which deals with the preparation of international standard regarding fire behavior of building materials and building components. The Palestinian Standard Institution (PSI) has prepared a relevant standards. For more convenience some of the national and international standards related to this subject are listed in the list of references.

Those standards lay down definitions, requirements, test conditions and methods relating to fire protection technology for building components from among of them is the fire doors. In this chapter the definitions, requirements and test conditions and methods are briefly summarized and explained to give us an aid in the design of our furnace.

3.2 Definitions

For the purpose of this norm (PSI), the following definitions apply.

Calibration test: Producer to assess the test condition experimentally.

Deformation: Any change in dimension or shape of an element of construction due to structural and/or thermal actions. This includes deflection, expansion or contraction of elements.

Integrity: Ability of separating element of building construction, when exposed to fire on one side, to prevent the passage through it of flames and hot gases or the occurrence of flames on the unexposed side.

Insulation: Ability of separating element of building construction when exposed to fire on one side, to restrict the temperature rise of unexposed face to below specified level.

Neutral pressure plane: Elevation at which the pressure is equal inside the furnace.
Separating element: An element that is intended for use in maintaining separation between two adjacent areas of building in the event of a fire.

Supporting construction: That construction that may be required for the testing of some building elements into which the test specimen is assembled, such as the wall into which a door is fitted.

Test specimen: Element or part of building construction (door) provided for the purpose of determining either its fire resistance or its contribution to the fire resistance of another building element.

National floor level: Assumed floor level relative to the position of the building element in service.

3.3 Test equipment

Equipment employed in the conduct of the test consists essentially of the followings:

A specially designed furnace to subject the test specimen to the test conditions, control equipment to enable the temperature of the furnace to be regulated, equipment to control and monitor the pressure of the hot gases within furnace, equipment for measuring temperature in the furnace and on the unheated face of the test specimen, equipment for measuring the deformation of the test specimen, and equipment for evaluating test specimen integrity and for establishing compliance with the performance criteria (described later) and for establishing the elapsed time.

3.4 Furnace

The test furnace shall be designed to employ liquid or gaseous fuels [8] and may be designed to assemblies of more than one element can be tested.
simultaneously. The type of fuel to be in our design is the LPG gas since it is already available in the factory.

The furnace linings shall consist of materials with densities less than 1000 kg/m3 [20]. Such lining materials shall have thickness of 50 mm and shall constitute at least 70% of the internally exposed surface of the furnace.

The furnace should be installed in a laboratory of sufficient size to prevent the ambient air temperature in the vicinity of a separating element increasing by more than 10°C above the initial temperature whilst the test specimen is complying with the insulation criterion. The laboratory atmosphere shall be virtually drought free. The ambient air temperature shall be 20 ± 10°C at the commencement of the test and it shall be monitored at a distance of 1.0 m ± 0.5 m from the unexposed face under conditions such that the sensor is not affected by thermal radiation from the test specimen and/or furnace.

3.5 Temperature

Prior to the commencement of the test, the furnace temperature shall be less than 50°C. The commencement of the test shall be considered to be the moment when the program to follow the standard heating curve has been initiated. The elapsed time shall be measured from this point and all manual and automatic systems for measurement and observation shall begin or be in operation at this time, and the furnace shall be controlled to comply with the temperature conditions specified later.

The average temperature of the furnace shall be monitored and controlled such that it follow the relation [6].

\[T = 345 \log_{10}(8t+1) - 20 \] \hspace{1cm} (3.1)

Where
T: is the average furnace Temperature, ($^\circ$C).

t: is the time (minutes).

![Temperature-Time Graph](image)

Note: The following are the points that determine the curve:

- 538°C (1000°F) at 5 minutes
- 704°C (1300°F) at 10 minutes
- 949°C (1750°F) at 30 minutes
- 927°C (1740°F) at 1 hour
- 1010°C (1850°F) at 2 hours
- 1093°C (2000°F) at 4 hours
- 1260°C (2300°F) at 8 hours

Figur 3.1 Standard time-temperature curve

As tolerance, the percent deviation (de) in the area of the curve of the average temperature recorded by the specified furnace thermocouples versus time from the area of the standard time/temperature curve shall be within [8]

a) $de \leq 15\%$ for $5 < t \leq 10$

b) $de \leq 10\%$ for $10 < t \leq 3$
e) $\delta_e = 5\%$
 for $t > 30$

\[\delta_e = \frac{A - A_s}{A_s} \times 100\% \]

Where

δ_e : is the % deviation.

A : is the curve under curve up to time t.

A_s : is the area under the standard time/temperature curve.

t : is the time, in minutes.

All areas shall be completed by the same method, i.e. by the summation of areas
at intervals not exceeding 1 min for a) and 5 min for b), c) and d) and shall be
Calculated from time zero.

At any time after the first 10 min of test, the temperature recorded by any
thermocouple in the furnace shall not differ from the corresponding temperature of the
standard time/temperature curve by more than 10°C.

3.6 Plate Thermometers

The Plate Thermometers (PT) has a large exposed surface to make it more sensitive to
radiation than a standard thermocouple (TC). It is placed in the furnace so that it
receives the same radiation as the specimen. The back is insulated from radioactive
influence from the specimen.
3.6 Plate Thermometers

The Plate Thermometers (PT) has a large exposed surface to make it more sensitive to radiation than a standard thermocouple (T/C). It placed in the furnace so that it receives the same radiation as the specimen. The back is insulated from radioactive influence from the specimen.

![Diagram of Plate Thermometers](image)

Figure 3.2 Plate Thermometers place

The PT is very thin, only 0.7 mm. Therefore it responds nearly as quickly as a standard (T/C) to changes in furnace temperature. The time response is fast, thus the temperature delay is negligible except readings during the first few minutes of a standard ISO 834-1 test.
The PT is a simple and robust instrument. It can be used over and over again like ordinary T/C's. A shielded T/C (type K) is carefully welded or squeezed by mutual strips to a steel plate (see figure below). The plate thermometer is made of Inconel 600 stainless steel. The front side facing into the furnace is treated to give it an emissivity of about 0.8. The PT is mounted in the furnace with a supporting tube. The T/C shall be replaced after 50 h testing according to ISO 834-1 [10].

A mount with an internal thread may then be welded directly to the edge of the plate. A piece of stainless steel tubing of desired length may be screwed into this mount. The inside diameter of the steel tube should be at least 6.5 mm.
The PT is placed in the furnace near the specimen with the front-side facing the interior of the furnace. Additional PT’s are used to measure variations of the thermal impact along the surface of the specimen.

3.7 Furnace pressure

The pressure in the furnace shall be measured by means of one of the designs of sensors shown in the figure 3-2 (a, b).
A linear pressure gradient exists over the height of the furnace, and although the gradient will vary slightly as a function of the furnace temperature, a mean value of 8 Pa per meter height may be assumed in assessing the furnace pressure conditions.

The value of the furnace pressure at a specified height shall be the nominal mean value, disregarding fluctuations of pressure associated with turbulence, etc, and shall be established relative to the pressure outside the furnace at the same height. The furnace pressure shall be measured and recorded continuously or at intervals not exceeding 5 min at the control point, and controlled for the first 5 min from the commencement of the test to +5 Pa and for 10 min to +3 Pa. The furnace shall be operated such that a pressure of zero established at a height of 500 mm above the nominal floor level. However, the pressure at the top of the test specimen shall not be greater than 20 Pa, and the height of the neutral pressure plane shall be adjusted accordingly [15].
3.8 Furnace oxygen concentration

Furnace oxygen concentration should be measured in the furnace stack and maintained at greater than 6% during the test. Gas samples should be continuously drawn out of the duct through a sampling line and measured using a paramagnetic type oxygen analyzer. The recommended sampling probe should be similar to the sampling probe used in duct measurements of hood calorimeters. Arrange of oxygen levels may exist during the course of compartment fire this may vary from zero to several percent in the upper portions of a compartment during a fully-developed fires, from a fire resistance perspective. One of the implications of the presence of oxygen is that allows chare oxidization to occur which present in faster degradation of material. This has been noted a furnace testing, it is also desirable to have excess oxygen within the furnace to allow combustible test articles to burn as they could in compartment fires[9].

It is recommended that the oxygen concentration to during the test be above 6% during the furnace test. This was developed best on oxygen concentration requirements in other fire resistance test standards as well as oxygen concentration measured in the upper-layer of fully-developed fires. The fire resistance standards ISO 834-1 requires that minimum oxygen concentration of 4% be maintained within the test furnace during the course of the fire test[9].

3.9 Furnace Velocity Distribution

While it is important to crate realistic convective environment in the furnace, it is difficult to conduct meaningful velocity measurements in the furnace where the flow is expected to be complex, no velocity measurements recommended inside the furnace.
3.9 Gas temperature measurements

Specimen should be measured using aspirated thermocouples. Gas temperature should be measured at each location where a temperature profile is being measured. Aspirated thermocouples should be placed as close as possible to the test article surface.

Heat-transfer analyses of the assemblies may require the use of the gas temperature on both sides of the test article. Depending on the analysis, gas temperature may be needed to calculate the appropriate heat-transfer coefficient and may be used in defining the boundary condition.

Gas temperature should be measured as close as possible to the boundary surface to obtain a measure of the temperature affecting the convective heat-transfer at the surface. Using aspirated Thermocouples with high aspiration velocity provides a measure of the actual case temperature without the effects of radiation from the surrounding. This gas temperature measurements will be used to support heat-transfer calculations but will not be used to control furnace conditions.

3.11 Furnace Lining Material

All interior furnace surfaces should be lined with a ceramic fiber material.

Fire resistance furnaces have traditionally been lined with high temperature refractory brick materials commonly used in commercial furnaces. These refractory bricks are a low-density material (approximately 50 lbs/ft³ (775 kg/m³) and have a maximum operating temperature of approximately 2600°F (1425°C). When used in a fire resistance furnace, the refractory brick has a high thermal inertia, relative to the fire exposure period (typically 1 to 2 hours)[9].
This thermal inertia results in the refractory brick absorbing significant amounts of heat during the initial portions of the test (first 15 minutes), producing a dominantly convective heat environment within the test furnace.

The furnace environment within the furnace transitions to a highly radioactive environment once the brick temperature equalizes with the furnace air temperature.

To minimize the heating time of the furnace apparatus, thus resulting in less heat loss/absorption to the furnace walls, lining the inside surfaces of the furnace with a ceramic fiber insulating material is recommended. Experimental studies reported by Harada et al. (1997) demonstrated that a key aspect of the furnace environment was the absorption coefficient of the furnace gas, which is a function of gas temperature and the composition of the furnace gas[9].

Tests conducted in a furnace lined with a ceramic fiber insulation material demonstrated small variation in measured test specimen temperatures as a function of furnace depth, with variations decreasing as the furnace depth increases. A similar trend was observed in furnaces lined with refractory brick, however, the temperature measurement variations increased for the similar exposure conditions. These tests demonstrate the ability of the ceramic fiber to heat up faster, resulting in a more uniform exposure temperature, and the development of a radiation dominant furnace environment.

Analysis conducted by Babrauskas and Williamson (1978) support the use of ceramic fiber insulation materials used as the lining materials on developing a more uniform heat flux within the test furnace which results in improved furnace control[9].
3.12 Minimum furnace depth

Studies conducted by Harada et al. (1997) and Fromy and Curtat (1999) investigated the effect of furnace depth on the furnace environment. The work by Harada et al. (1997) evaluated furnace depth of 0.6 ft (0.17 m), 1.6 ft (0.5 m), 3 ft (0.95 m), and 9.8 ft (3.0 m).[9]

The results of the tests indicated that as the furnace depth increased, the radioactive heat increased proportionally. Furnace depth slightly greater than 4 ft (1.2 m) showed a convergence in the predicted specimen surface temperatures the non-dimensional furnace depth parameter, relates the furnace environment with the furnace depth. As depth increases, the exposed face specimen temperature uniformity converges.

Fromy and Curtat (1999) reported the results of testing conducted in furnaces having depth of 2 ft (0.6 m), 4 ft (1.2 m), and 5 ft (1.5 m). As the depth of furnace increased, variations in the exposed surface temperature decreased. These results indicated that as the depth of the furnace increased, the furnace environment volume become more uniform, and local effect from the burners and re-radiation from the furnace walls decreased.[9]

By increasing the non-dimensional furnace depth factor, a more uniform furnace environment can be produced. The studies reported above indicate that minimum furnace depth of 4 ft (1.2 m) would be expected to produce a uniform furnace environment which will reduce uncertainties and variability in the test conduct related to furnace construction.
3.11 Secondary Air Capability

when necessary, a means for providing secondary air should be provided such that the minimum oxygen content within a furnace is not less than 6%.

Maintaining a minimum oxygen concentration within the test furnace is desired to produce condition that could be obtained in compartment fire to support the combustion and char oxidation of combustible test samples such as wood. A minimum oxygen concentration of 6% was determined to be reasonable. A secondary air flow path into the furnace may be required to maintain the oxygen level, especially in case where the test article is combustible. Sufficient oxygen depletion due to burning test article[9].

3.12 Exhaust control

A mean for controlling the internal furnace pressure (e.g., damper in exhaust stack) should be provided.

Fully-developed fires will always produce a positive pressure gradient across ceilings and majority of the boundary height relative to ambient conditions. In these areas of positive pressure, hot gases are driven through small opening that develop in the assembly causing damage to the internal portions of the assembly. Gas migration through the assembly may also give rise to ignition on the unexposed side of the assembly in these local areas of weakness. As a result, it is recommended that furnace tests be performed with a positive furnace pressure so that the effects of hot gas transmission through the assembly can be observed.

Furnaces should contain a means for controlling the pressure inside furnace during the test. As described in the above, a positive furnace pressure (relative to the
laboratory) will be maintained across the entire test article in both vertical and horizontal tests. In vertical tests, the neutral plane in the furnace needs to be maintained at the bottom of the test article to have the entire test article at positive pressure. There should be no limit on the pressure at the top of the test article; for a 2.4-m (8-ft) high-test article the pressure at the top will be approximately 18-22 Pa depending on the gas temperature. In the horizontal tests, the furnace should be maintained at 20 Pa during the entire test. The damper system should be designed and demonstrated to be capable of meeting these requirements, with some lead way to account for leakage throw the assembly[9].
CHAPTER FOUR
LOAD CALCULATION
4.1 Furnace Dimensions and Design Conditions

The furnace shall be capable of subjecting one side of the specimen (door) to the heating conditions specified in ISO 834, and the furnace temperatures shall be measured with respect to the specimen and controlled within the tolerances specified in ISO 834. The complete assembly to be tested shall be full size.

The maximum dimensions of the fire-rated door produced Super Dimmer and to be used is $2 \times 2.1\text{m}$ for a single leaf (wing). So in order to reduce the cost of building the furnace and to be able to accommodate this door in the furnace wall, the suggested furnace dimensions with the agreement of the Palestine Standard Institution, were chosen to be $(1.2 \times 2.5 \times 2)\text{m}$ (see fig. 4.1).

![Diagram of furnace dimensions]

Figure 4.1: furnace dimension
4.2 Furnace Conditions:

The test shall be performed on a complete door assembly as intended to be used in practice incorporating all hardware and other equipment. Hardware includes such items as hinges, latches, door handles, locks, keyholes, letter plates, sliding year, closing devices, electrical wiring and any other items which may influence the performance of the door being tested. The door shall be tested in a wall of the type in which it is intended to be used, particularly when it forms part of a prefabricated or industrialized system. When this cannot be specified, the wall may be of concrete or brick having a thickness of (Ref. no) ISO 3008-1976 (E)

- about 100mm for a test having an anticipated duration of 2h or less.
- about 200mm for tests of longer duration.

For the case four furnace in this project, the walls, floor, and ceiling compositions and thickness selected to be as follows.

4.2.1- Furnace Ceiling

Figure 4.1 show a section in the ceiling. The composite materials with their thermal properties and the calculated overall heat transfer coefficient (U) are listed in Table (4.1)
Table 4.1: Overall heat transfer coefficient for the ceiling

<table>
<thead>
<tr>
<th>Material</th>
<th>K(W/m·°C)</th>
<th>ΔX(m)</th>
<th>R(m²·°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside air film</td>
<td>--</td>
<td>--</td>
<td>0.10</td>
</tr>
<tr>
<td>1-Itong block</td>
<td>0.45</td>
<td>0.05</td>
<td>0.105</td>
</tr>
<tr>
<td>2-Rook wool</td>
<td>0.04</td>
<td>0.05</td>
<td>1.25</td>
</tr>
<tr>
<td>3-Fire brick</td>
<td>0.47</td>
<td>0.05</td>
<td>0.106</td>
</tr>
<tr>
<td>Inside air film</td>
<td>--</td>
<td>--</td>
<td>0.02</td>
</tr>
</tbody>
</table>

\[U = 0.46 \text{ (W/ m²·°C)} \]

4.2.2- Furnace Floor

Figure 4.2 shows a section in the floor. The floor composite materials with their thermal properties and the calculated overall heat transfer coefficient (U) are listed in Table 4.2.

![Diagram of Furnace Floor](image)

Figure 4.2: Construction of the floor

Table 4.2: Overall heat transfer coefficient for the floor

<table>
<thead>
<tr>
<th>Material</th>
<th>K(W/m·°C)</th>
<th>ΔX(m)</th>
<th>R(m²·°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside air film</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>1-Rook wool</td>
<td>0.04</td>
<td>0.05</td>
<td>1.25</td>
</tr>
<tr>
<td>2-Fire brick</td>
<td>0.47</td>
<td>0.05</td>
<td>0.106</td>
</tr>
<tr>
<td>Inside air film</td>
<td>--</td>
<td>--</td>
<td>0.15</td>
</tr>
</tbody>
</table>

\[U = 0.65 \text{ (W/ m²·°C)} \]
4.2.3- Furnace Walls

Figure (4.3) shows a section in the wall, the construction of the wall was chosen from fire bricks and insulating material of Rock wool. With their thermal properties and calculated overall heat transfer coefficient are as shown in Table (4.3).

![Figure 4.3: Construction of walls.](image)

<table>
<thead>
<tr>
<th>Material</th>
<th>K (W/m K)</th>
<th>ΔX (m)</th>
<th>R (m² K/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside air film</td>
<td>--</td>
<td>--</td>
<td>0.06</td>
</tr>
<tr>
<td>1-Fire brick</td>
<td>0.47</td>
<td>0.05</td>
<td>0.106</td>
</tr>
<tr>
<td>2-Rock wool</td>
<td>0.04</td>
<td>0.05</td>
<td>1.25</td>
</tr>
<tr>
<td>3-Fire brick</td>
<td>0.47</td>
<td>0.05</td>
<td>0.106</td>
</tr>
<tr>
<td>Inside air film</td>
<td>--</td>
<td>--</td>
<td>0.31</td>
</tr>
</tbody>
</table>

U = 0.504 (W/m² K)
4.4.4- U-value for the door

The door is manufactured from two layers of galvanized steel sheets of 1.5mm thickness with 4.7mm thickness of Rock wool in between (fig. 4.4) Table (4.4) shows the thermal properties and the calculated U-value of the door.

![Diagram of door construction](image)

Figure 4.4: Construction of door

<table>
<thead>
<tr>
<th>Material</th>
<th>K (W/m·°C)</th>
<th>ΔX (m)</th>
<th>R (m²·°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outside air film</td>
<td>--</td>
<td>--</td>
<td>0.06</td>
</tr>
<tr>
<td>1-Steel</td>
<td>45</td>
<td>0.0015</td>
<td>0.000005</td>
</tr>
<tr>
<td>2-Rock wool</td>
<td>0.04</td>
<td>0.047</td>
<td>1.175</td>
</tr>
<tr>
<td>3-Steel</td>
<td>45</td>
<td>0.0015</td>
<td>0.000005</td>
</tr>
<tr>
<td>Inside air film</td>
<td>--</td>
<td>--</td>
<td>0.31</td>
</tr>
</tbody>
</table>

$U = 0.714$ (W/m²·°C)
4.3 Heat loss calculation

In order to decide on the capacity of burners hat will be used to provide and achieve the standard temperature-time curve complying with the International standard requirements; the total heat loss from the furnace is to be calculated.

In addition to the sensible heating of air within the furnace, the three usual convention conduction and equations modes of heat transfer will make the major contribution to this load.

4.3.1 Convection and conduction heat loss

The amount of heat loss through each partition of the furnace (walls, ceiling, door and floor) due to the effect of convection and conduction will be calculated according according the equation:

\[Q = U A \Delta T \] (4.1)

Where:
- \(Q \) : heat loss through partition (W)
- \(U \) : overall heat transfer coefficient \(\frac{W}{m^2 \cdot \circ C} \)
- \(A \) : surface area for each partition \(m^2 \)
- \(\Delta T \) : Temp. difference across the partition \(\circ C \)

The overall heat transfer coefficient \(U \) for each partition is calculated according to the following radiation (listed in the previous tables for the different partitions): --
\[U = \frac{1}{R_w} \] ...(4.2)

where \[R_w = \frac{1}{h_o} + \frac{\Delta x_i}{k_i} + \frac{1}{h_i} \] ...(4.3)

Where

\(R_w \): the total thermal resistance of the partition (\(m^2 \cdot \text{oC}/w \))

\(\Delta x_i \): thickness of layer (m).

\(k_i \): thermal conductivity of composite material (\(w/m \cdot \text{oC} \))

\(h_i \): inside connection film coefficient (\(w/m \cdot \text{oC} \))

\(h_o \): outside connection film coefficient (\(w/m \cdot \text{oC} \))

A simple calculation of the conducted heat loss through one of the walls is shown below:

\[Q_w = U_w A_w \Delta T \] ...(4.1)

\(U_w \): was calculated using equation (4.2) as:

\[U = \frac{1}{R_w} \] ...(4.2)

\[R_w = \frac{1}{h_o} + \frac{\Delta x_i}{k_i} + \frac{1}{h_i} \] ...(4.3)

Where \(R_i = 0.10 \) (\(\text{w} \cdot \text{oC}/\text{w} \))

\(R_o = 0.02 \) (\(\text{w} \cdot \text{oC}/\text{w} \))

\(\Delta x \) for each composite layer is shown in Table 4.1.

So

\[R_{w_i} = 0.05 + 0.05 + 0.05 + 0.05 + 0.02 \]

\(R_w = 2.182 (w/m \cdot \text{oC}) \)
So

\[U_\omega = \frac{1}{R_m} - \frac{1}{2.182} = 0.46 \text{\(W/m^2\circ C\)} \]

\(A_w = \text{width} \times \text{length} = 2.64 \text{m}^2 \)

\(\Delta T = T_i - T_o \)

where

\(T_i = \text{inside temperature, the temperature of the furnace which is a function of time:\(T_i = 345 \log_{10} (8t + 1) \)} \)

\(T_o = \text{outside temperature, the temperature of the surrounding of the furnace which taken to be the temperature of the room in which the furnace is located and taken to be 20\text{°C}} \)

Therefore,

\[Q = 1.2[345 \log_{10} (8t + 1) + 20] \]

The heat loss due to convection and conduction from the other walls and partitions (ceiling, floor, door) are calculated in a similar way and the total heat load throw the all partitions of the furnace will be:

\[Q = 12.104[345 \log_{10} (8t + 1) + 20] \]
4.3.2 Radiation heat loss.

The radiation heat loss calculation is very complex it is depends on many variables and it differs as the depth of furnace increased, using the direct radiation equations heat loss will be estimated as:

\[Q_{\text{rad}} = A \cdot \zeta \cdot \delta \cdot (T_1^4 - T_2^4) \]

(4.4)

Where

- **A**: The surface area (m²).
- **\zeta**: Emissivity of the surface (dimensionless)
- **B**: Stefan Boltzmann constant (W/m²K⁴)
- **T**: Temperature (K)

For **A=23 m²**

- \(\zeta = 0.74 \)
- \(B = 5.67 \times 10^{-8} \)
- \(T_1 = (345 \times \log_{10}(8t+1) + 273) \text{K} \)
- \(T_2 = 20 \text{K} \)

\[Q_{\text{rad}} = 9.65 \times 10^{-8} ((345 \times \log_{10}(8t+1) + 273)^4 - (293)^4) \]

The total heat losses due to radiation depend on time as the equation describes the total load by radiation.
4.3.3 Sensible Heat

It is the amount of heat that is required by the burner to rise the temperature of the air that is in the space of the furnace, because it is not easy to find the mass of air, and at this low pressure and high temperatures the state of ideal gas is assumed for the air in the furnace and can be estimated as:

\[Q_{\text{sens}} = m \cdot c_p \cdot \Delta T \] (4.5)

Where:

- \(Q_{\text{sens}} \): Amount of sensible heat [kJ].
- \(m \): Mass of the air [kg].
- \(c_p \): Specific heat of air at constant pressure \([\text{kJ} / \text{kmol} \cdot \text{K}]\).
- \(\Delta T \): Temperature rise of air from 293K to 1223K.

Since the mass at the air that is in the furnace we can calculate it by the relation:

\[m = \rho \cdot v \] (4.6)

where:

- \(\rho \): the density of the air (Kg/m³)
- \(v \): the volume of the furnace (m³)

According to \(c_p \) it change according to temperature change from 1.004 (kJ/Kmol.K) at \(793 \)K to 1.152 (kJ/Kmol.K) at \(1223 \)K.

According to sensible heat it change according to time since the temperature depend on time so the ideal gas equation.

\[pv = mRT \] (4.7)

\[m = \frac{pv}{RT} \] (4.7)
Where

\(P_1 \): The pressure in the furnace \(10^5 \) Pa

\(P_2 \): The pressure in the furnace \(5 \times 10^5 \) Pa

\(V \): The volume of the furnace (m³)

\(M \): Mass of the air (kg/s)

\(R \): Constant eq 8.314 (Nms/KmolK)

\(T \): Temperature rise of air [K]

The sensible heat load can be calculated by using the following equation:

\[
Q_{\text{sen}} = m \cdot C_\text{p} \cdot (T_2 - T_1) \quad \text{.................. (5.4)}
\]

\[
Q_{\text{sen}} = C_\text{p} \cdot (P_2 - P_1) \cdot V / R \quad \text{.................. (4.8)}
\]

\[
Q_{\text{sen}} = 1.1 \times 10^5 \text{ kJ}
\]

The period time for testing is 1.5 hours and the load in Watt is 122 kW.

The following equation describes the total load as a function of time. The figure below (fig 4.4) represents this graphically, and from this graph or equation, and after choosing the testing time required, the capacity of burners can be determined. The testing time depends on maximum fire-rated period required by the product:

\[
Q_t = 12.32(3.54 \log_{10}(8r + 1)) + (23 \times 0.78 \times 5.669 \times 10^{-3}) \times (345 \log_{10}(8r + 1) + 273) - (298^4) + 122
\]
In Super Nemar was taken to be 1.5 hour. The calculation and selection of burner is pressed 6 burners are selected to give the amount of heat.

![Graph showing the relationship between Q and t](image)

Figure (4.4) The relation between Q and t

4.4 Type of Burner

Pre-mixed burners should be used in all fire resistance furnaces.

Two basic types of burners are currently used in existing fire resistance test furnaces; premixed burners and diffusion burners. Control of the furnace temperature using diffusion burners typically involving adjusting the raw gas flow into the furnace to maintain the required temperature level. With this type of burner set-up, openings into the test specimen may require flowing additional raw gas into the
furnace to maintain the furnace temperature. This can result in incomplete combustion within the test furnace. The installation of the “burners” in the test furnace requires careful placement as these burners typically produce a large flame plume, which depending on the relative location of the test sample to the burners, may result in undesirable localized heating effects.

Pre-mixed burners carefully control the amount of fuel and combustion air injected into the burner and into the test furnace resulting in a very uniform flame shape and heating capability. This result in a burner flame, which is easily controllable, and with combustion that is more complete. The air-fuel mixture can be adjusted to suit a range of furnace conditions, providing operational flexibility not available with diffusion burners. These burners also produce high gas velocities inside the furnace, which is desired to produce an environment similar to that of a fully-developed compartment fires, and from Eco Flam catalogue in appendix 7 we selected he burner which have 500KW capacity (MULTCALOR45).

4.5 Burner Fuel

Propane gas should be used as the furnace fuel in all fire resistance furnaces.

Furnaces in the U.S. and in Europe use a variety of fuels to provide the heat input into the test furnace. In the U.S. gaseous fuel, either natural gas or propane, is used as the burner fuel. In some overseas furnaces, liquid fuels (heavy oil or kerosene) are used. Testing conducted by Cooke (1994) evaluated the thermal environment impact on a calibration sample in a number of furnaces located overseas. Two of the furnaces used natural gas as the burner fuel and one furnace used oil. The results of the testing did not specifically focus on the impact of the burner fuel on the furnace environment and performance of the calibration specimen,
however, it was noted that the oil-fired furnace produced a more thermally-severe furnace environment compared to the natural gas fired environment[9].

Numerical studies conducted by Sultan and Denham (1997), Sultan, Harmathy, and Meha"ffey (1986), and Sultan (1996) all recognize that the absorption coefficient for the furnace hot gasses will vary with the type of burner fuel[9].

Typically, the absorption coefficient is lower for gaseous fuels and higher for liquid fuels. As the furnace gas absorption coefficient increases, the severity of the exposure increases correspondingly. Systematic studies of propane versus natural gas do not appear to be available in the literature. Such a study would be of value to the fire resistance testing community.

Recognizing that liquid fuels will produce a more severe fire exposure, there exist practical operational and safety issues related to using liquid fuels sprayed into a closed environment. The spraying of a liquid fuel into a furnace may result in the build-up of residue on the furnace walls as a function of time, which may lead to increased maintenance costs. Safety systems would need to be implemented to insure the spraying system can be adequately secured upon termination of a fire test. Commercial gas-fueled burners are readily available with appropriate safeguards for ensuring gas flow is secured upon termination of a test.

The burning of liquid fuels may not be as clean as gaseous fuels, therefore, requiring additional environmental considerations for the utilization. Many municipalities already contain the infrastructure to provide natural gas via underground supply lines or liquid propane via truck. Of the two, storage of liquid propane, used with an appropriate vaporization system, can maximize the on-site storage capability for conducting large-scale furnace testing.
4.6 Fire Control System:

As a result of calculation, the number of burners to active this load was found to be 6 burners those burners are to set firing in sequence. The first burner with the capacity of 500kW will give this amount within 4.5 min. The next burner with same capacity is to start firing the next 13.5 minutes with firer Contents so on.

The control system for the commotion of burners using programmable logic controllers (PLC) will be as follows.

The first burner will be switch on with the starting process and then the other will be switch on as shown:

\[S_0 \rightarrow S \rightarrow R \rightarrow B_1 \]

\[T = 200^\circ C \]

\[T_1 \]

\[S_0 : \text{the starting process.} \]
\[B_1 : \text{the first burner.} \]
\[T = 200^\circ C : \text{temp. From temp. Sensor which let the process is complete at it.} \]
\[T_1 : \text{on delay timer set where } B_1 \text{ is cured.} \]
\[t_1 : \text{time where the first burner has full capacity (from capacity curve).} \]
B2: 2nd Burner.
T2, t2: time for 2nd Burner to achieve its capacity (from capacity curve) & it will be open the 3rd Burner.

All timers will be on Delay timer. And so on for other Burners (How many Burners it have?)

4.7 Test Report

The test report shall carry the following statement in a prominent position.

“This report provides the constructional details, the test conditions and the results obtained when a specific element of construction was tested following the procedure specified in ISO 834-1. Any significant deviation with respect to size, constructional details loads, stresses, edge or end conditions may invalidate the test result.”

a) The test report shall include all important information relevant to the test specimen and the fire test including the following specific items and those items required by the test standards for the individual elements:

b) The name and address of the testing laboratory, any unique reference number and the test date.
c) The name(s) and address(es) of the sponsor, the product(s) and the manufacturer(s) of the test specimen and any of its component parts, if known; if unknown, this shall be stated.

d) The assembly procedure and constructional details of the test specimen, with drawings including the dimensions of components and, where possible, photographs.

e) The relevant properties of materials used that have a bearing on the fire performance of the test specimen together with the method of their determination, including, for example, information concerning moisture content and conditioning where appropriate.

f) For load bearing elements, the load applied to the test specimen and the basis for its calculation.

g) The support and restraint conditions used and the rational for their selection.

h) Information concerning the location of all thermocouples, deformation and pressure measuring devices, together with a graphical and/or tabular depiction of data obtained from these devices during test.

i) A description of significant behavior of the test specimen during the test period, together with the determination, on the basis of the criteria in clause 10, of the end point of the test.

j) The fire resistance of the test specimen expressed as specified in clause 12.

k) For asymmetrical separating elements, the direction in which the test specimen was tested and validity of the test result if the structure is exposed to fire on the opposite side.
4.8 SUMMARY OF RECOMMENDATIONS

4.8.1 Furnace Instrumentation Recommendations

1. Recommendation: Furnace Temperature Control – Plate thermometers should be used to measure furnace temperature and control the furnace exposure. There should be nine plate thermometers equally distributed across the test specimen surface. Plate thermometers are typically placed 0.10 m (4 in.) away from the sample; however, a larger spacing is desired to prevent them from potentially being damaged by failing test articles. Testing needs to be performed to demonstrate that a larger spacing does not affect the thermometer measurement.

2. Recommendation: Furnace Differential Pressure – Tests should be performed with a positive furnace pressure (relative to laboratory conditions) across the entire test article. All furnace pressures should be measured using the tube sensor provided in ISO 834 and EN1363-1. In a vertical furnace, pressure should be measured at the bottom and top of the test specimen. The neutral plane in the furnace should be maintained at the bottom of the test specimen with no limit on the pressure at the top of the specimen. In a horizontal furnace, the furnace pressure should be measured at one location and maintained at 20 Pa. Pressure tube sensors should be located at the same distance away from test articles as the plate thermometers.

3. Recommendation: Furnace Oxygen Concentration – Furnace oxygen concentration should be measured in the furnace stack and maintained at greater than 6% during the test. Gas samples should be continuously drawn out of the duct through a sampling line and measured using a paramagnetic type oxygen analyzer. The recommended sampling probe should be similar to the sampling probe used in duct measurements of hood calorimeters.
4- Recommendation: Unexposed Side Temperatures – The unexposed side

temperatures should be measured with a thermocouple placed between the
specimen and a noncombustible, insulating pad. The insulating pad should be a low
density, low thermal conductivity material with known thermal properties. The pads
should be approximately 0.15 m (6 in.) square and 25 mm (1 in.) thick and placed in
at least three locations that provide a range of heat-transfer performance.

5- Recommendation: Total Heat Flux off the Unexposed Side – The total heat
flux off the unexposed side of the assembly should be measured using a Schmidt-
Boelter type water-cooled total heat flux gauge. At a minimum, a heat flux gauge
should be placed near the center of the test article and as close as possible to the
unexposed side. In cases where the assembly contains a transparent section, a heat
flux gauge should also be placed at the center of the transparent section as close as
possible to the unexposed surface.

6- Recommendation: Furnace Velocity – Velocity measurements inside the
furnace should not be made.

7- Recommendation: Temperature Profile through Test Specimen –
Temperatures should be measured through the thickness of the test assembly at
locations that are representative of the different heat-transfer paths within the
assembly. Repeat temperature profiles are recommended in case some thermocouples
fail during the test.

8- Recommendation: Gas Temperature Measurement – Gas temperatures on the
exposed and unexposed side of the test specimen should be measured using aspirated
thermocouples. Gas temperatures should be measured at each location where a
temperature profile is being measured. Aspirated thermocouples should be placed as
close as possible to the test article surface.
4.8.2 Furnace Operations Recommendations

9. Recommendation: Furnace Time-Temperature Exposure Curve – The furnace time-temperature exposure should linearly increase to 1200°C in six minutes and remain constant at 1200°C for the remainder of the test.

10. Recommendation: Calibration Test – A calibration test should be conducted with a non-combustible boundary containing instrumentation to quantify the thermal exposure. Instrumentation installed in the boundary should include total heat flux gauges and calibration boards instrumented with thermocouples. Instrumentation should be installed in at least five locations (center of each quadrant and center of the boundary) to quantify the furnace exposure. The calibration test should be performed for one-hour using the required furnace exposure and instrumentation.

11. Recommendation: Furnace Lining Material – All interior furnace surfaces should be lined with a ceramic fiber material.

12. Recommendation: Minimum Furnace Depth – The minimum furnace depth should be 4 ft (1.2 m).

13. Recommendation: Burner Fuel – Propane gas should be used as the furnace fuel in all fire resistance furnaces.

14. Recommendation: Type of Burner – Pre-mixed burners should be used in all fire resistance furnaces.

15. Recommendation: Secondary Air Capability – When necessary, a means for providing secondary air should be provided such that the minimum oxygen content within a furnace is not less than 5%.
16. **Recommendation: Exhaust Control** - A means for controlling the internal furnace pressure (e.g., damper in exhaust stack) should be provided.

17. **Recommendation: Thermal Properties of Materials** - The thermal and physical properties of materials in the test article assembly should be measured. Thermal properties (conductivity, specific heat capacity, heat of decomposition) should be measured at temperatures as close to the highest temperature the material is expected to reach during the test. Physical properties (density, moisture content, expansion/contraction, decomposition kinetics) should also be measured as a function of temperature up to temperatures the material is expected to reach during the test. Thermal property tests should be performed on materials taken from the same lot of materials used to construct the test article.

http://www.pearson-edu.com/Http/India/
References:

8.10.1.1.1.3 ASTM D 198–05a (2005), Standard Test Methods of Static Tests of Lumber in Structural Sizes, American Society for Testing and Materials, West Conshohocken, PA.

12 PS 852 - part 1
13 Fire Door and smoke door assemblies : swinging Fire Doors.
18 ISO 3008 -1976 (E)Fire- resistance tests – Door and Shutter assemblies.
19 ISO / TR 5925-2 : Fire tests - smoke control Door and Shutter assemblies.
APPENDICES
Appendix 2 Flexible intumescent seal

FLEXILODICE
Flexible intumescent seal
Technical data sheet

PRODUCT DESCRIPTION

FLEXILODICE is a flexible intumescent seal based on graphite. In case of fire, the intumescent material included in the thermoplastic support is expanding at least 10 times its initial thickness. The microporous layer formed during the expansion provides an effective barrier to the passage of fire, hot gases and hot smoke.

FEATURES
The intumescent seal FLEXILODICE holds the following properties:
- very flexible,
- resistant to moisture and carbon dioxide,
- formation of a consistent microporous layer,
- is delivered in roll,
- easy to handle and cut.

PRODUCT DATA
Physical properties of FLEXILODICE

<table>
<thead>
<tr>
<th></th>
<th>FLEXILODICE 1.5 mm</th>
<th>FLEXILODICE 2 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal thickness</td>
<td>1.5 mm</td>
<td>2 mm</td>
</tr>
<tr>
<td>Activation temperature</td>
<td>190°C</td>
<td>190°C</td>
</tr>
<tr>
<td>Free expansion ratio (at 550°C)</td>
<td>11 x initial thickness</td>
<td>11 x initial thickness</td>
</tr>
<tr>
<td>Expansion pressure (at 200°C)</td>
<td>0.48 N/mm²</td>
<td>0.48 N/mm²</td>
</tr>
<tr>
<td>Weight per unit area</td>
<td>2.32 kg/m²</td>
<td>3.10 kg/m²</td>
</tr>
<tr>
<td>Shore A hardness (ISO 808)</td>
<td>60 shore</td>
<td>80 shore</td>
</tr>
</tbody>
</table>

Average values measured by the independent testing laboratory IBMB MPA Braunschweig (Germany)

TYPICAL APPLICATIONS
The intumescent fire seal FLEXILODICE is used in the following inside and outside applications:

ORD O S.A. Fire Protection
ZAE-Box, D-95162, Rich Equipement, 50730 Mainz
Tel: 0.617-43-91-82, Fax: 0.617-43-91-82
E-mail: info@adice.com, Internet: www.adice.com

Reference: technical data sheet FLEXILODICE thickness = 1.5 mm & 2 mm, Rev. 1 Update: 15.07.2008
FLEXILODICE
Flexible intumescent seal

Technical data sheet

- Seals in perimeter of fire resistant systems (doors, shutters, dampers, cabinets, safes, walls, penetrating cables, etc)
- Fire resistance improvement of various building elements, etc.

RANGE OF PRODUCTS
Color: black (colored in the mass of intumescent seal).

Widths, thicknesses and lengths available:

<table>
<thead>
<tr>
<th>FLEXILODICE 1.5 mm</th>
<th>FLEXILODICE 2 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.5 x 1,5 mm x roll of 140 lm</td>
<td>10 x 2 mm x roll of 100 lm</td>
</tr>
<tr>
<td>15 x 1,5 mm x roll of 140 lm</td>
<td>15 x 2 mm x roll of 100 lm</td>
</tr>
<tr>
<td></td>
<td>18 x 2 mm x roll of 100 lm</td>
</tr>
<tr>
<td></td>
<td>20 x 2 mm x roll of 100 lm</td>
</tr>
<tr>
<td></td>
<td>25 x 2 mm x roll of 100 lm</td>
</tr>
<tr>
<td></td>
<td>30 x 2 mm x roll of 100 lm</td>
</tr>
<tr>
<td></td>
<td>33 x 2 mm x roll of 100 lm</td>
</tr>
<tr>
<td></td>
<td>37 x 2 mm x roll of 100 lm</td>
</tr>
<tr>
<td></td>
<td>40 x 2 mm x roll of 100 lm</td>
</tr>
<tr>
<td></td>
<td>50 x 2 mm x roll of 100 lm</td>
</tr>
</tbody>
</table>

Other thicknesses and widths can also be produced on request.

Self-adhesive backing (ref. SA):
FLEXILODICE can receive a self-adhesive backing in order to ease the installation.

TOLEERANCES

| Thickness | FLEXILODICE (*) | + 0.2 mm / - 0.3 mm |
| Width | | + 0.2 mm / - 0.5 mm |

(*) tolerances measured on FLEXILODICE without self adhesive backing.

FITTING INSTRUCTIONS

The intumescent seal FLEXILODICE developing an average expansion pressure, it is advised to fit him in case of sealing for a fire rated door, on the edge of the door leaf or the frame.

In order to obtain an aesthetical installation, FLEXILODICE will be fitted in a groove of the same width as the section. This groove will also allow to control the expansion of the intumescent material.

The surface must be free from dust, fat and wax-type materials. Remove badly adhering coatings. Check the compatibility of the self-adhesive backing with the existing coating.

Fixation can be done by gluing but we highly recommend an installation with a self-adhesive backing really easy to use.

ODICE S. A. Fire Protection
ZAE 665, 298770 Maty
Tel: +33 3 27 19 12 32 Fax: +33 3 27 21 06 26
E-mail: info@odice.com
Internet: www.odice.com

Package

The intumescent fire seals FLEXILODICE are delivered in roll and packed in cardboard boxes.

Storage

Store in a dry and well-ventilated area.

Safety and hygiene measures

Observe the ordinary working hygiene. Refer to the Material and Safety data sheet of FLEXILODICE.

IMPORTANT: While the descriptions, designs, data and information contained herein are presented in good faith and believed to be accurate, it is provided for your guidance only. Because many factors may affect the performance and application of our products, we recommend that you make tests to determine the suitability of a product for your particular purpose prior to use. No warranties of any kind, either express or implied, including workmanship or fitness for a particular purpose, are made regarding products described or designs, information set forth, or that the products, designs, data or information may be used without infringing intellectual property rights of others. In no case shall the descriptions, information, data or designs be considered a part of our terms and conditions of sale. Further, you expressly understand and agree that descriptions, designs, data and information furnished by ODCIE hereunder are given free of charge and assumes no obligation or liability for the description, designs, data and information given or results such being given and accepted as your risk.

ODICE U.S.A. Fire Protection

14506 Van Buren Blvd., Suite 205

<table>
<thead>
<tr>
<th>Zip</th>
<th>Phone</th>
<th>Fax</th>
</tr>
</thead>
<tbody>
<tr>
<td>90241</td>
<td>323.761.2222</td>
<td>323.761.2828</td>
</tr>
</tbody>
</table>

E-mail: info@odice.com

Internet: www.odice.com

Reference: technical data sheet - FLEXILODICE, thickness: 1.5 mm & 2 mm

Rev. 1

Update: 2/2005
<table>
<thead>
<tr>
<th>Substance</th>
<th>Formula</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>Temperature</th>
<th>Percent</th>
<th>Vmax</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogen</td>
<td>N₂</td>
<td>29.9</td>
<td>-0.1991 × 10⁻⁸</td>
<td>-2.685% × 10⁻⁵</td>
<td>-1.673% × 10⁻³</td>
<td>273-1800</td>
<td>0.69</td>
<td>0.79</td>
<td>0.54</td>
</tr>
<tr>
<td>Oxygen</td>
<td>O₂</td>
<td>26.48</td>
<td>0.0557 × 10⁻⁸</td>
<td>1.335% × 10⁻⁵</td>
<td>1.813% × 10⁻³</td>
<td>273-1800</td>
<td>1.19</td>
<td>0.26</td>
<td>0.36</td>
</tr>
<tr>
<td>Ar</td>
<td>Ar</td>
<td>28.11</td>
<td>-0.1367 × 10⁻⁸</td>
<td>-2.490% × 10⁻⁵</td>
<td>-1.966% × 10⁻³</td>
<td>273-1800</td>
<td>0.72</td>
<td>0.22</td>
<td>0.29</td>
</tr>
<tr>
<td>Helium</td>
<td>He</td>
<td>29.11</td>
<td>-0.1916 × 10⁻⁸</td>
<td>-2.402% × 10⁻⁵</td>
<td>-2.890% × 10⁻³</td>
<td>273-1800</td>
<td>0.61</td>
<td>0.26</td>
<td>0.34</td>
</tr>
<tr>
<td>Carbon</td>
<td>C</td>
<td>28.1</td>
<td>0.1675 × 10⁻⁸</td>
<td>0.3972% × 10⁻⁵</td>
<td>0.262% × 10⁻³</td>
<td>273-1800</td>
<td>0.64</td>
<td>0.47</td>
<td>0.37</td>
</tr>
<tr>
<td>Carbon</td>
<td>CO</td>
<td>22.24</td>
<td>0.9081 × 10⁻⁸</td>
<td>3.501% × 10⁻⁵</td>
<td>7.408% × 10⁻³</td>
<td>273-1800</td>
<td>0.67</td>
<td>0.26</td>
<td>0.22</td>
</tr>
<tr>
<td>Carbon</td>
<td>CO₂</td>
<td>27.24</td>
<td>0.4903 × 10⁻⁸</td>
<td>1.055% × 10⁻⁵</td>
<td>3.308% × 10⁻³</td>
<td>273-1800</td>
<td>0.59</td>
<td>0.34</td>
<td>0.25</td>
</tr>
<tr>
<td>Water</td>
<td>H₂O</td>
<td>27.34</td>
<td>-0.09485 × 10⁻⁸</td>
<td>-0.977% × 10⁻⁵</td>
<td>-4.181% × 10⁻³</td>
<td>273-1800</td>
<td>0.97</td>
<td>0.36</td>
<td>0.25</td>
</tr>
<tr>
<td>Sulfur</td>
<td>S</td>
<td>24.11</td>
<td>0.8639 × 10⁻⁸</td>
<td>1.066% × 10⁻⁵</td>
<td>10.68% × 10⁻³</td>
<td>273-1800</td>
<td>0.99</td>
<td>0.99</td>
<td>0.36</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N₂O</td>
<td>22.9</td>
<td>0.515 × 10⁻⁸</td>
<td>3.83% × 10⁻⁵</td>
<td>7.81% × 10⁻³</td>
<td>273-1800</td>
<td>0.45</td>
<td>0.58</td>
<td>0.28</td>
</tr>
<tr>
<td>Ammonia</td>
<td>NH₃</td>
<td>27.88</td>
<td>0.619 × 10⁻⁸</td>
<td>0.997% × 10⁻⁵</td>
<td>-6.696% × 10⁻³</td>
<td>273-1800</td>
<td>0.85</td>
<td>0.36</td>
<td>0.29</td>
</tr>
<tr>
<td>Sulfur</td>
<td>S</td>
<td>27.01</td>
<td>0.8418 × 10⁻⁸</td>
<td>-1.142% × 10⁻⁵</td>
<td>5.98% × 10⁻³</td>
<td>273-1800</td>
<td>0.99</td>
<td>0.99</td>
<td>0.28</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>N₂</td>
<td>25.78</td>
<td>0.726 × 10⁻⁸</td>
<td>3.812% × 10⁻⁵</td>
<td>8.612% × 10⁻³</td>
<td>273-1800</td>
<td>0.45</td>
<td>0.58</td>
<td>0.28</td>
</tr>
<tr>
<td>Sulfur</td>
<td>S</td>
<td>16.46</td>
<td>14.58 × 10⁻⁸</td>
<td>11.70% × 10⁻⁵</td>
<td>32.43% × 10⁻³</td>
<td>273-1800</td>
<td>0.26</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Benzene</td>
<td>C₆H₆</td>
<td>27.1</td>
<td>9.271 × 10⁻⁸</td>
<td>6.92% × 10⁻⁵</td>
<td>16.81% × 10⁻³</td>
<td>273-1800</td>
<td>0.46</td>
<td>0.39</td>
<td>0.25</td>
</tr>
<tr>
<td>Benzene</td>
<td>C₆H₅Cl</td>
<td>36.22</td>
<td>48.675 × 10⁻⁸</td>
<td>-32.87% × 10⁻⁵</td>
<td>77.87% × 10⁻³</td>
<td>273-1800</td>
<td>0.04</td>
<td>0.23</td>
<td>0.14</td>
</tr>
<tr>
<td>Methanol</td>
<td>C₂H₅OH</td>
<td>19.9</td>
<td>9.162 × 10⁻⁸</td>
<td>-1.57% × 10⁻⁵</td>
<td>9.03% × 10⁻³</td>
<td>273-1800</td>
<td>0.18</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Ethanol</td>
<td>C₂H₅OH</td>
<td>19.9</td>
<td>9.162 × 10⁻⁸</td>
<td>-1.57% × 10⁻⁵</td>
<td>9.03% × 10⁻³</td>
<td>273-1800</td>
<td>0.18</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Methanol</td>
<td>CH₃OH</td>
<td>19.9</td>
<td>9.162 × 10⁻⁸</td>
<td>-1.57% × 10⁻⁵</td>
<td>9.03% × 10⁻³</td>
<td>273-1800</td>
<td>0.18</td>
<td>0.19</td>
<td>0.14</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Cl₂</td>
<td>10.55</td>
<td>0.7862 × 10⁻⁸</td>
<td>1.207% × 10⁻⁵</td>
<td>-5.498% × 10⁻³</td>
<td>273-1800</td>
<td>0.22</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Methanol</td>
<td>CH₃OH</td>
<td>15.99</td>
<td>5.024 × 10⁻⁸</td>
<td>1.90% × 10⁻⁵</td>
<td>-3.612% × 10⁻³</td>
<td>273-1800</td>
<td>1.23</td>
<td>0.31</td>
<td>0.07</td>
</tr>
<tr>
<td>Ethanol</td>
<td>CH₃OH</td>
<td>15.99</td>
<td>5.024 × 10⁻⁸</td>
<td>1.90% × 10⁻⁵</td>
<td>-3.612% × 10⁻³</td>
<td>273-1800</td>
<td>1.23</td>
<td>0.31</td>
<td>0.07</td>
</tr>
<tr>
<td>Ethanol</td>
<td>CH₃OH</td>
<td>15.99</td>
<td>5.024 × 10⁻⁸</td>
<td>1.90% × 10⁻⁵</td>
<td>-3.612% × 10⁻³</td>
<td>273-1800</td>
<td>1.23</td>
<td>0.31</td>
<td>0.07</td>
</tr>
<tr>
<td>Acetone</td>
<td>CH₃COCH₃</td>
<td>6.00</td>
<td>17.27 × 10⁻⁸</td>
<td>-6.514% × 10⁻⁵</td>
<td>7.285% × 10⁻³</td>
<td>273-1800</td>
<td>0.81</td>
<td>0.28</td>
<td>0.25</td>
</tr>
<tr>
<td>Acetone</td>
<td>CH₃COCH₃</td>
<td>6.00</td>
<td>17.27 × 10⁻⁸</td>
<td>-6.514% × 10⁻⁵</td>
<td>7.285% × 10⁻³</td>
<td>273-1800</td>
<td>0.81</td>
<td>0.28</td>
<td>0.25</td>
</tr>
<tr>
<td>Acetone</td>
<td>CH₃COCH₃</td>
<td>6.00</td>
<td>17.27 × 10⁻⁸</td>
<td>-6.514% × 10⁻⁵</td>
<td>7.285% × 10⁻³</td>
<td>273-1800</td>
<td>0.81</td>
<td>0.28</td>
<td>0.25</td>
</tr>
<tr>
<td>Acetone</td>
<td>CH₃COCH₃</td>
<td>6.00</td>
<td>17.27 × 10⁻⁸</td>
<td>-6.514% × 10⁻⁵</td>
<td>7.285% × 10⁻³</td>
<td>273-1800</td>
<td>0.81</td>
<td>0.28</td>
<td>0.25</td>
</tr>
<tr>
<td>Acetone</td>
<td>CH₃COCH₃</td>
<td>6.00</td>
<td>17.27 × 10⁻⁸</td>
<td>-6.514% × 10⁻⁵</td>
<td>7.285% × 273-1800</td>
<td>0.72</td>
<td>0.22</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>CH₃COCH₃</td>
<td>6.00</td>
<td>17.27 × 10⁻⁸</td>
<td>-6.514% × 10⁻⁵</td>
<td>7.285% × 10⁻³</td>
<td>273-1800</td>
<td>0.72</td>
<td>0.22</td>
<td>0.13</td>
</tr>
<tr>
<td>Acetone</td>
<td>CH₃COCH₃</td>
<td>6.00</td>
<td>17.27 × 10⁻⁸</td>
<td>-6.514% × 10⁻⁵</td>
<td>7.285% × 10⁻³</td>
<td>273-1800</td>
<td>0.72</td>
<td>0.22</td>
<td>0.13</td>
</tr>
<tr>
<td>Acetone</td>
<td>CH₃COCH₃</td>
<td>6.00</td>
<td>17.27 × 10⁻⁸</td>
<td>-6.514% × 10⁻⁵</td>
<td>7.285% × 10⁻³</td>
<td>273-1800</td>
<td>0.72</td>
<td>0.22</td>
<td>0.13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature, K</th>
<th>c_p kg K</th>
<th>c_v kg K</th>
<th>c_l kg K</th>
<th>c_m kg K</th>
<th>c_s kg K</th>
<th>c_{s0} kg K</th>
<th>c_{s1} kg K</th>
<th>c_{s2} kg K</th>
<th>c_{s3} kg K</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>1.005</td>
<td>0.716</td>
<td>1.431</td>
<td>0.791</td>
<td>0.632</td>
<td>1.314</td>
<td>0.939</td>
<td>0.828</td>
<td>1.400</td>
</tr>
<tr>
<td>250</td>
<td>1.005</td>
<td>0.718</td>
<td>1.440</td>
<td>0.946</td>
<td>0.767</td>
<td>1.298</td>
<td>1.040</td>
<td>0.744</td>
<td>1.399</td>
</tr>
<tr>
<td>270</td>
<td>1.008</td>
<td>0.721</td>
<td>1.498</td>
<td>0.895</td>
<td>0.706</td>
<td>1.268</td>
<td>1.033</td>
<td>0.742</td>
<td>1.399</td>
</tr>
<tr>
<td>300</td>
<td>1.013</td>
<td>0.726</td>
<td>1.450</td>
<td>0.909</td>
<td>0.750</td>
<td>1.322</td>
<td>1.047</td>
<td>0.751</td>
<td>1.395</td>
</tr>
<tr>
<td>350</td>
<td>1.022</td>
<td>0.733</td>
<td>1.491</td>
<td>0.978</td>
<td>0.780</td>
<td>1.339</td>
<td>1.054</td>
<td>0.757</td>
<td>1.392</td>
</tr>
<tr>
<td>400</td>
<td>1.039</td>
<td>0.742</td>
<td>1.557</td>
<td>1.014</td>
<td>0.826</td>
<td>1.399</td>
<td>1.063</td>
<td>0.768</td>
<td>1.387</td>
</tr>
<tr>
<td>450</td>
<td>1.046</td>
<td>0.753</td>
<td>1.533</td>
<td>1.046</td>
<td>0.852</td>
<td>1.380</td>
<td>1.075</td>
<td>0.776</td>
<td>1.382</td>
</tr>
<tr>
<td>500</td>
<td>1.053</td>
<td>0.764</td>
<td>1.516</td>
<td>1.071</td>
<td>0.886</td>
<td>1.362</td>
<td>1.087</td>
<td>0.785</td>
<td>1.376</td>
</tr>
<tr>
<td>550</td>
<td>1.062</td>
<td>0.776</td>
<td>1.510</td>
<td>1.102</td>
<td>0.913</td>
<td>1.347</td>
<td>1.102</td>
<td>0.793</td>
<td>1.370</td>
</tr>
<tr>
<td>600</td>
<td>1.075</td>
<td>0.788</td>
<td>1.504</td>
<td>1.126</td>
<td>0.939</td>
<td>1.336</td>
<td>1.113</td>
<td>0.814</td>
<td>1.364</td>
</tr>
<tr>
<td>650</td>
<td>1.087</td>
<td>0.801</td>
<td>1.500</td>
<td>1.148</td>
<td>0.969</td>
<td>1.328</td>
<td>1.127</td>
<td>0.829</td>
<td>1.359</td>
</tr>
<tr>
<td>700</td>
<td>1.099</td>
<td>0.814</td>
<td>1.500</td>
<td>1.169</td>
<td>0.990</td>
<td>1.324</td>
<td>1.139</td>
<td>0.842</td>
<td>1.353</td>
</tr>
<tr>
<td>750</td>
<td>1.112</td>
<td>0.828</td>
<td>1.500</td>
<td>1.186</td>
<td>1.015</td>
<td>1.320</td>
<td>1.150</td>
<td>0.856</td>
<td>1.347</td>
</tr>
<tr>
<td>800</td>
<td>1.125</td>
<td>0.843</td>
<td>1.500</td>
<td>1.204</td>
<td>1.045</td>
<td>1.318</td>
<td>1.160</td>
<td>0.868</td>
<td>1.341</td>
</tr>
</tbody>
</table>

Properties of air at atmospheric pressure

The values of \(\mu, k, c_p, \) and \(\Pr \) are not strongly pressure-dependent and may be used over a fairly wide range of pressures.

<table>
<thead>
<tr>
<th>(T), K</th>
<th>(\rho) kg/m(^3)</th>
<th>(c_p) kJ/kg °C</th>
<th>(\mu \times 10^{10}) m(^2)/s</th>
<th>(\nu \times 10^{10}) m(^3)/s</th>
<th>(k) W/m °C</th>
<th>(\alpha \times 10^4) m(^2)/s</th>
<th>(\Pr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>273.15</td>
<td>1.2250</td>
<td>1.0000</td>
<td>1.0013</td>
<td>1.0013</td>
<td>0.000354</td>
<td>0.0013736</td>
<td>0.10165</td>
</tr>
<tr>
<td>300</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1.2089</td>
<td>1.2089</td>
<td>0.000327</td>
<td>0.001262</td>
<td>0.0976</td>
</tr>
<tr>
<td>323.15</td>
<td>0.7969</td>
<td>0.7969</td>
<td>1.4112</td>
<td>1.4112</td>
<td>0.000292</td>
<td>0.001116</td>
<td>0.1002</td>
</tr>
<tr>
<td>353.15</td>
<td>0.6960</td>
<td>0.6960</td>
<td>1.6173</td>
<td>1.6173</td>
<td>0.000255</td>
<td>0.001033</td>
<td>0.1030</td>
</tr>
<tr>
<td>373.15</td>
<td>0.6049</td>
<td>0.6049</td>
<td>1.8274</td>
<td>1.8274</td>
<td>0.000225</td>
<td>0.000984</td>
<td>0.1051</td>
</tr>
<tr>
<td>400</td>
<td>0.5224</td>
<td>0.5224</td>
<td>2.0471</td>
<td>2.0471</td>
<td>0.000198</td>
<td>0.000944</td>
<td>0.1067</td>
</tr>
<tr>
<td>450</td>
<td>0.4023</td>
<td>0.4023</td>
<td>2.6387</td>
<td>2.6387</td>
<td>0.000163</td>
<td>0.000844</td>
<td>0.1097</td>
</tr>
<tr>
<td>500</td>
<td>0.3039</td>
<td>0.3039</td>
<td>3.2555</td>
<td>3.2555</td>
<td>0.000135</td>
<td>0.000769</td>
<td>0.1128</td>
</tr>
<tr>
<td>550</td>
<td>0.2271</td>
<td>0.2271</td>
<td>3.8885</td>
<td>3.8885</td>
<td>0.000112</td>
<td>0.000699</td>
<td>0.1159</td>
</tr>
<tr>
<td>650</td>
<td>0.1800</td>
<td>0.1800</td>
<td>4.5177</td>
<td>4.5177</td>
<td>0.000089</td>
<td>0.000616</td>
<td>0.1196</td>
</tr>
<tr>
<td>750</td>
<td>0.1429</td>
<td>0.1429</td>
<td>5.1561</td>
<td>5.1561</td>
<td>0.000076</td>
<td>0.000538</td>
<td>0.1239</td>
</tr>
<tr>
<td>800</td>
<td>0.1282</td>
<td>0.1282</td>
<td>5.4194</td>
<td>5.4194</td>
<td>0.000070</td>
<td>0.000493</td>
<td>0.1262</td>
</tr>
<tr>
<td>900</td>
<td>0.1095</td>
<td>0.1095</td>
<td>5.8815</td>
<td>5.8815</td>
<td>0.000059</td>
<td>0.000425</td>
<td>0.1312</td>
</tr>
<tr>
<td>1000</td>
<td>0.0961</td>
<td>0.0961</td>
<td>6.3517</td>
<td>6.3517</td>
<td>0.000050</td>
<td>0.000370</td>
<td>0.1357</td>
</tr>
<tr>
<td>1200</td>
<td>0.0824</td>
<td>0.0824</td>
<td>6.9267</td>
<td>6.9267</td>
<td>0.000039</td>
<td>0.000304</td>
<td>0.1421</td>
</tr>
<tr>
<td>1400</td>
<td>0.0697</td>
<td>0.0697</td>
<td>7.5097</td>
<td>7.5097</td>
<td>0.000030</td>
<td>0.000250</td>
<td>0.1487</td>
</tr>
<tr>
<td>1600</td>
<td>0.0580</td>
<td>0.0580</td>
<td>8.0917</td>
<td>8.0917</td>
<td>0.000023</td>
<td>0.000199</td>
<td>0.1556</td>
</tr>
<tr>
<td>1800</td>
<td>0.0482</td>
<td>0.0482</td>
<td>8.6737</td>
<td>8.6737</td>
<td>0.000017</td>
<td>0.000151</td>
<td>0.1627</td>
</tr>
<tr>
<td>2000</td>
<td>0.0407</td>
<td>0.0407</td>
<td>9.2557</td>
<td>9.2557</td>
<td>0.000013</td>
<td>0.000115</td>
<td>0.1699</td>
</tr>
<tr>
<td>2200</td>
<td>0.0345</td>
<td>0.0345</td>
<td>9.8387</td>
<td>9.8387</td>
<td>0.000009</td>
<td>0.000082</td>
<td>0.1773</td>
</tr>
<tr>
<td>2400</td>
<td>0.0296</td>
<td>0.0296</td>
<td>10.4217</td>
<td>10.4217</td>
<td>0.000006</td>
<td>0.000053</td>
<td>0.1849</td>
</tr>
<tr>
<td>2500</td>
<td>0.0259</td>
<td>0.0259</td>
<td>10.9947</td>
<td>10.9947</td>
<td>0.000004</td>
<td>0.000039</td>
<td>0.1926</td>
</tr>
</tbody>
</table>

Appendix 5 Gas flame temperature

The flame temperatures for some common fuel gases can be found in the table below:

<table>
<thead>
<tr>
<th>Fuel Gas</th>
<th>Oxygen (°C)</th>
<th>Air (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetylene</td>
<td>3,100</td>
<td>2,400</td>
</tr>
<tr>
<td>Butane</td>
<td></td>
<td>1,970</td>
</tr>
<tr>
<td>Ethane</td>
<td></td>
<td>1,960</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>2,000</td>
<td>2,045</td>
</tr>
<tr>
<td>MAPP</td>
<td>2,980</td>
<td></td>
</tr>
<tr>
<td>Methane</td>
<td>2,810</td>
<td>1,907</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>2,770</td>
<td></td>
</tr>
<tr>
<td>Propane</td>
<td>2,820</td>
<td>1,980</td>
</tr>
<tr>
<td>Propane Butane Mix</td>
<td></td>
<td>1,970</td>
</tr>
<tr>
<td>Propylene</td>
<td>2,870</td>
<td></td>
</tr>
</tbody>
</table>

Note: Initial gas, air and oxygen temperature at 30°C.

1. MAPP gas is a mixture of various hydrocarbons, principally, methyl acetylene and propadiene.
Ecoflam

DUAL MULTICALOR

MONOBLOCK 23 - 17000 kW
DUOBLOCK 180 - 25000 kW
MAIN FEATURES / ХАРАКТЕРИСТИКИ

- Aluminium casing up to Multiclor 200.1 and steel casing from 300.1 with electrical panel integrated on the burner.

- Adjustable combustion head for fine tuning / matching with different shapes of combustion chamber.

- Gas pilot from Multiclor 170.1.

- Hi - Low version with electric servomotor and integrated system for the regulation of air gas and light oil with two nozzle from Multiclor 45 to Multiclor 300.1.

- Progressive version with electric servomotor and double adjustable mechanical cam that allows air/gas/light oil fine tuning.

- Modulating version with PID system controller with digital set point display and real time value.

- Progressive or modulating nozzle with flow and return. Shut down flow system on the nozzle managed by coil from Multiclor 700.1.

- Firing head with adjustable primary air system that changes according to output required.

- Easy maintenance with sliding bars system. Standard from Multiclor 700.1 and on request from Multiclor 300.1.

- Standard version running on manual fuel selection mode and on request automatic fuel changeover. The automatic change over system can be triggered by gas pressure or by a timer.

- Special version for all type of applications and fuel characteristics on request.

- Dual block range 180 - 25000 kW.
CARACTERÍSTICAS / CARACTERÍSTICAS

- Cuerpo de aleación de aluminio hasta el modelo Multicolor 200.1 y en función de acero a partir del modelo 300.1, con el cuadro eléctrico incorporado en el quemador.
- Cabeza de combustión regulable para garantizar el mejor acoplamiento en las diferentes cámaras de combustión.
- Plito de gas (metano o GLP) desde el Multicolor 170.1.
- Versión de dos llamas con servomotor y sistema integrado para la regulación del aire/gas o gasóleo, con dos inyectores desde el Multicolor 45 al 300.1.
- Nuevo sistema de regulación proporcional aire/gas y gasóleo con doble camisa a perfil variable, para la versión PR y MD.
- Versión modulante con termorregulador PID con display digital que visualiza el valor real y permite la regulación del set point.
- Inyector a refluido para las versiones PR y MD con sistema de carrera del flujo al inyector mediante la bobina, para el Multicolor 700.1.
- Sistema de regulación del aire primario que varía en base a la potencia requerida.
- Fácil mantenimiento gracias a la fácil extracción de la cabeza de combustión del cuerpo del quemador.
- Versión estándar con comutación manual y a petición se puede fabricar con comutación automática. El sistema de comutación automática puede ser controlado por la presión del gas o por un temporizador.
- Versión a petición del cliente para cualquier tipo de instalación industrial y características de combustible.
- Gama duoblock 180 - 25000 kW.

Multicolor 500.1 DUO PR/PR
TECHNICAL DATA / ТЕХНИЧЕСКИЕ ДАННЫЕ / DONNEES TECHNIQUES / DATOS TECNICOS

<table>
<thead>
<tr>
<th>MODELS МОДЕЛИ / MODELES MODELOS</th>
<th>Output Тепловая мощность / Puissance calorifique / Potencia térmica</th>
<th>Output Тепловая мощность / Puissance calorifique / Potencia térmica</th>
<th>Flow rate Температура / Taux de débit / Calorif / Tasa de flujo</th>
<th>Power supply Мощность / Alimentation / Potencia</th>
<th>Motor Мощность двигателя / Moteur Motor</th>
<th>Operation / Функционирование / Fonctionnement / Funcionamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>max./min. kW / kcal/h x 1000 / kcal/h x 1000</td>
<td>max./min. kW / kcal/h x 1000 / kcal/h x 1000</td>
<td>kg/h / m³ / kg/h</td>
<td>V / B / kW / kV</td>
<td>kw / Bt</td>
<td>ON-OFF / P / PR-MD</td>
</tr>
<tr>
<td>DUAL 1</td>
<td>40 / 34.4</td>
<td>23 / 19.78</td>
<td>3.07 / 1.94</td>
<td>230 / 400</td>
<td>0.050</td>
<td>ON-OFF</td>
</tr>
<tr>
<td>DUAL 2</td>
<td>65 / 55.9</td>
<td>34 / 29.24</td>
<td>5.48 / 2.86</td>
<td>230 / 400</td>
<td>0.050</td>
<td>ON-OFF</td>
</tr>
<tr>
<td>DUAL 3-3P</td>
<td>110 / 94.6</td>
<td>58 / 49.88</td>
<td>9.27 / 4.89</td>
<td>230 / 400</td>
<td>0.200</td>
<td>ON-OFF / P</td>
</tr>
<tr>
<td>DUAL 4</td>
<td>200 / 172</td>
<td>110 / 94.6</td>
<td>16.86 / 9.27</td>
<td>230 / 400</td>
<td>0.250</td>
<td>P</td>
</tr>
<tr>
<td>DUAL 4 P</td>
<td>200 / 172</td>
<td>100 / 86</td>
<td>16.86 / 8.43</td>
<td>230 / 400</td>
<td>0.250</td>
<td>P</td>
</tr>
<tr>
<td>DUAL 5 P</td>
<td>345 / 296.7</td>
<td>110 / 94.6</td>
<td>29.1 / 9.27</td>
<td>230 / 400</td>
<td>0.300</td>
<td>P</td>
</tr>
<tr>
<td>MULTICALOR 45</td>
<td>500 / 420</td>
<td>190 / 163.4</td>
<td>42.17 / 16</td>
<td>230 / 400</td>
<td>0.55</td>
<td>AB</td>
</tr>
<tr>
<td>MULTICALOR 50</td>
<td>500 / 420</td>
<td>120 / 103.2</td>
<td>42.17 / 10.12</td>
<td>230 / 400</td>
<td>0.55</td>
<td>AB</td>
</tr>
<tr>
<td>MULTICALOR 70</td>
<td>700 / 602</td>
<td>250 / 215</td>
<td>59 / 21</td>
<td>230 / 400</td>
<td>0.74</td>
<td>AB</td>
</tr>
<tr>
<td>MULTICALOR 70</td>
<td>700 / 602</td>
<td>190 / 163.4</td>
<td>59 / 16</td>
<td>230 / 400</td>
<td>0.74</td>
<td>PR-MD</td>
</tr>
<tr>
<td>MULTICALOR 100</td>
<td>1.000 / 840</td>
<td>306 / 258</td>
<td>84.31 / 25.3</td>
<td>230 / 400</td>
<td>1.1</td>
<td>AB</td>
</tr>
<tr>
<td>MULTICALOR 100</td>
<td>1.000 / 840</td>
<td>220 / 172</td>
<td>84.31 / 16.86</td>
<td>230 / 400</td>
<td>2.2</td>
<td>PR-MD</td>
</tr>
<tr>
<td>MULTICALOR 140</td>
<td>1.300 / 1118</td>
<td>400 / 344</td>
<td>109.6 / 33.7</td>
<td>230 / 400</td>
<td>2.2</td>
<td>PR-MD</td>
</tr>
<tr>
<td>MULTICALOR 170.1</td>
<td>1.770 / 1.526</td>
<td>342 / 293</td>
<td>150 / 29</td>
<td>230 / 400</td>
<td>3</td>
<td>AB-PR-MD</td>
</tr>
<tr>
<td>MULTICALOR 200.1</td>
<td>2.150 / 1.853.45</td>
<td>414 / 356.9</td>
<td>182 / 35</td>
<td>230 / 400</td>
<td>4</td>
<td>AB-PR-MD</td>
</tr>
</tbody>
</table>

- Natural Gas (L.G.V. 8.570 kcal/kW-h), LPG (L.G.V. 22.300 kcal/kW-h)
- Light oil (L.G.V. 10.200 kcal/kg), max. vis. 1.6°F at 20°C
- Motor: 3 phases, 50 Hz / 60 Hz, 0.55 kW at 80% efficiency
- Combustion: Gas Natural (L.G.V. 8.570 kcal/kW-h), LPG (L.G.V. 22.300 kcal/kW-h)
- Combustion: Gas Natural (L.G.V. 8.570 kcal/kW-h), LPG (L.G.V. 22.300 kcal/kW-h)
- Combustion: Gas Natural (L.G.V. 8.570 kcal/kW-h), LPG (L.G.V. 22.300 kcal/kW-h)
GAS TRAIN / ГАЗОВЫЕ РАМПЫ / RAMPE GAZ / RAMPA DE GAS

<table>
<thead>
<tr>
<th>Models</th>
<th>Gas train / Рампа газа / Rampe gaz / Rampa de gas</th>
<th>Gas governor & Filter / Регулятор давления / Régulateur de pression</th>
<th>Pressure / Давление газа / Pression gaz</th>
<th>Leakage control / Устройство контроля герметичности / Dispositif contrôle étanchéité</th>
<th>EN076</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual 1</td>
<td>MBDE 405 included-excluido</td>
<td>included-excluido</td>
<td>15 min./mm. 17 max.</td>
<td>350 max.</td>
<td></td>
</tr>
<tr>
<td>Dual 2</td>
<td>MBDE 405 included-excluido</td>
<td>included-excluido</td>
<td>15 min./mm. 17 max.</td>
<td>350 max.</td>
<td></td>
</tr>
<tr>
<td>Dual 3</td>
<td>MBDE 407 included-excluido</td>
<td>included-excluido</td>
<td>15 min./mm. 17 max.</td>
<td>350 max.</td>
<td></td>
</tr>
<tr>
<td>Dual 4</td>
<td>MBDE 407 included-excluido</td>
<td>included-excluido</td>
<td>15 min./mm. 17 max.</td>
<td>350 max.</td>
<td></td>
</tr>
<tr>
<td>Dual 3 P</td>
<td>MBDE 407 included-excluido</td>
<td>included-excluido</td>
<td>15 min./mm. 17 max.</td>
<td>350 max.</td>
<td></td>
</tr>
<tr>
<td>Dual 4 P</td>
<td>MBDE 410 included-excluido</td>
<td>included-excluido</td>
<td>15 min./mm. 17 max.</td>
<td>350 max.</td>
<td></td>
</tr>
<tr>
<td>Dual 5 P</td>
<td>MBDE 412 included-excluido</td>
<td>included-excluido</td>
<td>15 min./mm. 17 max.</td>
<td>350 max.</td>
<td></td>
</tr>
<tr>
<td>Multicolor 45</td>
<td>MBDE 415 included-excluido</td>
<td>included-excluido</td>
<td>17 min./mm. 350 max.</td>
<td>350 max.</td>
<td></td>
</tr>
<tr>
<td>Multicolor 70</td>
<td>MBDE 410 included-excluido</td>
<td>included-excluido</td>
<td>20 min./mm. 390 max.</td>
<td>390 max.</td>
<td></td>
</tr>
<tr>
<td>Multicolor 100</td>
<td>MBDE 410 included-excluido</td>
<td>included-excluido</td>
<td>23 min./mm. 390 max.</td>
<td>390 max.</td>
<td></td>
</tr>
<tr>
<td>Modulo</td>
<td>Gas train</td>
<td>Gas governor & Filter</td>
<td>Pressure</td>
<td>Leakage control</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>-----------------------</td>
<td>----------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>Multicolor 140</td>
<td>VCD 20.503</td>
<td>Filter 2"</td>
<td>-</td>
<td>25</td>
<td>600</td>
</tr>
<tr>
<td>SVDLE + 5V 510</td>
<td>FS/DC / FS/DR 2"</td>
<td>-</td>
<td>40</td>
<td>200 / 500</td>
<td>-</td>
</tr>
<tr>
<td>SVDLE + 5V 512</td>
<td>FS/DC / FS/DR 2"</td>
<td>-</td>
<td>75</td>
<td>200 / 500</td>
<td>-</td>
</tr>
<tr>
<td>SVDLE + 5V 512</td>
<td>FS/DC / FS/DR 2"</td>
<td>40</td>
<td>100</td>
<td>200 / 500</td>
<td>-</td>
</tr>
<tr>
<td>MULTIPLE 420</td>
<td>included-incluido</td>
<td>-</td>
<td>50</td>
<td>250</td>
<td>-</td>
</tr>
<tr>
<td>MULTIPLE 418</td>
<td>included-incluido</td>
<td>30</td>
<td>50</td>
<td>250</td>
<td>-</td>
</tr>
<tr>
<td>MULTIPLE 418</td>
<td>included-incluido</td>
<td>50</td>
<td>100</td>
<td>500</td>
<td>-</td>
</tr>
</tbody>
</table>

Modulo 170.1	VCD 40.080	Filter DN 65	-	20	700
VGC 40.065	Filter DN 65	-	30	700	VPS
VCD 20.003	Filter 2"	-	45	600	VPS

Modulo 200.1	VCD 40.080	Filter DN 80	-	22	700
VGC 40.065	Filter DN 80	-	35	700	VPS
VCD 20.003	Filter 2"	-	60	800	VPS

Modulo 300.1	VCD 40.100	Filter DN 100	-	22	700
VGC 40.040	Filter DN 100	-	35	700	VPS
VCD 40.065	Filter DN 100	-	65	700	VPS
VCD 20.003	Filter DN 80	45	100	200 / 500	VPS
SVDIE + 5V 512	FS/DC / FS/DR 2"	100	280	700	VPS

Modulo 400.1	VCD 40.100	Filter DN 100	-	30	700
VGC 40.080	Filter DN 100	-	50	700	VPS
VCD 40.065	Filter DN 80	-	90	700	VPS
VCD 20.003	Filter 2"	70	170	800	VPS
SVDIE + 5V 512	FS/DIN2	-	300	600	VPS
SVDIE + 5V 512	FS/DC / FS/DR 2"	185	300	600	VPS

Modulo 500.1	VCD 40.125	Filter DN 125	-	35	700
VGC 40.100	Filter DN 100	-	45	700	VPS
VCD 40.080	Filter DN 80	-	75	700	VPS
VCD 40.065	Filter DN 80	-	140	600	VPS
VCD 20.003	Filter 2"	-	290	600	VPS
SVDIE + 5V 512	FS/DC / FS/DR 2"	100	300	600	VPS

Modulo 600.1	VCD 40.125	Filter DN 125	-	50	700
VGC 40.100	Filter DN 100	-	60	700	VPS
VCD 40.080	Filter DN 80	-	100	700	VPS
VCD 40.065	Filter DN 80	-	180	600	VPS
VCD 20.003	Filter 2"	-	340	600	VPS
SVDIE + 5V 512	FS/DC / FS/DR 2"	179	260	600	VPS

Modulo 700.1	VCD 40.125	Filter DN 125	-	60	700
VGC 40.100	Filter DN 100	-	70	700	VPS
VCD 40.080	Filter DN 80	-	140	700	VPS
VCD 40.065	Filter DN 80	-	280	700	VPS
VCD 40.065	Filter DN 80	125	280	700	VPS
VCD 40.125	Filter DN 125	-	85	700	VPS
VCD 40.100	Filter DN 100	-	110	700	VPS
VCD 40.080	Filter DN 80	-	220	700	VPS
VCD 40.065	Filter DN 80	-	410	700	VPS

Modulo 800.1	VCD 40.125	Filter DN 125	-	115	700
VCD 40.100	Filter DN 100	-	165	700	VPS
VCD 40.080	Filter DN 80	-	250	700	VPS
VCD 40.065	Filter DN 80	259	550	700	VPS

Modulo 1000.1	VCD 40.125	Filter DN 125	-	160	700
VCD 40.125	Filter DN 125	-	175	700	VPS
VCD 40.100	Filter DN 100	160	230	700	VPS
VCD 40.080	Filter DN 80	-	420	700	VPS

Modulo 1500.1	VCD 40.150	Filter DN 150	-	195	700
VCD 40.125	Filter DN 125	-	180	700	VPS
VCD 40.105	Filter DN 100	-	150	700	VPS
VCD 40.080	Filter DN 80	135	290	700	VPS
VCD 40.080	Filter DN 80	235	400	700	VPS
Ecoflam

Ecoflam Bruciatori S.p.A.
via Roma, 64 - 31023 RESANA (TV) - Italy
tel. +39 0423.719500 - fax +39 0423.719580
http://www.ecoflam-burners.com
e-mail: export@ecoflam-burners.com

Società soggetta alla direzione e al coordinamento della Meroni Termosanitari S.p.A.
via A. Meroni, 45 - 60044 Fabriano (An) CF 01026840427*

Ecoflam Bruciatori S.p.A. RESERVES THE RIGHT TO MAKE ANY ADJUSTMENTS, WITHOUT PRIOR NOTICE, WHICH IT CONSIDER NECESSARY OR USEFUL TO ITS PRODUCTS, WITHOUT AFFECTING THEIR MAIN FEATURES.

Ecoflam Bruciatori S.p.A. оставляет за собой право вносить в конструкцию изделия любые необходимые изменения без согласия потребителя.

LA MAISON Ecoflam Bruciatori S.p.A. SE RÉSERVE LE DROIT D'APPORTER LES MODIFICATIONS QU'ELLE JUGERA NÉCESSAIRES OU UTILISE À DES PRODUITS SANS POUR AUTANT NUIRE À LEURS CARACTÉRISTIQUES PRINCIPALES.

Ecoflam Bruciatori S.p.A. SE RESERVA EL DERECHO A INTRODUCIR EN SUS PRODUCTOS TODAS LAS MODIFICACIONES QUE CONSIDERE NECESARIAS O ÚTILES, SIN PERjudICAR SUS CARACTERÍSTICAS.