
Palestine Polytechnic University

College of Engineering and Technology

Electrical Engineering Department

Graduation Project

Smart Car Parking System

Project Team

Riham Walled Zalloum Maysa Al_Mohtaseb

Jihan Khamayseh

Project Supervisor

Eng. Mazen Zalloum

Hebron-Palestine

June-2007

ii

جامعة بولیتكنك فلسطین

فلسطین–الخلیل

كلیة الھندسة والتكنولوجیا

دائرة الھندسة الكھربائیة والحاسوب

Smart Car Parking System

میساء المحتسبرھام زلوم

جیھان خمایسة

روع و موا ى المش ر عل رف المباش ة المش اء بناء على نظام كلیة الھندسة والتكنولوجیا وإشراف ومتابع ة أعض فق

ة ات درج اء بمتطلب ك للوف وب وذل ة والحاس ة الكھربائی رة الھندس ى دائ روع إل ذا المش اللجنة الممتحنة تم تقدیم ھ

.البكالوریوس في الھندسة تخصص أنظمة حاسوب

توقیع المشرف

...

توقیع اللجنة الممتحنة

...................................

توقیع رئیس الدائرة

...

iii

Dedication

To our parents who

spent nights and days doing their best

to give us the best...

To all students and who

Wish to look for

the future...

To who love the knowledge and

Looking for the new

in this world...

To who carry candle of science

To light his avenue

of life...

To our beloved country Palestine...

To all of our friends…

Riham Walled Zalloum

Maysa Al_Mohtaseb Jihan Khamayseh

iv

Acknowledgments

To our great supervisor, who offered his best for this project to see light

through his instructions and advices, Eng. Mazen Zalloum with all his kindness and

wisdom we thank him.

We would also like to thank every person who offered anything to success

this work; we sincerely believe that this work wouldn't exist without his inspiration.

Great thanks to our college for his support and help, and any one who help us in our

project.

v

Abstract

This project is involved in design and implementation of a smart parking

system. The system will direct the driver to the available parking spaces in each floor

when entering the parking. Then, from the floor the driver will be derived to the

parking available slots.

The project will be implemented with the 8051 microcontroller for all the

necessary controlled hardware components are used such as sensors display and

motor for our system.

یارات ھ اف الس ي لإیق ام ذك ق نظ ى . ذا المشروع مھتم في تصمیم وتطبی ائق إل ھ الس وف یوج ام س النظ

اف یارات للإیق دخل الس دما ت یة عن ل أرض ي ك وفرة ف وف المت اكن الوق ى . أم ائق إل ھ الس یة یتوج ن الأرض م م ث

. الإیقاف في احد ألاماكن المتوفرة

نترولر للتحكم بجمیع الأجزاء الأخرى التي سوف یتم میكروكو٨٠٥١المشروع سیتم تطبیقھ باستخدام

. والموتور، وأجھزة العرض، استخدامھا بالمشروع مثل المجسات

vi

TABLE OF CONTENTS

DEDICATION III

ACKNOWLEDGMENT IV

ABSTRACT V

TABLE OF CONTENTS ERROR! BOOKMARK NOT DEFINED.

LIST OF TABLES XI

LIST OF FIGURES XII

CHAPTER ONE 1

INTRODUCTION 1

1.1 Preface.. ………………………………………………….…………………. .2

1.2 Project Importance……………………………………………………………3

1.3 Review of Literature………………………………………….…………….. 4

1.4 Project Scheduling.…………………………………..…………...……..……5

1.5 Project Cost ………………………………………………..………………... 7

1.6 Road Map…………………………………………………………………… 8

CHAPTER TWO 11

THEORETICAL BACKGROUND 11

2.1 Preface……………….…………………………………………………………….. 11

2.2 Project Components ……………..………………………………………..... 11

2.2.1 8051 Microcontroller…………………………………………….…………..........12

2.2.1.1 Introduction to Microcontroller …………….…………………………. 12

2.2.1.2 Advantages of a Microcontroller………………………………………………13

2.2.1.3 The Intel 8051………………………………………………………… 14

2.2.1.3.1 Why we use choose 8051 microcontroller board………………....16

2.2.1.3.2 Programmable Peripheral Interface (PPI). .……………………..…………16

2.2.2 Sensor (Switch)……………………………………………………………17

vii

2.2.3 Motor…………………………………………………………………… 18

2.2.4 LCD.………...………………………………………………………….. 19

2.2.5 Gate……………….……………………………………………………. 21

2.2.6 Spring.…………………… ………………..…………………………… 21

2.2.7 Force on Spring……….…………………………………………………….22

2.2.8 General Parking Diagram……….………………………………………….22

CHAPTER THREE 25

DESIGN CONCEPTS 25

3.1 Project Objectives……………………………………………..…………….. 26

3.2 Project Main Hardware Components….…………………….……….……… 26

3.3 General Block Diagram…………………………………………….………. 27

3.3.1 Floor Subsystems…………………………………………………………28

3.3.2 Entrance System ………………………………………………………..2 28

3.3.3 8051 Microcontroller System ………………………………………….. 29

3.4 Interfacing ………………………………………………………………….. 30

3.5 Motors ……………………………………………………………………… 31

3.6 How System Work …………………………………………………………. 32

3.6.1 Microcontroller with Switch, LCDs and Motors……………………… 32

3.6.2 The Switch with Microcontroller…...……………………………….….35

3.6.3 The LCDs with Microcontroller………..……………………………… 36

3.6.4 The Motor with Microcontroller…..……………………………………36

3.6.5 The Spring with Switch…..…………………………………………… 37

3.6.6 The Gate with The Motor…...…………………………………………. 37

CHAPTER FOUR 36

HARDWARE SYSTEM DESIGN 38

4.1 Preface...……………………………… ………………………….………... 39

4.2 The Units Design……….………………………………….……..……….... 39

viii

4.2.1 Sensors (Interlocking Push Buttons)…………………………………… 40

4.2.2 DC_motor and H_Bridges ……………………………………….……… 42

4.2.2.1 LCDs ……………………………………………………….………. 42

4.2.4 Control Unit…………………………………………………………..…..41

4.2.5 Serial Ports …………….……………………………………………..…. 44

4.2.4.1.1 Pins and Wires…………………………………………….……….. 45

4.2.4.1.2 Data Flow…………………………………….……………………..46

4.2.4.2 Controlling the Motor………………………………………………… 47

4.2.4.3 Electrolytic Capacitor………………………………………………….. 48

4.2.4.4 (74244) Buffer …...………………………………………………….. 48

4.2.5 Over All System Unit (Application Unit)…………………………..…… 49

4.2.5.1 Interfacing Circuit ………………………………………………….. 49

4.2.5.1.1 Interfacing Sensors with Microcontroller (8051) board ……….. 50

4.2.5.1.2 Microcontroller 8051 Interfacing with LCD Display…………. 51

4.2.5.1.3 Microcontroller 8051 Interfacing with Motors………………… 53

4.2.5.1.4 Microcontroller System Interface….…………………………….54

4.2.6 Parallel Port …………………………………………………………… 55

4.2.6.1 Hardware….……………………………………………………….. 56

4.2.6.2 Parallel Port Registers..……………………………………………..57

4.2.6.3 Where this Registers ………………………………………………. 58

4.3 Overall System Design …………………………………………………….. 59

CHAPTER FIVE 62

SOFTWARE SYSTEM DESIGN 62

5.1 Preface….…………………………….…………………………………….. 63

5.2 Software Requirement….…………………………………………….…….. 63

5.2.1 Win 95/98/Me/NT/2000/XP Compatible Software ……………………. 63

5.2.2 HyperTerminal………………….…………………………………….…. 64

5.2.3 Standard Serial Cable (Straight Through)…..…….….………………….. 67

ix

5.2.4 Assembler or 'C' Compiler, Usually As31 or SDCC…………………… 68

5.2.5 Text Editor Program…..…………………………………………………. 70

5.3 Function Description…….………………………………………………..… 70

5.3.1 To Use PPI set Ports and System Parameters………………………….…70

5.3.2 Timer Initialization...………………………………………………….… 71

5.3.2.1 Code for Enable Timer ……………………………………………… 72

5.3.3 Display Data on LCD…..…………………………………………………72

5.4 Serial Interfacing between the Microcontroller and PC…..…………………. 73

5.5 General System Flowchart…...……………………………………………….73

5.6 System Operational Flowchart ……………………………………………… 75

5.6.1 Sensors of Gates Flowchart ……………………………………………... 75

5.6.2 Floor One Flowchart ……………………………………………………. 77

5.6.3 Floor Two Flowchart ……………………………………………………. 79

5.6.4 Main LCD Flowchart …………………………………………………… 81

5.6.5 Motor1 and Motor2 Flowchart …………………………………………...82

5.7 Algorithms and Pseudocode ………………………………………………… 84

CHAPTER SIX 101

IMPLEMENTATION AND TESTING 101

6.1 Preface …………….…………………………………………………..……..102

6.2 Implementation ………………….…………………………………….…… 102

6.3 Testing …………………………..………………………………….………. 103

6.3.1 Testing 8051 Downloading Programs………………..…………….…….103

6.3.2 Motors and H-Bridge Testing.………………………………….……… 104

6.3.2.1 Option One Using C Language for Motor Testing ………………… 106

6.3.2.2 Option Two Using VB.net for Motor Testing ……………….……... 107

6.3.3 Switches Testing…..………..…………………………………….……...107

6.3.3.1 Option One Using C Language for Switching Testing.……….……...108

6.3.3.2 Option Two Using VB.net for Switching Testing ………………….. 108

x

6.3.4 LCDs Testing …………………………………………………………….109

6.3.4.1 Option One Using C Language for LCD Testing ………………….. 109

6.3.4.2 Option Two Using VB.net for LCD Testing ……………………….. 109

6.3.5 Access the Parallel Port Using VB.net ………………………………… 109

6.3.5.1 Testing Output Ports in VB.net …………………………………….. 109

6.3.5.2 Testing Input Port in VB.net ……………………………………….. 110

6.4 Implementation and Testing for Integrated System …………………….….. 111

CHAPTER SEVEN 112

CONCLOUSIONS AND FUTURE WORK 112

7.1 Preface…..…………………………………………………………………… 113

7.2 Conclusions…………………………………………………………………..114

7.2.1 Problems…….……………………………………………………………115

7.2.1.1 Hardware Problems….………………………………………………..115

7.2.1.1 Software Problems……………………………………………………115

7.3 Future Work…..………………………………………………………………116

REFERENCES 117

APPENDICES 118

xi

LIST OF TABLES

TABLE PAGE

TABLE 1.1: PROJECT ACTIVITY BAR CHART (FIRST SEMESTER) ……………………… 6

TABLE 1.2 PROJECT ACTIVITY BAR CHART (SECOND SEMESTER)………………… 6

TABLE 4.1: SERIAL PORT PINS………………………………………………………… 46

TABLE 4.2: OPERATION OF THE DC MOTOR DRIVING CIRCUIT ……………………. 47

TABLE 4.3: CONTROL WORD OF THE PPI ……………………………………………… 54

TABLE 4.4: PARALLEL PORT SIGNAL LINE ………………………………………. 57

TABLE 4.5 REGISTER ADDRESSES OF LPT1 AND LPT2: ………..………………. 58

xii

LIST OF FIGURES

FIGURE PAGE

FIGURE 2.1: 8051……………………...…………………………………………..13

FIGURE 2.2: THE 8051 MICROCONTROLLER KIT ………….…………………….. 1 6

FIGURE 2.3: SWITCH ……………………………………………………………………17

FIGURE 2.4 SWITCH SENSOR ……….………………………………………………. 18

FIGURE 2.5: MOTOR ……..………………………………………………………..19

FIGURE 2.6: LCD DISPLAY …………………….……………………………………. 20

FIGURE 2.7: THE GATE ………………………………………………………………. 21

FIGURE 2.8: THE SPRINGS ……………………….…………………………………… 22

FIGURE 2.9: THE FIRST FLOOR ……………………………………………………….. 23

FIGURE2.10: THE SECOND FLOOR …………………………………………………24

FIGURE 3.1: GENERAL BLOCK DIAGRAM ………………………………….……. 28

FIGURE 3.2: FLOOR SUBSYSTEM …………………………………………………. 28

FIGURE 3.3: ENTRANCE SYSTEM …………………………….……………..…… 29

FIGURE 3.4: THE 8051 MICROCONTROLLER ……………………….….…………. 30

FIGURE 3.5: INTERFACING MAIN SYSTEM ………..................……….………….. 31

FIGURE 3.6: INTERFACING FLOOR 1..........................…………………………….. 31

FIGURE 3.7: DC MOTOR ………………………………………….……………… 32

FIGURE 4.1: SWITCH…………………………………………………….………..40

FIGURE 4.2: SERIAL PORT CABLE ……………………………………………….. 44

FIGURE 4.3: SERIAL PORT PINS ………………………….………………………...45

FIGURE 4.4: PC COM PORT ………………………………………..….…………..46

FIGURE 4.5: DC MOTOR CIRCUIT ……….……………………………………….. 47

FIGURE 4.6: SINGLE CAPACITOR ………………………….…………………….. 48

FIGURE 4.7: RESISTORS ………………………………………………………….. 48

FIGURE 4.8: 74244 BUFFER ……………………………………………………… 49

FIGURE 4.9: INTERFACING FLOORS SENSORS WITH 8051 MICROCONTROLLER ….. 50

xiii

FIGURE 4.10: INTERFACING MAIN ENTRANCE AND EXIT GATE SENSORS WITH

8051 MICROCONTROLLER ……………………………………………………….

51

FIGURE 4.11: INTERFACING LCDS WITH 8051 MICROCONTROLLER ……..……… 52

FIGURE 4.12: INTERFACING MOTORS WITH 8051 MICROCONTROLLER …………..

FIGURE 4.13: PARALLEL PORT REGISTER ………………………………………

53

56

FIGURE 4.14: THE SYSTEM DESIGN CIRCUIT 1…………………………………… 60

FIGURE 4.15: THE SYSTEM DESIGN CIRCUIT 2………………………………….. 61

FIGURE 5.1: CONNECTION DESCRIPTION SCREEN………………………..………..64

FIGURE 5.2: CONNECT TO SCREEN …………………….………………………… 65

FIGURE 5.3: COM1 PROPERTIES ……………………………………………….…66

FIGURE 5.4: DIAL UP SCREEN …..…………………………………………………67

FIGURE 5.5: MS_DOS ……………………………………………………………69

FIGURE 5.6: GENERAL FLOWCHART ….…………………………………………. 74

FIGURE 5.7: SENSORS OF GATES FLOW CHART……………………………………76

FIGURE 5.8: FLOOR ONE SENSORS FLOW CHART ……………………………..… 78

FIGURE 5.9: FLOOR TWO SENSORS FLOW CHART …………………….…………. 80

FIGURE 5.10: MAIN LCD FLOW CHART……………………….………………… 81

FIGURE 5.11: MOTOR1 FLOW CHART …..………………………………………. 83

FIGURE 5.12: MOTOR2 FLOW CHART ……………………………………………. 83

FIGURE 6.1: PORT TESTING EXAMPLE (LEDS) …………..…………………….. 103

FIGURE 6.2: MOTOR CIRCUIT …………………………… ……………………… 106

FIGURE 6.3A: SWITCH CIRCUIT OFF ………………………..……………………...

FIGURE 6.3B: SWITCH CIRCUIT ON ……………………………………..……..….

107

108

FIGURE 6.4: LCD TESTING ………………………………………..………………109

FIGURE 6.5: OUTPUT PORT TESTING …………………………………….………..110

FIGURE 6.6: INPUT PORT TESTING ………………………………..………………110

١

Introduction

1.1. Preface

1.2. Project Importance

1.3. Review of Literature

1.4. Project Scheduling

1.5. Project Cost

1.6. Road Map

1

٢

Chapter One

Introduction

1.1 Preface

In this chapter introduces the general idea of the project, importance and

discuss some of the related projects.

The project smart car parking system is a microcontroller based smart parking

system. Usually, in large parking areas we need to search through the whole place for

space and then park the car. Our project aims to overcome this trouble. We want that

some sensors should be placed at space for each car. These sensors will be connected

to screen like LCDs through the microcontroller at the parking entrance via

microcontroller. The display would show whether or not space is there for more cars,

and if there is any, what the exact location of that space is. This would be carried out

by programming through the microcontroller.

So, the project take about general parking for all the people, consists of two

floors, and in each one the park has a place form which the car to enter the park and

another to leave it, the output of the system is displayed on LCDs the free places for

the cars that enter the park, we use for this push button switch, we will connect them

to the microcontroller to get the number of car in the park.

There will be a screen (LCD) on the place from which the car enter show if

the park is full or have places in it for another car, also show the number of empty

places and which places in each floor is empty, so the person can go to any empty

place and then put his car on it.

٣

On each place in each car park we will have sensors (switch) that show if the

place is empty or available, the screen of that park show that.

The system is consists of the microcontroller, the sensors, and the displays

(LCDs), all of them will be connected to each other in the project to have a complete

smart car parking system.

1.2 Project Importance

The importance of this project that the smart parking system will be more

comfortable, easier to locate empty parking spaces, without driving around the park.

Also, a chargeable system at the entrance will be implemented as a final stage of the

project. The system easily can be expanded to accommodate more floors as each of

parking floor is treated separately and report only the number of the available spaces

for parking.

The importance of the project view on more security, safe and more

intelligent parking that not require employee to work in it and the customers will

have enough information about how to use the park and in which space, then he

chose the place in the park he will go to and know the exact location of that space.

This help parking especially large parking to use it in very easy and perfect

way and it will encourage the customers to put their cars in it. We don't need to

search through the whole place for space and then park the car. Our project aims to

overcome this.

٤

1.3 Review of Literature

Transit-based smart parking in the San Francisco, bay area: an assessment if

user demand and behavioral effects.

The parking guidance information component of this system uses loop

detectors to monitor available parking spaces in facilities and then transmits

messages via VMS signs. The software uses historical data by time to predict parking

facility occupancy status. Planned improvements include forecasts of available

metered on-street parking and a parking reservation system via the Internet, phone,

or in-car terminal.

Another example of an advanced smart parking system is the Frottmaning U-

Bahn station park-and-ride lot (with 1,270 parking spaces) in Munich, Germany, on

the A9 Autobahn.

This system boasts three dynamic VMS screens along the nearby highway,

which indicate the number of parking spaces, real-time transit schedules, and traffic

news. Once motorists enter the parking facility, they are guided to the closest empty

parking space by a real-time surveillance and control system. The smart “directing”

system uses laser-scan detectors at entrance and exit lanes and ultrasound detectors at

each parking space.

Smart parking management systems that provide real-time information to

motorists about the number of available parking spaces in park-and-ride lots, the

departure time of the next train, and downstream roadway traffic conditions (e.g.,

accidents and delays) have been implemented in many cities in Europe and Japan.

More recently, several transits based smart parking management programs have been

proposed in the U.S.

٥

1.4 Project Scheduling

The project activities here depend on each other, so the task durations and

dependencies are the following:-

T1: Preparing to the project: here we introduce to start in the project and discuss with

the advisor to initialize the project, and preparing the group and evaluate the project

tasks and levels. At this period choosing project.

T2: The project searching and analysis: at this period we start the first step to search

and analysis the project and allocate information and data about the project levels

and sublevels, tasks and subtasks, there are many resources to searching and

analyzing the concepts.

T3: The project requirements analysis: the project has many equipments must be

provided and explained to implement the final project to achieve the system

requirements. The system has a hardware and software requirements which must be

achieved through the prototype and final presentation.

T4: Introduction to project and study the 8051 microcontroller system.

T5: Study and find the type of sensor we want and other hardware we require it.

T6: Theory background.

T7: Design concept.

T8: Writing the software and the implementation of the project.

٦

T9: Test the project: we will test the project and implement it to insure that the

system and user requirements levels are achieved or not, to adjust the problems and

errors in the project and can maintain it, and then try to test and execute it again

T10: Re_analyse and re-implement the project

T11: Final Project and presentation: the final project will be display completely

without any problem and achieve the highest level objectives.

T12: Documentation writing: the writing begins with us from the first step to the last

one in parallel.

Table 1.1: Project Activity Bar Chart (First Semester)

16151413121110987654321Task / Week

T1

T2

T3

T4

T5

T12

Table 1.2: Project Activity Bar Chart (Second Semester)

32313029282726252423222120191817Task / Week

T6

T7

T8

T9

T10

T11

T12

٧

1.5 Project Cost

We purchase as a work group all of its equipments to complete the project

architecting and designing.

The project need both of hardware equipments and software programs that

runs on the microcontroller, so we will purchasing all needed electronic components

and parts and software programs.

 The Hardware Components, there are many electrical Chips and equipments

have to be provided:-

1. Resistors.

2. Capacitors.

3. Diodes.

4. Wires (10$).

5. 2 Optocouplers (2$).

6. 2 DC Motor (100$).

7. 30 sensor (micro-switch) (60$).

8. 8051 microcontroller development kit (300$).

9. 3 LCDs (9000$).

10. 3 PPI (15$).

 Software programs:-

1. Aِssembly, C Program it cost and visual Basic (700$).

2. Windows 98version or more it cost (500$).

3. Microsoft PowerPoint, word and Visio (300$).

٨

 Human cost:-

The team of the project consists of three students, work in 27 week, 70 hour

at a day and the work's hour costs 10$. So, the human cost equal (3X27X50X10

= 40500$).

The total cost: The total cost contains the hardware equipments and software

programs, the total cost reach about approximately (51487$).

Note: the Electronic equipments price is varied depending on the component

efficiency and the purchasing source and as the performance of the project increase

the cost increase.

1.6 Road Map

Report consists of seven chapters; the following is a brief description of the

topics that are covered in each chapter.

Chapter 1: Introduction

This chapter present general idea about the project and its importance, and

also literature review, system requirement, group dependency, project scheduling,

estimated cost.

Chapter 2: Theoretical Back Ground

This chapter talks in more details about the basic component used in the

project and theoretical back ground.

٩

Chapter 3: Design Concepts

This chapter details the design concepts, introduces project objectives, shows

the general block diagram of the system and explains how system works.

Chapter 4: Hardware System Design

This chapter presented out lines formal procedure for design, discuss design

options and justify those chosen for the project.

Chapter 5: Software System Design

This chapter handles the software related to our system, depicts flowcharts

about system operation.

Chapter Six: System Implementation and Testing

This chapter includes the implementation phase with the testing of these

phase. General hardware and software component tested and shown in this chapter.

Chapter Seven: Conclusion and Future Work

This chapter will provides the conclusions that will be concluded after

working the system, and suggestion for future work.

١٠

Theoretical Background

2.1 Preface

2.2 Project Component.

2

١١

Chapter Two

Theoretical Background

2.1 Preface

This working relates to a general smart parking system and in particular an

intelligent and electrical parking system based on working many objects in that park

without any human employee in it. Such as, to open the gate of the park when any

customer want to enter, and to know exactly where he will park his car from LCDs at

the entrance.

Gate has a motor to open and close it, LCDs to tell the customer which floor,

number of available spaces and what the exact location to park the car. So, we will

use a microcontroller, many LCDs, sensors, motor for each gate, and other hardware

devices.

This chapter will illustrate theoretical background for our project applications

in general and for each component in particularly, and how each component

communicate with other components, like the communication between the

microcontroller, sensors and LCDs.

2.2. Project Components

As we have mentioned in chapter one before, this project is fully constructed

over a smart car parking, that behave in an intelligent system, we have used many

hardware devices, the input comes from sensor and the output to the gate at the

entrance and at exit and to the LCDs .The basic unit is that the unit to control all of

١٢

the application that we will use, it will be the microcontroller. One need of a

microcontroller is to perform and control all of that application that will be needed in

our smart car parking system.

In the following sections we will give an explanation of each component

(hardware device) that we will use in smart car parking system.

2.2.1. 8051 Microcontroller

2.2.1.1. Introduction to Microcontroller

The microprocessor is the little (single) chip is the heart of a computer; it

does all the computations like adding, subtracting, multiplying, and dividing.

The microprocessor might be a Pentium, a K6, a PowerPC, a Sparc or any of

the many other brands and types of microprocessors, but they all do approximately

the same thing in approximately the same way.

A microcontroller is an entire computer manufactured on a single chip. The

I/O and a memory subsystems contained in a microcontroller specialize these devices

so that they can be interfaced with hardware and control functions of the

applications. Since microcontrollers are powerful digital processor, the degree of

control and programmability they provide significantly enhances the effectiveness of

the application. Microcontrollers usually dedicated devices embedded within an

application.

Single-chip microcomputer indicates that the complete microcomputer

system. Microcontrollers are capable of storing and running the program that was

written, complied and downloaded into it. The main parts of a microcontroller in

١٣

generally consist of the Central Processing Unit (CPU), Read Only Memory (ROM),

Random Access Memory (RAM), input/output lines, serial and parallel ports,

registers, peripherals such as timers and watchdog circuits and signal conversion

circuits, counters, digital (A/D) converter and others...

Figure (2.1): 8051

2.2.1.2. Advantages of a Microcontroller

A microcontroller is a computer-on-a-chip used to control electronic devices.

It is a type of microprocessor emphasizing self-sufficiency and cost-effectiveness, in

contrast to a general-purpose microprocessor. A typical microcontroller contains all

the memory and interfaces needed for a simple application, whereas a general

purpose microprocessor requires additional chips to provide these functions.

A microcontroller is a single integrated circuit. It can store and run unique

programs very flexible and capability to carry out mathematical and logic functions

allows it to imitate complicated logic and electronic circuits.

١٤

2.2.1.3 The Intel 8051

This section is specializing for 8051 and we will present it details. Next,

different tasks related to this microcontroller, plus the problems faced and how they

were solved will follow.

The 8051 is the first microcontroller of the family introduced by Intel

Corporation at the end of the 1970s. The 8051 family are 8_bit controllers capable of

addressing 64K of program memory and separate 64K of data memory.

In our project we will use the 8051 development board which the 8051

development board provides an easy and low-cost way to develop 8051 based

microcontroller projects, without purchasing any other equipment, such as IC

programmers or emulators. The board comes loaded with PAULMON2, (is available

as assembly language source code or ready-to-run binary object code). This provides

a simple menu-based system that enables to download code into the RAM or Flash

ROM on the board. So the board will then run application instead of booting into the

PAULMON2 menu system. A jumper is provided, should you need to erase the Flash

ROM to make any changes.

The board features two 82C55 chips that provide 50 I/O lines and 8 LEDs, in

addition to the 10 lines from the 8051's port #1, and the 8051's bus lines. A second

serial connector is available, with a simple switching circuit, to make it easier to

develop applications.

8051 Features

 Standard 87C52 CPU clocked at 22.1184 MHz.

١٥

 50 I/O lines, All I/O lines are clearly labeled and available at the edge of the

prototype construction area.

 32k SRAM, program variables and code (24k usable for code download).

 30k Flash ROM, non-volatile program storage and data logging.

 High speed baud rates: 115200, 75600, 38400, etc. All standard baud rates

are supported (except 300 baud).

 Display port, works with standard character-based LCDs.

 Eight LEDs, controlled by 8 dedicated I/O lines (not shared with the 50 I/O

lines).

 Bus expansion with 4 chip select signals, for adding UARTs, A/D converters

and other bus-based peripheral chips.

 Unregulated, polarity-protected DC voltage input with 2 position terminal

block.

 PAULMON2 monitor for easy code development without additional

equipment.

 LCD Display Port

 The 8051 development board's LCD port provides the 14 signals needed for

standard character based LCD modules. A 20x2 display is available from

PJRC.

All of these features make it ideal for more advanced level A/D applications

in automotive, industrial, appliances and consumer applications. Also we can collect

many of our needs for the project in one chip, since we need memory to hold

digitized identification data, and modulation to modulate the carrier signal with the

identification data.

١٦

2.2.1.3.1 Why we use choose 8051 microcontroller board?

The 8051 development board provides an easy-to-use to develop 8051 based

microcontroller projects, without purchasing any other special equipment, such as IC

programmers or emulators.

We choose 8051 after search and comparison between it and other

microcontrollers that can be used in our project.

Figure (2.2): The 8051 Microcontroller Kit

2.2.1.3.2 Programmable Peripheral Interface (PPI)

The 82C55A is a high performance version of the industry standard 8255A

and is manufactured using a self-aligned silicon gate process. It is a general purpose

programmable I/O device which may be used with many different microprocessors.

١٧

There are 24 I/O pins which may be individually programmed in 2 groups of

12 and used in 3 major modes of operation. The high performance and industry

standard configuration of the 82C55A make it compatible with the 80C86, 80C88

and other microprocessors.

We need to use it to connect the input and output, such as, sensors and LCDs,

devices to the 8051 microcontroller via its ports.

2.2.2 Sensor (Switch)

In this project we will use a kind of sensor, that is, a switch to sense in every

park that the car found or not, and to sense the car at the entrance or exit, for

controlling the open or close of the gates park, by make it as the input part to the

microcontroller.

Figure (2.3): Switch

The pin labeled ``+5v supply'' may be used to power an active sensor (e.g.,

the transmitter LED of a reflective optosensor). The pin labeled ``sensor signal'' is

the input to the Handy Board circuitry; this must be in the range of 0 to 5 volts. The

pin labeled ``ground'' is the system ground.

١٨

Figure (2.4): Switch Sensor

The above diagram shows how to wire a switch-style sensor to the Handy

Board. As indicated in the diagram, the switch terminals labeled ``C'' (common) and

``NO'' (normally open) should be connected to the sensor plug.

This wiring creates a switch sensor that is normally open, or disconnected,

except when the switch is pressed. The standard software for reading the state of a

switch interprets this logic high value as ``not pressed'' or false. When the switch is

closed, the sensor line is connected to ground, and the software reads a logic low

value, which is interpreted as ``pressed'' or true.

2.2.3 Motors

In this project we will use two DC motors for the two gates, to open the gate

for the park when the cars will enter, and close it when the cars leave.

١٩

Figure (2.5): Motor

The DC motor connector uses two male pins on 0.2 inch spacing; i.e., the

outer two of three pins. The center pin can be clipped away from the assembly.

We will use DC motor because it is give good speed for open the gate, on the

other hand, its price cheaper than other kind of motors.

2.2.4. LCD

LCD, A liquid crystal display (LCD) is a thin, flat display device made up of

any number of color or monochrome pixels arrayed in front of a light source or

reflector. It is prized by engineers because it uses very small amounts of electric

power, and is therefore suitable for use in battery-powered electronic devices.

We will use it to display if there is an empty location in the park for the

customer to put his car in it and to know exactly where to go form the main entrance,

for that, we need more than one LCD, the main LCD, and one for each floor.

In this project we will use LCD its size will be at least 34 inch and over,

because every one who at 10 meters distance will be able to see the data on the

LCDs, and below an option of 40 inch LCD.

٢٠

Figure (2.6): LCD Display

We will take about SONY LCD. This LCD video performance advanced

networking options, or its 40" of display area. This large format LCD display.

Receive WXGA 1366 x 768 resolution paired with a 16:9 aspect ratio and forget

about blurry or imperfect images. Wide 178 degree viewing angles, with its 450

cd/m2 brightness. The FWD-40LX1/S has a minimum LCD panel life of 60,000

hours.

SONY LCD Features

1. Viewable Image Size: "40".

2. Resolution: WXGA 1366 x 768.

3. Aspect Ratio: 16:9.

4. Brightness (Typical): 450 cd/m2.

5. Connectivity: RGB/Component (HD-15), DVI-D HDCP, Composite (BNC),

YUV (Composite).

6. Cabinet Color(s): Silver.

7. Environments: PC Compatible.

٢١

2.2.5. Gate

Gate, The combination of our proven and reliable electric motor with a lever

system represents a simple and extremely reliable drive solution. It permits short

opening and closing times without the barrier boom bouncing in the end positions.

The lever system locks the barrier boom at both end positions.

The motor at each gate use to open and close it, and use as the output to the

microcontroller.

Figure (2.7): The Gate

2.2.6. Spring

we will put a switch between two springs, each spring will be compressed by

200Kg, and over it a piece of iron, therefore, the switch will not closed until a 200Kg

over it like a car.

Springs are fundamental mechanical components which form the basis of

many mechanical systems. A spring can be defined to be an elastic member who

exerts a resisting force when its shape is changed. Most springs are assumed linear

and obey the Hooke's Law,

٢٢

Where F is the resisting force, D is the displacement, and the k is the spring

constant. There are many basic spring types, the most plentiful of which are shown

as follows, we will use a compression spring.

Figure (2.8): The Springs

2.2.7 Force on Spring

The switch found between two springs. Each car location effected with the

mass of the car and the mass of the piece of iron. After searching and study we found

that the weight of the car is between 400_2000 Kg, the weight of the piece of iron

approximately 25 Kg and the weight of five person if the car approximately (5X70),

from that we must ensure that the switch become on when weight over it at least 400

Kg .

2.2.8 General Parking Diagram

The figure (2.9) shows the first floor of the park area, the cars are in blue

colors and this park contains a large number of cars, the circle in the bottom of the

٢٣

figure is the place from which the cars go to the second floor and from the left the

entrance of the park and the exit from the right.

In this park a piece of iron put in each location in the park, exactly, in the half

length, that is the first two wheels only press it, if the location length 5m the piece of

iron put after the first 2.5m form the location length.

Figure (2.9): The first floor

٢٤

The figure (2.10) shows the second floor of the park area, cars in blue like the

figure of the first floor, but the difference between this figure and the figure (2.9) that

this floor without an entrance and exit places but it has a circler for the cars to go to

the first floor and to leave the park.

Figure (2.10): The second floor

٢٥

Design Concepts

3.1 Project Objectives

3.2 Project main hardware components

3.3 General Block Diagram

3.4 Interfacing

3.5 Motors

3.6 How System Works

3

٢٦

Chapter Three

Design Concepts

3.1 Project Objective

 To design and implement a smart parking car system using 8051

microcontroller.

 Implement a charging system at the entrance to the parking.

 Implement a subsystem for each floor showing the available parking slots,

writing the necessary software.

3.2 Project Main Hardware Components

In this project we use a microcontroller 8051 to control the parking in our city

and to have more development, smart, security and easy to use parking.

This system consists of many basic components, as we mention in chapter

two, the main part of the system given below.

 8051 microcontroller development kit.

 Sensor (switch).

 Display (LCDs).

 Motor.

 Gate.

All of these component connected together to make smart parking, the 8051

connected to micro-switch as input and also connect it to the LCDs as output from

٢٧

the microcontroller, and the two gates will open when the car enters or leaves the

park according to the motor movement, its movement will happen when the sensor

(switch) has closed and so send signal to the microcontroller, so we have full system

to control all of the cars that enter, leave and in the parking. Therefore, every free

position is known to every customer who wants to put his car in that park.

The smart car parking system aim to make a full control system engineering

that control many details in this park, its control opening the gates and close it from

the motor movement that move according to the microcontroller signal. So, it is very

accurate system that open and close at specific time.

LCD displays free spaces in each floor and the exact location. Therefore, this

will be very organized, arranged park and comfortable to the customer use.

In this park the machine will be the employee not the human.

3.3 General Block Diagram

The general block diagram of our project (not including the charging system)

is shown in figure (3.1), there are two floor connected to the main system board.

٢٨

Figure (3.1): General Block Diagram

3.3.1 Floor Subsystems

The system consists of microcontroller 8051, sensors and display.

Figure (3.2): Floor Subsystem

3.3.2 Entrance System

Consist of 8051 microcontroller display and floors.

٢٩

Figure (3.3): Entrance System

3.3.3 8051 Microcontroller System

This block diagram show the 8051, RAM, ROM, Decoder, ALU and others.

٣٠

Figure (3.4): The 8051 Microcontroller

3.4 Interfacing

Here we will take about interfacing of the floor system with the entrance

main system. The main system makes interfacing between the two floors as input,

and the main LCD and the two motors as output. Figure (3.5)

The two subsystems for the two floors make interfacing between the switches

as input, and the LCD for each floor as output as shown in figure (3.6). We must

draw attention to the interfacing between the main system and the subsystems,

٣١

therefore, the whole system share the data between the main and the sub which

explained at the end of this chapter in section (3.5) and in chapter two.

Figure (3.5): Interfacing Main System

Figure (3.6): Interfacing Floor 1

3.5 Motors

In this project we can use two options of two kinds of motors, AC motor or

DC motor. We preface to use DC as we mention before, figure (3.7).

٣٢

MAX 4428

VDD

0.1

GND

0.1

InB

0

OutB

OutA
nc

InA

0

M

MOTOR DC

12

010K 10K

+5v

nc

Motors

0

12VDC

Figure (3.7): DC Motor

3.6 How system Works

3.6.1 Microcontroller with Switch, LCDs and Motors

The microcontroller system consists of hardware and firmware. The firmware

of general purpose experimental systems is usually a monitor program that lets users

inspect and modify system attributes such as memory and ports. In addition, a

monitor program should allow downloading and running other applications program.

Once the application software has been fully developed and tested, it may be placed

in ROM and the microcontroller system be used as an embedded controller.

The microcontroller system consists of three major blocks: CPU, memory,

and input /output ports.

Grouping the sub systems of microcontroller system into blocks is convenient

way to describe circuitry that is too large to be displayed on a single sheet. System

blocks diagrams also describe the important signals that connect the sub systems.

٣٣

A bus is a collection of several related signals. There are four buses: the

address bus, the data bus, and the two port buses. The buses are represented by

names, followed the range of indices. The address bus is given the name A with the

index range [0...15]. The individual lines of the address bus are therefore named A0,

A1… A15. The address bus is 16 bits wide, where as the data bus only 8 bits wide

Port. Bits are P1.0, P1.1… P1.7. Similarly P3 bits are connected to a bus, even

though only 4 bits, P3.2 to P3.5 are available as general-purpose input/output ports.

The 8051 microcontroller is at the center of the subsystem. The two

capacitors C1 and C11 and the crystal Y1 are used by the microcontroller to generate

the oscillator clock. The oscillator allows many popular Baud rates to be generated.

The jumper JP3, when installed, grounds the EA# signal to allow code to be fetched

from external memory. When pressed, pushbutton s2 connects the rest input to VCC.

Port0 and Port 2 are used for external memory access. Port0 first emits the low byte

of the address. The ALE signal is used to latch the address low byte. Then Port0

emits or receives the data byte. The octal latch is used to extract the address low

byte. The output of the latch is always enabled. Eight resistors are connected to port

0, and the ninth resistor is used as a pull-up resistor for the EA# input. The 5 volt

supply must be connected to the VCC pin, pin 40; similarly the ground of the power

supply, 0 volts, must be connected to the GND pin, pin 20.

The external code and data memory blocks overlap. The ANDed signal,

called READ#, is activated (made low) when ever PSEN# or RD# signals are low.

The WR# signal is generated by the microcontroller during external memory fetches.

Four of the bits of port 3 are used by the system. P3.0 and P3.1 are used for serial

communication, and P3.6 and P3.7 for the WR# and RD# signal. Port P1 and 4 bits

of port P3 are available as general purpose input/output bits. Port P3 bits are also

used in conjunction with the timers and as external interrupts.

٣٤

The 64K of system memory is organized in two 32K halves. One of the 32K

blocks is an EPROM and the other is a RAM device. The most significant bit of the

address bus A15 determines which half of memory is addressed. A15 and its

complement are used as the decoding signals to activate the two memory devices.

The complement of A15 is obtained by one of the NAND gate. The double-pole-

double-throw (DPDT) switch determines which memory device is decoded as the

low block of memory. With a monitor program in EPROM, the EPROM should be

selected as the low memory block so that upon reset, the monitor program initializes

and runs the system. An application program that is downloaded into the RAM is

executed by toggling S1 while the RESET button is pressed. The RESET button is

held pressed, no instructions are fetched. Toggling S1 decodes the RAM containing

the application program to be decoded as the low block of memory. Once the reset

button is released, the microcontroller starts fetching the instructions form location 0

know decoded as the first byte of the RAM, thus executing the downloaded program.

The digital input/output lines are connected to a terminal block. A separate two

terminal connecter JP2 is used to bring the supply voltage to the volt.

The output of the decoder such as Y0 pin 15 will be connected to the chip

select (CS) pin7 of the PPI, and the decoder takes the input from the microcontroller

port, and the output of the decoder will be connected to the chip select of RAM and

EPROM.

The unused ports of both PPI will be connected to another hardware device,

LCD takes bits from PPI ports to make interface between it and the system, the

motor will take 1 bit and since we have two motors we need 2 bits from ports. Each

micro switch need 1 bit from the ports to make interface between the switch and the

system.

In this system we will use a switches sensor for each location in the park and

the other for the entrance and exit place.

٣٥

And here the description steps of working system from the moment of car

entrance to the park until to leave. When the car reach our smart park entrance, the

sensor (switch) placed in that place will be closed, since the customer put his car in

the entrance, then the sensors sends signal to the microcontroller, which in turns

sends signal to the motor to open the gate, the same sensor after a delay like 5

seconds close the, this sensor will send a signal to the microcontroller, which in

reverse will send another signal to the motor to close the gate. After that, the

customer will choose the place where he wants to park his car from the main LCD,

which displays the floors (where the first or second floor has empty places or not),

which how many places are empty in it (10, 16 …). Then he chose the location from

a sub LCD, and then the car will be parked. Next, the switch at that location will be

closed and send a signal to the microcontroller, to change the LCDs display, the

location that the customer parks his car in it is not empty.

When the car leave the location, the circuit between the switch and the

microcontroller port open, so the LCDs to change its displays which show that this

location is empty for another car to use.

Therefore, when the car reaches the other gate to leave from the park, the

sensor which precedes the gate will be closed and send a signal to the

microcontroller, in respect the microcontroller sends a signal to the motor to open the

gate. Finally, the car leaves the park then, closes the gate after a required delay.

3.6.2 The Switch with Microcontroller

The switch connected to the microcontroller by PPI or microcontroller ports,

from one of its input (this called a signal terminal as we mention in chapter two),

when the signal pin become on (switch closed) it will sent a signal to microcontroller

port. The microcontroller receives the signal, and knows that there is a car in that

٣٦

place. And when a car left that place that port become zero, and because of that, the

microcontroller know that this place in the park is free for another car.

3.6.3 The LCDs with Microcontroller

The LCDs connected to the microcontroller with the output ports of PPI. It

works as an output of the processed data which come from the microcontroller.

The main LCD show how many free places in each floor. The other shows

the exactly free places in that floor. In every update the information changes

dependently to switch signal.

The LCDs work dependent to the micro-switches signals, when the micro-

switches closed send signals to the microcontroller as we mention before.

3.6.4 The Motor with Microcontroller

The two motors connected with two bits to the microcontroller, one bit for

each one, according to PPI. The motor of entrance gate open when the switch sends

signal to microcontroller, so the microcontroller sends another signal to motor to

open that gate. And the motor will close the gate when another signal the

microcontroller sends it.

The second motor (for the exit gate), as motor for entrance gate, except it will

open according to the signal send to the microcontroller from switch before the exit

gate.

٣٧

3.6.5 The spring with switch

In each location in the park there is two spring in the ground, between them

switch. When the car takes its place in the park, the wheel of that car will press a

piece of iron over the two springs. The switch after five centimeter below the iron.

This five centimeter become zero when the spring pressed by at lest 200Kg (the mass

of car). So the switch closed and sends a signal to microcontroller.

3.6.6 The gate with the motor

The gates will open and close according to the motors movement.

٣٨

Hardware System Design

4.1 Introduction

4.2 The units design

4.3 Overall System Design

4

٣٩

Chapter Four

Hardware System Design

4.1 Preface

After explaining the theoretical background, the general block diagram of the

system, and how the system works, there is a need to view what is the design of this

system in more specific, powerful and more formal terms. So this chapter describes

the final system design with all its features which are necessary to make the system

works well and achieves the objectives of the system. This chapter shows the

interfaces between the equipments of the theoretical background, and the more

suitable chips that advanced the design.

4.2 The Units Design

The park consists of five physical modules (sensors, LCDs, motors,

Microcontroller and power). All the components are assembled on a single board.

The system has mainly four parts; these parts must interface with each others to

achieve the project goals. The team has to deal with each one as separate unit, study

its features and prepare it to operate successfully with other units. These units are:

 Sensors.

 Control unit (8051 board).

 Display (LCDs).

 Motors.

٤٠

4.2.1 Sensors (Interlocking Push Buttons)

The reasons of choosing interlocking push buttons refer to:

 Two through used for entrance and leaving.

 Easy to use since External control circuit is unnecessary.

 Availability.

 Acceptable.

The sensors are used to:

 Sense the entrance of the car, to become closed and send signal to the

microcontroller ports (this will be explained later in control unit), and then

this location will become not available for another user. When the car leaves

the location, another new drivers can see that there is free really location in

the same place.

Figure (4.1): Switch

 The system needs to transfer data between the sensors (in all places) and the

microcontroller and in reverse.

٤١

 The term "switch" typically refers to electrical power or electronic

telecommunication circuits. In applications where multiple switching options

are required, mechanical switches have long been replaced by electronic

variants which can be intelligently controlled and automated.

 Each sensor (push button switch) has two bits one for VCC and the other for

the ground, when the sensor pushed to the first time it becomes on, but on

the second push it becomes off.

 For this project, the sensor put between two springs, and above it a piece of

iron, when the driver parked his car in any location in the park and push the

button to the first time it give signal "1" or on, and send it to the

microcontroller and all of the time that the driver still in that location the

signal does not change, all the time stay on. And when the driver leaves the

location, the sensor will be pushed to the second time and becomes off or

"0", and stay off until another driver parked his car in this location.

 The project has to use many sensors; each location must have one sensor

plus the sensors at the entrance and at the exit of the park.

 The microcontroller has A, B, C, D, E, and F ports and each port has 8 bits,

we use port A (0..7) for the sensors in the first floor, and port B (0..7) for the

sensors in the second floor, and bit1, bit2 from port c for the sensors at the

entrance and exit, we connect each sensor (push button switch) from its VCC

port to the microcontroller I/O ports, each one to one bit of the

microcontroller as we say before.

٤٢

4.2.2 DC_motor and H_Bridges

The H-bridge circuit consists of a set of four transistors in IC packages that

are arranged in an “H” orientation. This layout allows for current to flow bi-

directionally through the circuit thus allowing for directional control for our motors.

Additionally, logic inputs signals can be used to determine which direction the

motors are spinning. Depending on the paired combination of logic 1’s and 0’s the

motor shaft can turn left, turn right, and brake. Speed control is another feature of the

h-bridges, when given a pulse-width-modulated (PWM) input signals, depending on

the length of the duty cycle; the speed can be varied accordingly. H-Bridges that will

be used are Max4428. The H-bridges will act as interfaces between microcontroller

and the motors.

This IC (H_Bridges) used to control the DC motor at the gate of the park and

make the DC motor move forward (right) to open the gate of the park and backward

(left) to close the door of the park.

The DC_motor will receive signal from the microcontroller to open the gate

and another signal to close it.

4.2.3 LCDs

The M1632 is a low-power-consumption dot-matrix liquid crystal display

(LCD) module with a high-contrast wide-view TN LCD panel and a CMOS LCD

drive controller built in. The controller has a built-in character generator ROM/RAM,

and display data RAM. All the display functions are controlled by instructions and

the module can easily be interfaced with an MPU. This makes the module applicable

to a wide range of purposes including terminal display units for microcomputers and

display units for measuring gages.

٤٣

Properties of the LCD used in virtual project:

 16-character, two line TN liquid crystal display of 5 x 7 dot matrix + cursor.

 Duty ratio: 1/16.

 Character generator ROM for 192 character types (character font: 5 x 7 dot

matrix).

 Character generator RAM for 8 character types (program writes) (character

font: 5 x 7 dot matrix).

 80 x 8 bit display data RAM (80 character maximum).

 Interface with 4 bit and 8bit MPUs possible.

 Display data RAM and character generator RAM readable from MPU.

 Many instruction functions: Display Clear, Cursor Home, Display ON/OFF,

and Cursor ON/OFF.

 +5 volt single power supply.

There are three LCDs used to show the display data on the screen:

 The main LCD used to display the number of free places in each floor and

puts at the entrance of the park before the driver reach floor one.

 The first secondary LCD in floor one used to display the specific free places

in that floor like (floor one: A (1, 2), B (1, 3, 4)), this mean location A in

floor one has 1 and 2 free places; location B in floor two has 1, 3 and 4 free

places.

 The second secondary LCD in floor two used to display the specific free

places in that floor like (floor two: A (1, 2), B (1, 3, 4)), this mean location A

in floor two has 1 and 2 free places; location B in floor two has 1, 3 and 4

free places.

٤٤

4.2.4 Control Unit

The system need control unit to achieve all the operation of the design. The

control unit represented by two main parts; the first one represented by computer that

connect the units of project together by serial port and other hardware design such as

LCDs and sensors.

The second part represented by software driver programmed using C

programming Language that install from the computer to the microcontroller board

from serial port then decode and analyze it after that execute and perform the specific

task refer to it (we will discuss this part in detailed at chapter five).

Now we will illustrate the ports that connect the project subsystem.

4.2.4.1 Serial Ports

We have to use the serial port on the computer receives asynchronous data at

suitable speeds for our data. The serial port expects asynchronous data; the serial port

can only accept words of length 5 or 7 bits. It also expects start and stop bits. The

serial port cable has to be used to connect the computer with the circuit board and

load programs into the 8051 microcontroller as shown in figure (4.2).

Figure (4.2): Serial Port Cable

٤٥

The serial port is an I/O (Input/Output) device. An I/O device is just a way to

get data into and out of a computer. Most PC's have one or two serial ports. Each has

a 9-pin connector (sometimes 25-pin) on the back of the computer. Computer

programs can send data (bytes) to the transmit pin (output) and receive bytes from

the receive pin (input). The other pins are for control purposes and ground.

The serial port is much more than just a connector. It converts the data from

parallel to serial and changes the electrical representation of the data. Inside the

computer, data bits flow in parallel (using many wires at the same time). Serial flow

is a stream of bits over a single wire (such as on the transmit or receive pin of the

serial connector). For the serial port to create such a flow, it must convert data from

parallel (inside the computer) to serial on the transmit pin and conversely.

4.2.4.1.1 Pins and Wires

Old PC's used 25 pin connectors but only about 9 pins were actually used so

today most connectors are only 9-pin. Each of the 9 pins usually connects to a wire.

Besides the two wires used for transmitting and receiving data, another pin (wire) is

signal ground. The voltage on any wire is measured with respect to this ground. Thus

the minimum number of wires to use for 2-way transmission of data is 3. Except that

it has been known to work with no signal ground wire but with degraded

performance and sometimes with errors. As shown in figure (4.3).

Figure (4.3): Serial port pins

٤٦

4.2.4.1.2 Data flow

Data flows into and out of your serial port. Flow rates (such as 56k (56000)

bits/sec) are (incorrectly) called "speed". But almost everyone says "speed" instead

of "flow rate".

It's important to understand that the average speed is often less than the

specified speed. Waits (or idle time) result in a lower average speed. These waits

may include long waits of perhaps a second due to flow control. At the other extreme

there may be very short waits (idle time) of several micro-seconds between bytes. If

the device on the serial port (such as a modem) can't accept the full serial port speed,

then the average speed must be reduced.

PC Com Port - EIA-574 RS-232/V.24 pin out on a DB-9 pin used for

asynchronous data shown in figure (4.4).

Figure (4.4): PC Com Port

Table(4.1): Serial Port Pins

SignalPin

Data Carrier detector1

Received Data2

Transmitted Data3

Data Terminal Ready4

Signal Ground5

Data Set Ready6

Request to Send7

Clear to Send8

Ring Inductor9

٤٧

4.2.4.2 Controlling the Motor

The following table indicates the operation of the circuit below:

Table (4.2): Operation of the DC motor driving circuit

10K

nc
InA

H_Bridge

0

0.1

0

nc

0.1

12VDC

0

MAX 4428

0

VDDGND

10K

InB

+5v

OutB M

MOTOR DC

12

OutA

Motors

Figure (4.5): DC motor circuit

The DC_motor and H_bridge circuit used to open the gate of the park and

close it according DC_motor movements, when the motor move forward the gate

will be opened and when its move backward the gate will be closed, it will be

moved forward or backward according to the signal send to the H_bridge.

PPI pins

A B motionP1 P2

0 0 G G No motion

0 1 G 12v Left rotation

1 0 12v G Right rotation

1 1 12v 12v No motion

٤٨

4.2.4.3 Electrolytic Capacitor and Resistor

The capacitor we used is about 0.1 micro for the every IC to protect it as

shown in figure (4.6).

Resistor will be used in every IC in the project to give less current to the

circuits as shown in figure (4.6). We will be using 100KΩ for every IC used in push

button switch.

Figure (4.6): Single Capacitor

Figure (4.7): Resistors

4.2.4.4 (74244) Buffer

This buffer will be used as storage between the sensors and the

microcontroller ports take the input from the sensor and send it to the

microcontroller, as shown in figure (4.8).

٤٩

Feature:

1. State outputs drive bus lines or buffer memory address registers.

2. PNP inputs reduce DC loading.

3. Package options include both plastic and ceramic chip carriers in addition to

plastic and ceramic DIPs.

Figure (4.8): 74244 Buffer

4.2.5 Over All System Unit (Application Unit)

This unit is connected to the microcontroller unit, it consists of the circuit that

drive the DC motor; which control the gate, and the sensor as input. And control the

LCDs display as output.

4.2.5.1 Interfacing Circuits

The system consists of four parts, and each part has an important role in this

system. But to achieve the system objectives and operates as one unit, there’s a need

to integrate each unit with others through the interfacing circuits .The interfacing

circuits are:

٥٠

4.2.5.1.1 Interfacing Sensors with microcontroller (8051) board

The following circuit in figure (4.9) represents the interfacing sensors in the

floors with I/O ports of the microcontroller board using the PPI chip.

10Kx8

+5v
10Kx8

1n

SW17

0

74F
244

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

+5v

Floor 1

SW14

SW9

0

82C55

34
33
32
31
30
29
28
27

4
3
2
1
40
39
38
37

18
19
20
21
22
23
24
25

14
15
16
17
13
12
11
10

5
36

9
8

35

6

D0
D1
D2
D3
D4
D5
D6
D7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RD
WR

A0
A1

RESET

CS

Sensors

0

0

SW6

10K

SW19

74F
244

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

0

SW15

0

Floor 2

M
ic

ro
co

nt
ro

lle
r

10K

SW7

Figure (4.9): Interfacing Floors Sensors with 8051 Microcontroller

The following circuit represents the interfacing sensors of the gates with I/O

ports of the microcontroller board using the PPI chip. Then it will be buffered by

74F244 buffer. In this PPI we will use port A (0_7) and port B (0_7) connected with

٥١

switches, for floor1 port A and for floor2 port B. Then, the signal will be received

through these ports A and B and know which switch is on and which is off.

C1

0

10K

0

+5v

74F
244

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

82C55

34
33
32
31
30
29
28
27

4
3
2
1
40
39
38
37

18
19
20
21
22
23
24
25

14
15
16
17
13
12
11
10

5
36

9
8

35

6

D0
D1
D2
D3
D4
D5
D6
D7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RD
WR

A0
A1

RESET

CSM
ic

ro
co

nt
ro

lle
r

Sensors of
The Gates

0

Figure (4.10): Interfacing Main entrance and Exit Gate Sensors with

8051 Microcontroller

4.2.5.1.2 Microcontroller 8051 Interfacing with LCD Display

The Microcontroller is interfaced with the LCD in figure (4.10). The

following circuit represents the interfacing LCDs with I/O ports of the

microcontroller board using the PPI chip. Then it will be buffered by 74F244 buffer.

In this PPI we will use port A (0_7) and port C (0_2) connected with first

LCD, and port B (0_7) and port C (3_5) connected with second LCD. Then, the

signal will be sending through these ports A and C to display the output data though

these ports.

٥٢

DB5

VDD

0

DB3

VDD

DB5

DB7

Vo

0

DB4

Vo

+5v

0

DB3

RS

DB2

LCDs

RS

DB1

DB1

R/W'

16x2
DB0

+5v

R/W'

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

DB4

E

M
ic

r
o
c
o
n
tr

o
ll
e
r

8
2

C
5

5

34
33
32
31
30
29
28
27

4
3
2
1
40
39
38
37

18
19
20
21
22
23
24
25

14
15
16
17
13
12
11
10

5
36

9
8

35

6

D0
D1
D2
D3
D4
D5
D6
D7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RD
WR

A0
A1

RESET

CS

1K

E

16x2

DB7

LCD

0

DB0

DB6

LCD

1K

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

+5v

DB2

VSS

0

DB6

VSS

+5v

Figure (4.11): Interfacing LCDs with 8051 Microcontroller

٥٣

4.2.5.1.3 Microcontroller 8051 Interfacing with Motors

The Microcontroller is interfaced with the motors during the PPI in figure

(4.10). The following circuit represents the interfacing motors with I/O ports of the

microcontroller board using the PPI chip. Then it will be buffered by 74F244 buffer.

In this PPI we will use three bits in port C connected with motors, 2 bits for

the first motor and 2 bits for the second motor. Then, the signal will be sending

through ports C to display the control the time when motor move and how (left or

right).

OutA

0

0.1

InB

0

GND

0

+5v

OutB

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

0

M

MOTOR DC

12

0

InA

nc

M
ic

ro
c
o
n
tr

o
ll
e
r

OutA

nc

InB

0.1

GND

0

M

MOTOR DC

12

InA

0

10K

12VDC

10K

12VDC

nc
0

10K

0.1

VDD

nc

0

0.1

U1

8
2

C
5

5

34
33
32
31
30
29
28
27

4
3
2
1
40
39
38
37

18
19
20
21
22
23
24
25

14
15
16
17
13
12
11
10

5
36

9
8

35

6

D0
D1
D2
D3
D4
D5
D6
D7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RD
WR

A0
A1

RESET

CS

VDD
OutB

+5v

MAX 4428

10K

Figure (4.12): Interfacing Motors with 8051 Microcontroller

٥٤

4.2.5.1.4 Microcontroller System Interface

The system need microcontroller board unit to achieve all operations of the

design. The microcontroller is used since all the components that needed for the

system were built onto one chip.

This system contains the following main components:

 8051 Microcontroller.

 74ls373 latch.

 EPROM

 74ls138 Decoder.

 PPI (8255A).

 LCD.

The ports of the PPI are configured using control word that written to the

control registers as the following:

Port A input.

Port B out put.

Port C not used.

This configuration is specified in the control word as the shown in the

following table:

Table (4.3) control word of the PPI
BSR Mode PA PCH Mode PB PCL

1 0 0 1 0 0 0 0

٥٥

4.2.6 Parallel Ports

A problem occurred in the project. This is, the 8051 microcontroller burned

(for more information see chapter seven). That makes the team to find another

solution and then used the parallel port to continue the project.

In parallel port the control unit is the computer that connects the units of

project together by parallel. The second part represented by software driver

programmed using visual basic .net that install on computer to fetch the signals, after

that execute and perform the specific task refer to it (we will discuss this part in

detailed at chapter five).

Parallel port is a simple and inexpensive tool for building computer controlled

devices and projects. The simplicity and ease of programming makes parallel port

popular in electronics world. The parallel port is often used in computer controlled

robots, Atmel/PIC programmers, etc.

The primary use of parallel port is to connect printers to computer and is

specifically designed for this purpose. Thus it is often called as printer Port. You can

see the parallel port connector in the rear panel of your PC. It is a 25 pin female

(DB25) connector. On almost all the PCs only one parallel port is present, but you

can add more by buying and inserting ISA/PCI parallel port cards.

4.2.6.1 Hardware

The pin outs of DB25 connector is shown in the figure (4.13).

٥٦

Figure 4.13: Parallel Port Register

The lines in DB25 connector are divided in to three groups:

 Data lines (data bus).

 Control lines.

 Status lines.

As the name refers, data is transferred over data lines, control lines are used to

control the peripheral and of course, the peripheral returns status signals back

computer through Status lines. These lines are connected to Data, Control and Status

registers internally. The details of parallel port signal lines are given in table (4.4)

Table 4.4: Parallel Port Signal Line

Pin No

(DB25)

Signal

name

Direction Register

- bit

Inverted

1 nStrobe Out Control-

0

Yes

2 Data0 In/Out Data-0 No

٥٧

3 Data1 In/Out Data-1 No

4 Data2 In/Out Data-2 No

5 Data3 In/Out Data-3 No

6 Data4 In/Out Data-4 No

7 Data5 In/Out Data-5 No

8 Data6 In/Out Data-6 No

9 Data7 In/Out Data-7 No

10 nAck In Status-6 No

11 Busy In Status-7 Yes

12 Paper-

Out

In Status-5 No

13 Select In Status-4 No

14 Linefeed Out Control-

1

Yes

15 nError In Status-3 No

16 nInitialize Out Control-

2

No

17 nSelect-

Printer

Out Control-

3

Yes

18-25 Ground - - -

4.6.3 Parallel Port Registers

The Data, Control and status lines are connected to there corresponding

registers inside the computer. So by manipulating these registers in program, one can

easily read or write to parallel port with programming languages like 'C' and BASIC.

The registers found in standard parallel port are:

 Data register

٥٨

 Status registers

 Control register

As there names specifies, Data register is connected to Data lines, Control

register is connected to control lines and Status register is connected to Status lines.

So what ever writes to these registers, will appear in corresponding lines as voltages,

by measure it with a millimeter. And what ever give to parallel port as voltages can

be read from these registers. For example, if we write '1' to Data register, the line

Data0 will be driven to +5v. We can programmatically turn on and off any of the

data lines and Control lines.

4.6.3.1 Where these registers?

In an IBM PC, these registers are IO mapped and will have unique address.

We have to find these addresses to work with parallel port. For a typical PC, the base

address of LPT1 is 0x378 and of LPT2 is 0x278. The data register resides at this base

address, status register at base address + 1 and the control register is at base address

+ 2. So once we have the base address, we can calculate the address of each registers

in this manner. The table (4.4) below shows the register addresses of LPT1 and

LPT2.

Table 4.5: Register Addresses of LPT1 and LPT2

Register LPT1 LPT2

data register(base address + 0) 0x378 0x278

Status register (base address + 1) 0x379 0x279

control register (base address + 2) 0x37a 0x27a

٥٩

4.3 Overall System Design

The system design represents the complete interface between the units

designed using 8051 kit.

In this system the inputs is the switches (sensors) that connected to the first PPI

after it's buffered, the switches of the floors and gates take port A (0_7), port B (0_7)

and two bits from port C (0_1).

The outputs will send to the motors in the first PPI, port C (2_5). Also to the

LCDs for the floors in the second PPI, port A (0_7) and port C (0_2) for the first

LCD, port B (0_7) and port C (3_5) for the second LCD.

Note: The third LCD is internally found on the 8051 development kit itself.

The complete characteristic of the system is shown below in figure (4.14) (not

implemented).

The system design represents the complete interface between the units

designed using parallel port. There for, to control parking system the following

design had been built and tested carefully to achieve the needed objectives. The

complete characteristic of the system is shown below in figure (4.15).

٦٠

0

+5v

A9

16x2

16

820

10Kx8

A0

RS

InB

0

U43

MAX232

1
3
4
5
2
6

12
9

11
10

13
8

14
7

C1+
C1-
C2+
C2-
V+
V-

R1OUT
R2OUT

T1IN
T2IN

R1IN
R2IN

T1OUT
T2OUT

D4

TX LED

BUS

21

0

+5v

0

LED

22pF

D1

22pF

29

7

A8

23

0

15

820

U38A
74HC02 2

3
1

DB4

0

U30A
74HC00

12
3

D4

0

C11 C13

D6

D5

2

VSS

OutA

0

8
2

C
5

5

34
33
32
31
30
29
28
27

4
3
2
1
40
39
38
37

18
19
20
21
22
23
24
25

14
15
16
17
13
12
11
10

5
36

9
8

35

6

D0
D1
D2
D3
D4
D5
D6
D7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RD
WR

A0
A1

RESET

CS

A13

A2

MAX 4428

P3
AUX

5
9
4
8
3
7
2
6
1

U31A
74HC00

1

2
3

0.1

GND

+5v

10K

P1.4

D1

D4

A0

0

20

D0

0

+5v

1K

5

VDD

+5v

E3

INT0

1

OutB

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

A7

nc

0

C2

10K

8

31

Floor 2

4

26

22

0

LED

10K

0.1MF

0.1

A6

SW9

+5v

LED

RD

+5V

6

A4

IN

SW15

U42A

7426

1

2
3

28

A10

1K

0.1

820
15

CS

19

0

GND

19

13

D1

0

LED

3.3K

820

3

D6

0.1

U28A
74HC00

12
3

U26A
74HC00

1

2
3

0

9

A1

32

DB3

nc

+5v

M

MOTOR DC

12

16

A5

E2

23

A8

MAX 4428

0

P2
MAIN

5
9
4
8
3
7
2
6
1

D2

LED

M

MOTOR DC

12

SW6

A5

Floor 1

0

0

A9

12

U35A
7420

6

1
2

4
5

P1.5

E0

+5v

10
17

R/W'

VDD

0

+5v

820

8
7
C

5
2

40

18
29

30

19

9
31

39
38
37
36
35
34
33
32

1
2
3
4
5
6
7
8

21
22
23
24
25
26
27
28

10
11
12
13
14
15
16
17

VCC

X2
PSEN

ALE/PROG

X1

RST
EA/VPP

P0.0/AD0
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
P0.5/AD5
P0.6/AD6
P0.7/AD7

P1.0/T2
P1.1/T2EX

P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

P2.0/A8
P2.1/A9
P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15

P3.0/RXD
P3.1/TXD
P3.2/INT0
P3.3/INT1
P3.4/T0
P3.5/T1
P3.6/WR
P3.7/RD

A10

16

CS

0

7 A3

nc

0

0

C14

20

A6

D0

DB5

+5v

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

0

D7

0

U34A
74AC08

1

2
3

11

C4
E7

A14

DB5

12VDC

+5v

14

A12

D5

+5v

SW14

24

9

14
0

0 0

+5v

1K

A15

D0

DB1

0

+5v

U10

7
4

H
C

3
7

3

1
11

2
5
6
9
12
15
16
19

3
4
7
8

13
14
17
18

OE
LE

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

D1
D2
D3
D4
D5
D6
D7
D8

0

U327
4

H
C

1
3

8

15
14
13
12
11
10
9
7

1
2
3

5
4
6

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

A
B
C

G2B
G2A
G1

2

A15

27

24

5

DB7

E

0

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

D7

A8

INT1

nc

+5v

820

J1

1
2
3
4

4

A3

D3

A1

DB3

+5v

U36A
7420 6

1
2

4
5

10

10K

0

+5v

SW7

1M

3

A13

P1.3

A0

R/W'

0

8
2

C
5

5

34
33
32
31
30
29
28
27

4
3
2
1
40
39
38
37

18
19
20
21
22
23
24
25

14
15
16
17
13
12
11
10

5
36

9
8

35

6

D0
D1
D2
D3
D4
D5
D6
D7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RD
WR

A0
A1

RESET

CS

D3

+8to 15V DC

DB0

VDD

A1

A9

A11

E4

DB6

0

D8

RX LED

P1.0

U37A
7426

1

2
3

22.11MHZ

0

SW1

E6

WR

C8

LCD

A7 DB1

11

A14

A14

Vo

12VDC

0

C1

E1

A2

D55x330

P1.2

OE

DB2

+5v

U40A
74HC02 2

3
1

F
l
a
s
h

E
r
a
s
e

0

+5v

0

U25A
74HC00

1

2
3

A11

13

0

A1

DB4

Vo

InA

0

U41A
74HC02 2

3
1

18
17

0

U39A
74HC02

2

3
1

10

D6

LCD

LED

0

A13

2K

+5v

+5v

D14
PWR LED

7805

LED

0.1

A11

RS

8

16x2

GND

0

D2

0

10MF

A1

OUT

A4

A2

22

LCD

C16

A6

A13

0

+5v

10K

VSS

C17

28

DB6

InB

0

+5v
1N5819

SW17

A12

15

Overall System Design

D7

25

D2

VDD

E

+5v

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

WR

0

0

10Kx8

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

16

D3

0

S
i
n
g
l
e

S
t
e
p

0

0.1

CE

30

DB2

6

A0

OutA

24

A4

InA

0

0

18

12

10K

0

0

820

6
2
2
5
6

1

10K

C9

LED

0.1

A12

25

0.1

10K

27

P1.7

P1.1

DB7

0

0

R8

A10

21

OutB

0.1

0.1 C10

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

D4
A3

3
9
F
5
1
2

GND

0

+5v

SW19

E5

10K 0.1A4

A7

+5v

820

26

DB0

+5v

P1.6

A5

Figure (4.14): The System Design Circuit 1

٦١

0

DB2

+5v

Zd

0

0.1

VDD

Ib0

Ia1

+5v

OutA

0.1

DB4

0

DB1

Y1

+5v

LCD

DB4

Zd

8
2

C
5

5

34
33
32
31
30
29
28
27

4
3
2
1
40
39
38
37

18
19
20
21
22
23
24
25

14
15
16
17
13
12
11
10

5
36

9
8

35

6

D0
D1
D2
D3
D4
D5
D6
D7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RD
WR

A0
A1

RESET

CS

InA

+5v

0

LCDs

RS

+5v

SW15

E

Y2

DB3

Zc

Zc

10Kx8

InA

LCD

Y3

10K

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

DB6

Ic0

Mux
74257

10K

OutB

+5v

VSS

R/W'

Ic0

VSS

+5v

10K

LCD

Mux
74257

nc
0

0

0

DB3

RS

7
4

F
2

4
4

2
4
6
8

1

18
16
14
12

11
13
15
17

9
7
5
3

19

A1
A2
A3
A4

1OE

Y1
Y2
Y3
Y4

A5
A6
A7
A8

Y5
Y6
Y7
Y8

2OE

+5v

GND

0

0

16x2

MAX 4428

0

S

0

0

10K

16x2

DB0

DB5

Ib0

Ib0

DB0

GND

S

DB7

1 2

E

Ia0

Ia0

1K

12VDC

DB6

1K

S

E

R/W'

Zb

12VDC

VDD

DB7

0

0

DB3

Id0

0

M

MOTOR DC

12

Zb

VDD

0

+5v

DB7

DB4

7
4
1
3
9

0

DB1

Id1

+5v

Vo

Id0

InB

+5v

0

M

MOTOR DC

12

DB5

OutB

0

SW15

0

Vo

Za

+5v

DB1

Id1

InB

0.1

Vo

A0

8
2

C
5

5

34
33
32
31
30
29
28
27

4
3
2
1
40
39
38
37

18
19
20
21
22
23
24
25

14
15
16
17
13
12
11
10

5
36

9
8

35

6

D0
D1
D2
D3
D4
D5
D6
D7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RD
WR

A0
A1

RESET

CS

VSS

1K

DB5

Ic1

DB2

Za

nc
OutA

SW14

SW19

A1

VDD

DB0

Ib1

0

RS

Ic1

10Kx8
nc

0.1

Y0

R/W'

0

VDD

DB6

Parallel Port

13
14
15
16
17
18
19
20
21
22
23
24

1
2
3
4
5
6
7
8
9
10
11
12

Ia1

0

16x2

Ib1

nc

DB2

Figure (4.15): The System Design Circuit 2

٦٢

Software System Design

5.1 Preface

5.2 Software Requirements Specifications

5.3 Function description

5.4 Serial Interface between the Microcontroller and PC

5.5 General System Flowchart

5.6 System Operational Flowchart

5

٦٣

Chapter Five

Software System Design

5.1 Preface

In this chapter, we are going to describe the software system design which

includes an explaining of the programming environment, programming tools, and to

describe some of the using methods and algorithm design as followed.

And it contains the flowchart for all processes in this project from first step in

the project, to the final step.

The overall software is programming in C programming language.

5.2 Software Requirements Specifications

After analyzing all software requirements, the following software functions

and modules are needed:

5.2.1 Win 95/98/ME/NT/2000/XP Compatible Software

This system needs these types of windows in order to write all assembly and

C codes on Text Editor Program, e.g. Notepad, also to used HyperTerminal as a

program for transfer the assembly and C code, where these programs are already

found on these windows.

٦٤

5.2.2 HyperTerminal

HyperTerminal, which comes with Windows95, 98, Me, NT, 2K and XP can

be used to obtain information from any external device such as microcontroller or

modem, or to send any data or information to these external device .Also it can be

Set up ,format, memory access and erase memory for any external device.

In this system there is a need for this program to make the connection

between PC and the 8051 microcontroller, where this program is used to transfer all

programs that will be writing in C language via serial cable to the 8051

microcontroller ,but first the procedure of setup this program on PC according to

8051 microcontroller must be understood.

To setup the connection of the HyperTerminal, the following procedure

should be performed:

1. Click on HyperTerminal icon, which found in the program file on PC then

Connection description screen will appear as shown in figure (5.1).

Figure (5.1): Connection Description Screen

٦٥

2. Put the name of the connection and choose COM1 or COM2 dependent

where serial cable is connected then you will see the Connect to screen as

shown in the figure (5.2).

Figure (5.2): Connect to Screen

3. Type any country/region, area code, phone number, and connection in the

previous screen then you will see the COM1 properties screen as shown in

the figure (5.3).

٦٦

Figure (5.3):COM1 Properties

4. Choose 115200 for bits per second, 8 bit for data bits, 1 bit for stop bits and

none for flow control also press on OK icon in the previous screen then you

will see the HyperTerminal empty screen.

5. Press enter to dial up connection between the HyperTerminal program and

the 8051 microcontroller then you will see the following screen, in figure

(5.4).

٦٧

Figure (5.4): Dial up Screen

After performing all the previous procedures, the connection will be ready

between the PC and the 8051 microcontroller.

5.2.3 Standard serial cable (straight through)

In this system, the serial cable is needed to make the connection between the

PC and 8051 microcontroller, this cable is used to send data between PC and 8051

microcontroller, and this can be connected either with COM1 or with COM2 for both

PC and microcontroller.

٦٨

5.2.4 Assembler or 'C' Compiler, usually AS31 or SDCC.

The 8051 microcontroller deals with the hexadecimal code of the C language

or assembly language, so that there is a need for the 'C' Compiler to convert the

program from language code to machine code (hexadecimal code).

The system had been programmed in C language related to the requirements

of the project, where the SDCC and AS31 compilers are used to covert from the

assembly and C code into the hexadecimal code.

The following steps are explaining how to convert from assembly code to

machine code using AS31 compilers:

1. First, install SDCC and AS31 compilers into PC on a specific directory like C

Directory.

2. Install the autostart program into PC on the same specific directory like D

directory.

3. Go to CMD screen "black screen" then go to the specific directory which the

SDCC compiler is found.

4. Type cd sdcc then press enter.

5. Type cd bin then press enter.

6. Type as31 c:\name of the assembly program .ASM then press enter.

After performed all the previous procedures successfully you will see (Begin

Pass1 and Pass2) as the result in the black screen.

The following steps are explaining how to convert from C code to machine

code using SDCC compiler:

٦٩

1. First, install SDCC and AS31 compilers into PC on a specific directory like C

Directory.

2. Install the autostart program into PC on the same specific directory like D

directory.

3. Go to CMD screen "black screen" then go to the specific directory which the

SDCC compiler is found.

4. Type path=c:\xilinx\bin\nt;c:\windows;c:\windows\command;c:\sdcc\bin

then press enter

5. Type cd <folder name> (in which program file as .c and make file is exist)

then press enter.

6. Type make then press enter.

Figure (5.5): MS_DOS

٧٠

5.2.5 Text Editor Program, e.g. notepad

The Editor Program like notepad is necessary in order to write all assembly

and C programs. The assembly program should be saved with extension .ASM on a

specific directory or as .C if the program is written in C language and after compiling

the program, the hexadecimal program will be saved automatically on the same

specific directory.

5.3 Function description

Function description included the code needed to perform the following tasks.

5.3.1 To Use PPI Set ports and system parameters

xdata at 0xF900 unsigned char p82c55_port_d;

xdata at 0xF901 unsigned char p82c55_port_e;

xdata at 0xF902 unsigned char p82c55_port_f;

xdata at 0xF903 unsigned char p82c55_def_config;

xdata at 0xF800 unsigned char p82c55_port_a;

xdata at 0xF801 unsigned char p82c55_port_b;

xdata at 0xF802 unsigned char p82c55_port_c;

xdata at 0xF803 unsigned char p82c55_abc_config;

// the following function are written to all over the system

void putchar(char c); // for char written to LCD

void motor1_right(void); // to move the motor1 write

void motor1_left(void); // to move the motor1 left

void motor2_right(void);

void motor2_left(void);

٧١

void timer0_isr(void) interrupt 1; // to initialize the timer

void switch_gates (void); // to take data from gates switches

void floor1_switch (void); // to take data from floors switches

void floor2_switch (void);

volatile unsigned char hours; // definitions for timer

volatile unsigned char minutes;

volatile unsigned char seconds;

volatile bit time_change_flag;

unsigned char a,aa,c1;

unsigned char b,bb,c2;

unsigned char cc;

bit print_to_lcd=0; // to print data on LCD

5.3.2 Timer initialization

The 87C52 chip on the development board includes three built in timers, two

of which can you easily. (Timer 1 generates the serial port baud rate and usually

cannot be used). Here the total time of the system must be less than 1 sec.

 How to configured Timer 0

Timer 0 usually configured using these basic steps:

1. Stop the timer and clear the overflow flag

2. Set the mode of operation

3. Write the timer's initial starting value

4. Enable the interrupt (if interrupt also be used)

5. Start the timer

٧٢

5.3.2.1 Code for Enable Timer

IE = 0; // turn off all interrupts

hours = minutes = seconds = 0; // zero hours, minutes, seconds

TR0 = 0; // make sure timer 0 is stopped

TF0 = 0; // clear the overflow flag

TMOD &= 0xF0; // set to mode 0 (timer1 unchanged)

TL0 = TH0 = 0; // clear the timer 0 value

time_changed_flag = 0;

TR0 = 1; // start the timing

IP = 0; // set interrupt priorities (all low)

IE = 0x82; // enable timer0 interrupt

while (1) {

hours = minutes = seconds = 0;

while (seconds!y){

}

if (time_changed_flag) {

time_changed_flag = 0;

print_fast(",");

}

}

5.3.3 Display data on LCD

Finally, the system will display data on LCD through serial interface.

lcd_ init();

lcd_clear();

٧٣

lcd_home();

print_to_lcd=1;

lcd_set_xy(1, 1);

print_fast(" FLOOR ONE: FREE PLACES %d",count1); // for main lcd

floor1

lcd_set_xy(2, 1);

print_fast(" FLOOR TWO: FREE PLACES %d",count2); //for main lcd floor2

print_to_lcd=0;

5.4 Serial Interface between the Microcontroller and PC

The microcontroller become able to make a serial connection with external

PC, so the user can see the system variables and store data to analyze it. This can

achieve by doing the following steps:

1. Connect the PC to the microcontroller using serial cable.

2. Open the HyperTerminal and set it to com1 and 11520 bit/sec.

3. Press Enter, now you can see system variable.

5.5 General System Flowchart

 The general flowchart for the system can be described in following steps:

 The switches will send signals to the microcontroller via its ports.

 The microcontroller will takes these signals, and process them to perform the

action related with it.

 The action will be sent to the LCDs and motor to take the action required. For

more details see the flowchart (figure 5.6).

٧٤

Figure (5.6): General Flowchart

٧٥

5.6 System Operational Flowchart

These flowcharts shows the functions of the programs and algorithms written

to make the system work properly, for each part of the system there is an algorithm

written to control the function of this part and all these algorithms are joined in one

program to control the overall behavior of the system. In this section, we will show

the system operational flowchart as following.

5.6.1 Sensors of Gates Flow Chart

٧٦

Read port c

If port
c==01h

If port
c==02h

Motor1_right
(open the

entrance gate)

Motor2_right
(open the exit

gate) If port
c==03h

Motor1_right
Motor2_right

Delay
Motor1_left

Delay
Motor2_left

Delay
Motor2_left

(close exit gate)

Delay
Motor1_left

(close entrance
gate)

No

No

No

Yes

Yes

Yes

Figure (5.7): Sensors of Gates Flow Chart

As shown in previous (figure 5.7) the remote control initialization consists of

many steps such as:

 Set port c as input port.

 Check port c reading and anding it with the value 0xff.

٧٧

 If the resulting value was 0x01, the sensor at entrance gate is pressed after the

first two wheels of the car passed over it and gives signal to the

microcontroller to open the gate (motor1_right), then after a period of time

(delay) the sensor become off after the back wheels of the car passed over it

and then close the gate (motor1_left).

 If the resulting value was 0x02, the sensor at exit gate is pressed after the first

wheels of the car passed over it and gives signal to the microcontroller to

open the gate (motor2_right), then after a period of time (delay) the sensor

becomes off after the second wheels of the car passed over it , and then close

the gate (motor2_left).

 If the resulting value was 0x03, the sensors at entrance and exit gates are

pressed and give signals to the microcontroller to open both of the gates

(motor1_right, motor2_right), then after a period of time (delay) close both of

the gates (motor1_left, motor2_left).

5.6.2 Floor One Flow Chart

٧٨

Set port a as
input ports

Read port a

If
sensor 1 or 2 or 3 or
4 or 5 or 6 or 7 or 8

on

Display on main
LCD number of
available places

Decrease No. of
available places

Counter1--

Increase No of
avaialble places

Counter1++

Display on Main
LCD the number of
available placs in

floor1

Display on floor1
LCD the available
places in this floor

NoYes

Figure (5.8): Floor One Sensors Flow Chart

As shown in previous (figure 5.8) floor one has many signals which perform

specific operation and the previous (figure 5.7) demonstrate how the signal perform

its specific action, and consist of many steps such as:

 Initialize port a as input port.

٧٩

 Read the signal from port a, then anding the reading with the value 0xff.

 If the reading signal was 0x01 or 0x02 or 0x03 or 0x04 or 0x05 or 0x06 or

0x07, sensors at location (1 or 2 or 3 or 4 or 5 or 6 or 7 or 8) are on, and this

means that one or more of these places is reserved or not available, and

according to this decreasing the number of free places in this floor, and then

display on the main LCD the number of available places in floor1, and

display on floor1 LCD the available places in this floor.

 If the reading signal was not any of 0x01 or 0x02 or 0x03 or 0x04 or 0x05 or

0x06 or 0x07, sensors at location (1 or 2 or 3 or 4 or 5 or 6 or 7 or 8) are off,

and this means that one or more of these places is available, and according to

this increasing the number of free places in this floor, and then display on the

main LCD the number of available places in floor1, and display on floor1

LCD the available places in this floor.

5.6.3 Floor Two Flow Chart

Floor two is the same as floor one instead of using port b as input port.

٨٠

Set port b as
input port

Read port b

If
sensor 1 or 2 or 3 or
4 or 5 or 6 or 7 or 8

on

Display on main
LCD number of

available places in
floor2

Decrease no. of
available places

Counter2--

Increase no. of
avaiialable places

Counter2++

Display on Main
LCD the number of
available placs in

floor2

Display on floor1
LCD the available
places in this floor

NoYes

Figure (5.9): Floor Two Sensors Flow Chart

٨١

5.6.4 Main LCD Flow Chart

Clear LCD

If
print_to_lcd=1

Print to LCD Print to serial
screen

NoYes

Initialize LCD

Set curser at home
position

Check LCD Status

Figure (5.10): Main LCD Flow Chart

٨٢

As shown in previous (figure 5.10) the LCD has many signals to perform its

operation, and the previous (figure 5.9) demonstrate how the LCD perform its

specific action, and consist of many steps such as:

 Initialize main LCD, to turn the LCD and cursor on.

 Clear the LCD to write to it.

 Set the cursor of the LCD at home position or at the beginning of line one of the

LCD.

 Then check if print_to_lcd 1 display on the LCD, and if print_to_lcd 0 then

display on the serial port.

5.6.5 Motor1 and Motor2 Flow Chart

Motor needed to open and close the entrance and exit gates. Motor function gets

its information from the sensors of the gates and according to them decides what to

do, as shown in figure (5.11) when sensors at entrance or exit gates become on, the

motors will be turn right to open the gates, and after a delay time it will turn left to

close the gate.

٨٣

Set port c upper as
output port

Out on port c the
value 20h

(open entrance
gate)

Delay
Motor1_left

(close entrance gate)

Figure (5.11) Motor1 Flow Chart

Set port c upper as
output port

Out on port c the
value 80h

(open exit gate)

Delay
Motor2_left

(close exit gate)

Figure (5.12):Motor2 Flow Chart

٨٤

5.7 Algorithms and Pseudocode

Public Class Form1

Inherits System.Windows.Forms.Form

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Timer1.Interval = 30000 'set the timer to check the sensors each 30 second

Timer1.Start() 'initialization of timer 1

Gates_Sensors() 'sensor of the gate initialization

Floor1_Sensors() 'sensor of floor1 initialization

Floor2_Sensors() 'sensor of floor2 initialization

End Sub

Private Sub Timer1_Tick_1(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Timer1.Tick

End Sub

Sub Gates_Sensors() 'gate of sensor sub code

Dim c As Short

Out(&H37AS, 8S) 'h=hex, s=short, 37A=control register

c = Inp(&H379) 'read parallel port status register

If c And 8 Then 'if entrance gate sensor pressed

Motor1_Right() 'open the gate move the motor to the right

delay(50) 'delay after gate close

Motor1_left() 'close the gate

ElseIf c = 16 Then 'if exit gate sensor pressed

Motor2_Right() 'open the gate

delay(50) 'delay after gate close

٨٥

Motor2_left() 'close the gate move the motor to the left

ElseIf c = 24 Then 'if both entrance and exit gates sensors pressed

Motor1_Right() 'open entrance and exit gates

Motor2_Right()

delay(50)

Motor1_left() 'close entrance and exit gates

Motor2_left()

End If

End Sub

Sub Motor1_Right() 'sub code for movement the motor to the right=open

Out(&H37AS, 0) 'write control word to set ports a,b,c as output ports

Out(&H378, 128)

Out(&H37A, 1)

Out(&H378, 1)

Out(&H37AS, 3)

' delay(10)

'Motor1_left()

End Sub

Sub Motor1_left() 'left movement to the motor

Out(&H37A, 1)

Out(&H378, 0)

Out(&H37AS, 3)

End Sub

Sub Motor2_Right() 'right movement for the motor

Out(&H37AS, 0)

٨٦

Out(&H378, 128)

Out(&H37A, 1)

Out(&H378, 2)

Out(&H37AS, 2)

'delay(50)

'Motor2_left()

End Sub

Sub Motor2_left() 'left movement to the motor

Out(&H37A, 1)

Out(&H378, 0)

Out(&H37AS, 2)

End Sub

Sub Floor1_Sensors() 'read the signal in eavh sensor in floor 1

Dim a As Short

Dim c1 As Integer

c1 = 0

Out(&H37AS, 8S)

a = Inp(&H379S)

If (a And 32) Then

' c1 -= 1

Main1_lcd(c1) 'put the number of free places in the main LCD

Else

c1 += 1

Main1_lcd(c1)

Floor1_lcd(1) 'put the exactly free location in sub LCD

End If

٨٧

If (a And 64) Then

c1 -= 1

Main1_lcd(c1)

Else

c1 += 1

Main1_lcd(c1)

Floor1_lcd(2)

End If

If (a And 128) Then

c1 -= 1

Main1_lcd(c1)

Else

c1 += 1

Main1_lcd(c1)

Floor1_lcd(1)

End If

Out(&H37AS, 4S)

If (a And 8) Then

c1 -= 1

Main1_lcd(c1)

Else

c1 += 1

Main1_lcd(c1)

٨٨

Floor1_lcd(2)

End If

End Sub

Sub Floor2_Sensors() 'the same as floor1

Dim b As Short

Dim c2 As Integer = 0

Out(&H37AS, 4)

b = Inp(&H379S)

If (b And 16) Then

Main2_lcd(c2)

Else

c2 += 1

Main2_lcd(c2)

Floor2_lcd(1)

End If

If (b And 32) Then

c2 -= 1

Main2_lcd(c2)

Else

c2 += 1

Main2_lcd(c2)

Floor2_lcd(2)

End If

٨٩

If (b And 64) Then

c2 -= 1

Main2_lcd(c2)

Else

c2 += 1

Main2_lcd(c2)

Floor2_lcd(1)

End If

If (b And 128) Then

c2 -= 1

Main2_lcd(c2)

Else

c2 += 1

Main2_lcd(c2)

Floor2_lcd(2)

End If

End Sub

Sub Main1_lcd(ByVal c11 As Integer)

Dim s As String

Dim arr1 As String() = New String() {"F", "L", "O", "O", "R", "1", ":",

"c11"}

Dim j As Integer

Main1_lcd_init() 'initialization to main LCD

٩٠

'Main1_lcd_cursor(1, 0) 'put the cursor in the first position

For j = 0 To arr1.Length

Main1_lcd_write(arr1(j))

Next

End Sub

Sub Main1_write_control(ByVal control As Short)

Out(&H37AS, 0) 'control register

Out(&H378S, 128) 'control Word

Out(&H37AS, 2) 'port b

Out(&H378S, 0) 'clear Rs

Out(&H37AS, 1)

Out(&H37AS, 3) 'port a

Out(&H378S, control)

Out(&H37AS, 1)

Out(&H37AS, 2)

Out(&H378S, 1)

Out(&H37AS, 1)

delay(600)

Out(&H37AS, 2)

Out(&H378S, 0)

Out(&H37AS, 1)

End Sub

Public Sub Main1_lcd_init() 'sub LCD initialization

Main1_write_control(1)

delay(60000)

Main1_write_control(56)

delay(60000)

Main1_write_control(14)

٩١

delay(6000)

Main1_write_control(6)

delay(6000)

Main1_write_control(128)

End Sub

Sub Main1_lcd_write(ByVal out1 As String)

'Write character on LCD

Out(&H37AS, 0) 'control register

Out(&H378S, 128) 'control Word

Out(&H37AS, 2) 'port B

Out(&H378S, 4) 'set Rs

Out(&H37AS, 1)

Out(&H37AS, 3) 'port a

Out(&H378S, Asc(out1))

Out(&H37AS, 1)

Out(&H37AS, 2)

Out(&H378S, 5)

Out(&H37AS, 1)

delay(600)

Out(&H37AS, 2)

Out(&H378S, 4)

Out(&H37AS, 1)

End Sub

'Sub Main1_lcd_cursor(ByVal row As Short, ByVal column As Short)

' If (row = 1) Then

' Main1_write_control(128 + column)

' Else

' Main1_write_control(192 + column)

٩٢

'End If

'

' End Sub

'Sub Main1_lcd_home()

Sub Main2_lcd(ByVal c22 As Integer)

'Sub LCD initialization

Dim j1 As Integer

Dim arr2 As String() = New String() {"F", "L", "O", "O", "R", "2", ":",

"c22"}

Main2_lcd_init()

' Main2_lcd_cursor(2, 0)

'Main2_lcd_home()

For j1 = 0 To arr2.Length

Main2_lcd_write(arr2(j1))

Next

End Sub

Sub Main2_write_control(ByVal control As Short)

Out(&H37AS, 0) 'control register

Out(&H378S, 128) 'control Word

Out(&H37AS, 2) 'port b

Out(&H378S, 0) 'clear Rs

Out(&H37AS, 1)

Out(&H37AS, 3) 'port a

Out(&H378S, control)

Out(&H37AS, 1)

Out(&H37AS, 2)

Out(&H378S, 1)

٩٣

Out(&H37AS, 1)

delay(600)

Out(&H37AS, 2)

Out(&H378S, 0)

Out(&H37AS, 1)

End Sub

Public Sub Main2_lcd_init()

Main2_write_control(1)

delay(60000)

Main2_write_control(56)

delay(60000)

Main2_write_control(14)

delay(6000)

Main2_write_control(6)

delay(6000)

Main2_write_control(192)

End Sub

Sub Main2_lcd_write(ByVal out1 As String)

Out(&H37AS, 0) 'control register

Out(&H378S, 128) 'control Word

Out(&H37AS, 2) 'port B

Out(&H378S, 4) 'set Rs

Out(&H37AS, 1)

Out(&H37AS, 3) 'port a

Out(&H378S, Asc(out1))

Out(&H37AS, 1)

Out(&H37AS, 2)

٩٤

Out(&H378S, 5)

Out(&H37AS, 1)

delay(600)

Out(&H37AS, 2)

Out(&H378S, 4)

Out(&H37AS, 1)

End Sub

'Sub Main2_lcd_cursor(ByVal row As Short, ByVal column As Short)

' If (row = 1) Then

' Main2_write_control(128 + column)

' Else

' Main2_write_control(192 + column)

'End If

'

' End Sub

Sub Floor1_lcd(ByVal aa1 As Short)

Floor1_lcd_init()

If (aa1 = 1 Or aa1 = 2) Then

Floor1_lcd_write("A")

Floor1_lcd_write(":")

Floor1_lcd_write(aa1)

Else

Floor1_lcd_write("B")

Floor1_lcd_write(":")

Floor1_lcd_write(aa1)

End If

٩٥

End Sub

Sub Floor1_write_control(ByVal control As Short)

Out(&H37AS, 12) 'control register

Out(&H378S, 128) 'control Word

Out(&H37AS, 13) 'port c

Out(&H378S, 0) 'clear Rs

Out(&H37AS, 14)

Out(&H37AS, 15) 'port a

Out(&H378S, control)

Out(&H37AS, 14)

Out(&H37AS, 13)

Out(&H378S, 1)

Out(&H37AS, 14)

delay(600)

Out(&H37AS, 13)

Out(&H378S, 0)

Out(&H37AS, 14)

End Sub

Public Sub Floor1_lcd_init()

Floor1_write_control(1)

delay(60000)

Floor1_write_control(56)

delay(60000)

Floor1_write_control(14)

delay(6000)

Floor1_write_control(6)

delay(6000)

End Sub

٩٦

Sub Floor1_lcd_write(ByVal out1 As String)

If (out1 = 1 Or out1 = 2) Then

Floor1_lcd_cursor(1, out1 + 2)

Else

Floor1_lcd_cursor(2, out1 + 2)

End If

Out(&H37AS, 12) 'control register

Out(&H378S, 128) 'control Word

Out(&H37AS, 13) 'port B

Out(&H378S, 4) 'set Rs

Out(&H37AS, 14)

Out(&H37AS, 15) 'port a

Out(&H378S, Asc(out1))

Out(&H37AS, 14)

Out(&H37AS, 13)

Out(&H378S, 5)

Out(&H37AS, 14)

delay(600)

Out(&H37AS, 13)

Out(&H378S, 4)

Out(&H37AS, 14)

End Sub

Sub Floor1_lcd_cursor(ByVal row As Short, ByVal column As Short)

If (row = 1) Then

Floor1_write_control(128 + column)

Else

Floor1_write_control(192 + column)

٩٧

End If

End Sub

Sub Floor2_lcd(ByVal bb1 As Short)

Floor2_lcd_init()

Floor2_lcd_cursor(1, 0)

'Floor2_lcd_home()

If (bb1 = 1 Or bb1 = 2) Then

Floor2_lcd_write("A:" & bb1)

Floor1_lcd_write(":")

Floor1_lcd_write(bb1)

Else

Floor2_lcd_write("B:" & bb1)

Floor1_lcd_write(":")

Floor1_lcd_write(bb1)

End If

End Sub

Sub Floor2_write_control(ByVal control As Short)

Out(&H37AS, 12) 'control register

Out(&H378S, 128) 'control Word

Out(&H37AS, 13) 'port c

Out(&H378S, 0) 'clear Rs

Out(&H37AS, 15)

Out(&H37AS, 14) 'port a

Out(&H378S, control)

Out(&H37AS, 15)

Out(&H37AS, 13)

٩٨

Out(&H378S, 16)

Out(&H37AS, 15)

delay(600)

Out(&H37AS, 13)

Out(&H378S, 0)

Out(&H37AS, 15)

End Sub

Public Sub Floor2_lcd_init()

Floor2_write_control(1)

delay(60000)

Floor2_write_control(56)

delay(60000)

Floor2_write_control(14)

delay(6000)

Floor2_write_control(6)

delay(6000)

End Sub

Sub Floor2_lcd_write(ByVal out2 As String)

If (out2 = 1 Or out2 = 2) Then

Floor1_lcd_cursor(1, out2 + 2)

Else

Floor1_lcd_cursor(2, out2 + 2)

End If

Out(&H37AS, 12) 'control register

Out(&H378S, 128) 'control Word

Out(&H37AS, 13) 'port c

٩٩

Out(&H378S, 64) 'set Rs

Out(&H37AS, 15)

Out(&H37AS, 14) 'port b

Out(&H378S, Asc(out2))

Out(&H37AS, 15)

Out(&H37AS, 13)

Out(&H378S, 80)

Out(&H37AS, 15)

delay(600)

Out(&H37AS, 13)

Out(&H378S, 64)

Out(&H37AS, 15)

End Sub

Sub Floor2_lcd_cursor(ByVal row As Short, ByVal column As Short)

If (row = 1) Then

Floor2_write_control(128 + column)

Else

Floor2_write_control(192 + column)

End If

delay(60)

End Sub

'Sub Floor2_lcd_home()

' Floor2_write_control(2)

'End Sub

Sub delay(ByVal time As Integer)

Dim i As Integer

١٠٠

For i = 0 To time

Next

End Sub

End Class

١٠١

Implementation and Testing

6.1 Preface.

6.2 Implementation.

6.3 Testing.

6.4 Implementation and testing for Integrated System.

6

١٠٢

Chapter Six

Implementation and Testing

6.1 Preface

In this chapter shows the implementation and testing processes for our system.

And demonstrates the methods and procedures used for testing and examine the

system operation and behavior.

The implementation and testing was done by using the following tools and

components:

 Connectors with different colors.

 All the ICs that are depicted in the design chapter (see chapter 4).

 Wrapper tool for wrapping the connectors on the ICs stands.

 A wire grabber and a wire cutter.

 A digital Millimeter for testing.

This system has more than one issue to be tested. Some testing parts reflect a

software, hardware .Also, testing procedures concentrate on a single device

independent from the over whole system. Here are the testing issues.

6.2 Implementation

The implementation process is done synchronized with the testing operation,

because each implementation phase will take many testing to ensure that there are no

errors.

١٠٣

6.3 Testing

In this section we will demonstrate the testing of each subsystem separately.

6.3.1 Testing 8051 Downloading Programs:

Testing the ability to download a program on the 8051 development kit.

Figure (6.1): Port Testing Example (LEDs)

We test this circuit by C program language that reads the signal and store it,

this circuit had been tested many times to emphasize better results, and we use this

program to testing this circuit.

We tested the port E and the LEDs by using the fpllowing C program, the port

E was acts as output port.

#include "delay_ms.h"

#include "paulmon2.h"

/* these are the memory-mapped locations used to access */

/* the two 82C55 chips */

xdata at 0xF800 unsigned char p82c55_port_a;

xdata at 0xF801 unsigned char p82c55_port_b;

١٠٤

xdata at 0xF802 unsigned char p82c55_port_c;

xdata at 0xF803 unsigned char p82c55_abc_config;

xdata at 0xF900 unsigned char p82c55_port_d;

xdata at 0xF901 unsigned char p82c55_port_e;

xdata at 0xF902 unsigned char p82c55_port_f;

xdata at 0xF903 unsigned char p82c55_def_config;

#define VERBOSE

code unsigned char pattern_table[] = {

0x7F, /* 01111111 */

0x3F, /* 00111111 */

0x1F, /* 00011111 */

0x8F, /* 10001111 */

0xC7, /* 11000111 */

0xE3, /* 11100011 */

0xF1, /* 11110001 */

0xF8, /* 11111000 */

0xFC, /* 11111100 */

0xFE, /* 11111110 */

0xFC, /* 11111100 */

0xF8, /* 11111000 */

0xF1, /* 11110001 */

0xE3, /* 11100011 */

0xC7, /* 11000111 */

0x8F, /* 10001111 */

0x1F, /* 00011111 */

0x3F, /* 00111111 */

255};

code unsigned char delay_table[] = {

90, 70, 50, 40, 40, 40, 40, 50, 70, 90, 70, 50, 40, 40, 40, 40, 50, 70, 0};

١٠٥

/* zero marks end of table */

void main()

{

unsigned char i =0;

p82c55_abc_config = 128; /* all ports outputs */

p82c55_def_config = 128;

while (1) {

if (delay_table[i] > 0) {

p82c55_port_e = pattern_table[i];

delay_ms(delay_table[i]);

#ifdef VERBOSE

pm2_pstr("Pattern=0x");

pm2_phex(pattern_table[i]);

pm2_pstr(" for delay=");

pm2_pint8u(delay_table[i]);

pm2_newline();

#endif

i++;

} else {

i = 0;

}

if (pm2_esc()) pm2_restart();

}

}

This C program can use for other ports and test them.

١٠٦

6.3.2 Motors and H-Bridges Testing

Testing the motors and H-Bridges are implemented by connecting them to

shown in figure (6.2), and applying the following code to activate the motors in

forward and reverse direction.

Figure (6.2): Motor circuit

We test this circuit by C program language, and we use this program to testing

this circuit. See sample (1.a) written in C language and sample (1.b) written in

VB.net at Appendix A.

6.3.2.1 Option One Using C Language for Motor Testing

See sample (1.a) at Appendix A.

١٠٧

6.3.2.2 Option Two Using VB.net for Motor Testing

See sample (1.a) at Appendix A.

6.3.3 Switches Testing

Testing the switches is implemented by connecting them to as shown in

figure (6.3) and applying the following software.

Figure (6.3.a): Switch circuit off

١٠٨

Figure (6.3.b): Switch circuit on

We test this circuit by C program language, this circuit had been tested many

times to emphasize better results, and we use this program to testing this circuit.

6.3.3.1 Option One Using C Language for Switch Testing

See sample (2.a) at Appendix A.

6.3.3.2 Option Two Using VB.net for Switch Testing

See sample (2.b) at Appendix A.

١٠٩

6.3.4 LCDs Testing

Testing the LCDs is implemented by connecting them with the parallel port.

The LCD circuit tested by C program and VB.net program.

Figure (6.4): LCD Testing

6.3.4.1Option One Using C Language for LCD Testing

See sample (3.a) at Appendix A.

6.3.4.2 Option Two Using Vb.net for LCD Testing

See sample (3.b) at Appendix A.

6.3.5 Access the parallel port using VB.net

To access the parallel port using the VB.net we get an input.dll library, which

must add to system32, and then we define a parallel port that will be used as an

object to open and access the ports, as the followed:

6.3.5.1 Testing Output Ports in VB.net

١١٠

Testing the output on parallel port implemented by connecting them as shown

in figure (6.4), and applying code. See sample (4.a) at Appendix A.

Figure (6.5): Output Port Testing

6.3.5.2 Testing input ports in VB.net

Testing the input on parallel port implemented by connecting them as shown

in figure (6.5), and applying program. See sample (4.b) at Appendix A.

Figure (6.6): Input Port Testing

١١١

6.4 Implementation and Testing for Integrated System

As we mentioned previously after completing any circuit that we described it in

chapter four we use the C language And VB.net language to test each subsystem and

test every input and output with different cases and speed.

After completing VB.net program with test the whole system on the program,

the finally results are successfully on software and hardware control.

١١٢

Conclusion and Future Work

7.1 Preface

7.2 Conclusion

7.3 Future work

7

١١٣

Chapter Seven

Conclusion and Future Work

7.1 Preface

This chapter represents the conclusions extracted during designing and

implementing it and illustrates the system implementation achievements and output.

• Team spent 30-40 hours a week in the university lab working on this project. We

learned a lot and used everything we had to solve the problems. We had many

limitations on this project that made it even more challenging.

• Building this system was a great way of combining all of the knowledge that we

have learned over the five years at university. We were able to create a project and

build it. Building the system taught us how to accomplish a goal. We really wanted

to have our system completed before handing this documentation, but unfortunately

things didn't go as we wanted.

• This project proved that our ideas are available for implementation in a project that

resembles a real-life.

• Our system is smart car parking system. This system aims to make Smart Park

controlled electrically.

• The main device in the system is the 8051 microcontroller; all other devices are

controlled through programming it. While the other devices are maintained in

various subsystems which are:

- Sensor subsystem: contains interlocking push buttons for each location.

- LCDs subsystem: contains three LCDs (main LCD and two LCDs for one each

floor).

- Motors Subsystem: contains the motors and their H-Bridges circuits.

١١٤

• For programming the 8051 microcontroller, we used C++ program language and

VB.NET program language.

• Each device was tested individually in its own circuit to study its behavior and

make sure it works properly and can do its expected job.

The Smart Car Parking System has achieved the main ideas prepared to. It is

now ready to be applied on the pc. The main features that achieved are:-

1- The team enables to control the hardware applications connected with pc

through parallel port.

2- The team enables to make the system ease to use by everyone.

3- Controlling the hardware applications connected with pc through a parallel

port, the team enables to send data from switches connected with pc through

parallel port, then analyze the data and send the related voltage signal to the

parallel port to run the application related to that signal and then set the

specified data on LCDs.

4- The team enables to send signal to motors connected with pc through parallel

port and controlling its movements.

7.2 Conclusions

After the team finish the design and implementation of the project and

integrated overall system.

The team concludes that, there is ability to control a park through parallel

port connected with PC or microcontroller like 8051.

١١٥

7.2.1 Problems

Here are problems faced the project team during the system implementation:

7.2.1.1 Hardware Problems

• The basic problem is that the 8051 microcontroller in 8051 development kit was

burned and another one is not available in this country, so the team was bought

through the internet from the main company in Germany, and it was sent by the

buyer to the Palestinian in Bethlehem.

• A problem occurred in programming the 8051 microcontroller, there is no

programmer to program this microcontroller.

• The team took an 8051 from another team to continue the team project work but

unfortunately was burned.

• The last choice is to use the parallel port in PC and because of that we covert all our

software from C programming Language to VB.net to solve the problem.

• Internal damage in some devices because of wrong connections, or high voltages or

currents supplied to the devices during the implementation.

7.2.1.2 Software problems

In 8051 programming a lot of considerations should be taken in using this kit

to connect it with PC through serial port and during writing and running the

programs on the microcontroller we faced some initializations and declarations

problems.

In parallel port lot of initialization and declaration problems during writing

LCD code.

١١٦

7.3 Future work

During the system period the team enables to achieve the main goals he started

to do them. Although there are sum techniques that could be used to reach the objects

in less time but we started our system from the zero and we used the most available

and simple equipments to emphasize the result and prove this of controlling the

hardware application connected with pc.

1. Use a robot that follows a particular line and determines whether there is

any availability of space. Like a watchman.

2. Use cameras for each location (not sensors), to give information a bout

free places.

3. To wireless technology in this system to connects all over the system.

4. Use charging system for every customer enters the park, to control the

hours for each customer put his car in the park and its related cost.

١١٧

References

Books

 Sencer Yeralan and Ashutosh Ahluwalia, Programming Interfacing 8051

Microcontroller, Addison Wesly, 1995.

 David M Calcutt and Frederick J Cowan and G Hassan Parchizadeh, 8051

Microcontroller, A member of the Hodder Headline Group,1998.

 Hans_Peter Messmer, The Independence PC Hardware Book 3rd Edition,

Addison Wesly, 1997.

Internet

 http://www.hillelectronics.com/html/pro_hiltron_HM810R.htm

 http://www.winpicprog.co.uk

 http://www.ptc2.com/vb/showthread.php?t=93

 http://www.plcs.net/

 http://rapidshare.de/files/22449655/GR2-CPACImagingPro.rar.html

 http://www.ptc2.com/vb/showthread.php?t=118

 http://chaokhun.kmitl.ac.th/~kswichit/rtc/rtc.htm

 http://chaokhun.kmitl.ac.th/~kswichit/

 http://www.epanorama.net/links/microprocessor.html#8051

 http://www.tkne.net/vb/register.php

 http://www.pjrc.com/

 http://www.Interfacing the Standard Parallel Port.htm

 http://www.Interfacing the LCD module to PC parallel port

ElectroSOfts_com.htm

١١٨

Appendix

١

Appendix A

Code Samples

٢

1. Motor

(1.a) Option One Using C Language for Motor Testing

void motor1_right()

{

p82c55_abc_config=146; // set port c output

p82c55_port_c=0x08; // open entrance gate

delay_ms(5);

motor1_left()

}

void motor1_left()

{

p82c55_port_c=0x00; // close entrance gate

}

void motor2_right()

{

p82c55_abc_config=146; // set port c output

p82c55_port_c=0x20; // open exit gate

delay_ms(5);

motor2_left()

}

void motor2_left()

{

p82c55_port_c=0x00; // close exit gate

}

٣

(1.b) Option Two Using VB.net for Motor Testing

Sub Motor1_Right()

Out(&H37AS, 0) 'write control word to set ports a,b,c as output ports

Out(&H378, 128)

Out(&H37A, 1)

Out(&H378, 2)

Out(&H37AS, 3)

delay(10)

Motor1_left()

End Sub

2. Switch

(2.a) Option One Using C Language for Switch Testing

void floor1_switch ()

{

p82c55_abc_config=155;

aa=p82c55_port_a;

a=(aa & 0x01);

if(a==0x01)

c1--;

Main1_Lcd(c1);

floor_lcd();

else c1++;

Main1_lcd(c1);

floor1_lcd();

a=(aa & 0x02);

٤

if(a==0x02)

c1--;

Main1_lcd(c1);

floor1_lcd()

else c1++;

Main1_lcd(c1);

floor1_lcd();

a=(aa & 0x03);

if(a==0x03)

c1--;

Main1_lcd(c1);

floor1_lcd()

else c1++;

Main1_lcd(c1);

floor1_lcd();

a=(aa & 0x04);

if(a==0x04)

c1--;

Main1_lcd(c1);

floor1_lcd()

else c1++;

Main1_lcd(c1);

floor1_lcd();

a=(aa & 0x05);

if(a==0x05)

c1--;

Main1_lcd(c1);

floor1_lcd()

else c1++;

Main1_lcd(c1);

٥

floor1_lcd();

a=(aa & 0x06);

if(a==0x06)

c1--;

Main1_lcd(c1);

floor1_lcd()

else c1++;

Main1_lcd(c1);

floor1_lcd();

a=(aa & 0x07);

if(a==0x07)

c1--;

Main1_lcd(c1);

floor1_lcd()

else c1++;

Main1_lcd(c1);

floor1_lcd();

a=(aa & 0x08);

if(a==0x08)

c1--;

Main1_lcd(c1);

floor1_lcd()

else c1++;

Main1_lcd(c1);

floor1_lcd();

}

٦

(2.b) Option Two Using VB.net for Switch Testing

Sub Floor1_Sensors()

Dim a As Short

Dim c1 As Integer

a = Inp(&H379)

Out(&H37AS, 9)

If (a And 0) Then

c1 -= 1

Main1_lcd(c1)

Else : c1 += 1

Main1_lcd(c1)

Floor1_lcd(1)

End If

If (a And 1) Then

c1 -= 1

Main1_lcd(c1)

Else : c1 += 1

Main1_lcd(c1)

Floor1_lcd(2)

End If

If (a And 2) Then

c1 -= 1

٧

Main1_lcd(c1)

Else : c1 += 1

Main1_lcd(c1)

Floor1_lcd(3)

End If

If (a And 3) Then

c1 -= 1

Main1_lcd(c1)

Else : c1 += 1

Main1_lcd(c1)

Floor1_lcd(4)

End If

If (a And 4) Then

c1 -= 1

Main1_lcd(c1)

Else : c1 += 1

Main1_lcd(c1)

Floor1_lcd(5)

End If

If (a And 6) Then

c1 -= 1

Main1_lcd(c1)

٨

Else : c1 += 1

Main1_lcd(c1)

Floor1_lcd(6)

End If

End Sub

3. LCD

(3.a) Option One Using C Language for LCD Testing

#include "lcd_driver.h"

#include <stdio.h>

#include <8051.h>

#include <paulmon2.h>

#include "delay_ms.h"

/***********************************/

void initial_lcd();

void clear_lcd();

void lcd_write(char cc);

void lcd_cursor(char row,char column);

void write_control(char control);

xdata at 0xF900 unsigned char p82c55_port_d;

xdata at 0xF901 unsigned char p82c55_port_e;

xdata at 0xF902 unsigned char p82c55_port_f;//E, R/W, RS

xdata at 0xF903 unsigned char p82c55_def_config;

void main(){

p82c55_def_config=128;

٩

initial_lcd();

clear_lcd();

lcd_write('H');

}

void write_control(char control){

p82c55_port_f=0x00;

p82c55_port_d=control;

p82c55_port_f=0x01;

p82c55_port_f=0x00;

delay_ms(5);

}

void initial_lcd(){

write_control(0x38)

delay_ms(5);

write_control(0x0e);

delay_ms(5);

write_control(0x06);

delay_ms(5);

}

void clear_lcd(){

write_control(0x01);

delay_ms(5);

}

void lcd_write(char cc){

lcd_cursor(1,1);

p82c55_port_f=0x04;

p82c55_port_d=cc;

p82c55_port_f=0x01;

١٠

p82c55_port_f=0x00;

delay_ms(5);

}

void lcd_cursor(char row,char column){

if (row==1)

write_control(0x80+column);

else

write_control(0xc0+column)

delay_ms(5);

}

(3.b) Option Two Using VB.net for LCD Testing

Public Class Form1

Inherits System.Windows.Forms.Form

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Dim s As String

lcd_init()

lcd_cursor(1, 0)

' write_control(192)

lcd_write("A")

'lcd_write("I")

'lcd_write("H")

'lcd_write("A")

'lcd_write("N")

End Sub

Sub write_control(ByVal control As Short)

١١

Out(&H37AS, 8) 'control register

Out(&H378S, 128) 'control Word

Out(&H37AS, 10) 'port B

Out(&H378S, 0) 'clear Rs

Out(&H37AS, 9)

Out(&H37AS, 11) 'port a

Out(&H378S, control)

Out(&H37AS, 9)

Out(&H37AS, 10)

Out(&H378S, 1)

Out(&H37AS, 9)

delay(50000)

Out(&H37AS, 10)

Out(&H378S, 0)

Out(&H37AS, 9)

End Sub

Public Sub lcd_init()

write_control(1)

delay(60000000)

write_control(56)

delay(60000000)

write_control(14)

delay(60000000)

write_control(6)

delay(60000000)

End Sub

' Sub write_char(ByVal c As String)

' Dim i As Integer

١٢

' For i = 0 To c.length

'' lcd_write(Asc(c))

'Next

'End Sub

Sub lcd_write(ByVal out1 As String)

Out(&H37AS, 8) 'control register

Out(&H378S, 128) 'control Word

Out(&H37AS, 10) 'port B

Out(&H378S, 4) 'set Rs

Out(&H37AS, 9)

Out(&H37AS, 11) 'port a

Out(&H378S, Asc(out1))

Out(&H37AS, 9)

Out(&H37AS, 10)

Out(&H378S, 5)

Out(&H37AS, 9)

delay(50)

Out(&H37AS, 10)

Out(&H378S, 4)

Out(&H37AS, 9)

End Sub

Sub lcd_cursor(ByVal row As Short, ByVal column As Short)

If (row = 1) Then

write_control(128 + column)

Else

write_control(192 + column)

End If

End Sub

١٣

Sub delay(ByVal time As Integer)

Dim i As Integer = 0

For i = 0 To time

Next

End Sub

End Class

(4.a) Output Ports in VB.net Using Parallel Port

Public Class Form1

Inherits System.Windows.Forms.Form

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Out(&H37AS, 8) 'control register

Out(&H378S, 128) 'control Word

out(&H37AS, 11) 'port a

Out(&H378S, 255)

Out(&H37AS, 9)

End Sub

End Class

(4.b) Input ports in VB.net Using Parallel Port

Public Class Form1

Inherits System.Windows.Forms.Form

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

١٤

TextBox1.Text = Inp(&H379S)

End Sub

End Class

١

8051 Development Board Data Sheet

The 8051 development board provides an easy-to-use and low-cost

way to develop your 8051 based microcontroller projects, without purchasing

any other special equipment, such as IC programmers or emulators. All

required software is available as a free download, including a C compiler !

Features:

 Standard 87C52 CPU clocked at 22.1184 MHz

 50 I/O lines!! All I/O lines are clearly labeled and available at the edge of the

prototype construction area.

 32k SRAM, program variables and code (24k usable for code download)

 30k Flash ROM, non-volatile program storage and data logging

٢

 High speed baud rates: 115200, 75600, 38400, etc. All standard baud rates

are supported (except 300 baud)

 Display port, works with standard character-based LCDs. A 16x2 display will

be available from PJRC (see photo below)

 Eight LEDs, controlled by 8 dedicated I/O lines (not shared with the 50 I/O

lines)

 Bus expansion with 4 chip select signals, for adding UARTs, A/D converters

and other bus-based peripheral chips.

 Unregulated, polarity-protected DC voltage input with 2 position terminal

block.

 PAULMON2 monitor for easy code development without additional

equipment.

LCD Display Port

The 8051 development board's LCD port provides the 14 signals needed for

standard character based LCD modules. A 20x2 display is available from PJRC :

٣

Requirements

 DC Voltage, 8 to 15 volts (regulated), 50 mA or 300 mA with LCD.

 PC Computer with Serial Port, Linux or Microsoft Windows 95-OSR2, 98,

98SE, NT4, 2000.

 Assembler or Compiler, usually AS31 or SDCC

 Terminal Emulation Program, e.g. HyperTerminal (windows), Minicom

(linux)

 Text Editor Program, e.g. Notepad, Vi, Emacs

 Standard 9 pin serial cable (straight through, not null-modem!).

٤

Schematic

٥

Ports

٦

1. LCD Port

The LCD port provides the 14 standard signals required to interface to

nearly all standard alpha-numeric character mode displays from 8 to 80

characters. VDD provides +5 volt regulated power to the display (VSS is

Ground). VEE ranges from 0 (maximum intensity) to 2 volts (minimum

intensity) with the adjustment of the variable resistor located just above

next to the power input.

The E signal is an active high enable, which is asserted when the processor

makes a memory access within the address range of 0xFE00 to 0xFEFF. RS and

R/W are control lines for the display. In order to meet the timing requirements for all

standard LCD displays, these are connected to the processor's address lines so they

are asserted and remain stable while E is asserted. Because of this, separate locations

are used to read and write to the LCD. See the memory map page for details.

2. I/O Lines

The 8051 development board provides 50 dedicated I/O lines, which are

accessible along the top edge of the board's prototype construction area. Together

with the 50 I/O lines, 4 pads provide easy access to the regulated +5 volt power from

the board's voltage regulator.

The P1.0 through P1.7 are connected directly to the 87C52's port #1. These pins are

the easiest to use as single bits. In assembly, they are written using "CLR P1.4" or

"SETB P1.4", and they are read using "MOV C, P1.4" (moves the bit value into the

carry bit). In C (using SDCC, with #include <8051.h>), they are accessed using

٧

names such as "P1_4". For example: if (!P1_3) printf("pin P1.3 is low"); The 8051

port pins are quasi-bidirectional, which essentially means that you must write a 1

(which is the default) to the pin to cause it to act as an input.

Signals INT0 and INT1 connect to the 87C52's two interrupt pins. The 87C52

can be configured to execute and interrupt routine associated with each pin when it is

low or when a falling edge occurs. In the low level sensitive setting, the interrupt

service code usually takes some action which causes the hardware to stop driving the

pin low, so that another interrupt does not immediately occur when the interrupt

service code returns to the main program. If interrupt are not enabled, these pins can

be accessed as ordinary P3.2 and P3.3 port pins. INT1 is also connected to the

SINGLE STEP jumper and will be shorted to ground if that jumper is installed.

PA.0 to PA.7, PB.0 to PB.7, and PC.0 to PC.7 are connected to a 82C55 chip

mapped at 0xF800. PD.0 to PD.7 and PF.0 to PF.7 are connected to a second 82C55

chip mapped at 0xF900, and they correspond to ports A and C on that second chip,

but that second chips ports are labeled D, E, and F to avoid confusion with the ports

from the first 82C55 chip (port E connects to the 8 LEDs). Each 82C55 chip is

controlled with 4 memory mapped locations, one to read or write each 8-bit port, and

a 4th register to configure the 82C55 chip. See the memory map page for details. The

82C55 must first be configured by writing a byte to its config register, and then the

three locations which access the ports may be used.

Jumpers

٨

A 4-pin header may be used for two optional jumpers. The upper two pins

may be shorted to erase the flash rom, and the lower two pins may be

shorted to enable the single-step feature.

The FLASH ERASE jumper causes T1 (also P3.5, pin 17 on the 82C52) to

be shorted to ground. During normal operation, this does not erase the flash. When

PAULMON2 boots, it reads this pin and if it remains shorted for 256 consecutive

reads, the PAULMON2 will erase the flash rom chip. Normally the flash rom is

erased from the PAULMON2 menu using the 'Z' command. However, if you have

loaded a program into the flash rom and used and "auto-start" header on it,

PAULMON2 will jump to your code instead of presenting the normal menus on the

serial port. If your code does not return back to the monitor, then you will be unable

to get to the normal PAULMON2 menus and this pin will allow you to erase the chip

you can return to the menus and download a new version of your program.

The SINGLE STEP jumper shorts the INT1 interrupt pin to ground. This is

required to use PAULMON2's single-step feature. The single-step operates by

enabling interrupt #1 and using the 8051's feature where 1 instruction is always

executed after and interrupt. This can be a nice way to "see" your code run,

particularly if you are learning assembly. Due to the interrupt usage, it is rarely

useful for debugging sophisticated applications.

Bus Expansion Signals

٩

The 8051 bus signals are available on 34 pins in the center of the

board. These signals are intended to be used with bus- style

peripherals, such as UARTs and A/D converters. All 16 address and 8

data signals are provided. Two GND and two 5V pins provide 5 volt

regulated power from the board's voltage regulator.

The WR and RD signals are active low strobes for write and read. WR

is connected directly to the 87C52's WR pin, but RD is connected to

the 74AC08 AND gate. RD is asserted low with either the 87C52's

PSEN or RD signal is asserted. This means that either MOVX or

MOVC may be used to read your connected peripheral chips. Some

peripheral chips call their read pin OE (output enable). Typically, the RD pin can

connect directly to the peripheral's OE pin.

Four chip select signals, CS2, CS3, CS4, and CS5 are provided to allow easy

connection of most bus-style peripheral chips. Each of these signals is asserted low

when and access is made within its 256 byte range. See the memory map page for

details.

Power Input

The board accepts unregulated DC voltage, between 8 to 12

volts. A terminal block with screws allows a wide range of

wires sizes to easily attach to the board without the need for

a connector. A 1N5819 diode protects against reverse

polarity, and a standard 7805 linear voltage regulator creates the regulated 5 volts

needed by the board's circuitry.

Though the printed maximum voltage is only 12 volts, the board can actually accept

up to 30 volts DC. Higher voltages will cause the 7805 voltage regulator to become

١٠

hot. The 7805 includes automatic thermal shutdown, but it can become very hot

before this upper limit is reached, so caution should be observed if a higher input

voltage is used.

The board requires approximately 50 mA when executing code from the flash

rom and communicating with a PC on the serial port. Each LED adds about 4 mA. If

a LCD with a backlight is used, the backlight will consume considerable current. The

16x2 LCD from PJRC uses approximately 250 mA for its backlight. Additional

current also causes the 7805 to heat up, so the board should not be run with more

than 12 volts if a LCD backlight is used.

8051 Software Tools Overview

To develop your 8051-based project, you will need three PC-based programs,

and a development board with a monitor ROM. Here is the typical data flow using

these tools:

For each tool, there you may choose on of several options. The basic tools are:

1. Text Editor

This is where you will compose the code that ultimately will run on

your 8051 board and make you project function. All PC operating

١١

systems include a text editor, and there are many free text editors

available on the internet. PJRC does not provide a text editor. All

Microsoft Windows systems have NOTEPAD, which is a very

simple editor. Linux systems usually have VI and EMACS installed,

as well as several others.

2. Compiler or Assembler

Your source code will be turned into a .HEX file by either an

Assembler or Compiler, depending on your choice of programming

language. PJRC provides free downloads of the AS31 assembler and

SDCC C Compiler. These free tools are available for Linux-based

Systems and Microsoft Windows. It is also possible to use other

compilers, such as the Keil C compiler.

3. Terminal Emulator

To communicate with your 8051 board, you must run a terminal

emulator program. You will be able to transmit your .HEX file to

the board and run its code, observe its results and information it may

send to the serial port, and you can also use the terminal emulator to

examine and manipulate memory with the Monitor ROM. Microsoft

provides HyperTerminal with windows (often it must be installed

from the windows cdrom using "add/remove programs"). Linux

distributions usually provide minicom.

4. Monitor ROM

The Monitor ROM is 8051 code that runs when your board boots. It

provides interactive menus that allow you to download code, run it,

manipulate memory and perform other functions. All 8051

development boards from PJRC come with PAULMON2 loaded in

١٢

the non-erasable internal memory of the 87C52 chip. Using the

monitor, you can cause your code to run on the board. It is also

possible to download your code to non-volatile memory on the

board together with a "auto-start header" that causes PAULMON2

to run your code automatically when the board boots.

© 2000 Fairchild Semiconductor Corporation DS008442 www.fairchildsemi.com

August 1986

Revised March 2000

D
M

74L
S

244 O
ctal 3-S

TA
T

E
 B

u
ffer/L

in
e D

river/L
in

e R
eceiver

DM74LS244
Octal 3-STATE Buffer/Line Driver/Line Receiver

General Description
These buffers/line drivers are designed to improve both the
performance and PC board density of 3-STATE buffers/
drivers employed as memory-address drivers, clock driv-
ers, and bus-oriented transmitters/receivers. Featuring 400
mV of hysteresis at each low current PNP data line input,
they provide improved noise rejection and high fanout out-
puts and can be used to drive terminated lines down to
133Ω.

Features
■ 3-STATE outputs drive bus lines directly

■ PNP inputs reduce DC loading on bus lines

■ Hysteresis at data inputs improves noise margins

■ Typical IOL (sink current) 24 mA

■ Typical IOH (source current) −15 mA

■ Typical propagation delay times

Inverting 10.5 ns

Noninverting 12 ns

■ Typical enable/disable time 18 ns

■ Typical power dissipation (enabled)

Inverting 130 mW

Noninverting 135 mW

Ordering Code:

Devices also available in Tape and Reel. Specify by appending the suffix letter “X” to the ordering code.

Connection Diagram Function Table

L = LOW Logic Level
H = HIGH Logic Level
X = Either LOW or HIGH Logic Level
Z = High Impedance

Order Number Package Number Package Description

DM74LS244WM M20B 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide

DM74LS244SJ M20D 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide

DM74LS244N N20A 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Inputs Output

G A Y

L L L

L H H

H X Z

www.fairchildsemi.com 2

D
M

74
L

S
24

4
Absolute Maximum Ratings(Note 1)

Note 1: The “Absolute Maximum Ratings” are those values beyond which
the safety of the device cannot be guaranteed. The device should not be
operated at these limits. The parametric values defined in the Electrical
Characteristics tables are not guaranteed at the absolute maximum ratings.
The “Recommended Operating Conditions” table will define the conditions
for actual device operation.

Recommended Operating Conditions

Electrical Characteristics
over recommended operating free air temperature range (unless otherwise noted)

Note 2: All typicals are at VCC = 5V, TA = 25°C.

Note 3: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Supply Voltage 7V

Input Voltage 7V

Operating Free Air Temperature Range 0°C to +70°C

Storage Temperature Range −65°C to +150°C

Symbol Parameter Min Nom Max Units

VCC Supply Voltage 4.75 5 5.25 V

VIH HIGH Level Input Voltage 2 V

VIL LOW Level Input Voltage 0.8 V

IOH HIGH Level Output Current −15 mA

IOL LOW Level Output Current 24 mA

TA Free Air Operating Temperature 0 70 °C

Symbol Parameter Conditions
Min Typ Max

Units
(Note 2)

VI Input Clamp Voltage VCC = Min, II = −18 mA −1.5 V

HYS Hysteresis (VT+ − VT−) VCC = Min 0.2 0.4 V

Data Inputs Only

VOH HIGH Level Output Voltage VCC = Min, VIH = Min
2.7

VIL = Max, IOH = −1 mA

VCC = Min, VIH = Min
2.4 3.4 V

VIL = Max, IOH = −3 mA

VCC = Min, VIH = Min
2

VIL = 0.5V, IOH = Max

VOL LOW Level Output Voltage VCC = Min IOL = 12 mA 0.4

VVIL = Max IOL = Max 0.5

VIH = Min

IOZH Off-State Output Current, VCC = Max VO = 2.7V 20 µA

HIGH Level Voltage Applied VIL = Max

IOZL Off-State Output Current, VIH = Min VO = 0.4V −20 µA

LOW Level Voltage Applied

II Input Current at Maximum VCC = Max VI = 7V 0.1 mA

Input Voltage

IIH HIGH Level Input Current VCC = Max VI = 2.7V 20 µA

IIL LOW Level Input Current VCC = Max VI = 0.4V −0.5 −200 µA

IOS Short Circuit Output Current VCC = Max (Note 3) −40 −225 mA

ICC Supply Current VCC = Max, Outputs HIGH 13 23

Outputs Open Outputs LOW 27 46 mA

Outputs Disabled 32 54

3 www.fairchildsemi.com

D
M

74L
S

244
Switching Characteristics
at VCC = 5V, TA = 25°C

Symbol Parameter Conditions Max Units

tPLH Propagation Delay Time CL = 45 pF
18 ns

LOW-to-HIGH Level Output RL = 667Ω

tPHL Propagation Delay Time CL = 45 pF
18 ns

HIGH-to-LOW Level Output RL = 667Ω

tPZL Output Enable Time to CL = 45 pF
30 ns

LOW Level RL = 667Ω

tPZH Output Enable Time to CL = 45 pF
23 ns

HIGH Level RL = 667Ω

tPLZ Output Disable Time CL = 5 pF
25 ns

from LOW Level RL = 667Ω

tPHZ Output Disable Time CL = 5 pF
18 ns

from HIGH Level RL = 667Ω

tPLH Propagation Delay Time CL = 150 pF
21 ns

LOW-to-HIGH Level Output RL = 667Ω

tPHL Propagation Delay Time CL = 150 pF
22 ns

HIGH-to-LOW Level Output RL = 667Ω

tPZL Output Enable Time to CL = 150 pF
33 ns

LOW Level RL = 667Ω

tPZH Output Enable Time to CL = 150 pF
26 ns

HIGH Level RL = 667Ω

www.fairchildsemi.com 4

D
M

74
L

S
24

4
Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
Package Number M20B

5 www.fairchildsemi.com

D
M

74L
S

244
Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M20D

www.fairchildsemi.com 6

D
M

74
L

S
24

4
O

ct
al

 3
-S

TA
T

E
 B

u
ff

er
/L

in
e

D
ri

ve
r/

L
in

e
R

ec
ei

ve
r

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and
Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD
SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the
body, or (b) support or sustain life, and (c) whose failure
to perform when properly used in accordance with
instructions for use provided in the labeling, can be rea-
sonably expected to result in a significant injury to the
user.

2. A critical component in any component of a life support
device or system whose failure to perform can be rea-
sonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.

http://www.datasheetcatalog.com

February 2007 1 M9999-022307

MIC4426/4427/4428 Micrel, Inc.

MIC4426/4427/4428
Dual 1.5A-Peak Low-Side MOSFET Driver

General Description
The MIC4426/4427/4428 family are highly-reliable dual low-
side MOSFET drivers fabricated on a BiCMOS/DMOS process
for low power consumption and high efficiency. These drivers
translate TTL or CMOS input logic levels to output voltage
levels that swing within 25mV of the positive supply or ground.
Comparable bipolar devices are capable of swinging only
to within 1V of the supply. The MIC4426/7/8 is available in
three configurations: dual inverting, dual noninverting, and
one inverting plus one noninverting output.
The MIC4426/4427/4428 are pin-compatible replacements
for the MIC426/427/428 and MIC1426/1427/1428 with im-
proved electrical performance and rugged design (Refer to
the Device Replacement lists on the following page). They
can withstand up to 500mA of reverse current (either polarity)
without latching and up to 5V noise spikes (either polarity)
on ground pins.
Primarily intended for driving power MOSFETs, MIC4426/7/8
drivers are suitable for driving other loads (capacitive, resistive,
or inductive) which require low-impedance, high peak current,
and fast switching time. Other applications include driving
heavily loaded clock lines, coaxial cables, or piezoelectric
transducers. The only load limitation is that total driver power
dissipation must not exceed the limits of the package.
Note See MIC4126/4127/4128 for high power and narrow
pulse applications.

Functional Diagram

INA

OUTA

INVERTING

NONINVERTING

0.1mA
0.6mA

2kΩ

INB

OUTB

INVERTING

NONINVERTING

0.1mA
0.6mA

2kΩ

VS

GND

Features
• Bipolar/CMOS/DMOS construction
• Latch-up protection to >500mA reverse current
• 1.5A-peak output current
• 4.5V to 18V operating range
• Low quiescent supply current
 4mA at logic 1 input
 400µA at logic 0 input
• Switches 1000pF in 25ns
• Matched rise and rall times
• 7Ω output impedance
• <40ns typical delay
• Logic-input threshold independent of supply voltage
• Logic-input protection to –5V
• 6pF typical equivalent input capacitance
• 25mV max. output offset from supply or ground
• Replaces MIC426/427/428 and MIC1426/1427/1428
• Dual inverting, dual noninverting, and inverting/

noninverting configurations
• ESD protection

Applications
• MOSFET driver
• Clock line driver
• Coax cable driver
• Piezoelectic transducer driver

Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com

MIC4426/4427/4428 Micrel, Inc.

M9999-022307 2 February 2007

Ordering Information

 Part Number Temperature
 Standard Pb-Free Range Package Configuration
MIC4426AM* Contact Factory –55ºC to +125ºC 8-Pin SOIC Dual Inverting
MIC4426BM MIC4426YM –40ºC to +85ºC 8-Pin SOIC Dual Inverting
MIC4426CM MIC4426ZM –0ºC to +70ºC 8-Pin SOIC Dual Inverting
MIC4426BMM MIC4426YMM –40ºC to +85ºC 8-Pin MSOP Dual Inverting
MIC4426BN MIC4426YN –40ºC to +85ºC 8-Pin PDIP Dual Inverting
MIC4426CN MIC4426ZN –0ºC to +70ºC 8-Pin PDIP Dual Inverting
MIC4427AM* Contact Factory –55ºC to +125ºC 8-Pin SOIC Dual Non-Inverting
MIC4427BM MIC4427YM –40ºC to +85ºC 8-Pin SOIC Dual Non-Inverting
MIC4427CM MIC4427ZM –0ºC to +70ºC 8-Pin SOIC Dual Non-Inverting
MIC4427BMM MIC4427YMM –40ºC to +85ºC 8-Pin MSOP Dual Non-Inverting
MIC4427BN MIC4427YN –40ºC to +85ºC 8-Pin PDIP Dual Non-Inverting
MIC4427CN MIC4427ZN –0ºC to +70ºC 8-Pin PDIP Dual Non-Inverting
MIC4428AM* Contact Factory –55ºC to +125ºC 8-Pin SOIC Inverting + Non-Inverting
MIC4428BM MIC4428YM –40ºC TO +85ºC 8-Pin SOIC Inverting + Non-Inverting
MIC4428CM MIC4428ZM –0ºC to +70ºC 8-Pin SOIC Inverting + Non-Inverting
MIC4428BMM MIC4428YMM –40ºC to +85ºC 8-Pin MSOP Inverting + Non-Inverting
MIC4428BN MIC4428YN –40ºC to +85ºC 8-Pin PDIP Inverting + Non-Inverting
MIC4428CN MIC4428ZN –0ºC to +70ºC 8-Pin PDIP Inverting + Non-Inverting
*Special order, contact factory.

MIC426/427/428 Device Replacement
 Discontinued Number Replacement
 MIC426CM MIC4426BM
 MIC426BM MIC4426BM
 MIC426CN MIC4426BN
 MIC426BN MIC4426BN
 MIC427CM MIC4427BM
 MIC427BM MIC4427BM
 MIC427CN MIC4427BN
 MIC427BN MIC4427BN
 MIC428CM MIC4428BM
 MIC428BM MIC4428BM
 MIC428CN MIC4428BN
 MIC428BN MIC4428BN

MIC1426/1427/1428 Device Replacement
 Discontinued Number Replacement
 MIC1426CM MIC4426BM
 MIC1426BM MIC4426BM
 MIC1426CN MIC4426BN
 MIC1426BN MIC4426BN
 MIC1427CM MIC4427BM
 MIC1427BM MIC4427BM
 MIC1427CN MIC4427BN
 MIC1427BN MIC4427BN
 MIC1428CM MIC4428BM
 MIC1428BM MIC4428BM
 MIC1428CN MIC4428BN
 MIC1428BN MIC4428BN

February 2007 3 M9999-022307

MIC4426/4427/4428 Micrel, Inc.

Pin Configuration

1

2

3

4

8

7

6

5

NC

INA

GND

INB

NC

OUTA

VS

OUTB

MIC4426

Dual
Inverting

A

B

7

5

2

4

MIC4426 MIC4427 MIC4428

A

B

7

5

2

4

A

B

7

5

2

4

1

2

3

4

8

7

6

5

NC

INA

GND

INB

NC

OUTA

VS

OUTB

MIC4427

Dual
Noninverting

1

2

3

4

8

7

6

5

NC

INA

GND

INB

NC

OUTA

VS

OUTB

MIC4428

Inverting+
Noninverting

Pin Description
 Pin Number Pin Name Pin Function
 1, 8 NC not internally connected
 2 INA Control Input A: TTL/CMOS compatible logic input.
 3 GND Ground
 4 INB Control Input B: TTL/CMOS compatible logic input.
 5 OUTB Output B: CMOS totem-pole output.

 6 VS Supply Input: +4.5V to +18V

 7 OUTA Output A: CMOS totem-pole output.

MIC4426/4427/4428 Micrel, Inc.

M9999-022307 4 February 2007

Absolute Maximum Ratings(1)

Supply Voltage (VS) ...+22V
Input Voltage (VIN) VS + 0.3V to GND – 5V
Junction Temperature (TJ) ... 150°C
Storage Temperature –65°C to +150°C
Lead Temperature (10 sec.) 300°C
ESD Rating(3)

Operating Ratings(2)

Supply Voltage (VS) +4.5V to +18V
Temperature Range (TA)
 (A) ... –55°C to +125°C
 (B) ... –40°C to +85°C
Package Thermal Resistance

PDIP θJA ..130°C/W
PDIP θJC .. 42°C/W
SOIC θJA ... 120°C/W
SOIC θJC .. 75°C/W
MSOP θJA ... 250°C/W

Electrical Characteristics(4)

4.5V ≤ Vs ≤ 18V; TA = 25°C, bold values indicate full specified temperature range; unless noted.
Symbol Parameter Condition Min Typ Max Units
Input
VIH Logic 1 Input Voltage 2.4 1.4 V
 2.4 1.5 V
VIL Logic 0 Input Voltage 1.1 0.8 V
 1.0 0.8 V
IIN Input Current 0 ≤ VIN ≤ VS –1 1 µA
Output
VOH High Output Voltage VS–0.025 V
VOL Low Output Voltage 0.025 V
RO Output Resistance IOUT = 10mA, VS = 18V 6 10 Ω
 8 12 Ω
IPK Peak Output Current 1.5 A
I Latch-Up Protection withstand reverse current >500 mA
Switching Time
tR Rise Time test Figure 1 18 30 ns
 20 40 ns
tF Fall Time test Figure 1 15 20 ns
 29 40 ns
tD1 Delay Tlme test Flgure 1 17 30 ns
 19 40 ns
tD2 Delay Time test Figure 1 23 50 ns
 27 60 ns
tPW Pulse Width test Figure 1 400 ns
Power Supply
IS Power Supply Current VINA = VINB = 3.0V 1.4 4.5 mA
 1.5 8 mA
IS Power Supply Current VINA = VINB = 0.0V 0.18 0.4 mA
 0.19 0.6 mA

Notes:
1. Exceeding the absolute maximum rating may damage the device.
2. The device is not guaranteed to function outside its operating rating.
3. Devices are ESD sensitive. Handling precautions recommended.
4. Specification for packaged product only.

February 2007 5 M9999-022307

MIC4426/4427/4428 Micrel, Inc.

Test Circuits

A

B

INA

INB

2

4

MIC4427

5

7 OUTA
1000pF

6

VS = 18V

0.1µF 4.7µF

OUTB
1000pF

Figure 2a. Noninverting Configuration

90%

10%

tR

10%
0V

5V

tFVS

OUTPUT

INPUT
90%

0V

tD1 tD2

tPW

2.5V

Figure 2b. Noninverting Timing

A

B

INA

INB

2

4

MIC4426

5

7 OUTA
1000pF

6

VS = 18V

0.1µF 4.7µF

OUTB
1000pF

Figure 1a. Inverting Configuration

tD1

90%

10%

tF

10%
0V

5V

tD2 tRVS

OUTPUT

INPUT
90%

0V

2.5V

tPW

Figure 1b. Inverting Timing

MIC4426/4427/4428 Micrel, Inc.

M9999-022307 6 February 2007

Electrical Characteristics

Rise and Fall Time vs.

0 5 2010 15

t F

SUPPLY VOLTAGE (V)

70

60

50

40

10

0

TI
M

E
(n

s)

20

30

0 5 2010 15
SUPPLY VOLTAGE (V)

35

30

25

20

5

0

TI
M

E
(n

s)

10

15

40

30

10

TI
M

E
(n

s)

20

-25 0 15025 50
TEMPERATURE (°C)

75 100 125

35

30

25

20

5

0

TI
M

E
(n

s)

10

15

-25 0 15025 50
TEMPERATURE (°C)

75 100 125

t D1

80

70

60

50

20

0

S
U

P
P

LY
 C

U
R

R
E

N
T

(m
A

)

30

40

10

400kHz

200
kHz

20kHz

10 10000100
CAPACITIVE LOAD (pF)

1000

1k

100

10

1

TI
M

E
(n

s)

10 10000100
CAPACITIVE LOAD (pF)

1000

t R

t F

Supply Current vs. Frequency

V = 18VS

10 V

5 V

20

0

S
U

P
P

LY
 C

U
R

R
E

N
T

(m
A

)

30

10

1 100010
FREQUENCY (kHz)

100

High Output vs. Current

| V
 –

 V

| (

V
)

S
O

U
T

CURRENT SOURCED (mA)

Low Output vs. Current
1.20

0.96

0

0.48

0.72

0.24

0 10
CURRENT SUNK (mA)
20 30 40 50 60 70 80 90 100

10 V

15 V

O
U

TP
U

T
V

O
LT A

G
E

 (V
)

1.20

0.96

0

0.48

0.72

0.24

0 10 20 30 40 50 60 70 80 90 100

10 V

15 V

-50

t R

-50-75

t R

t F

-75

t D2

t D1

t D2

C = 1000pF
T = 25°C

L
A

C = 1000pF
T = 25°C

L
A

C = 1000pF
V = 18V

L
S

C = 1000pF
V = 18V

L
S

T = 25°C
V = 18V

A
S

T = 25°C
V = 18V

A
S

T = 25°C
C = 1000pFL

A T = 25°CA V = 5VC T = 25°CA V = 5VS

25 50 15075 100
AMBIENT TEMPERATURE (°C)

1000

750

250

0

500

0

0.5

2.5

1.0

1.5

S
U

P
P

LY
 C

U
R

R
E

N
T

(m
A

)

201550
SUPPLY VOLTAGE (V)

10

2.0

125

S
U

P
P

LY
 C

U
R

R
E

N
T

(A
)

15100 5
0

50

100

150

200

300

400

20
SUPPLY VOLTAGE (V)

M
A

X
IM

U
M

PA
C

K
A

G
E

P
O

W
E

R
 D

IS
S

IP

A TI
O

N
 (m

W
)

1250

NO LOAD
BOTH INPUTS LOGIC "1"
T = 25°CA

NO LOAD
BOTH INPUTS LOGIC "0"
T = 25°CA

SOIC

PDIP

Supply Voltage
Delay Time vs.
Supply Voltage

Rise and Fall Time vs.
Temperature

Rise and Fall Time vs.
Capacitive Load

Supply Current vs.
Capacitive Load

Delay Time vs.
Temperature

Quiescent Power Supply Current
vs. Supply Voltage

Quiescent Power Supply Current
vs. Supply Voltage

Package Power Dissipation

February 2007 7 M9999-022307

MIC4426/4427/4428 Micrel, Inc.

Applications Information
Supply Bypassing
Large currents are required to charge and discharge large
capacitive loads quickly. For example, changing a 1000pF
load by 16V in 25ns requires 0.8A from the supply input.
To guarantee low supply impedance over a wide frequency
range, parallel capacitors are recommended for power supply
bypassing. Low-inductance ceramic MLC capacitors with short
lead lengths (< 0.5”) should be used. A 1.0µF film capacitor
in parallel with one or two 0.1µF ceramic MLC capacitors
normally provides adequate bypassing.
Grounding
When using the inverting drivers in the MIC4426 or MIC4428,
individual ground returns for the input and output circuits or
a ground plane are recommended for optimum switching
speed. The voltage drop that occurs between the driver’s
ground and the input signal ground, during normal high-cur-
rent switching, will behave as negative feedback and degrade
switching speed.
Control Input
Unused driver inputs must be connected to logic high (which
can be VS) or ground. For the lowest quiescent current
(< 500µA) , connect unused inputs to ground. A logic-high
signal will cause the driver to draw up to 9mA.
The drivers are designed with 100mV of control input hys-
teresis. This provides clean transitions and minimizes output
stage current spikes when changing states. The control input
voltage threshold is approximately 1.5V. The control input
recognizes 1.5V up to VS as a logic high and draws less than
1µA within this range.
The MIC4426/7/8 drives the TL494, SG1526/7, MIC38C42,
TSC170 and similar switch-mode power supply integrated
circuits.

Power Dissipation
Power dissipation should be calculated to make sure that the
driver is not operated beyond its thermal ratings. Quiescent
power dissipation is negligible. A practical value for total
power dissipation is the sum of the dissipation caused by the
load and the transition power dissipation (PL + PT).
Load Dissipation
Power dissipation caused by continuous load current (when
driving a resistive load) through the driver’s output resistance
is:
 PL = IL

2 RO
For capacitive loads, the dissipation in the driver is:
 PL = f CL VS

2

Transition Dissipation
In applications switching at a high frequency, transition power
dissipation can be significant. This occurs during switching
transitions when the P-channel and N-channel output FETs
are both conducting for the brief moment when one is turning
on and the other is turning off.
 PT = 2 f VS Q
Charge (Q) is read from the following graph:

1×10-8

8×10-9

4×10-9

3×10-9

2×10-9

6×10-9

1×10-9
4 6 8 10 12 14 16 18

SUPPLY VOLTAGE (V)

C
H

A
R

G
E

 (Q
)

Crossover Energy Loss per Transition

MIC4426/4427/4428 Micrel, Inc.

M9999-022307 8 February 2007

Package Information

45°

0°–8°

0.228 (5.79)

0.189 (4.8)
PLANE

MAX)

0.010 (0.25)
0.007 (0.18)

0.045 (1.14)

0.0040 (0.102)

0.013 (0.33)

0.150 (3.81)

TYP

PIN 1

INCHES (MM)

0.016 (0.40)

8-Pin SOIC (M)

0.004 (0.10)

0.035 (0.89)

0.021 (0.53)

0.012 (0.03) R

0.0256 (0.65) TYP

0.012 (0.30) R

5°
0° MIN

0.112 (2.84)

0.116 (2.95)

0.012 (0.03)

0.007 (0.18)
0.005 (0.13)

0.038 (0.97)0.032 (0.81)

INCH (MM)0.187 (4.74)

8-Pin MM8™ MSOP (MM)

8-Pin Plastic DIP (N)

February 2007 9 M9999-022307

MIC4426/4427/4428 Micrel, Inc.

MICREL INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com

This information furnished by Micrel in this data sheet is believed to be accurate and reliable. However no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser’s own risk and Purchaser agrees to fully indemnify

Micrel for any damages resulting from such use or sale.
© 2003 Micrel, Incorporated.

LED

74H
C

138

15
14
13
12
11
10
9
7

1
2
3

5
4
6

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

A
B
C

G2B
G2A
G1

A11

C9

J1

1
2
3
4

PB7

PC4

PF7

P1.7

+5v

D14
PWR LED

WR

2

CS

D5

E7

A9

D0

C4

23

0

0

1M

+5v

0.1

A5

11

LED

PB3

PC5

PF4

P1.6

10K

C17

U27

87C
52

40

18
29

30

19

9
31

39
38
37
36
35
34
33
32

1
2
3
4
5
6
7
8

21
22
23
24
25
26
27
28

10
11
12
13
14
15
16
17

VCC

X2
PSEN

ALE/PROG

X1

RST
EA/VPP

P0.0/AD0
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
P0.5/AD5
P0.6/AD6
P0.7/AD7

P1.0/T2
P1.1/T2EX

P1.2
P1.3
P1.4
P1.5
P1.6
P1.7

P2.0/A8
P2.1/A9
P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15

P3.0/RXD
P3.1/TXD
P3.2/INT0
P3.3/INT1
P3.4/T0
P3.5/T1
P3.6/WR
P3.7/RD

20

A10

9

INT1

E6

+8to 15V DC

A14

0

A0

0

A13

820

6

A12

14

PB2

PC6

PF1

P1.5

C1

0

A10

2

3

10

E5

A15

+5v

D8

RX LED

A1

C13

U25A
74HC00

1

2
3

U35A
7420

6

1
2

4
5 3

RD

15

0

11

CE

D1

0

PF6

P1.4

GND

+5v

A4

D7

18

29

E4

A11

0.1

15

A1

0

LED

0.1

4

6
2
2
5
6

0

10MF

U41A
74HC02 2

3
1

820

P3
AUX

5
9
4
8
3
7
2
6
1

A1

6

24

PF3

P1.3

+5V

7

A1

17

E3

PB1

0

U38A
74HC02 2

3
1

0 +5v

U36A
7420 6

1
2

4
5

13

4

0

+5v

A15

1

A6

GND

PF0

P1.2

+5V

0

C8

20

D4

A0

E2

PB0

0.1MF

0

0

U26A
74HC00

1

2
3

24

13

A13
+5v

A1

A9

D7

D4

+5v

U28A
74HC00

12
3

PD7

P1.1

GND

0

U7

82C
55

34
33
32
31
30
29
28
27

4
3
2
1
40
39
38
37

18
19
20
21
22
23
24
25

14
15
16
17
13
12
11
10

5
36

9
8

35

6

D0
D1
D2
D3
D4
D5
D6
D7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RD
WR

A0
A1

RESET

CS

A14

CS

E1

PA5

U39A
74HC02

2

3
1

8051 board

0.1

26

A6

10

A13

+5v

A5

+5v

22pF

LED

14

A3

9

16

0

C16

LED

P1.0

F
l
a
s
h

E
r
a
s
e

7805

27
A9

E0

PA6

D1

820

32

D6

D0

A12

0

0

0

A3

0

A3

8

28

INT0

S
i
n
g
l
e

S
t
e
p

1K

OUT

+5v

16

PA7

PC7

PD6

C12

0

3
9
F
5
1
2

10

25

A4

22pF

820

A7

820

D1

1

15

C10

2K

U10

74H
C

373

1
11

2
5
6
9
12
15
16
19

3
4
7
8

13
14
17
18

OE
LE

Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8

D1
D2
D3
D4
D5
D6
D7
D8

IN

0

16

PA4

PC3

PD5

LED

+5v

27

26

19

A5

A4 A8

D3

25 A11

D2

0

LED

0

D4

TX LED

+5v

D3

PA3

PC2

PD4

0

C2

P2
MAIN

5
9
4
8
3
7
2
6
1

A13

OE

D6

D3

A6

0

+5v

U30A
74HC00

12
3

A10

D5

820

16

A12

WR

D2

U34A
74AC08

1

2
3

U37A
7426

1

2
3

23

PA2

PC1

PD3

3.3K

+5v

R8

A0

24

28

A2

D7

0

0

+5v

5

7
A4

21

LCD

U4

82C
55

34
33
32
31
30
29
28
27

4
3
2
1
40
39
38
37

18
19
20
21
22
23
24
25

14
15
16
17
13
12
11
10

5
36

9
8

35

6

D0
D1
D2
D3
D4
D5
D6
D7

PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7

PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7

PC0
PC1
PC2
PC3
PC4
PC5
PC6
PC7

RD
WR

A0
A1

RESET

CS
U42A

7426

1

2
3

820

12

PA1

PC0

PD2

PB6

22.11MHZ

0

8
19

A0

0

+5v

D6

SW1

12

22

+5v

C11

30

U40A
74HC02 2

3
1

C14

5x330

PA0

PB4

PD1

PF5

31

A2

A8

1N5819

D4

U31A
74HC00

1

2
3

0.1

A2

A8

A7

0

+5v

LED

BUS

0

820

21

+5v

PB5

PD0

PF2

A14

0

5

A7

D5
18

0

U43

MAX232

1
3
4
5
2
6

12
9

11
10

13
8

14
7

C1+
C1-
C2+
C2-
V+
V-

R1OUT
R2OUT

T1IN
T2IN

R1IN
R2IN

T1OUT
T2OUT

D2

0

D0

22

17

	الصفحات الاولىللمشروع.pdf
	Smart Car Parking System.pdf
	Smart Car Parking System appendix A code sample.pdf
	Smart Car Parking System appendix B 8051 data sheet.pdf
	375527_DS.pdf
	mic4426.pdf
	8051 datasheet controller kit.pdf

