
 I

Palestine Polytechnic University

College of Engineering & Technology

Electrical and Computer Engineering Department

Graduation Project

JCOP: A Security Framework for JADE Intra Platform Mobility

Project Team

Salman Qabaga

Khaliel Ikhlaiel

Saqer Atawneh

Project Supervisor

 Dr. Radwan Tahboub

Hebron- Palestine

2011

http://elearning.ppu.edu/course/view.php?id=1886

 II

فلسطين بوليتكنك جامعة

فلسطين – الخليل

التكنولوجيا و الهندسة كلية

الحاسوب و الكهربائية الهندسة دائرة

المشروع اسم

JCOP A Security Framework for JADE Intra Platform Mobility

Over windows Operating System

الطلبة أسماء

 سلمان قباجة خليل اخليل صقر عطاونة

 المشروع على المباشر المشرف متابعة و إشراف و التكنولوجيا و الهندسة كلية نظام على بناء

 الحاسوب و الكهربائية الهندسة دائرة إلى المشروع هذا تقديم تم الممتحنة اللجنة أعضاء وموافقة

. الحاسوب أنظمة هندسة تخصص الهندسة في البكالوريوس درجة بمتطلبات للوفاء وذلك

المشرف توقيع

...

 الممتحنة اللجنة توقيع

.........................

الدائرة رئيس توقيع

................................

 III

Abstract

Mobile agent technology offers a new computing paradigm in which a

program, in the form of a software agent, can suspend its execution on a host

computer, transfer itself to another agent-enabled host on the network, and resume

execution on the new host.

The JCOP is a security framework for JADE intra platform mobility; it

consists of a set of agents that cooperate with each other to provide security for the

platform, and a set of classes for programmers to integrate their work with JCOP

access policy. This project aims to enforce security over JADE with the minimum

amount of performance overload.

 IV

Acknowledgments

First of all thanks for God that make us go that far in this project

and for the successes we reach.

For our families’ good friends, for our advisers Dr.Radwan Tahbub and

Dr.Ammal Aldweak Wazwaz and for Palestine Polytechnic University

we dedicate this work.

 V

Table of contents

Subject Page

Cover page ……..……...……………………..…..… I

Signature page ……..……...……………………..…..… II

Abstract ……..……...……………………..…..… III

Dedication ……..……...……………………..…..… IV

Acknowledgments ……..……...……………………..…..… V

Chapter One : Introduction ……..……...……………………..…..… 1

1.1 Overview ……..……...……………………..…..… 2

1.2 Project Important ……..……...……………………..……… 3

1.3 Project Objectives ……..……...……………………..……… 3

1.4 Literature Review ……..……...……………………..…..… 4

1.5 Requirements ……..……...……………………..…..… 6

1.5 Time Plane ……..……...……………………..…..… 8

1.6 Road Map ……..……...……………………..……… 9

Chapter Two : Theoretical Background …………………………….. 11

1.2 Distributed System ……..……...……………………..….. 12

  Definition Of A Distributed System …………....……… 12

 Distributed System Goals …………....……… 12

 Types of Distributed Systems …………………… 13

  Communication of Distributed System …………....……… 14

 Distributed System Security …………....……… 14

2.2. Mobile agent ………………...……………....…………
15

  Definition of an agent system
…………....………. 15

  Definition of Mobile agent
……..…….....…….. 16

  Mobile agent Components ………….....……… 17

 VI

  Mobile agent life cycle ………….....………
18

  Mobile agent security requirements ………….....………
19

 2.3 Security Issues in Mobile Agent ……...……...………………
20

 Agent –to- platform threats ……...……...…… 23

 Agent –to- Agent threats
……...……...……. 24

 Platform –to- Agent threat
……...……...…… 25

 Other –to- agent platform threats
……...……...…… 26

2.4 Software Description …….……...…….....………………
28

 2.4.1. The Jade Platform
……...……...…… 28

 2.4.2. Java programming language ……...……...…… 30

 2.4.3. NetBeans IDE
……...……...…… 31

Chapter Three: System conceptual Design ………....……………… 32

3.1. detailed project objectives …….……...…….....……………… 33

3.2. Security Solutions …….……...…….....……………… 34

 System Definition ……...……...…… 34

  System block diagram ……...……...…… 34

 Problem Solving ……...……...…… 37

 System Modeling ……...……...……

38

 3.3 Testing Application 41

 3.3.1 System Definition ……...……...…… 41

 3.3.2 System Block Diagram ……...……...…… 42

 3.3.3 System Modeling
……...……...…… 45

Chapter Four : Detailed System Design ……...……...…… 47

 VII

4.1 Security Manager (SM) Architecture ……...……...…… 48

4.2 Detailed Specification of SM Components .
……...……...……

 4.2.1 Registration Authority (RA)
……...……...…… 50

 4.2.2 Certification Authority (CA)
……...……...…… 50

 4.2.3 Validation Authority
……...……...…… 51

 4.2.4 Container Guardian
……...……...…… 51

 4.2.5 WatchManV1
……...……...…… 51

 4.2.6 WatchManV2
……...……...…… 51

4.3 Agents Task Scheduling and Interactions in JADE
……...……...…… 52

 4.3.1 Agent Task in JADE
……...……...…… 53

 4.3.2 Primary types of behaviors in jade
……...……...…… 53

 4.3.3 Scheduling operation
……...……...…… 54

 4.3.4 Methods invoked during the agent life

Cycle ……...……...…… 55

 4.3.5 Interacting with AMS
……...……...…… 56

4.4 Detailed System Modeling
……...……...…… 56

 4.4.1 Security Manager Agents
……...……...…… 57

 4.4 .1.1 Registration Authority (RA)
……...……...…… 57

 4.4 .1.2 Certification Authority (CA)
……...……...…… 63

 VIII

 4.4 .1.3 Validation Authority (RA)
……...……...…… 66

4.5 Description of interaction classes ……...……...…… 71

4.7 Limitations ……...……...……
77

4.8 Assumptions ……...……...……
77

4.9 Summery ……...……...……
78

Chapter Five :Implementation and Testing ……...……...…… 79

 5.1 Development Environment 80

 5.2 Development Process 81

 5.3 Testing 82

 5.4 Summary 99

Chapter Six :Conclusion and Future Work ……...……...……
100

 6.1 experimental Results
 101

 6.2 Conclusion
 106

 6.3 Future Work
 106

 6.4 Summery
 106

 IX

Table of Figures

Figure Page

Figure 2.1. Distributed System Model ……………………………………….. 13

Figure 2.2. The Mobile Agent Paradigm……………………………………
17

Figure 2.3. Mobile Agent Life Cycle………………………………………….
19

Figure 2.4. Simple mobile agent s system…………………………………….
21

Figure 2.5.Main architectural elements of a JADE platform …………………
29

Figure 2.6. Relationship between the main architectural elements……………
29

Figure 3.1 System Block Diagram……………………………………………. 35

Figure 3.2 Security Manager Block diagram ………………………………… 36

Figure 3.3 Flowchart Describes RA Agent Behavior………………………… 38

Figure 3.4 Flowchart Describes The CA Agent Behavior …………………… 39

Figure 3.5 Flowchart Describes The VA Agent Behavior…………………….
40

Figure 3.6 General idea of the FNS…………………………………………...
41

Figure 3.7: System Block Diagram……………………………………………….
42

Figure 3.8: First Strategy of Mobile Agent in FNS………………………….
43

Figure 3.9: Second Strategy of Mobile Agent in FNS……………………….
44

Figure 3.10:Third Strategy of Mobile Agent in FNS………………………..
44

Figure 3.11: Show refined dataflow – level 0 which gives details for the searching

process to explicitly describe each subprocess. 45

Figure 3.12 Dataflow diagram – level 1……………………………………..
46

 X

Figure 3.13 Use case to FNS………………………………………………
46

Figure 4.1 Architecture of SM……………………………………………….. 50

Figure 4.2. Agent Thread Path Of Execution………………………………
53

Figure 4.3: RA Global Behavior………………………………………………
59

Figure 4.4 .RA Step (1)……………………………………………………….
60

Figure 4.5. RA Step (2) ……………………………………………………….
61

Figure 4.6 .RA Step (3) ……………………………………………………….
63

Figure 4.7. RA Step (4) ……………………………………………………….
64

Figure 4.8 .RA Step (5) ……………………………………………………….
65

Figure 4.9 .CA Global Flowchart……………………………………………...
66

Figure 4.10: CA block A and B………………………………………………
67

Figure 4.11 .CA block C, D, E, and F…………………………………………
69

Figure 4.12 The VA Global…………………………………………………...
70

Figure 4.13: VA Block A And B……………………………………………...
71

Figure 4.14 VA Block D And E………………………………………………
72

Figure 4.15 WMV1 Flowchart………………………………………………...
73

Figure 4.16 WMV2 Flowchart………………………………………………...
74

Figure 4.17 Guardian Flowchart………………………………………………
76

Figure 4.18 FNS Behaviors……………………………………………………
77

Figure 4.19FNS Flow Chart…………………………………………………
78

 XI

Figure 5.1 WMV1 show the name rma after discovering it………………….. 84

Figure 5.2 WMV1 show the name df after discovering it……………………. 85

Figure 5.3 WMV1 show the name RA after discovering it. …………………. 85

Figure 5.4 WMV1 show the name ams after discovering it. 86

Figure 5.6 WMV1 show the name of new agent called “agent” after

discovering it. 86

Figure 5.6 RA show content of a message sent by WMV1 carrying the name

of the new agent (this agent did not follow the JCOP restrictions). 87

Figure 5.7 RA kills the new agent “agent”. ………………….……………… 87

Figure 5.8 WMV1 show the name of new agent called “agent1”

after discovering it. ………………….………………….…………………. 88

Figure 5.9 RA show content of a message sent by WMV1 carrying the name

of the new agent (this agent follow the JCOP restrictions but with illegal

goal). ………………….………………….………………….……………… 89

Figure 5.10 a message box that shows the content of agent request message

(notice the word kill in the message content where kill is restricted word) 90

Figure 5.11 a message box shows the request message inside the text

validation process. ………………….………………….…………………. 91

Figure 5.12 RA kills the new agent “agent1” because it has illegal goal…….. 91

Figure 5.13 WMV1 show the name of new agent called “agent2” after

discovering it. 92

Figure 5.14 RA show content of a message sent by WMV1 carrying the

name of the new agent (this agent follow the JCOP restrictions). ………… 93

Figure 5.15 a message box that shows the content of agent request message

(notice that the message did not contain any restricted word) ……………… 94

Figure 5.16 a message box shows the certification granted from CA to new

agent. ………………….………………….………………….…………… 95

 XII

Figure 5.17 the JCOP certStore and keyStore directories. …………………. 96

Figure 5.18 inside JCOP certStore directory. ………………….…………… 96

Figure 5.19 inside JCOP Certificate0 directory. ………………….………… 97

Figure 5.20 inside JCOP Certificate0 file. ………………….…………… 97

Figure 5.21 inside JCOP RequestText0 file. ………………….…………… 98

Figure 5.22 inside JCOP Signature0 file. ………………….……………… 98

Figure 5.23 the FNS stationary agent “Controller”. ………………….……… 99

Figure 5.24 the Agent0 is the searcher mobile agent. ………………….…… 99

Figure 5.25 the searcher agent search in machine 3. ………………….…… 100

Figure 5.22 the searcher agent search in machine 1. ………………….……… 101

 XIII

List of tables

Table 1.1. Tasks description (1
st
 semester) 8

Table 1.2 Time Plane (1
st
 semester) 9

Tabel 4.1 :RA Step(1) 60

Table 4.2. RA Step (2) 61

Table 4.3: RA Step (3) 62

Table 4.4. RA Step (4) 64

Table 4.5. RA Step (5) 65

Table 4.6: CA block A AND B 67

Table 4.7: CA Block C , D, E, F 68

Table 4.8: VA Block A,B and C 70

Table 4.9. VA Block D and E 71

Table 4.10 WMV1 73

Table 4.11 WMV2 74

Table 4.12 Guardian 75

Table 6.1 Hardware used in the experiments 103

Table 6.2 Experiment 1 Memory Comparison 105

Table 6.2 Experiment 1 CPU Comparison 105

Table 6.3 Experiment 2 Memory Comparison 106

 XIV

Table 6.4 Experiment 2 CPU Comparison

Table 6.5 Experiment 3 Memory Comparison 107

Table 6.6 Experiment 4 CPU Comparison 107

1

Chapter 1

Introduction

1.1 Overview

1.2 Project Importance

1.3 Project Objectives

1.4 Literature Review

1.5 Requirements

1.6 Time Plan

1.7 Road Map

2

Chapter One

Introduction

1.1. Overview

Through last two decades many complex methods were found to support

the communication over distributed systems such as RMI, DCOM, and

CORBA [1]. These methods had disadvantages; it was very expensive, more

suitable for large systems, and increase the network load and latency time in

communication over distributed systems. So, many problems with different

aspects where needed to be analyzed and put a solution for it.

One of many methods found to communicate over distributed systems is

the mobile agent paradigm. According to GRAY [GKRNC96] a software agent

is “a program that is autonomous enough to act independently, even when the

user or application that launched it is not available to provide guidance and

handle errors “. In another definition, using different terms, a software agent is

program that acts in behalf of its owner (agent owner) [2].

A mobile software agent, or a software agent for now on, is an object that

migrates through many nodes of a heterogeneous network of components,

under its own control, in order to perform tasks using resources of these nodes

[2]. It travels from node to another of a distributed system performing tasks on

behalf of its owner. At the end of this process an agent can return to its home

site and report itself to the user who injected this object in the distributed

system .The mobile agents simply provides a greater opportunity for abuse,

misuse, and broadening the scale of threats significantly [2].

3

In this project we will discuss approaches of mobile agent security and

implement one of these approaches in JADE platform to provide a secure

mobile agent.

1.2. Project Importance

 The adoption of the Mobile agent’s technology is currently limited by the

lack of security. Mobile agents face large scale of threats that act on mobile agent

or on its platform. These threats can affect mobile agent themselves or on data

carried by it.

 So, it is important to secure mobile agent against those threats to encourage

users and companies to use the mobile agent. This improves the effectiveness of

network and decreases the network latency; therefore the secure mobile agent that

guarantees authentication, confidentiality and integrity can travel over distributed

system safely.

1.3. Objectives

 Making survey about the mobile agent common security threats

(vulnerabilities).

 Search for acceptable solutions for these security threats.

 Implement these solutions with JADE development environment.

 Implement the simple file name searcher as JADE multi_agent application.

 Apply the security solutions to the FNS application to test their effect.

4

1.4. Literature Review

1.4.1. Advanced mobile agent security models for code integrity and malicious

availability check:

 Objective: Malicious Identification Police model [MIP] for scanning the

incoming agent to detect the malicious activities and to overcome the

availability of vulnerabilities in the existing Root Canal algorithm for code

integrity checks.

 Work done: The MIP model is extended with the policy to differentiate

the agent owners in the distributed environment and the Root Canal

algorithm is improved as extended Root Canal algorithm.

 Conclusion: The experimental results of the advanced models show that

though these mechanisms take more time complexity than the existing

malicious identification police model and Root Canal model, these models

are efficient in protecting the agent code integrity and scanning the agent

for malicious activities. Also the new models possess less time complexity

compared to the other related existing models in the secure mobile agent

environment [3].

1.4.2. A buddy model of security for mobile agent communities operating in

pervasive scenarios:

 Objective: every agent protects its neighbor within the community, thereby

sharing the responsibilities of the security function. This feature akas it a

better option as compared to other hierarchical models of security, which

can be brought down by a concerted attack at the controller agent.

5

 Work done: The buddy model of security for mobile agent.

 Conclusion: This study also demonstrates the applicability and the

effectiveness of the Buddy model in different pervasive scenarios and

makes a strong case for its adoption [4].

1.4.3. A security protocol for mobile agents based upon the cooperation of sedentary

agents:

 Objectives:

 The cooperation between a mobile agent and a sedentary agent.

 The reference execution (reliable platforms which shelter our

cooperating sedentary agents).

 The use of cryptography and the digital signature to ensure safe

inter-agent communication and time-limited execution (timeout).

 Work done: produce dynamic approach which makes use of a timer to

make it possible to detect a mobile agent's code re-execution was used.

 Conclusion: The attack on agent permanent modification was also dealt

with. Moreover, the protocol is sufficiently robust so that it is durable and

fault tolerant [5].

1.4.4. Verifiable Distributed Oblivious Transfer (VDOT):

 Objective: Using VDOT scheme allows us to replace a single trusted party

with a group of threshold trusted servers.

 Work done: The design of VDOT uses a novel technique called

consistency verification of encrypted secret shares.

6

 Conclusion: VDOT protects the privacy of both the sender and the

receiver against malicious attacks of the servers. The preliminary

evaluation shows that protecting mobile agents not only is possible, but

also can be implemented efficiently [6].

1.4.5. Securing mobile agent using multi agent cryptographic protocols:

 Objective: Using this scheme will eliminate the need of trusted third party,

and provide protective protocols to secure mobile agents most real world

attacks.

 Conclusion: These protocols heavily rely on well-established

cryptographic primitives, such as encrypted circuits, threshold decryption,

and oblivious transfer [7].

1.5 Requirements

Since this project is divided into two parts. The Requirements of the two

parts will be stated separately

1.5.1 System security Requirements

To protect the mobile agent system then the two main components of the

system must be protected: agent and its platform.

To achieve this protection, set of procedures are defined:

 A Registration Authority (RA) must starts when JADE main Container

lunch. To verify agents goal and allow agents to legally register in JADE.

7

 Trusted Certificate Authority (CA), must start when the JADE main

container lunch. To certify the legally verified agents by RA.

 A Validation Authority must starts when JADE main container lunch. To

verify and validate agents movements in the intra connected platform.

 Introspetor to inform the RA when new agent is created.

 Introspetor to inform the VA when agent moves from container to another.

 Certification Store to store the certificates issued by CA.

 Key Store to store the public Key produced by CA.

 Class that encapsulate the certificate data inside the agent.

 Class that allow programmers to integrate the security mechanism to their

applications.

1.5.2 Requirements of testing application (File Name Searcher)

1.5.2.1 User Requirements

The system should provide a graphical user interface (GUI) in order to interact

with the user in an easy and simple way. The GUI should provide:

 Option for the user to provide the system with the file name.

 Option for the user to start the search process.

 Option for user to stop the search process.

 Option gives user the search result.

1.5.2.2 Functional Requirements

This System is composed of two Stationary Agents: agent called reference

agent (RFA) and mobile agent, called Searcher Agent (SA).

8

When the application gets the file name form user it provides it to the RA which

creates SA that caring the file name. Reference Agent sends the Searcher Agent to

search for target over a network. When Searcher Agent finds the file then it will

send a message with the result to Reference Agent. In turn, Reference Agent sends

kill message to the Searcher Agent and finish the search process.

1.5.2.3 NON Functional Requirements

 Usability, reliability, security, and performance should be provided as follow

o Usability: the system should be easy to use.

o Reliability: the system should be reliable under different

circumstances.

o Security: communication between agents should be secure.

o Performance: the system should work with good performance

measures.

1.6. Time Plan

Task ID Task Description

T1.1 Selecting the project.

T1.2 Collecting information.

T1.3 System and requirements analysis.

T1.4 System design.

T1.5 Documentation.

Table 1.1. Tasks description (1
st
 semester)

9

Task/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T1.1

T1.2

T1.3

T1.4

T1.5

Task/Week 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

T1.1

T1.2

T1.3

T1.4

T1.5

Task ID Task Description

T1.1 System design.

T1.2 Learn JADE

T1.3 Learn Java security API

T1.4 Implement Security solution (JCOP)

T1.5 Documentation.

Table 1.2 Time Plan (1
st
 semester)

Table 1.4 Time Plan (2nd semester)

Table 1.3 Tasks description (2nd semester)

10

1.7. Road Map

 This project contains six chapters, each one describes a specific task of the

project, and this page is the finale page in chapter one, it consist of briefly

description about next five chapters.

Chapter Two: Theoretical Background, this chapter gives a clear picture about the

system theoretical background related to the main concepts of agent platform,

agent, mobile agents, mobile agent security, and system basic components.

 Chapter Three: Conceptual design, this chapter shows system block diagram,

design options that can be used in the system, and each system component

interface with each other.

Chapter Four: Detailed design, this chapter describe the design of the system

including flowcharts, AUML, and GUI design.

Chapter Five: System implementation and testing, this chapter describes the

system implementation and testing in details.

Chapter Six: Conclusion and future work, this chapter gives how much we are

achieved from our objectives, what is the problems we face and how we achieve

the solution, and finally we will give suggestions for the future development.

11

Chapter Two

Theoretical Background

2.1 Distributed Systems

2.2 Mobile Agents

2.3 security issues

2.4 Software Description

12

Chapter Two

Theoretical Background

This chapter provides an illustrative theoretical background

2.1. Distributed System

2.1.1. Definition of A Distributed System

A distributed system is a collection of independent computers that appears

to its users as a single coherent system. A distributed system organized as

middleware. The middleware layer extends over multiple machines and offers

each application the same interface as shown if figure 2.1 [8].

2.1.2. Distributed System Goals [6]

 Making Resources Accessible: The main goal of a distributed system is to

make it easy for the users (and applications) to access remote resources,

and to share them in a controlled and efficient way.

 Distribution Transparency: An important goal of a distributed system is to

hide the fact that its processes and resources are physically distributed

across multiple computers.

 Openness: An open distributed system is a system that offers services

according to standard rules that describe the syntax and semantics of those

services.

 Scalability of a system can be measured along at least three different

dimensions:

o A system can be scalable with respect to its size, meaning that we

can easily add more users and resources to the system.

13

o A geographically scalable system is one in which the users and

resources may lie far apart.

o A system can be administratively scalable.

Figure 2.1 Distributed System Model [30]

2.1.3. Types of Distributed Systems

 There are three types of Distributed Systems.

 Distributed Computing Systems: an important class of distributed systems

is the one used for high-performance computing tasks.

 Distributed Information Systems: is found in organizations that were

confronted with a wealth of networked applications.

 Distributed Pervasive Systems: Pervasive systems are created by

introducing wireless communication into distributed multimedia systems.

These systems facilitate mobile data access to applications such as health

care, tourism and emergency [8].

14

2.1.4. Communication of Distributed System

Communication in distributed systems is always based on low-level

message passing as offered by the underlying network [8]. Under this concept

there are four types of communication that take place over distributed systems

such types are variant in communication over distributed system.

1. Remote Procedure Call: When a process on machine A calls' a procedure

on machine B, the calling process on A is suspended, and execution of the

called procedure takes place on B. Information can be transported from the

caller to the call in the parameters and can come back in the procedure

result. No message passing at all is visible to the programmer.

2. Message-Oriented Communication: when it cannot be assumed that the

receiving side is executing at the time a request is issued, alternative

communication services are needed. Likewise, the inherent synchronous

nature of RPCs, by which a client is blocked until its request has been

processed.

3. Stream-Oriented Communication: this type of communication is that it

does not matter at what particular point in time communication takes place.

4. Multicast Communication: sending data to multiple receivers called also

multicast communication.

2.1.5. Distributed System Security

 Distributed systems apply all security policies and mechanisms that

provide authentication, confidentiality, availability, integrity and control access.

The secure channels should provide authentication, message integrity and

confidentiality, and secure group communication. Firewalls and secure mobile

code are used for secure access control.

15

Security can have varying levels of difficulty for implementation. One

factor in determining the difficulty is the number and distribution of the systems.

When only individual systems need to be protected, such as one computer with all

files residing locally and with no need to connect to any outside resources, security

is not as complex as with distributed systems. With distributed systems

architecture, there are different nodes and resources. One major issue with

distributed systems is application security [24].

2.2. Mobile agent

2.2.1. Definition of an agent system

An agent system is a platform that can create, interpret, execute, transfer

and terminate agents. Like an agent that is associated with an authority that

identifies the person or organization for which the agent system acts. Where it is

uniquely identified by its name and address. While host can contain one or more

agent systems [9].

We can say for an agent as a computer program whose purpose is to help a

user perform some task (or set of tasks). To do this, it contains persistent state and

can communicate with its owner, other agents and the environment in general.

Agents can do routine work for users or assist them with complicated tasks; they

can also mediate between incompatible programs and thus generate new, modular

and problem-oriented solutions, saving work [10].

16

2.2.2 Definition of Mobile agent

A mobile agent is a particular class of agent with the ability during

execution to migrate from one host to another where it can resume its execution. A

mobile agent is not bound to the system where it begins execution. It has the

unique ability to transport itself from one system in a network to another. Agent

system that contains an object which the agent want to interacts with. Moreover,

the agent may utilize the object services of the destination agent system [9].

Mobile Agent technology consists of mainly two components: the

mobile agent system and the mobile agents. The mobile agent system hosts the

agents and provides an environment where they are executed after their arrival.

The agents move from agent system to agent system on their own volition and

work disconnected from their original home computer [9].

A common mobile agent interaction is depicted in Figure 2.2; it shows the

behavior of a mobile agent at the network level. In step one the mobile agent is

initialized on the client. Then the mobile agent moves via the network to the next

mobile agent system.

17

Figure 2.2 The Mobile Agent Paradigm [9]

There it will be executed and uses the local environment. While being

executed at the server the agent can stop its execution and move to another server.

Again, the agent’s code is transmitted via the network to the new server, where the

mobile agent will be executed. After it has finished its computation the mobile

agent sends the results back to the user [9].

2.2.3 Mobile agent Components:

A mobile agent contains the following 3 components:

1. Code - the program (in a suitable language) that defines the agent's

behavior.

2. State - the agent's internal variables, which enable it to resume its

activities after moving to another host.

18

3. Attributes - information describing the agent, its origin and owner, its

movement history, resource requirements, authentication keys . Part of

this may be accessible to the agent itself, but the agent must not be able

to modify the attributes [10].

Mobility increases the functionality of the mobile agent and allows the

mobile agent to perform tasks beyond the scope of static agents.

2.2.4 Mobile agent life cycle:

The figure 2.3 describe the life cycle of the mobile agent as:

1. Creation: A brand new agent is born and its state is initialized.

2. Dispatch: An agent travels to a new host.

3. Cloning: A twin agent is born and the current state of the original is

duplicated in the clone.

4. Deactivation: An agent is put to sleep and its state is stored on a disk of

the host.

5. Activation: A deactivated agent is brought back to life and its state is

restored from disk.

6. Retraction: An agent is brought back from a remote host along with its

state to the home machine.

7. Disposal: An agent is terminated and its state is lost forever.

19

Figure 2.3 Mobile Agent Life Cycle [31]

2.2.5 Mobile agent security requirements:

1. Confidentiality: - sensitive data must be secure. So any private data

stored on a platform or carried by an agent must remain confidential.

Agent frameworks must be able to ensure that their intra- and inter-

platform communications remain confidential.

2. Integrity: - altering data must be detected. So the agent platform must

protect agents from unauthorized modification of their code, state, and

data and ensure that only authorized agents or processes carry out any

modification of shared data.

The agent itself cannot prevent a malicious agent platform from tampering

with its code, state, or data, but the agent can take measures to detect this

tampering.

3. Authentication: - an agent must authenticate it self to the host, and an

agent server must authenticate it self to the agent.

20

4. Authorization: - host enforces strict access control to its resources.

5. Auditing:- keeping track of the system, if an agent misbehaves, this

should be logged.

6. Availability: The agent platform must be able to ensure the availability of

both data and services to local and remote agents. The agent platform must

be able to provide controlled concurrency, support for simultaneous

access, deadlock management, and exclusive access as required.

7. Accountability: Each process, human user, or agent on a given platform

must be held accountable for their actions. In order to be held accountable

each process, human user, or agent must be uniquely identified,

authenticated, and audited [11.]

2.3 Security Issues in Mobile Agent

 Number of issues threaten the mobile agent work. This section will declare

these threats and the type of danger and damage they cause.

The National Institute of Standards and Technology (NIST) sp800-19

publication was addressing these threats in detailed manner so we depend on this

publication for defining and refutation of the mobile agent security threats.

Security threats can be classified into three classes, disclosure of

information, denial of service, and corruption of information [11]. We will depend

on the agent system component to identify the source and the destination of the

attack. Using a very simple agent system composed of agent and agent platform as

shown in figure 2.4.

21

Figure 2.4 Simple mobile agent s system [11]

Code and status information comprise the agent, mobility allow agent to

move among agent platform, while the platform provide the computational

environment in which an agent operates. The platform from which an agent

originates is referred to as the home platform, and normally is the most trusted

environment for an agent [11].

Four threat categories are identified:

 Threats stemming from an agent attacking an agent platform.

 An agent platform attacking an agent.

 An agent attacking another agent on the agent platform.

 Other entities attacking the agent system [11].

Before starting in details of each one of them we shall explore some

common security terminologies:

22

 Denial of Service (DoS): is an action that prevents or impairs the authorized

use of networks, systems or applications by exhibiting resources such as

central processing unit (CPU), memory, bandwidth, and disk space [13].

 Masquerading: masquerade is a type of attack where the attacker pretends to

be an authorized user of a system in order to gain access to it or to gain greater

privileges than they are authorized for. A masquerade may be attempted

through the use of stolen logon IDs and passwords, through finding security

gaps in programs, or through bypassing the authentication mechanism [14].

 Unauthorized Access: is when a person who does not have permission to

connect to or use a system gains entry in a manner unintended by the system

owner [16].

 Repudiation: when user sending data or a user denies receiving or possessing

the data [15].

 Eavesdropping: The act of secretly listening to the private conversation of

others without their consent. As a real word example man-in-the-middle attack

(MITM) is an eavesdropping attack [17][18].

 Alteration (Modification of Message): Means that some portion of legitimate

massage is altered, or that messages are delayed of reordered, to produce an

unauthorized effect [19].

 Copy and Replay: involves passive capture of data unit and its subsequent

retransmission to produce an unauthorized effect [19].

23

After this tour, now go to start the main event of this section detailing the mobile

agent threats.

3.2.1 Agent –to- platform threats

 The agent-to-platform category represents the set of threats in which agents

exploit security weaknesses of an agent platform or launch attacks against an agent

platform. This set of threats includes masquerading, denial of service and

unauthorized access.

3.2.1.1 Masquerading

 When agent claims the identity of another agent and does unauthorized

effects to agent platform. and sticks the blame to the real one.

3.2.1.2 Denial of Service

This happen by consuming an excessive amount of the agent platform's computing

resources. This attack may be caused by script designed for attack purpose or by

programming errors.

3.2.1.3 Unauthorized Access

Since every system has access control privileges the agent platform must

have ones. When these access control privileges are broken then this considered as

unauthorized access.

24

3.2.2 Agent –to- Agent threats

The agent-to-agent category represents the set of threats in which agents

exploit security weaknesses of other agents or launch attacks against other agents.

This set of threats includes masquerading, unauthorized access, denial of service

and repudiation.

3.2.2.1 Masquerading

 Since communication can established between agents then the possibility

of this type of threats is presented. In somehow masquerading in this part became

like spoofing.

3.2.2.2 Denial of Service

 As agents can gain a DoS attack against agent’s platform they also can

attack other agents by this type of attacks. Sending a huge amount of massages to

the targeted agent will obviously case a denial of service.

3.2.2.3 Repudiation

 This happens when agent is repudiating doing a transaction or

communication that was really done.

25

3.2.2.4 Unauthorized Access

 If the agent platform has weak or no control mechanisms in place, an agent

can directly interfere with another agent by invoking its public methods (e.g.

attempt buffer overflow, reset to initial state, etc.), or by accessing and modifying

the agent's data or code. Modification of an agent’s code is a particularly insidious

form of attack, since it can radically change the agent's behavior (e.g., turning a

trusted agent into malicious one). An agent may also gain information about other

agents’ activities by using platform services to eavesdrop on their

communications.

3.2.3 Platform –to- Agent threat

 The platform-to-agent category represents the set of threats in which

platforms compromise the security of agents. This set of threats includes

masquerading, denial of service, eavesdropping, and alteration.

3.2.3.1 Masquerade

 When agent platform is masquerading as another platform to gain

unauthorized effects, collecting data and cause harm to the system.

3.2.3.2 Denial of Service

 When dealing with malicious platforms they can ignore a request of agent

and delay this request causing a lose by making the agent wait for the

acknowledgment.

26

3.2.3.3 Eavesdropping

The agent platform can monitor communication and every instruction

executed by the agent then the, all public and unencrypted data are also available

to these platforms and this is cause a source of danger and real threat.

3.2.3.4 Alteration

 When the host platform trying of alternating the mobile agent code or

status. This will cause a great harm to the system either by joining a malicious

code to the agent’s code or replace the agent status information with fake ones.

3.2.4 Other –to- agent platform threats

 The other-to-agent platform category represents the set of threats in which

external entities, including agents and agent platforms, threaten the security of an

agent platform. This set of threats includes masquerading, denial of service,

unauthorized access, and copy and replay.

3.2.4.1 Masquerading

Remote users, processes, and agents may request resources for which they

are not authorized. Remote access to the platform and the host machine itself must

be carefully protected, since conventional attack scripts freely available on the

Internet can be used to subvert the operating system and directly gain control of all

resources. Remote administration of the platform's attributes or security policy

may be desirable for an administrator that is responsible for several distributed

27

platforms, but allowing remote administration may make the system

administrator’s account or session the target of an attack.

3.2.4.2 Unauthorized Access

 Remote users, processes, and agents may request resources for which they

are not authorized. Remote access to the platform and the host machine itself must

be carefully protected, since conventional attack scripts freely available on the

Internet can be used to subvert the operating system and directly gain control of all

resources. Remote administration of the platform's attributes or security policy

may be desirable for an administrator that is responsible for several distributed

platforms, but allowing remote administration may make the system

administrator’s account or session the target of an attack.

3.2.4.3 Denial of service

Agent platform services can be accessed both remotely and locally. The

agent services offered by the platform and inter-platform communications can be

disrupted by common denial of service attacks. Agent platforms are also

susceptible to all the conventional denial of service attacks aimed at the underlying

operating system or communication protocols.

3.2.4.4 Copy and Reply

 Every time a mobile agent moves from one platform to another it increases

its exposure to security threats. A party that intercepts an agent, or agent message,

in transit can attempt to copy the agent, or agent message, and clone or retransmit

it. For example, the interceptor can capture an agent’s "buy order" and replay it

several times, having the agent buy more than the original agent had intended. The

interceptor may copy and replay an agent message or a complete agent.

28

2.4 Software Description

2.4.1. The JADE Platform

Java Agent Development Framework (JADE) is a software platform that

provides basic middleware-layer functionalities which are independent of the

specific applications that exploit the software agent abstraction.

2.4.1.1. JADE Architecture

Figure 2.5 represents the main JADE architectural elements. An

application based on JADE is made of a set of components called Agents each one

having a unique name. Agents execute tasks and interact by exchanging messages

Agents live on top of a Platform that provides them with basic services such as

message delivery. A platform is composed of one or more Containers. Containers

can be executed on different hosts thus achieving a distributed platform. Each

container can contain zero or more agents.

A special container called Main Container exists in the platform. The main

container is itself a container and can therefore contain agents, but differs from

other containers as: It must be the first container to start in the platform and all

other containers register to it at bootstrap time. It includes two special agents: the

AMS that represents the authority in the platform and is the only agent able to

perform platform management actions such as starting and killing agents or

shutting down the whole platform (normal agents can request such actions to the

AMS). And The DF (Directory Facilitator) that provides a Yellow Pages service

by means of which an agent can find other agents providing the services he

requires in order to achieve his goals.

29

Figure 2.5.Main architectural elements of a JADE platform [20]

The UML diagram in figure 2.6 schematizes the relationships between the

main architectural elements of JADE.

Figure 2.6. Relationship between the main architectural elements[21]

30

2.4.1.2 Foundation of intelligent physical agents (FIPA)

FIPA was originally formed as a Swiss based organization in 1996 to

produce software standards specifications for heterogeneous and interacting agents

and agent based systems. Since its foundations, FIPA has played a crucial role in

the development of agents standards and has promoted a number of initiatives and

events that contributed to the development and uptake of agent technology.

Furthermore, many of the ideas originated and developed in FIPA are now coming

into sharp focus in new generations of Web/Internet technology and related

specifications.

2.4.2. Java programming language

 Java is a programming language originally developed by James Gosling at

Sun Microsystems (which is now a subsidiary of Oracle Corporation) and released

in 1995 as a core component of Sun Microsystems' Java platform. The language

derives much of its syntax from C and C++ but has a simpler object model and

fewer low-level facilities. Java applications are typically compiled to bytecode

(class file) that can run on any Java Virtual Machine (JVM) regardless of

computer architecture. Java is a general-purpose, concurrent, class-based, object-

oriented language that is specifically designed to have as few implementation

dependencies as possible. It is intended to let application developers "write once,

run anywhere". Java is currently one of the most popular programming languages

in use, and is widely used from application software to web applications.

2.4.3 Java platform, standard edition (Java SE)

There are two principal products in the java SE platform family: Java SE

Runtime Environment (JRE) and Java development kit (JDK).

31

 The Java Runtime Environment (JRE), provides the libraries, the

Java Virtual Machine, and other components to run applets and

applications written in the Java programming language [22].

 Java development kit (JDK)

The JDK is a superset of the JRE, and contains everything that is in

the JRE, plus tools such as the compilers and debuggers necessary

for developing applets and applications [23].

2.4.3. NetBeans IDE

NetBeans refers to both a platform framework for Java desktop

applications, and an integrated development environment (IDE) for developing

with Java, JavaScript, PHP, Python, Ruby, Groovy, C, C++, Scala, Clojure, and

others. The NetBeans IDE is written in Java and can run anywhere a JVM is

installed, including Windows, Mac OS, Linux, and Solaris. A JDK is required for

Java development functionality, but is not required for development in other

programming languages. The NetBeans Platform allows applications to be

developed from a set of modular software components called modules.

Applications based on the NetBeans platform (including the NetBeans IDE) can be

extended by third party developers [25].

32

Chapter Three

Conceptual Design

3.1 Detailed Project Objectives

3.2 Security Solutions

3.3 Testing Application

33

Chapter Three

Conceptual Design

 This chapter contains the detailed project objectives the explanation and

conceptual design of security solutions and testing application.

3.1 detailed project objectives

 Making survey about the mobile agent common security (vulnerabilities)

and threats.

Different types of security problems face the mobile agent based

application as explained in section 2.3. This project addresses these

problems in order to find a solution for them.

 Search for acceptable solutions for these security threats.

Security solutions always adds some overload to the system .This

project will try to balance between the load that security solutions add to

the system and their efficiency.

 Implement these solutions with Java programming language to be suitable

to use over JADE mobile agent development environment.

In this project the JADE (JAVA Agent Development Framework)

was chosen as mobile agent development environment. As described in

section 2.4 JADE was built with java programming language. So, the

implementation of the solutions will be written in java.

34

 Design simple mobile agent based application.

File Name Searcher (FNS) is a simple mobile agent based

application that takes file name from user as input, search for that file over

network and returns the file location and other information as output.

 Implement the FNS as JADE multi agent application.

To test the proposed security solutions areal testing should be done.

So; the FNS was chosen for this purpose.

3.2 The Security Solution

 In this section we discuss the security solution that this project proposes for

securing JADE over intra connected platform.

3.2.1 System Definition

 JCOP is a framework that provides security libraries and secure

infrastructure for JADE over intra connected platform. This framework contains a

set of agents that work to provide the security for the platform and a set of classes

packaged in a library to enable programmer to run his/here agents over JADE.

3.2.2 System Block diagram

There are three main blocks in System:

 Security Manager (SM)

 JADE Multi Agent Application.

35

Figure 3.1: System Block Diagram

3.2.2.1 JADE Multi Agent Application (Agent)

 Agent can be either stationary or mobile Agent that migrates from container to

another. This Agent is authenticated and validated from the SM that will be

declared next. When agent created it receives inform message from the SM that it

must be certified (Authenticated) to continue working in the platform. In response

to this the agent sends a message that describes its behavior and asks the SM for

certificate.

36

 3.2.2.3 Security Manager (SM)

 This Module contains three Stationary Agents that resides in the main

container. These agate cooperate together to provide security to the system. These

agents are:

 Registration Authority (RA).

 Certification Authority (CA).

 Validation Authority (VA).

 WMV1

 WMV2

Figure 3.2: Security Manager Block diagram

3.2.2.3.1 Registration Authority (RA)

 When any agent is created it receives inform message from the RA if the

agent dose not respond to this message the RA kills this agent. If the agent

responds, then its response sent back as message that contains information that

describes the agent work. These information are processed by a special processor

(program) that parse the message text searching for specific words that makes the

agent illegal. These words are stored in black list predefined in programming

time and have the ability to gust other words added by the administrator. If the

Agent classified as illegal then RA kills this agent. If agent classified as legal then

the RA send a message that contains the validated information about the agent to

CA to get this agent Certified

37

3.2.2.3.2 Certification Authority (CA)

 When this Agent receives a message from the RA that it generates a

certificate that contains the information in the message signed by the CA private

key along with the CA public key. The Certificate is stored in a folder called

Certificate Store as files.

3.2.2.3.3 Validation Authority (VA)

 This agent needed when agent need to validate another agent to exchange

information with. This agent connects to the Certificate Store and checks if it has

the certain certificate and validate it. If Certificate found then VA validate it.

3.2.2.3.4 Watchman Agents

 Both agents Watchman version 1(WMV1), and Watchman version 2(WMV2)

are both introspetor agents, where WMV1 introspect the agent creation agents and

WMV2 introspect the agents movements.

3.2.3 Problem Solving

 The security scheme in this project focuses on two main security roles to

secure the System authentication and access control.

 Authentication: authenticate the agent to remote containers and to the

platform

 Access Control: the SM agents having the highest privileged roles(full

control over the System) and other agents having lower level of access

control

How Authentication and Access Control provide security to the System?

 Only authenticated agent is allowed to live and to operate in agent

platform.

38

 When agents are created they must apply certain rules. If they are not then

they are killed by SM.

 To move or to do administrative acts the security manager acts as observer.

3.2.4 System Modeling

This section describes the system behavior using flowcharts.

Figure 3.3: Flowchart Describes RA Agent Behavior

Yes

39

Figure 3.4 Flowchart Describes The CA Agent Behavior

40

Figure 3.5 Flowchart Describes The VA Agent Behavior

41

3.3 Testing Application

 This section will contain the conceptual design issues, architectural design,

and system modeling for the testing application.

3.3.1 System Definition

FNS (File Name Searcher) takes the advantage of mobile agents to migrate to

platforms and get the file name. It consist two agents, the first one is a mobile agent which

name is Searcher agent (SA) that search about the file name. And the second is stationary

agent which name is reference (RFA) which stays in the host platform. When RA get

name of file then it create SA that carry the file name, it migrate from one hop to another

until it get the specific information then it send those information to the RA.

The project team selects this application because it is highly use the mobility

service. That the project aims to secure.

Figure 3.6 General idea of the FNS

42

3.3.2 System Block Diagram

 As Shown in Figure 3.10 below describes the File Name Searcher (FNS)

system application

Figure 3.7: System Block Diagram

3.3.2.1 User System (interaction system)

 Contains GUI that provides user with different options:

 Allows user to submit the target file name.

 Option to start the search process.

 Option to stop the search process if it is needed.

This subsystem contains a stationary agent called Reference Agent (RFA). Its job is to

get file name and organize work of mobile agent.

The RA interacts with mobile agent with deferent ways such as:

 Provides the mobile agent with migration plan.

 Provides mobile agent with target file name.

 Activates (create) and deactivate (kill) mobile agents

43

3.3.2.1 Mobile Agent

This system contains only one mobile agent called Searcher Agent (SA) which

is created by a Stationary agent (RFA) in the main host. This mobile agent

searches file name in another hosts and when it finds the file name, then three

strategies will applied for :

1- The mobile agent sends information message as a file to the mother host and

then kills itself. See Figure 3.8 bellow.

Figure 3.8: First Strategy of Mobile Agent in FNS

2- The mobile agent finds the file and sends the message then, the stationary

agent in the main host sends kill message to him to be killed. As shown in

figure 3.9 bellow.

Mother Host Contains (RA & SA)

44

Figure 3.9: Second Strategy of Mobile Agent in FNS

3- The mobile agent finds the file in the host and then sends it to the mother

host, and then it kills the SA. As shown in figure 3.10 bellow.

Figure 3.10:Third Strategy of Mobile Agent in FNS

Mother Host Contains (RA & SA)

Mother Host Contains (RA & SA)

45

3.3.2.3 Remote Agent Platform

The Remote Agent platform receives the mobile agent in order to search

for the file name. The mobile agent then uses a search algorithm to find the file

name in the remote platform.

3.3.3 System Modeling

 3.3.3.1 Data flow diagram

Figur 3.11 Shows the dataflow diagram which describes the dataflow within the

FNS application, the core processes which is shown in the circle is the searching

process.

Figure 3.11: Show refined dataflow – level 0 which gives details for the

searching process to explicitly describe each subprocess.

Agent receive the file name

Results as secured message
Agent carries the file name

+ Configuration file

46

3.3.3.2 Use Cases

 Figur 3.16 Use case diagram show the FNS application processes.

Figure 3.13 Use case to FNS

Figure 3.12 Dataflow diagram – level 1

Agent carries the file name

+ Configuration file

 Result

Secured

message

47

Chapter 4

Detailed System

Design

4.1 SM Architecture

4.2 Detailed Specifications of SM components

4.3 Agent Task and Interaction in JADE

4.4 Detailed System Modeling

4.5 Description of inter action classes

4.6 FNS Architecture

4.7 Limitations

4.8Assumptions

4.9 Summary

48

Chapter 4

Detailed System Design

 In this chapter a detailed description of the design of different system

components and modules, including system architecture, flow charts, GUI design,

modules specifications, assumptions and limitations.

4.1 Architecture of Security Manager(SM)

The security manager SM consists of the following components:

 Agents

o Registration Authority (RA).

o Certification Authority (CA).

o Validation Authority (VA).

o WatchManV1 (WMV1).

o WatchManV2 (WMV2).

 Programmer Interaction classes :

o Certificate class

o The Response Classes

The following figure shows the architecture of the system, including all

components and their interactions

49

50

4.2 Detailed Specification of Security Manager Components

4.2.1 Registration Authority (RA)

 Only one RA agent is allowed running over the distributed platform.

 When new agents created in the platform RA informed by the WMV1.

 RA sends inform message to the new created agent to get certified.

 If the agent does not respond then RA kill this agent.

 If agent responds then RA classify the request valid then certify it or not

then kill it.

4.2.2 Certification Authority (CA)

 Only one CA agent allowed running over the distributed platform.

 At its start CA initialize pair public and private keys and store them in key

store.

 When CA receives valid request message from the RA then it initiate a

certificate folder carry the certificate id number in certificate store and

initiate three files as follow

1. Request Text: this file contains the request message.

2. Signature: this file contains the signature of the message.

3. Certificate (id): where id is the number of the certificate. This file

considered as the official certificate. It contains the plan text and

signature with some other data.

 Then sends a message that carries the certificate as object of type

certificate.

For details about digital signature and digital certificates see [26,27,29]

51

4.2.3 Validation Authority

 Only one RA agent allowed running over the distributed platform.

 This Agent validates any Agent that registered in the CA.

 When agent moves from container to another this container authenticate it.

4.2.5 WatchManV1

 Only one Agent of this type in the platform.

 This Agent inform the RA when new Agents Born.

4.2.6 WatchManV2

 Only one Agent of this type in the platform.

 This Agent informs the VA that certain agent moves from container to

another.

52

4.3 Agents Task Scheduling and Interactions in JADE

Figure 4.2 Agent Thread Path of Execution. [29]

53

4.3.1 Agent Task in JADE

 The tasks that the agent will do ate carried out within “behaviour”; each

behavior is implemented as an object of a class extends jad.core.behaviours. To

make the agent starts a task an object that is implemented by the behavior; the

behavior object should be added to the agent using the addBehaviour method.

Behaviors should implements the abstract method action() that contains the

operation the agent is to perform, and the done() method that return true if the

behavior completed and false if it didn’t.

4.3.2 Primary types of behaviors in JADE, which are:

There are three primary types of behavior, which are:

1. One-Shot behavior, this type of behavior are designed to have one

execution phase, that is their action() method executes only once the

JADE.core.behaviours.OneShotBehaviour class already implements the

done() method by returning true that is the behavior is done when the

execution if action() method is done.

For example and implementation of a one-shot behavior class can be done

using:

public class MyB extends OneShotBehaviour(){

public void action(){

//perform any operation

}

}

54

2. Cyclic Behavior, this type of behaviors are designed never to complete,

that is the action() method executes the same operation every time it’s

called, the done() method always returns false.

For example and implementation of a cyclic behavior class can be done

using:

public class MyB extends CyclicBehaviour(){

public void action(){

//perform any operation

}

}

3. Generic behaviors,see [21] “the JADE book”

4.3.3 Scheduling operation

 The package JADE.core.behaviours implements classes that do some

operation one a selected point of time.

 WakerBehaviour has a method onWake() that executes after a given period

of time.

Example:

public class MyAgent extends Agent{

protected void setup(){

System.out.println(“ Adding Waker Behaviour”);

addBehaviour(new WakerBehaviour(this,10000){

protected onWake(){

//perform operation X

55

}

});

}

Operation X is performed after 10 seconds from adding the behavior

 TicherBehaviour has a method onTick() that executed repeatedly after a

given period of time.

public class MyAgent extends Agent{

protected void setup(){

System.out.println (“Adding Ticker Behaviour”);

addBehaviour (new TickerBehaviour(this,10000){

protected onTick(){

//perform operation X

}

});

}

Operation X is performed repeatedly every 10 seconds.

4.3.4 Methods invoked during the agent life Cycle

There are different methods in JADE that are used to make the agent to different

tasks at different point during its life cycle, these methods ate:

 setup(): the setup() method is used to perform the agent initialization, it is

the first method invoked when the agent is activated.

 afterMove(): this method is invoked agent an agent moves to a container

other than its current container.

56

 afterClone(): this method is invoked agent an agent is cloned; the method is

called at the cloned agent, not the original one.

 takedown(): this method is invoked after the agent is terminated.

Other methods ate beforeMove(), beforeClone()…. etc. see [4].

4.3.5 Interacting with AMS

 Since some agents in the system needs to do operations on the platform

level, such as (WMV1) needs to be notified when new agents created in the

platform, (WMV2) needs to be notified when agent moves from container to

another , (RA) needs to kill illegal agents, guardian needs to kill unauthenticated

agents. All these actions are done throw interaction with AMS (means agent

cannot do these actions without AMS).

The AMS performs management duties related to the platform, such as killing and

creating agents and containers ,it also stores (white pages) contains information

about the platform and the agents, where an agent can request from AMS the

currently available containers on the platforms, or the available agents on the

container where the agent resides[4].

Any agent that wishes to perform platform management action must first request

the AMS to perform them.

4.4 Detailed System Modeling

 In this section detailed functional description of the different system

components, and the functions contained within each components, also a life cycle

of the each agent is described using flowcharts.

57

4.4.1 Security Manager Agents

4.4 .1.1 Registration Authority (RA)

 As defined before RA receives inform message from the WMV1 about

new agents in the platform. And then act with them if they have a clear goal to live

or not.

Figure 4.3 RA Global Behavior

58

NAME Step(1)

Input ACLMessage

Output Redirection of program execution path to Step(2), ACLMessage

Description

this step represent the RA notification process from WMV1

and the RA inform for the newly created Agent

Figure 4.4 RA Step (1)

59

NAME: Step(2)

Input Steps = response, ACLMessage

Output Redirection of program execution path to Step(3) or to CA ACLMessage

Description this step represent the RA response process where RA suppose to receives

confirm message from the new agent if so then redirect program

execution path to step (3) else redirect it to step(4)

Figure 4.5 RA Step (2)

60

NAME: Step(3)

Input ACLMessage

Output Boolean value true or false

Description

At this step the RA analyze the confirm message by comparing the message

words with list of words known as the black list .if match occur then the agent

considered as illegal and the program will redirected to step(4), if not then the

program will be redirected to step(5)

Figure 4.6 RA Step (3)

61

NAME: Step(4)

Input Steps=goToHell (4) , the new Agent name

Output JADE Management ontology kill action

Description At this step the RA kills the illegal agents

Figure 4.7 RA Step (4)

62

NAME: Step(5)

Input new Agent name

Output ACLMessage to the CA

Description At this step the RA sends the request (confirm) message to the CA

to grant the new agent certificate

Figure 4.8 RA Step (5)

63

4.4 .1.2 Certification Authority (CA)

 This Agent responsible for certification in the platform and receives

requests only from RA that after RA verify the request.

Figure 4.9 CA Global Flowchart

64

NAME: CA block A AND B

Input ACLMessage

Output ACLMessage , IOFiles (certificates and keys)

Description Here the CA generate the public\private key pair and the

directories keyStore and CertStore

Figure 4.10: CA block A and B

65

NAME: CA Block C , D, E, F

Input ACLMessage

Output ACLMessage , IOFiles (certificates and keys)

Description Here the CA receives the RA request message and generate the

certificate store it in the certStore and send it to target agent

Figure 4.11 CA block C, D, E, and F

66

4.4 .1.3 Validation Authority (VA)

 This agent validates the certificates that come from Container Guardian.

Figure 4.12 The VA Global

67

NAME: VA Block A,B and C

Input ACLMessage

Output Boolean value , ACLMessage

Description Here VA get the certificate id to search for it in the certStore if it

found go to D if not send the invalid message

Figure 4.13 VA Block A And B

68

NAME: VA Block D and E

Input Boolean, Agent name

Output Kill ACLMessage

Description Here VA validate the certificate and send back the response

Figure 4.14 VA Block D And E

69

NAME: WMV1

Input JADE introspection (Born Agent)

Output RA inform ACLMessage

Description Detailed flowchart for WMV1 the variable ev in the flowchart is

referred to the event cached by the event handler

Figure 4.15 WMV1 Flowchart

70

NAME: WMV2

Input JADE introspection (Move Agent)

Output VA inform ACLMessage

Description Detailed flowchart for WMV2 the variable ev in the flowchart is

referred to the event cached by the event handler

Figure 4.16 WMV2 Flowchart

71

4.5 Description of interaction classes

 The Certificate class: this class represents new data type called certificate

that granted to agents that have illegal goals to live in JADE.

 The Responder classes: These classes represent the way that agent should

response to JCOP agent’s messages in order to live in the platform. Two

classes defined in JCOP response package:

o Certifier: A behavior that agent must use at the creation time to gain

the certificate from CA and live in the platform.

o Verifier: A behavior that agent use in the afterMove() method of

class agent to allow agent to move legally between containers.

72

4.6 FNS Architecture

The File Name Searcher consist of the following components:

 Stationary Agent(RFA).

 Searcher Agent(SA).

The following figure shows the architecture of the system, including all

components and their interactions

Detailed Specification of File Name Searcher components:

Stationary Agent (RFA)

 Only one RFA agent allowed running over the distributed platform.

 When RFA created in the platform , it is call

GetAvailableLocationsBehaviour which provide the RFA with available

locations.

and call RecAgMsgBehaviour which wait until message arrive from (SA).

 RFA has user interface which can interact their user with (SA).

73

 when a new agent created the Search agent will lunch.

 when move method lunch the SA moving around all available locations.

 when a kill method lunch, the SA will die.

 it has a list shows the agents created (one agent on the platform)

 it has list shows the locations visited.

Searcher Agent (SA)

 Only one SA allowed running over the distributed platform.

 Search about txt file name.

 Moving around all available locations.

GUI unit contains the following components:

1- List for created agents.

2- List for visited locations.

3- button for created a new agent.

4- Button for move agent around all locations.

5- Button for killing agent.

6- Button for update locations.

7-Button for quit.

74

Name FNS

Input ACLMessage

Output Result of searching

Description The FNS application has two agents the first one is

satationar agent which stay on the platform and the second

one is mobile agent which is search about file name on

distributed system and it has two behaviors one for

locations and the aother for receive messages.

Figure 4.19FNS Flow Chart

75

Nmae Searcher agent

Input File name

Output Result and status

Description This agent is mobile agent which has the file name to be

search

Figure 4.20 Searcher Agent Flowchart

76

Name Search

Input The directory where the file exist

Output Flag

Description This function search about file name in directory chosen

Figure 4.20 Search Process Flowchart

77

4.7 Limitations

 This scheme assumes containers runs on JADE while JCOP is running

trusted containers for trusted owners.

 The JADE platform gives relatively small number of agents (less than 100)

so although JCOP does not add big overhead one memory and CPU but it

decreases the number of agent’s user can create on platform.

 In the JCOP design the fault tolerance was not issue.

 The JCOP agents are not fixed agents the removed easily by administrator

and when they removed JADE can continue its work without any

problems.

4.8 Assumptions

 The user Of JCOP assumed to be familiar with programming.

 The containers that connected to the platform assumed to be legitimate

ones.

 All JCOP agents assumed to stay a life during as long as the JADE

platform running.

 Every time JCOP is started it will override the certificates in the certificate

store.

 The user of FNS assumed to be familiar with computers.

 The shared folder that the FNS searched in assumed to be previously

created.

78

4.9 Summary

 In this chapter a detailed description of the design of the different system

components and modules, Including system architecture, flowcharts, assumptions

and limitations.

79

Chapter 5

IMPLEMETATION

AND TESTING

5.1 Development Environment

5.2 Development Process

5.3 Testing

5.4 Summary

80

Chapter Five

Implementation and Testing

 In this chapter description of how components of the system where

implemented, and also provide the system testing process.

5.1 Development Environment

 The implementation of the system was done on two environments, since

JADE (as a simulator) can be used with full functionality on one computer most of

the implementation and software components testing was made on one computer,

however, to become closer to the real usage of the system, rich part of the testing

was done over a local area network

The software that was used in the implementation and testing phases consist

of:

 JADE package: this package should be installed on the working computer

and the testing computers as well, in order to start the different JADE

containers.

 JDK: should be installed on the working computers, in order to compile

java source code into byte code, and then interpreted as machine code to

become executable also for the testing computers it should be installed as

well, in order to make JADE containers runnable on the test computers.

 Net Beans IDE: a free and very helpful IDE that us ready GUI components

that facilitated the design and implementation of the system we use this

IDE to design the GUI, and to write the source code of all functions.

81

5.2 Development Process

 Spiral software engineering model was used in the development process,

because the overall features and requirements of the system eas not clear at the

beginning of the development process, many prototypes of the system was

implemented, refinement of the requirements was done, and components was

tested individually and many integrity tests eas done, until afinal version of the

system was delivered.

5.2.1 Phases of System Development:

Phase 1: Development of JCOP

 Implementation of the basic JCOP agents.

 Implementation of the agent’s behaviors.

 Implementation of the JCOP reusable package classes.

Phase2: Development of FNS system

 Implementation of the basic FNS agent behaviors.

 Implementation of the basic FNS agents.

 Implementation of the agents GUI.

Phase3: Reimplementation of FNS over JCOP (Integration).

 Perform modifications to FNS to integrate it with JCOP.

82

5.3 Testing

 The following figures show the results of different inputs to the system.

Figures describe:

 JCOP underlying message exchange with agents runs over JADE.

 FNS working over JCOP.

JCOP underlying message exchange with agents runs over JADE.

Figure 5.1 WMV1 show the name rma after discovering it.

83

Figure 5.2 WMV1 show the name df after discovering it.

Figure 5.3 WMV1 show the name RA after discovering it.

84

Figure 5.4 WMV1 show the name ams after discovering it.

Figure 5.6 WMV1 show the name of new agent called “agent” after discovering it.

85

Figure 5.6 RA show content of a message sent by WMV1 carrying the name of

the new agent (this agent did not follow the JCOP restrictions).

Figure 5.7 RA kills the new agent “agent”.

86

Figure 5.8 WMV1 show the name of new agent called “agent1”

after discovering it.

Figure 5.9 RA show content of a message sent by WMV1 carrying the name of

the new agent (this agent follow the JCOP restrictions but with illegal goal).

87

Figure 5.10 a message box that shows the content of agent request message

(notice the word kill in the message content where kill is restricted word)

Figure 5.11 a message box shows the request message inside the text validation

process.

88

Figure 5.12 RA kills the new agent “agent1” because it has illegal goal.

Figure 5.13 WMV1 show the name of new agent called “agent2” after discovering

it.

89

Figure 5.14 RA show content of a message sent by WMV1 carrying the name of

the new agent (this agent follow the JCOP restrictions).

Figure 5.15 a message box that shows the content of agent request message

(notice that the message did not contain any restricted word)

90

Figure 5.16 a message box shows the certification granted from CA to new agent.

Figure 5.17 the JCOP certStore and keyStore directories.

91

Figure 5.18 inside JCOP certStore directory.

Figure 5.19 inside JCOP Certificate0 directory.

92

Figure 5.20 inside JCOP Certificate0 file.

Figure 5.21 inside JCOP RequestText0 file.

93

Figure 5.22 inside JCOP Signature0 file.

 FNS working over JCOP.

Figure 5.23 the FNS stationary agent “Controller”.

94

Figure 5.24 the Agent0 is the searcher mobile agent.

Figure 5.25 the searcher agent search in machine 3.

95

Figure 5.22 the searcher agent search in machine 1.

5.4 Summary

 In this chapter description of how the components of the system were

implemented, testing of the system, development process and phases.

96

Chapter 6

Conclusion

&

future work

6.1 Experimental results

6.2 Conclusions

6.3 Future Work

6.4 Summery

97

Chapter Six

Conclusion and Future Work

In this chapter adscription of the experiments that were done, conclusions

concluded from this working on the project, future work and improvements to be

done on the system.

6.1 experimental Results

 In this section we show different experiments results (outputs and memory

and CPU load).

Table 6.1 Hardware used in the experiments

Experiment 1 Computer1: Corei3, 3.07 GHZ, 6GB RAM

Experiment2 Computer1: Corei3, 3.07 GHZ, 6GB RAM

Experiment3 Computer1:Core2 duo, 2.2 GHz, 4GB RAM

Computer2:Centrino Dual, 1.6 GHz, 2GB RAM

Key terms used in the context of the comparison in experiments:

For Memory:

 Commit: amount of virtual memory reserved by the operating system for

the process in (KB).

 Working Set: amount of physical memory currently in use by the process

in (KB).

98

 Shareable: amount of physical memory in use by the process that can be

shared with other processes in (KB).

 Private: amount of physical memory in use by the process that cannot be

used by other processes in (KB).

For CPU:

 Threads: number of active threads.

 CPU:s current percentage of CPU consumption by process(in this

experiment the maximum CPU is taken)

 Average CPU: average percentage of CPU consumption by the process in

(60 seconds) (in this experiment the maximum average CPU is taken).

6.1.1 Experiment One

 The outputs of this experiment matching the expected results RA kill all

illegal agents (those who did not implement JCOP classes and those who have

illegal goals) and CA grant all legal agents certificates. (In this experiment run

only JCOP and simple agents FNS system was not tested in this experiment)

Table 6.2 Experiment 1 Memory Comparison

99

Process
JCOP

ON/OFF

Commit

(KB)

Working Set

(KB)
Private (KB) Private (KB)

JADE OFF 52.484 48.260 18.260 30.012

JADE ON 55.440 60.124 18.372 41.752

Table 6.2 Experiment 1 CPU Comparison

Process
JCOP

ON/OFF
Threads CPU Average CPU

JADE OFF 31 2 0.75

JADE ON 35 4 0.85

 A remarkable note here is that even if JCOP agents are not all in duty but it

stills add small amount of overhead to the system performance. And this is

proving the promising future of JCOP.

6.1.2 Experiment Two

The outputs of this experiment matching the expected results RA kill all illegal

agents (those who did not implement JCOP classes and those who have illegal

goals) and CA grant all legal agents certificates. (In this experiment both JCOP

and FNS system are tested together).

Table 6.3 Experiment 2 Memory Comparison

Process JCOP Commit Working Set Private (KB) Private (KB)

100

ON/OFF (KB) (KB)

JADE OFF 52.484 48.260 18.260 30.012

JADE ON 64.296 63.624 18.324 45.312

Table 6.4 Experiment 2 CPU Comparison

Process
JCOP

ON/OFF
Threads CPU Average CPU

JADE OFF 31 2 0.75

JADE ON 41 25 24.90

The results of this experiment are clearly shows that the FNS system adds big load

to memory and CPU and specially CPU.

6.1.3 Experiment Three

 This experiment is like experiment tow but it’s executed over a network.

Table 6.5 Experiment 3 Memory Comparison

Process
JCOP

ON/OFF

Commit

(KB)

Working Set

(KB)
Private (KB) Private (KB)

JADE OFF 83.144 73.746 21.080 52.684

JADE ON 83.572 74.132 21.080 53.052

Table 6.6 Experiment 4 CPU Comparison

101

Process
JCOP

ON/OFF
Threads CPU Average CPU

JADE OFF 31 0 0.73

JADE ON 38 0 0.88

This Experiment results are not hundred percent correct because the FNS behavior

still confused. But memory consumption clearly appears greater because of the

connection overhead.

6.2 Conclusion

From the work shown above we conclude the follow:

 JCOP is good security framework for but it still has some dark sides that

are not clearly verified.

 The security is not a joke it is time consuming and highly cost process but

in some cases security is note optional.

 Security to be truly successful it must be integrated inside the initial design

of the system.

102

6.3 Future Work

 The future work for JCOP is huge because this project is only the kernel (it

is only the start). And here some trends in advancing JCOP:

 Implementing one fat agent that gathers all the SM agents.

 Considering fault tolerance issue in the design.

 Make the JCOP agent fixed on platform.

 Making the certificate life time shorter.

 Secure the CertStore and the KeyStore.

6.4 Summery

 This chapter explains the experiments that were done, conclusions

concluded form working on the project, conclusions from the experiments, and

future work and improvements on the system.

103

References:

1. Roberto Silveira Silva Filho Department of Information and Computer

Science,University of California, Irvine “The Mobile Agents Paradigm.”

(http://awareness.ics.uci.edu/~rsilvafi/papers/SoftwareEngineeringFinalPap

er.pdf)

2. Louise Eggöy, Hanna Kostmann. 18 June 2001 Communication methods

using distributed systems. Department of Information Technology Media

Technology program, 180 credits Master thesis, 20 credit,

(http://apachepersonal.miun.se/~loveke/magister/uppsatser/original.pdf)

3. S. Venkatesan, P. Dhavachelvan, T. Vengattaraman , C. Chellappan,

Anurika Vaish November, 2010 “Advanced mobile agent security

models for code integrity and malicious availability check” Journal of

Network and Computer Applications archive Volume 33 Issue6.

(Advanced mobile agent security models for code integrity and malicious

availability check)

4. A Buddy Model of Security for Mobile Agent Communities Operating in

Pervasive Scenarios John Page, Arkady Zaslavsky, Maria Indrawan

School of Computer Science and Software Engineeri Monash University,

Melbourne, Australia. (A buddy model of security for mobile agent

communities operating in pervasive scenarios)

5. Abdelhamid Ouardani , Samuel Pierre , Hanifa Boucheneb, August, 2007.

“A security protocol for mobile agents based upon the cooperation of

sedentary agents” Journal of Network and Computer Applications archive

Volume 30 Issue 3(A security protocol for mobile agents based upon the

cooperation of sedentary agents)

http://awareness.ics.uci.edu/~rsilvafi/papers/SoftwareEngineeringFinalPaper.pdf
http://awareness.ics.uci.edu/~rsilvafi/papers/SoftwareEngineeringFinalPaper.pdf
http://awareness.ics.uci.edu/~rsilvafi/papers/SoftwareEngineeringFinalPaper.pdf
http://apachepersonal.miun.se/~loveke/magister/uppsatser/original.pdf
http://portal.acm.org/results.cfm?query=Name%3A%22S%2E%20Venkatesan%22&querydisp=Name%3A%22S%2E%20Venkatesan%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=19623815&CFTOKEN=45151149
http://portal.acm.org/results.cfm?query=Name%3A%22P%2E%20Dhavachelvan%22&querydisp=Name%3A%22P%2E%20Dhavachelvan%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=19623815&CFTOKEN=45151149
http://portal.acm.org/results.cfm?query=Name%3A%22T%2E%20Vengattaraman%22&querydisp=Name%3A%22T%2E%20Vengattaraman%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=19623815&CFTOKEN=45151149
http://portal.acm.org/results.cfm?query=Name%3A%22C%2E%20Chellappan%22&querydisp=Name%3A%22C%2E%20Chellappan%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=19623815&CFTOKEN=45151149
http://portal.acm.org/results.cfm?query=Name%3A%22Anurika%20Vaish%22&querydisp=Name%3A%22Anurika%20Vaish%22&termshow=matchboolean&coll=DL&dl=ACM&CFID=19623815&CFTOKEN=45151149
http://portal.acm.org/citation.cfm?id=J459&picked=prox&cfid=16374400&cftoken=44351457
http://portal.acm.org/citation.cfm?id=1853393.1853704&coll=DL&dl=GUIDE&CFID=16653005&CFTOKEN=64317146
http://portal.acm.org/citation.cfm?id=1853393.1853704&coll=DL&dl=GUIDE&CFID=16653005&CFTOKEN=64317146
http://portal.acm.org/citation.cfm?id=976440.976443&coll=DL&dl=GUIDE&CFID=16653005&CFTOKEN=64317146
http://portal.acm.org/citation.cfm?id=976440.976443&coll=DL&dl=GUIDE&CFID=16653005&CFTOKEN=64317146
http://portal.acm.org/citation.cfm?id=976440.976443&coll=DL&dl=GUIDE&CFID=16653005&CFTOKEN=64317146
http://portal.acm.org/author_page.cfm?id=81325489793&coll=DL&dl=ACM&trk=0&cfid=19623815&cftoken=45151149
http://portal.acm.org/author_page.cfm?id=81100070489&coll=DL&dl=ACM&trk=0&cfid=19623815&cftoken=45151149
http://portal.acm.org/author_page.cfm?id=81315487708&coll=DL&dl=ACM&trk=0&cfid=19623815&cftoken=45151149
http://portal.acm.org/citation.cfm?id=J459&picked=prox&cfid=16374400&cftoken=44351457
http://portal.acm.org/citation.cfm?id=1231789&CFID=16653005&CFTOKEN=64317146
http://portal.acm.org/citation.cfm?id=1231789&CFID=16653005&CFTOKEN=64317146
http://portal.acm.org/citation.cfm?id=1231789&CFID=16653005&CFTOKEN=64317146

104

6. Sheng Zhong, Yang Richard Yang Verifiable Distributed Oblivious

Transfer and Mobile Agent Security (Sheng Department of Computer

Science Yale University New Haven, CT 06520-8285

sheng.zhong@yale.edu) (Yang Department of Computer Science Yale

University New Haven, CT 06520-8285 yry@cs.yale.edu)

(http://www.google.ps/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&

url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3F

doi%3D10.1.1.10.6628%26rep%3Drep1%26type%3Dpdf&rct=j&q=Verifi

able%20Distributed%20Oblivious%20Transfer&ei=53GbTaSeFcuXOp_gr

aAH&usg=AFQjCNFEy_4CFdDk92oRKeLo0MDT9V1MtA)

7. Ke Xu, B.E. May 2004 Mobile Agent Security Through Multi-Agent

Cryptographic /Protocols UNIVERSITY OF NORTH TEXAS May 2004

(http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.338&rep=rep1&

type=pdf) ,Department of Information Technology Media Technology

program, 180 credits Master thesis, 20 credit.

8. Hiroshi Matsuno" Implementing Mobile Agents in Genome Information

Processing "Faculty of Science, Yamaguchi University, 1677-1 Yoshida,

Yamaguchi, 753, Japan.

9. O.Univ.Prof. Dipl.-Ing. Dr.techn. Mehdi Jazayeri , Building Secure

Mobile Agents ,The Supervisor-Worker Framework.

10. Anselm Lingnau, An HTTP-based Infrastructure for Mobile

Agents.

11. NIST Special Publication 800-19 – Mobile Agent Security.

13. Computer security Principals and practice by WILLIAM STALLINGS &

LAWRIE BROWN. Chapter 7 page 250.

14 http://searchsecurity.techtarget.com/sDefinition/0,,sid14gci498695,00.html

mailto:sheng.zhong@yale.edu
mailto:yry@cs.yale.edu
http://www.google.ps/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.10.6628%26rep%3Drep1%26type%3Dpdf&rct=j&q=Verifiable%20Distributed%20Oblivious%20Transfer&ei=53GbTaSeFcuXOp_graAH&usg=AFQjCNFEy_4CFdDk92oRKeLo0MDT9V1MtA
http://www.google.ps/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.10.6628%26rep%3Drep1%26type%3Dpdf&rct=j&q=Verifiable%20Distributed%20Oblivious%20Transfer&ei=53GbTaSeFcuXOp_graAH&usg=AFQjCNFEy_4CFdDk92oRKeLo0MDT9V1MtA
http://www.google.ps/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.10.6628%26rep%3Drep1%26type%3Dpdf&rct=j&q=Verifiable%20Distributed%20Oblivious%20Transfer&ei=53GbTaSeFcuXOp_graAH&usg=AFQjCNFEy_4CFdDk92oRKeLo0MDT9V1MtA
http://www.google.ps/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.10.6628%26rep%3Drep1%26type%3Dpdf&rct=j&q=Verifiable%20Distributed%20Oblivious%20Transfer&ei=53GbTaSeFcuXOp_graAH&usg=AFQjCNFEy_4CFdDk92oRKeLo0MDT9V1MtA
http://www.google.ps/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.10.6628%26rep%3Drep1%26type%3Dpdf&rct=j&q=Verifiable%20Distributed%20Oblivious%20Transfer&ei=53GbTaSeFcuXOp_graAH&usg=AFQjCNFEy_4CFdDk92oRKeLo0MDT9V1MtA
http://www.google.ps/url?sa=t&source=web&cd=1&ved=0CBoQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.10.6628%26rep%3Drep1%26type%3Dpdf&rct=j&q=Verifiable%20Distributed%20Oblivious%20Transfer&ei=53GbTaSeFcuXOp_graAH&usg=AFQjCNFEy_4CFdDk92oRKeLo0MDT9V1MtA
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.338&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.338&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.97.338&rep=rep1&type=pdf
http://searchsecurity.techtarget.com/sDefinition/0,,sid14gci498695,00.html

105

15 Computer security Principals and practice by WILLIAM STALLINGS &

LAWRIE BROWN. Chapter 1 page 16.

16 https://my.tennessee.edu/portal/page?_pageid=40,614533&_dad=portal&_

schema=PORTAL.

17 http://en.wikipedia.org/wiki/Eavesdropping .

18 http://en.wikipedia.org/wiki/Man-in-the-middle_attack .

19 Computer security Principals and practice by WILLIAM STALLINGS &

LAWRIE BROWN. Chapter 1 page 19.

20 http://JADE.tilab.com/doc/tutorials/JADEAdmin/JADEArchitecture.html

21 Developing multi-agent systems with JADE By Fabio Luigi Bellifemine,

Giovanni Caire, Dominic Greenwood

22 http://download.cnet.com/Java-Runtime-Environment-JRE/3000-2356_4-

10009607.html

23 http://download.oracle.com/javase/6/docs/

24 http://www.sans.org/reading_room/whitepapers/application/distributed-

systems-security-java-corba-com-plus_28

25 www.netbeans.org.

26 Computer security Principals and practice by WILLIAM STALLINGS &

LAWRIE BROWN. S

27 http://en.wikipedia.org/wiki/Digital_signature

28 JADE TUTORIALJADE PROGRAMMING FOR BEGINNERS, Giovanni

Caire (TILAB, formerly CSELT)
29 http://en.wikipedia.org/wiki/Public_key_certificate

30 Distributed Systems Principles and Paradigms by Andrew S.tanenbaum,

and Maarten Van Steen.

31 http://www.itswtech.org/Lec/Manal%28system%20programming%29/sime

ners_B/Mobile_Agent.pdf

https://my.tennessee.edu/portal/page?_pageid=40,614533&_dad=portal&_schema=PORTAL
https://my.tennessee.edu/portal/page?_pageid=40,614533&_dad=portal&_schema=PORTAL
http://en.wikipedia.org/wiki/Eavesdropping
http://en.wikipedia.org/wiki/Man-in-the-middle_attack
http://jade.tilab.com/doc/tutorials/JADEAdmin/jadeArchitecture.html
http://download.cnet.com/Java-Runtime-Environment-JRE/3000-2356_4-10009607.html
http://download.cnet.com/Java-Runtime-Environment-JRE/3000-2356_4-10009607.html
http://download.oracle.com/javase/6/docs/
http://www.sans.org/reading_room/whitepapers/application/distributed-systems-security-java-corba-com-plus_28
http://www.sans.org/reading_room/whitepapers/application/distributed-systems-security-java-corba-com-plus_28
http://www.netbeans.org/
http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Public_key_certificate

	tabelsfinal.pdf
	final.pdf

