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Abstract

The interest in curve/surface smoothing has increased in many fields, such as computer

graphics and computational fluid mechanics, due to it’s various applications in these

fields. Different approaches have been used to smooth surfaces such as Laplacian ap-

proach which is a very popular approach. However, in many simulations, area, volume,

mass and sometimes shape have to be preserved. In this work, we present several non-

parametric smoothing algorithms which preserve area, volume and mass of curve or

surface grids depending on Laplacian algorithm. A new application of area conserving

smoothing method of planar polygonal regions in the space will be presented.
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Introduction

In computer graphics, triangular meshes are very popular. Creating triangular meshes

of high complexity using three dimension scanning is not difficult, but how to effectively

process such meshes remains a challenging problem. For example, three dimension scan-

ning systems commonly give rise to noisy meshes due the factors related to measurement

[11]. This problem is one of the problems smoothing method has solved. The basic idea

of surface smoothing is to minimize the surface energy or to remove the high angular

deviation from surfaces. Some smoothing algorithms [10,13] are based on the Laplacian

approach which has unwanted result ”Shrinkage effect”. To avoid this effect, another

algorithms such as [15,11] which doesn’t generate shrinkage have been developed.

In this work, we present a modified approach which is an area conserving smoothing

of a polygon in the space. The thesis is organized as follows:

Chapter 1: Presents vectors and some basic geometric concepts.

Chapter 2: Presents smoothing and some smoothing algorithms (Laplacian smoothing

and Taubin smoothing).

Chapter 3: Presents two algorithms of area conserving smoothing and a modified

method of conserving the area of a polygon in the space.

Chapter 4: Introduces two algorithms of volume conserving smoothing.

Chapter 5: Introduces the Trapezoidal sub grid undulations removal, a method aims

to preserve mass during smoothing in two dimensions and three dimensions.

viii



Chapter 1

Vectors and Basic Geometric

Objects

1.1 Vectors in space

Vectors are used to express the geometric objects such as lines, planes, shapes and solids.

In this section, a brief definitions and some operations on vectors will be performed.

Definition 1.1. [3] A nonzero vector is an arrow directed from an initial point P to

a terminal point Q with P and Q are distinct. The vector denoted by
−→
PQ.

Definition 1.2. A vector v has a magnitude which is the length of the arrow, i.e the

length of the line segment between P and Q denoted by ||v||, and it has a direction

which is indicated by the arrow. If a vector has an initial point at the origin (0, 0, ..., 0)

and it’s terminal is v= (v1, v2, ..., vn), then we simply write −→v .

Definition 1.3. [1] The metric(distance) is a function d : X×X→ [0,∞), where X

is a non empty set, which satisfies the following axioms:

1. d(X, Y ) ≥ 0, ∀X, Y ∈ X, (Non negativity property)

2. If d(X, Y ) = 0, then X = Y , (Identity property)

3. d(X, Y ) = d(Y,X), ∀X, Y ∈ X, (Symmetry property)
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4. d(X,Z) ≤ d(X, Y ) + d(Y, Z), ∀X, Y, Z ∈ X, (Triangle inequality)

A set X with a metric function is called a metric space.

Definition 1.4. [2] Let X = IRn, X = (x1, x2, ..., xn), Y = (y1, y2, ..., yn) be two elements

in X, and the function d : X ×X → [0,∞), then the Euclidean metric (X, d) is a

metric space given by:

d(X, Y ) = ||X − Y ||2

=

√√√√ n∑
i=1

(xi − yi)2

Definition 1.5. If v =
−→
PQ is a vector in IRn with the initial point P = (p1, p2, ..., pn)

and the terminal point Q = (q1, q2, ..., qn), then the magnitude of
−→
PQ is:

||
−→
PQ|| =

√
(q1 − p1)2 + (q2 − p2)2 + ...+ (qn − pn)2

Definition 1.6. [3] Two vectors are said to be equal if they have the same magnitude

and the same direction.

Definition 1.7. [3] If v = (v1, v2, ..., vn) is a nonzero vector and k is a scalar, then the

scalar multiple kv is the vector (kv1, kv2, ..., kvn), it has the same direction as v if k > 0

and the opposite direction if k < 0. The magnitude of kv is |k|||v||.

Definition 1.8. [3]Vectors Addition

Let u = (u1, u2, ..., un) and v = (v1, v2, ..., vn) be two vectors, then u + v is define as:

u + v = (u1 + v1, u2 + v2, ..., un + vn)

For geometric representation of u and v consider Figure 1.1.

In the case, u− v = u + (−v)

Definition 1.9. [3] Two vectors u and v are parallel if one of them is a scalar multiple

of the other.
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Figure 1.1: Vector Addition.

Definition 1.10. [5]Cross Product

Let u and v be two vectors in IRn, then the cross product of u and v is the vector

defined as:

u× v = (||u||||v|| sin θ)n̂

Where:

n̂: The unit normal vector.

θ: The angle between u and v, 0 ≤ θ ≤ 180.

Note 1.1. [5]

• The way we choose θ from u to v or the converse, determines the direction of n.

• The magnitude of the cross product gives the area determined by u and v.

• The direction of the cross product is the normal vector to both u and v determined

by the right-hand rule.

• Cross product can be calculated by determinant, let u and v be two vectors with

components relative to a cartesian coordinate system, i.e

u = u1i+ u2j + u3k, v = v1i+ v2j + v3k

Where i,j and k are unit vectors in the x, y and z directions respectively, then:

u× v =

∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣
• ||u× v|| = ||u||||v|| sin θ.
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Definition 1.11. [5]Dot Product

Let u and v be two vectors in IRn, then the dot product of u and v denoted by u · v is

given by:

• u · v = ||u||||v|| cos θ, 0 ≤ θ ≤ 180.

θ is the angle between u and v.

• u · v =
∑n

i=1 uivi.

Note 1.2. [3]

• Let u and v be two vectors in IRn, then u and v are perpendicular if and only if

u · v = 0.

• u · v > 0 when 0 ≤ θ < 90.

• u · v < 0 when 90 < θ < 180.

• If u = (u1, u2), then the normal vector u⊥ = (−u2, u1) since u · u⊥ = u1(−u2) +

u2u1 = 0.

• ||u× v||2 = (u · u)(v · v)− (u · v)2.

Definition 1.12. [3] The normalization of vector v is a unit vector with the same

direction of v and it’s computed by:
v

||v||
.

By Euclidean metric, if
−→
PQ is a vector in IRn with the initial point P = (p1, p2, ..., pn)

and the terminal point Q = (q1, q2, ..., qn) the magnitude of
−→
PQ is:

||
−→
PQ|| =

√
(q1 − p1)2 + (q2 − p2)2 + ...+ (qn − pn)2 .

Consider P is the origin, then v =
−→
PQ has a magnitude:

||v|| =
√
q21 + q22 + ...+ q2n .

Vector v in this case indicates a point Q in the Euclidean space, i.e a point Q is a

position vector such that v is directed from the origin to the point Q = (q1, q2, ..., qn).
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Definition 1.13. Let X be a vector space over a field K. Then a function 〈., .〉 :

X×X→ K with the properties:

• 〈X,X〉 > 0, (Non negativity property)

• 〈X,X〉 = 0 if and only if X = 0, (Definiteness property)

• 〈X, Y 〉 = 〈Y,X〉, (Symmetry property)

• 〈αX + βY, Z〉 = α〈X,Z〉+ β〈Y, Z〉, (Linearity property)

For all X, Y, Z ∈ X and α, β ∈ K is called an inner product space on X.

Note 1.3. Every inner product space is a metric space with the Euclidean metric defined

by d(X, Y ) =
√
〈X − Y,X − Y 〉, but the converse is not always true, take L1 space.

1.2 Basic geometric objects

Lines in the space

Definition 1.14. [7] A line is a straight geometric object that is infinitely long and has

zero thin.

In the plane, a line is determined by a point (x1, y1) and the slope m of the line by the

equation:

y − y1 = m(x− x1)

In the space, we can determine line by one of the followings [6]:

1. Point and direction.

A vector equation of the line L through the point P (x0, y0, z0) and parallel to

vector v is:

L(t) = P + tv, −∞ < t <∞

where:

t is a parameter takes different values for each point. See Figure 1.2.
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Figure 1.2: Line L given by a point and a vector.

2. Two points [14].

A vector equation of a line L passes through two points P and Q is defined as:

L(t) = Q+ t(P −Q), −∞ < t <∞

where:

t is a parameter takes different values for each point.

Note 1.4. [1]

• Line segment is a part of a line that is bounded by two endpoints, that contains

every point between the ends.

• If the line has one endpoint at one side and extend at the other it is called ray,

0 ≤ t <∞.

1.3 Planes in the space

Definition 1.15. [7] Plane is a flat surface extending infinitely in all directions.

We can determine a plane by [6]:
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A point and a normal vector to the plane. Let P be a point in the plane and n is

the normal vector to the plane, then the plane is the set of all points R such that

(P −R) · n = 0.

Now, let P = (x0, y0, z0), R = (x, y, z) in IR3, n = ai+ bj + ck.

The equation (P −R) · n = 0 is equivalent to:

(ai+ bj + ck) · ((x− x0)i+ (y − y0)j + (z − z0)k) = 0

= a(x− x0) + b(y − y0) + c(z − z0) = 0

where i · i = |i|2 = 1

ax+ by + cz = ax0 + by0 + cz0 = d

The equation of the plane becomes:

ax+ by + cz = d

7



Chapter 2

Smoothing Algorithms

Curves or surfaces obtained from physical simulations are frequently jagged such as Potts

model. When a metal solidifies from the melton state, millions of tiny crystals start to

grow. These crystals form the grains in the solid metal see Figure 2.1. Potts model

simulations of metallic grain growth describes the interface between these grains as a

series of stair steps. The jagged stair step interface might produce incorrect results in

subsequence simulations. To avoid such results it has to be smoothed.

Figure 2.1: Example of grain growth at two different times.

2.1 Surface grid smoothing

Definition 2.1. [15] A mesh is defined as the association of vertices(nodes, points),

edges and faces that defines the shape of a polyhedral object in solid modeling as in Figure

2.2. The faces in the mesh usually consists of triangles(triangle mesh), quadrilaterals or

simple convex(non-self intesating) polygons, it may also be composed of general concave
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polygons(has at least one reflex interior angle) or polygons with holes. The surface of

the mesh is a surface grid.

Figure 2.2: Dolphin triangle mesh.

Definition 2.2. [9] Smoothing a surface grid is defined as a process attempts to remove

noise with minimal damage caused to geometric features of the object (i.e to capture

patterns in the data), by moving it’s vertices without changing the connectivity of the

edges or removing or adding vertices to the polygon, see [9].

To achieve smoothing, three conditions have to be satisfied [10]:

1. Adjacent facets of the surface grid have normals adjusted to vary more gradually.

2. Nodes densities are equidistributed on the surface.

3. The aspect ratios of facets are improved.

There are several approaches to surface grid smoothing namely parametric, nonpara-

metric and curvature based smoothing.

1. Parametric approach maps from a parametric space to the surface and smoothing

the grid in the parametric space, but the mapping to the parametric space is not

9



always possible, such as a lot of surfaces generated by physical simulations. Para-

metric approach has another drawback, that is parametric smoothing preserves

the shape of the surface and doesn’t always preserve the volume enclosed by the

surface grid.

2. Curvature is the reciprocal of the radius of the circle passing through P and other

points N and Q on the curve infinitesimally close to P [5], curvature removes the

jaggedness of the surface, but it has drawbacks, it doesn’t preserve volume and it

need a sophisticated partial differential equation solution.

In this work, We will use the non-parametric area and volume conserving smoothing of

curve grids.

2.2 Representation of piecewise linear curve

In this section, we will discuss the representation of piecewise linear curve using vertices

and edges in the neighborhood of a vertex.

1. A polygon is the region of a plane bounded by a finite collection of line segments

forming a simple closed curve [13].

2. For a closed polygon in 2-D or 3-D, it is represented as an ordered list of vertices

X = {Xi : 1 ≤ i ≤ n} where Xi = (xi, yi) for curves in 2-D and Xi = (xi, yi, zi) in

3-D.

3. For an open polygon, it is represented as a list of edges E = {ek : k ∈ N, 1 ≤ k ≤
nE} where ek = (ik1, i

k
2), ik1 and ik2 are non-repeated indices of vertices, where nE is

the number of edges in the polygon.

4. The neighborhood of a vertex Xi in a graph is the set i∗ of all vertices adjacent

to Xi including Xi itself. If vertex Xj belongs to the neighborhood i∗, Xi is called

a neighborhood of Xi, where 1 ≤ i, j ≤ n, n is the number of the vertices of the

polygon, see [8].

2.3 Laplacian smoothing

The most common mesh smoothing algorithms is Laplacian smoothing. This algorithm

moves vertices of the gird iteratively to the center of mass of it’s neighboors. Laplacian

smoothing has two types: Firstly, The traditional locally Laplacian smoothing. Sec-

ondly, Global Laplacian smoothing.
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Traditional local Laplacian smoothing

Laplacian smoothing has an operator called Laplacian Operator [8], the discrete

Laplacian operator can be approximated at each vertex by:

L(Xi) =
∑
j∈i∗

wij(Xj −Xi) (2.1)

where:

i∗: The set of indices of neighborhood vertices of the vertex Xi.

wij: The weight of edge (i, j).

Note 2.1. [9]

1. For each vector xi, we have: ∑
j∈i∗

wij = 1

2. Several weighting schemes used like edge length scheme wij =
1

|eij|
and cotangent

scheme wij = cotαi + cot βj, where αi and βj are the opposite of the edge eij in

the two triangles that shares eij.

Figure 2.3: [4] Weighting Schemes.

3. A simple choice of weight (uniform umbrella) wij =
1

di
where di is the number of

neighbors of the vertex Xi. For example, for the polygon curve each vertex has two

neighbors, so wij =
1

2
, see Figure 2.4.

4. In the continuous case, the Laplacian operator is defined as:

∆f = 52f =
n∑

i=1

∂2f

∂x2i
, where 5 f is the deviation gradient.
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Figure 2.4: [4] Uniform Umbrella.

5. The only difference between the operators is how they calculate the weights, see [9].

Now, the equation (2.1) can be written in a matrix form as:

L(Xi) = −(I −W )X = −kX

where:

I: The identity matrix.

W: The weight matrix, W =

{
wij, if vertex j is a neighbor of vertex i

0, otherwise

After calculating Laplacian operator, we move each vertex by the formula:

X ′i = Xi + λL(Xi) (2.2)

The equation (2.2) can be written in matrix form as:

X ′ = (I − λk)X, 0 < λ < 1

where λ is a scalar factor controls smoothing speed.

Next, iterate for several times, for further smoothing increase the number of iterations.

The iterative step is expressed as:

XN = (1− λk)NX

where N is the number of iterations.

12



Figure 2.5: Discrete Laplacian.

Global Laplacian smoothing

Instead of moving vertices locally and iteratively in the Traditional Laplacian smoothing,

vertices can be removed globally, which is given in Global Laplacian smoothing. The

smooth condition of a vertex Xi is that L(Xi) = 0 where L(Xi) as in (2.1), which means

that vertex Xi lies in the weighted average of it’s 1-ring neighbors, but if we choose

wij =
1

di
where di = number of elements in i∗, then Xi lies in the center of gravity of

it’s 1-ring neighbors. Vertices in (2.2) forms a linear system which can be represented

in a matrix form as:

LX = 0

where:

L: n×n matrix with elements Lij =


1, i = j

−wij, if vertex j is a neighbor of vertex i

0, otherwise
X: n× 1 column vector of the corresponding vertices.

L has (n − 1) rank for a connected mesh surface which means X will not be uniquely

determined unless a vertex is given.

If we know the geometry of some vertices in the mesh, we can find the geometry for

the rest of the vertices by solving the linear system. By the choice wij =
1

dij
each vertex

Xj will be as close as possible to the weighted center, which means that the vertices will

be distributed in a fair way. Thus, the mesh will be approximated in a global way and

13



usually smoothed.

Global Laplacian smoothing works under constrants such as feature constrants which

aims to keep the features of the original mesh surface, but gives undesired distortion

and shrinkage in region of non feature vertices as shown in Figure 2.6 due to exceeded

relaxation on the vertices caused by Laplacian operator. To minimize such relaxation,

we fix all the triangle barycenters in positions during smoothing which gives a new extra

constrants called Barycenter constrants as shown in Figure 2.7.

Figure 2.6: [9] Global Laplacian using Feature Constraint.

Figure 2.7: [9] Global Laplacian using Barycenters Constraint.

In the process of iterating Laplacian algorithm, the shape will finally collapses to a point,

this effect is called shrinkage. Preventing a mesh from shrinking has became one of the

major problems in mesh smoothing. So several approaches have been developed such as

Taubin and Novel volume constrained smoothing method.

14



2.4 Taubin smoothing

Taubin smoothing consists of two consecutive Laplacian smoothing steps. After a first

Laplacian smoothing step with a positive scale λ is applied to the all vertices of the

piecewise linear shapes, a second Laplacian smoothing step is applied to all the vertices

with a negative scale factor µ where 0 < λ < −µ, see [16].

Algorithm 1. [16] Taubin smoothing algorithm:

DO i = 1, ..., N .

∆X ← Laplacian operator λ, µ.

X ← X + λ∆X.

X ′ ← X + µ∆X.

Note 2.2. [16] The two steps have to be repeated, alternating the positive and negative

scale factors several times in order to produce a significant smoothing effect. Taubin

suggested a way to choose all of the parameter, First, we choose the pass-band frequency

KPB (Taubin suggests to choose kPB = 0.1), the number of iterations N and λ, then

µ =
λ

K−1PB

.
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Chapter 3

Non-Parametric Area Conserving

Smoothing

Curves or surfaces obtained from physics-based simulations are oftenly nonsmooth which

may be in appropriate for later simulations. However, one desire that any smoothing

operation be area conservative with respect to an enclosed region.

This chapter develops a non-parametric area conserving smoothing approach which

rapidly deforms a ”stair stepped” closed curve into a smoothed curve, both of the curves

have the same enclosed area. This approach allows deformation of the shape. The degree

of deformation will depend on the number of sweeps (iterations) performed.

3.1 Area conserving smoothing of a closed plane

curve by single-node relaxations method

Suppose γ = {X0, X1, ..., Xn−1, Xn = X0} is a closed non-self intersecting curve in IR2

consisting of n line segments and encloses region R with area A, see Figure 3.1. The

signed area defined by the points X0, X1, ..., Xn, taken in a counter clockwise direction.

Our aim is to find a smoothing operation that can be applied locally at each point

Xj such that it’s position changes slightly depending on the adjacent data points

(say{Xj−m, Xj−m+1, ..., Xj+m}, m is small) and does not change the area.

The smoothing operation may not depend on all points in the neighborhood

{Xj−m, Xj−m+1, ..., Xj+m}, i.e, we may only need to change the position of one or more

16



Figure 3.1: Closed curve γ surrounds an area A.

points in the neighborhood .

Applying the local smoothing operation in each local neighborhood in the curve in some

order, this is called a sweep. The number of sweeps needed in the smoothing operation

through the curve has to be as small as possible.

Now, back to Figure 3.1, choose the points X0, X1and X2 of curve γ, where X0 = (x0, y0),

X1 = (x1, y1) and X2 = (x2, y2). These points form the triangle ∆ X0X1X2, see Figure

3.2 .

In Figure 3.2, the area of triangle ∆ X0X1X2 is given by the relation [3]:

A1 =
1

2
||(X2 −X0)× (X1 −X0)||

=
1

2

∣∣∣∣∣∣∣
i j k

x2 − x0 y2 − y0 0

x1 − x0 y1 − y0 0

∣∣∣∣∣∣∣

17



Figure 3.2: The triangle ∆ X0X1X2 encloses area A1.

where:

(X2 −X0) = ((x2 − x0), (y2 − y0))
(X1 −X0) = ((x1 − x0), (y1 − y0)

Thus,

A1 =
1

2
[(x2 − x0)(y1 − y0)− (x1 − x0)(y2 − y0)]

=
1

2
[((x1 − x0), (y1 − y0)) · (−(y2 − y0), (x2 − x0)]

but,

(X2 −X0)
⊥ = (X2 −X0)e

iπ
2 , i =

√
−1

= [(x2 − x0) + i(y2 − y0)]i
= [−(y2 − y0), (x2 − x0)]

Then,

A1 =
1

2
(X1 −X0) · (X2 −X0)

⊥

Now, we aim to change the position of the point X1 such that the area A1 does not

change, this can be accomplished by moving X1 parallel to the line segment X0X2. Also

the projection of the line segments X0X1 and X1X2 onto X0X2 will be equal if we move

X1 such that it’s projection onto X0X2 is in the middle distance between X0 and X2.

See Figure 3.3.

The one-point smoothing operation will be as follows:

A1 =
1

2
(X2 −X0)

⊥ · (X1 −X0)

18



Figure 3.3: One-point smoothing operation: Movement of X1 parallel to X0X2.

This is the signed area of the triangle ∆ X0X1X2.

Now, we figure the height h of X1 above the base X0X2 from A1 = 1
2
||X2 −X0|| · h,

then, h = 2A1

||X2−X0|| . The unit normal to the base line X0X2 is n̂ = (X2−X0)⊥
||(X2−X0)⊥|| . Thus,

the new position of X1, X
new
1 = 1

2
(X0 +X2) +hn̂. By this way we complete through the

nodes in sequential order.

Algorithm 2. [10] Area conserving smoothing of a closed plane curve area by single-

node relaxations method.

• Choose some i from 0 to n− 1, n is the number of vertices of the curve.

• Apply smoothing operation on neighborhood {Xi, Xi+1, Xi+2}.

• Compute local area.

Ai,i+2,i+1 =
1

2
(Xi+2 −Xi)

⊥ · (Xi+1 −Xi)

n̂ =
(Xi+2 −Xi)

⊥

||(Xi+2 −Xi)⊥||

h =
2Ai,i+2,i+1

||(Xi+2 −Xi)||

Xi+1 =
1

2
(Xi +Xi+2) + hn̂.

• Sweep for i = 0, 1, ..., n− 1.

Remark 3.1. [10] If γ is an open curve i.e Xn 6= X0, we don’t relax the endpoints.
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Remark 3.2. [10] The previous algorithm has a drawback since it does not work for all

shapes. In Figure 3.4, consider the direction of X0X2 to be the direction tangential to γ

and the orthogonal direction to X0X2 to be the normal direction, applying the one-point

smoothing operation smooths only in the tangential direction as explained previously,

which means smoothing in the normal direction using single node method is not possible

since it doesn’t change the positions of nodes (i.e the shape will remain the same). Figure

3.4 shows a star-shaped region cant’ be smoothed by Algorithm 1.

Figure 3.4: Star-shaped region unchanging under algorithm 1.
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3.2 Area conserving smoothing of a closed plane

curve by edge relaxations method

Single-node smoothing doesn’t smooth all shapes such as star shaped regions as in Fig-

ure 3.4. A new local smoothing operation developed to include normal smoothing called

Area conserving smoothing by edge relaxation.

Now, consider four points along γ call X0, X1, X2 and X3 as in Figure 3.5. We take
−−−→
X0X3

to be the direction tangential to the curve. Changing X1 and X2 positions simultane-

ously under area conservation condition will allow smoothing in the normal direction.

Figure 3.5: Two points smoothing. X1X2 moved to be parallel to X0X3.

In Figure 3.5, move X1 and X2 such that the projection of X1 onto X0X3 equals one

third of X0X3 length and the projection of X2 equals two thirds of X0X3 length ,their

projections are equally spaced and both X1 and X2 have the same distance h from X0X3

where h is taken to conserve area. The quadrilateral area A0123 must be conserved. The

shape becomes trapezoid with two bases X0X3 with length l and Xnew
1 Xnew

2 with length
1
3
l and so the quadrilateral area is:

A0123 =
1

2
h(l +

1

3
l)

A0123 =
2

3
hl
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thus,

h =
3

2

A0123

l

Xnew
1 = X0 +

1

3
(X3 −X0) + hn̂

=
2

3
X0 +

1

3
X3 + hn̂

This smoothing is called a smoothing operation on the edge X1X2. Next, we smooth on

the edge X2X3.

Algorithm 3. [10] Conserving smoothing of a closed plane curve area by edge relaxations

method.

• Choose some i from 0 to n− 1, n is the number of vertices of the curve.

• Apply smoothing operation on neighborhood {Xi, Xi+1, Xi+2, Xi+3}.

• Compute local area.

Ai,i+3,i+2,i+1 =
1

2
(Xi+3 −Xi)

⊥ · (Xi+2 −Xi) +
1

2
(Xi+2 −Xi)

⊥ · (Xi+1 −Xi)

n̂ =
(Xi+3 −Xi)

⊥

||(Xi+3 −Xi)⊥||

h =
3

2

Ai,i+3,i+2,i+1

||(Xi+3 −Xi)||

Xi+1 =
2

3
Xi +

1

3
Xi+3 + hn̂

Xi+2 =
1

3
Xi +

2

3
Xi+3 + hn̂.

• Sweep for i = 0, 1, ..., n− 1.

Figure 3.6, shows the result of applying algorithm 3 with 10 sweeps.
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Figure 3.6: [10] An open curve before and after applying algorithm 3 with 10 sweeps.

3.3 Area conserving smoothing of a polygon in the

space

Consider the triangle X0X1X2 in the space as in Figure 3.7.

Figure 3.7: Triangle in the space.

The parametric equation of the triangle is given by:

T (s, t) = (X1 −X0)s+ (X2 −X0)t+X0

where 0 ≤ s, t ≤ 1 and 0 ≤ s+ t ≤ 1.
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Proposition 3.1. [13] Every triangle is convex.

Proof. The line joins two points a and b is given by:

L(τ) = (1− τ)a+ τb, 0 ≤ τ ≤ 1

Let a and b be any two arbitrary points inside ∆X0X1X2 then,

a = (X1 −X0)s1 + (X2 −X0)t1 +X0

and

b = (X1 −X0)s2 + (X2 −X0)t2 +X0

where 0 ≤ s1, s2, t1, t2 ≤ 1 and 0 ≤ s1 + t1 ≤ 1 and 0 ≤ s2 + t2 ≤ 1

To show that the line L(τ) lies inside the triangle T (s, t), we have to show that for

any arbitrary point c lies on L(τ), c also lies inside T (s, t).

Now, c ∈ L(τ), then:

c = (1− τ)a+ τb, for some 0 ≤ τ ≤ 1

= (1− τ)[(X1 −X0)s1 + (X2 −X0)t1 +X0] + τ [(X1 −X0)s2 + (X2 −X0)t2 +X0]

= (X1 −X0)[(1− τ)s1 + τs2] + (X2 −X0)[(1− τ)t1 + τt2] +X0

Let s∗ = (1− τ)s1 + τs2 and t∗ = (1− τ)t1 + τt2, for c to lie inside T (s, t) s∗ and t∗ must

satisfy:

1. 0 < s∗, t∗ < 1 and this is true since 0 < τ, s1, s2, t1, t2 < 1.

2. 0 < s∗ + t∗ < 1, this also true since:

s∗+t∗ = (1−τ)s1+τs2+(1−τ)t1+τt2 = (1−τ)(s1+t1)+τ(s2+t2) < (1−τ)+τ = 1

Thus, T (s, t) is convex.

We want to smooth ∆X0X1X2 without changing it’s area. The idea is to map the tri-

angle from IR3 to IR2 and to smooth in IR2, then mapping the smoothed triangle back

to IR3.

24



The equation of the plane containing ∆X0X1X2 is given by:

(X −Xc) · n = 0

where: n = (X1 −X0)× (X2 −X0) is the normal vector.

Xc is any point in the plane.

(We choose Xc to be not X0, X1 or X2).

We will decompose each Xi, i = 0, 1, 2 into an orthonormal basis n̂ − û − v̂ which

is:

1. n̂ is the unit normal vector to the plane, i.e n̂ =
n

||n||
.

2. u = X1 −X0

û =
X1 −X0

||X1 −X0||

3. v = n̂× û

v̂ =
n̂× û

||n̂× û||

Now, the decomposition is:

Xi = (Xi · n̂)n̂ + (Xi · û)û + (Xi · v̂)v̂

= (Xc · n̂)n̂ + (Xi · û)û + (Xi · v̂)v̂, i = 0, 1, 2

Since (Xi −Xc) · n̂ = 0.

The mapping of Xi from IR3 to IR2 is given by:

Xi → (Xi · û, Xi · v̂) = Xnew
i = X ′i = (x′i, y

′
i), i = 0, 1, 2

The mapping of ∆X0X1X2 is ∆X ′0X
′
1X
′
2.

Now, single node algorithm is used to smooth ∆X ′0X
′
1X
′
2 at X ′1.

X ′′1 =
1

2
(X ′0 +X ′2) + hn̂ = (x′′1, y

′′
1)

where:

h =
2A012

||(X ′2 −X ′0)⊥||

n̂ =
(X ′2 −X ′0)⊥

||(X ′2 −X ′0)⊥||

A012 =
1

2
(X ′2 −X ′0)⊥ · (X ′1 −X ′0)
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After smoothing at X ′1, the new triangle is X ′0X
′′
1X
′
2.

Now, we map points X ′0, X
′′
1 and X ′2 back to IR3 by:

X ′0 = (Xc · n̂)n̂ + x′0û + y′0v̂

X ′′1 = (Xc · n̂)n̂ + x′′1û + y′′1 v̂

X ′2 = (Xc · n̂)n̂ + x′2û + y′2v̂

Consider the polygon X0X1...Xm as in Figure 3.8. All points lie on the plane Xc · n.

Figure 3.8: Polygon in the space.

Xc is another point in the plane where n is the normal to the plane. It’s determined by

any two vectors in the plane, for example take X1 −X0 and Xm −X0.

n = (Xm −X0)× (X1 −X0)

=

∣∣∣∣∣∣∣
i j k

xm − x0 ym − y0 zm − z0
x1 − x0 y1 − y0 z1 − z0

∣∣∣∣∣∣∣
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1. Find the orthonormal basis n̂− û− v̂ where:

n = (Xm −X0)× (X1 −X0)

n̂ =
n

||n||

u =
X1 −X0

||X1 −X0||
û =

u

||u||
v = n̂× v̂

v̂ =
n̂× v̂

||n̂× v̂||

2. Each Xi, i = 0, 1, ...,m is decomposed into the n̂− û− v̂ basis such that:

Xi = (Xc · n̂)n̂ + (Xi · û)û + (Xi · v̂)v̂

3. The mapping of Xi from IR3 to IR2 is given by:

Xi → (Xi · û, Xi · v̂) = Xnew
i = X ′i = (x′i, y

′
i), i = 0, 1, ...,m

The new polygon in IR2 is X ′0X
′
1...X

′
m.

4. One of the algorithm (2 and 3) is used to conserve the area. The resulting shape

X ′′0X
′′
1 ...X

′′
m.

5. Now, map X ′′0X
′′
1 ...X

′′
m back to IR3 by:

X ′′′i = (Xc · n̂)n̂ + x′′i û + y′′i v̂, i = 0, 1, ...,m

where X ′′i = (x′′i , y
′′
i ).

Example 3.1. Let X0X1X2 be a triangle, X0 = (1, 1, 1), X1 = (3, 3, 2), X2 = (2, 3,−1),

apply area conserving smoothing of a triangle in the space.

Solution:

1. The area of ∆X0X1X2 is:

A =
1

2
||(X2 −X0)× (X1 −X0)|| =

√
65

2
.

27



2. X0X2 = (1, 2,−2) and X0X1 = (2, 2, 1).

n = X0X1 ×X0X2

=

∣∣∣∣∣∣∣
i j k

2 2 1

1 2 −2

∣∣∣∣∣∣∣
= i(−4− 2)− j(−4− 1) + k(4− 2)

= −6i+ 5j + 2k .

⇒ n = (−6, 5, 2).

Xc = (0, 1,−2) lies on the plane, then the plane equation is: 6x+ 5y+ 2z− 1 = 0.

n̂ =
n

||n||
=
−6i+ 5j + +2k√

(−6)2 + 52 + 22
=
−6i+ 5j + 2k√

65
= (
−6√

65
,

5√
65
,

2√
65

).

Let u = X0X1 ⇒ û =
u

||u||
= (

2

3
,
2

3
,
1

3
).

Let v = n̂× û =

∣∣∣∣∣∣∣∣∣
i j k
−6√

65

5√
65

2√
65

2

3

2

3

1

3

∣∣∣∣∣∣∣∣∣ =
1

3
√

65
i+

10

3
√

65
j − 22

3
√

65
k

⇒ v̂ =
v

||v||
= (

1

3
√

65
,

10

3
√

65
,
−22

3
√

65
) .

The orthonormal basis is n̂− û− v̂ where:

n̂ = (
−6√

65
,

5√
65
,

2√
65

), û = (
2

3
,
2

3
,
1

3
), v̂ = (

1

3
√

65
,

10

3
√

65
,
−22

3
√

65
) .

3. We decompose each xi, i = 0, 1, 2 into n̂− û− v̂:

X0 = (X0 · n̂)n̂ + (X0 · û)û + (X0 · v̂)v̂

=
1√
65

n̂ +
5

3
û +

−11

3
√

65
v̂ .

X1 = (X1 · n̂)n̂ + (X1 · û)û + (X1 · v̂)v̂

=
1√
65

n̂ +
14

3
û +

−11

3
√

65
v̂ .

X2 = (X2 · n̂)n̂ + (X2 · û)û + (X2 · v̂)v̂
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=
1√
65

n̂ + 3û +
18√
65

v̂ .

4. The mapping of ∆X0X1X2 is:

Xi → (Xi · û, Xi · v̂) = (x′i, y
′
i)

X ′0 = (
5

3
,
−11

3
√

65
) = (x′0, y

′
0)

X ′1 = (
14

3
,
−11

3
√

65
) = (x′1, y

′
1)

X ′2 = (3,
18√
65

) = (x′2, y
′
2)

The area of ∆X ′0X
′
1X
′
2 is

√
65

2
.

5. Smoothing ∆X ′0X
′
1X
′
2 at X ′1 using single-node relaxation:

X ′2 −X ′0 = (3,
18√
65

)− (
5

3
,
−11

3
√

65
) = (

4

3
,

√
65

3
)

(X ′2 −X ′0)⊥ = (
−
√

65

3
,
4

3
)

||(X ′2 −X ′0)⊥|| =
√

65

9
+

16

9
= 3

A012 =
1

2
(
−
√

65

3
,
4

3
) · (3, 0) =

−
√

65

2

h =
2 ·
√

65

2
3

=

√
65

3

n = (
−
√

65

3
,
4

3
)× 1

3
= (
−
√

65

9
,
4

9
)

X ′′1 =
1

2
(X ′0 +X ′′2 ) + hn

X ′′1 =
1

2

[
(
5

3
,
−11

3
√

65
) + (3,

18√
65

)

]
+

√
65

3
(
−
√

65

9
,
4

9
) = (

−4

54
,

907

54
√

65
) = (x′′1, y

′′
1)

The area of ∆X ′0X
′′
1X
′
2 is

√
65

2
.

6. We now map ∆X ′0X
′′
1X2 back to IR3

X0 → (Xc · n̂)n̂ + x′0û + y′0v̂ = (
−6

65
,

5

65
,

2

65
) + (

10

9
,
10

9
,
5

9
) + (

−11

585
,
−110

585
,
242

585
)

= (1, 1, 1)
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Xnew
1 = (

−6

65
,

5

65
,

2

65
)+
−4

54
(
2

3
,
2

3
,
1

3
)+

907

54
√

65
(

1

3
√

65
,

10

3
√

65
,
−22

3
√

65
) w (−0.056, 0.889,−1.889)

X2 →
1√
65

n̂ + 3

(
2

3
,
2

3
,
1

3

)
+

18√
65

(
1

3
√

65
,

10

3
√

65
,
−22

3
√

65

)
= (2, 3,−1)

The final triangle ∆X0X
new
1 X2 is:

(1, 1, 1), (−0.056, 0.889,−1.889), (2, 3,−1).

The area of ∆X0X
new
1 X2 is

√
65

2
, thus the area of the triangle is conserved.
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Chapter 4

Non-parametric Volume Conserving

Smoothing of Surface Grids

In this chapter, volume is targeted,we want to smooth without changing the volume.

Consider a closed surface α subdivided into triangular facets i.e α = ∪ τi where τi are

planar triangular facets , Smoothing operation will be performed in sweep over a small

neighborhoods across the surface in such away the amount of volume surrounded by the

triangular facets is conserved.

4.1 Volume conserving smoothing of a surface by

single-node relaxations

The method used in this section is basically simple, we firstly choose a single node, then

we change it’s position depending on the adjacent nodes in the neighborhood.

To see this, consider a closed surface α as in Figure 4.1 , the position of node X will

be changed depending on the data of nodes X(1), X(2), ..., X(n). Suppose that the node

X is moved by dXs to the position Xs,i.e Xs = X + dXs depending only on the data

of the adjacent nodes in the local neighborhood. Such a motion will change the volume

enclosed by the surface, so we in addition move Xs by some multiple of wisely chosen

direction hn̂, so

Xs = X + dXs + hn̂

let dX = dXs + hn̂, hence

Xs ≡ X + dX
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dX is the total displacement X went through.

Figure 4.1: Triangular faceted surface.

Figure 4.1 shows a neighborhood cut from a closed surface, this neighborhood forms a

polyhedron with X in the center surrounded by n neighbors at X(1), X(2), ..., X(n) when

viewed from outside.

To find h, divide the polyhedron into n tetrahedrons with X is the common vertex

among them all.

Tetrahedron volume =
1

6
(e(j) × e(j+1)) · h

hence, the change in the volume of the polyhedron becomes:

6dV =
n∑

j=1

(dXs + hn̂) · e(j) × e(j+1)

= (dXs + hn̂) ·
n∑

j=1

e(j) × e(j+1)

Volume is conserved, so dV=0 which implies:

h =
−dXs ·

∑n
j=1 e

(j) × e(j+1)

n̂ ·
∑n

j=1 e
(j) × e(j+1)
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n̂ has to minimize the norm of hn̂. Since the normal to the undistributed surface of X

is the normalized sum of area vectors of all triangles incident on X, n̂ considered to be

the normal to the undistributed surface of X.

thus,

n̂ =

∑n
j=1 e

(j) × e(j+1)

||
∑n

j=1 e
(j) × e(j+1)||

then our minimal corrective movement

hn̂ = −(dXs · n̂)n̂

We use Laplacian smoothing since it yields Xs depending on the data of the nearest

neighborhood.

Xs = X + dXs ≡
∑n

j=1X
(j)

n

where: X(j) is the position of the jth adjacent vertex, and n is the number of adjacent

vertices.

Algorithm 4. [10] Volume conserving smoothing of a surface grid by single node relax-

ation method

• Choose some X.

• Number all adjacent nodes from 1 to n, i.e {X(1), X(2), ..., X(n)}.

• h =
−dXs ·

∑n
j=1 e

(j) × e(j+1)

n̂ ·
∑n

j=1 e
(j) × e(j+1)

.

• n̂ =

∑n
j=1 e

(j) × e(j+1)

||
∑n

j=1 e
(j) × e(j+1)||

.

• dXs =

∑n
j=1X

(j)

n
−X.

• Xs = X + dXs − (dXs · n̂)n̂.

• Sweep until done.

The previous algorithm has a drawback, again the smoothing in the normal direction

which does not change the star-shaped polyhedra.
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4.2 Volume conversing smoothing of a surface using

edge relaxations

To solve the previous problem (smoothing in the normal direction), we will smooth using

two adjacent nodes (neighbours), i.e we relax edges on the surface.

In Figure 4.2, choose the two nodes X1 and X2, we relax on the edge X1X2 depending

on the position of the surrounding nodes.

In Figure 4.2, call the nodes surrounding X1 (X
(1)
1 , X

(2)
1 , ..., X

(n1)
1 ), and the nodes sur-

rounding X2 (X
(1)
2 , X

(2)
2 , ..., X

(n2)
2 ).

here,

X1 = X
(1)
2

X2 = X
(1)
1

Call the edge connecting Xi with X
(j)
i by e

(j)
i i.e e

(j)
i = X

(j)
i −Xi.

We define:

Ai =

ni∑
j=1

e
(j)
i × e

(j+1)
i , i = 1, 2

We want to move Xi to Xs
i where Xs

i = Xi + dXs
i , i = 1, 2, considering the addition

of (hn̂) such that ||hn̂|| is minimal and the volume is conserved, by some smoothing

algorithm the total displacement for X1 and X2 is:

dXi = dXs
i + hn̂, i = 1, 2 (4.1)

Consider Figure 4.3, when moving X1 to X1 + dX1, the triangles {X1, X
(j)
1 , X

(j+1)
1 :

1 ≤ j ≤ n1} positions change to the final positions {X1 +dx1, X
(j)
1 , X

(j+1)
1 : 1 ≤ j ≤ n1},

which causes change in volume, the volume change is equal to the volume of the tetra-

hedra {X1, X1 + dX1, X
(j)
1 , X

(j+1)
1 : 1 ≤ j ≤ n1}.
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Figure 4.2: Triangular faceted surface containing edge X1X2

Figure 4.3: Nodes edges surrounding X1

The change in volume in Figure 4.3 is called dV1, thus

6dV1 =

n1∑
j=1

dX1 · e(j)1 × e
(j+1)
1

= dX1 · A1

Now, consider Figure 4.4, again moving X2 to X2 +dX2, changes the volume taking into

account that the node at X1 = X
(1)
2 has already moved in the previous to X1 + dX1.
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Figure 4.4: Edges e
(j)
2 connecting nodes to X2.

Now,

e
(1)
2 = X

(1)
2 −X2 = X1 −X2

Call the new e
(1)
2 by ẽ

(1)
2 .

thus,

ẽ
(1)
2 = X1 + dX1 −X2

= e
(1)
2 + dX1

ẽ
(j)
2 = e

(j)
2 , 2 ≤ j ≤ n2

The volume change in Figure 4.4, dV2

6dV2 =

n2∑
j=1

dX2 · ẽ(j)2 × ẽ
(j+1)
2

= dX2 · ẽ(1)2 × ẽ
(2)
2 + dX2 · ẽ(2)2 × ẽ

(3)
2 + ...+ dX2 · ẽ(n2)

2 × ẽ(1)2 (4.2)

Note 4.1. 1. dX2 · ẽ(1)2 × ẽ
(2)
2 = dX2 · (e(1)2 + dX1)× e(2)2

= dX2 · e(1)2 × e
(2)
2 + dX2 · dX1 × e(2)2

2. Similarly, dX2 · ẽ(n2)
2 × ẽ(1)2 = dX2 · e(n2)

2 × e(1)2 + dX2 · e(n2)
2 × dX1

3. dX2 · dX1 × e(2)2 + dX2 · e(n2)
2 × dX1 = dX2 · (dX1 × e(2)2 + e

(n2)
2 × dX1)

= dX2 · (−[e
(2)
2 × dX1] + e

(n2)
2 × dX1)

= dX2 · (e(n2)
2 − e(2)2 )× dX1
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back to 4.2,

6dV2 =

n2∑
j=1

dX2 · e(j)2 × e
(j+1)
2 + dX2 · dX1 × e(2)2 + dX2 · e(n2)

2 × dX1

= dX2 · A2 + dX2 · (e(n2)
2 − e(2)2 )× dX1

= dX2 · A2 + dX2 · v × dX1

where,

v = e
(n2)
2 − e(2)2 = e

(2)
1 − e

(n1)
1 From Figure 4.2

Since the volume is conserved, we have:

6dV = 6dV1 + 6dV2 = 0

thus,

0 = dX1 · A1 + dX2 · A2 + dX2 · v × dX1

0 = (dXs
1 + hn̂) · A1 + (dXs

2 + hn̂) · A2 + (dXs
2 + hn̂) · v × (dXs

1 + hn̂) From 4.1

then,

h =
−dXs

1 · A1 + dxs2 · A2 + dXs
2 · v × dXs

1

n̂ · (A1 + A2 + v × (dXs
1 − dXs

2))

The value of n̂ that minimizes ||hn̂|| is:

n̂ =
A1 + A2 + v × (dXs

1 − dXs
2)

||A1 + A2 + v × (dXs
1 − dXs

2)||
We will use Laplacian smoothing of both X1 and X2. So,

Xs
1 =

1

n1

(Xs
2 +

n1∑
j=2

X
(j)
1 ) (4.3)

Xs
2 =

1

n2

(Xs
1 +

n2∑
j=2

X
(j)
2 ) (4.4)

To compute Xs
1 , substitute (4.4) in (4.3) yields:

Xs
1 =

1

n1n2 − 1

n2∑
j=2

X
(j)
2 +

n2

n1n2 − 1

n1∑
j=2

X
(j)
1

Then we compute Xs
2 by (4.4).

For some problems, under relaxed Laplacian smoothing is used:

Xs
i ← (1− w) Xi + wXs

i , i = 1, 2 (4.5)

where:
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• Xs
i on the right hand side are the positions yielded by (4.3) and (4.4). [Laplacian

smoothing]

• Xs
i on the left hand side are the positions yielded by underrelaxed Laplacian

smoothing with 0 < w ≤ 1.

(4.5) slows down the smoothing in order to have a controlled surface deformation.

Algorithm 5. [10] Volume conserving smoothing of a surface using edge relaxation.

Using under relaxed Lapacian smoothing.

• Choose two nodes X1 and X2.

• Call the adjacent points for each as {X(j)
i }

j=1,...,ni
i=1,2 .

• Ai =
∑ni

j=1 e
(j)
i × e

(j+1)
i , i = 1, 2.

• v = e
(n2)
2 − e(2)2 .

• Xs
1 = 1

n1n2−1

(∑n2

j=2 x
(j)
2 + n2

∑n1

j=2 x
(j)
1

)
.

• Xs
2 =

1

n2

(
Xs

1 +
∑n2

j=2X
(j)
2

)
.

• dXs
i = w(Xs

i −Xi), i = 1, 2, 0 < w ≤ 1.

• A = A1 + A2 + v × (dXs
1 − dXs

2).

• If ||A|| > (”a tiny number”) then:

n̂ = A/||A||.
h = −(dXs

1 · A1 + dXs
2 · A2 + dXs

2 · v × dXs
1)/||A||.

Xi = Xi + dXs
i + hn̂, i = 1, 2.

• Sweep until done.

Figure 4.7 shows the result of applying algorithm 4 in smoothing a closed quadrilat-

eral with 25 sweeps.
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Figure 4.5: [10] Before and after smoothing an open triangular surface grid using 25

sweeps of algorithm 4.
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Figure 4.6: [10] Before and after smoothing an closed triangular surface grid using 25

sweeps of algorithm 4.
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Figure 4.7: [10] Before and after smoothing a closed quadrilateral surface grid using 25

sweeps of algorithm 4.
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Chapter 5

Mass conserving smoothing method

Smoothing mechanism has been used to solve a large number of applications, in this

chapter we will use smoothing method to preserve mass in some applications like the

incompressible fluid flow simulation with free surface. At the free surface, undulations

appear on the surface because of the difference in a velocity from cell to cell, these un-

dulations are usually smaller than a cell size and appear in computational simulations

only since the tension and viscousity remove them.

This chapter illustrates a technique to conserve mass called Trapezoidal Sub-grid Un-

dulations Removal (TSUR), this technique keeps a constant volume during the reposi-

tioning of vertices. TSUR adds robustness and linearity which are concerned to compu-

tational time. This chapter contains a review of some concepts, an illustration of a two

different versions implemented by TSUR, planar and three dimensional.

5.1 Area of a triangle

Let u and v be two vectors in 3-D.

The parallelogram area (shaded area) equals to |u×v| where |u| is the base and |v|| sin θ|
is the height, i.e

Parallelogram area = u× v

=

∣∣∣∣∣∣∣
i j k

u1 u2 u3

v1 v2 v3

∣∣∣∣∣∣∣
= i

∣∣∣∣∣ u2 u3

v2 v3

∣∣∣∣∣− j
∣∣∣∣∣ u1 u3

v1 v3

∣∣∣∣∣+ k

∣∣∣∣∣ u1 u2

v1 v2

∣∣∣∣∣
= (u2v3 − u3v2)i+ (u3v1 − u1v3)j + (u1v2 − u2v1)k
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In the 2-D, Parallelogram area is the magnitude of u× v, where:

u× v =

∣∣∣∣∣∣∣
i j k

u1 u2 0

v1 v2 0

∣∣∣∣∣∣∣ = (u1v2 − u2v1)k

⇒ |u× v| = (u1v2 − u2v1)

Now, the area of the triangle is one-half of parallelogram area as shown in Figure 5.1.

Figure 5.1: parallelogram area given by u× v.

The cross product is a vector normal to the plane of the triangle, so the area of the

triangle is:

A(T ) =
1

2
(u1v2 − u2v1)

Substitute:

u1 = xj − xi, u2 = yj − yi

v1 = xk − xi, v2 = yk − yi

⇒ A(T ) =
1

2
[(xj − xi)(yk − yi)− (yj − yi)(xk − xi)]

This gives the area of triangle signed by the points xi, xj and xk [3].
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5.2 Trapezoidal sub-grid undulations removal in two

dimensions

We will illustrate TSUR in 2-D, to see this consider four consecative points (particles in

our application) Xi, Xi+1, Xi+2 and Xi+3 which forms quadrilateral as shown in Figure

5.2.

Figure 5.2: [12] Two-dimensional Trapezoidal Sub-gird Undulations Removal method.

We will reposite points Xi+1, Xi+2 such that the new shape (isosceles trapezium) has

the same area shaded in Figure 5.2.

Also, Xi+1, Xi+2 moved to X∗i+1 and X∗i+2 respectively where L1 = L2 = L3 = L

and h1 = h2 = h as in Figure 5.2.
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To compute quadilateral area in the two triangles where the area of the triangle de-

fined by the points Xi, Xj and Xk taken a counter clockwise (we may take clockwise).

Aijk =
1

2
[(xj − xi)(yk − yi)− (xk − xi)(yj − yi)]

where Xi = (xi, yi).

To compute the area of trapezium, devide it into four triangles.

The total area = A1 + A2 + A3 + A4

= 4A = 4(
1

2
lh) = 2lh

And therefore h = A
2l

.

The unit vector tangent to Xi+3 −Xi is:

τ = (τx, τy)
t =

Xi+3 −Xi

||Xi+3 −Xi||2
The outward unit normal is:

n = (τy,−τx)t

The new positions are:

X∗i+1 = Xi + lτ + hn

X∗i+2 = Xi + 2lτ + hn

Algorithm 6. [12]

• Perform smoothing operation on a neighborhood

{Xi, Xi+1, Xi+2, Xi+3}, i = 0, ..., n− 1

• h = A
2l

• τ =
Xi+3 −Xi

||Xi+3 −Xi||2
• n = (τy,−τx)t

• X∗i+1 = Xi + lτ + hn

X∗i+2 = Xi + 2lτ + hn

• Sweep until done.
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5.3 Trapezoidal sub-grid undulations removal in three

dimensions

Consider Figure 5.3 which shows a vertex V and it’s corresponding star which is formed

by the set of vertices Xi, i = 0, 1, ..., n, vertex V is connected to the vertex Xi by the edge

(V,Xi), i = 0, 1, ..., n and vertices Xi and Xi+1 are connected by the edge (Xi, Xi+1),

i = 0, 1, ..., n, (Xi, V,Xi+1), i = 0, 1, ..., n forms the faces.

Figure 5.3: [12] Typical vertex and it’s star.

TSUR in 3-D uses a balance procedure which preserves the local volume bounded by

the star (X0, X1, ..., Xn) and the faces (Xi, V,Xi+1), i = 0, 1, ..., n or (alternatively) the

volume bounded by the faces (Xi, V,Xi+1) and the faces (Xi, P,Xi+1), i = 0, 1, ..., n.

Where P is a point determined as in the following.

Figure 5.4: [12] The projection of the polyhedron into the plane K.
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Figure 5.4 shows the projection of the polyhedron in Figure 5.3 into the plane K which

is defined by the point P which is the average of the vertices (centroid of the star) Xi,

i = 0, 1, ..., n,i.e

P =
1

n

n∑
i=0

Xi (5.1)

And the normal vector n which is computed by averaging the normal vectors of the faces

(Xi, P,Xi+1), i = 0, 1, ...n.

n =

∑n−1
i=0 (Xi − P )× (Xi+1 − P ) + (Xn − P )(X0 − P )

||
∑n−1

i=0 (Xi − P )× (Xi+1 − P ) + (Xn − P )(X0 − P )||
(5.2)

Now, each vertex(particle) of fluid will be moved depending on P and n such that if P

is inside the projection of X0, X1, ..., Xn on K, then the new position of V is:

Vnew = P + hn

h =
V′

V1

(5.3)

where:

V′: The volume of the polyhedron (V,X0, X1, ..., Xn, P ).

V1:The volume of the unitary polyhedron (P + n, X0, X1, ..., Xn, P ).

The volume of a polyhedron can be computed by the volume of a tetrahedron.

V olume =
1

6

∣∣∣∣∣∣∣
x1 − x0 x2 − x0 x3 − x0
y1 − y0 y2 − y0 y3 − y0
z1 − z0 z2 − z0 z3 − z0

∣∣∣∣∣∣∣

Note 5.1. [12] h = V′

V1
preserves the local volume since the volume of the polyhedron

(P + hn, X0, X1, ..., Xn, P ) is equal to h times the volume of (P + n, X0, X1, ..., Xn, P ).

The previous step is called vertex balance procedure [12], Figure 5.5 shows this step.

Vertex balance procedure makes the mesh more homogeneous, but it doesn’t remove

the sub-gird undulation. So, another step called Undulation removal procedure is
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Figure 5.5: [12] A vertex with it’s star, before and after the vertex balance procedure

has been applied.

applied [12]. Although vertex balance procedure doesn’t remove the undulation, it in-

creases the robustness of the undulation removal procedure.

In Figure 5.6, Let e be the edge connecting the vertices V1 and V2. Let n1 and n2

be the normals at V1 and V2 respectively computed as in (5.2).

Figure 5.6: [12] Undulation removal procedure, showing an edge and it’s star.

48



Then, the normal n for the edge e will be:

n =
n1 + n2

||n1 + n2||

Also, let m be the average of the vertices V1 and V2 i.e,

m =
1

2
(V1 + V2)

The positions of vertices V1 and V2 will be changed as follows:

1. The height h1 and h2 corresponding to V1 and V2 respectively will be in the direc-

tion of n and given by the inner product h1 =< V1−m,n > and h2 =< V2−m,n >.

2. The points p1 and p2 are computed by:

p1 = V1 − h1n and p2 = V2 − h2n.

The previous two steps gives two polyhedra (V1, X1,0, X1,1, ..., X1,n, p1) with volume

V1 where X1,0, x1,1, ..., x1,n is the star of V1 and (V2, X2,0, X2,1, ..., X2,m, p2) with

volume V2 where X2,0, X2,1, ..., X2,m is the star of V2.

3. We have to find the new height h in the direction of n such that the local volume

is preserved.

Let V = V1 + V2, then by linearity (5.3):

h =
V

Va

Where: Va is the volume of the polyhedron (p1, x1,0, ..., x1,n, p1+n, p2+n, x2,0, ..., x2,n, p2)

So,

h =
V1 + V2

V1|h1 + V2|h2

4. The new positions of the vertices V1 and V2 are given by:

V1 = p1 + hn and V2 = p2 + hn.

5. The previous steps are applied to all edges of the mesh.

Note 5.2. The number of times we apply the undulation removal procedure depend on

the problem and the grid resolution.
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Applications of TSUR

1. Planer Flow

TSUR in 2-D is used to remove the undulation results in a free surface of a fluid dur-

ing filling a container. Figure 5.7 shows the undulations in the dashed line (without

TSUR in 2-D). While these undulations are removed after applying TSUR in 2-D

which is represented by the dotted line [12].

Figure 5.7: [12] Comparison of a simulation without TSUR against a simulation with

TSUR.

2. 3-D Flow

TSUR in 3-D is used to remove the undulation appears on the pendant drop. The

parameters of the drop taken are :Re = 0.125, Fr = 0.25 and We = 0.02. Figure

5.8 Shows the drop without applying TSUR in 3-D and Figure 5.9 shows the effect

of TSUR in 3-D.

As volume is conserved, the following table shows the volume after applying TSUR

in 3-D several times, given error less than 10−3 [12].

Number of Times 0 15 45

Volume 0.504041595 0.504073084 0.50411593

Figure 5.a 5.b 5.c
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Figure 5.8: [12] Pendent drop; a) without TSUR, b) with TSUR.

Figure 5.9: [12] TSUR-3D applied in a cube.
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