
Palestine Polytechnic University
Deanship of Graduate Studies and Scientific Research

Master of Mechatronics Engineering

Control of a Ball and Plate System
Using Model-Based Controllers

Submitted by:

Firas ”Mohammed Jawdi” Al-haddad

Thesis submitted in partial fulfillment of requirements of the
degree Master of Science in Mechatronics Engineering

12, 2020



The undersigned hereby certify that they have read, examined and rec-

ommended to the Deanship of Graduate Studies and Scientific Research at

Palestine Polytechnic University the approval of a thesis entitled: Control

of a Ball and Plate System Using Model-Based Controllers, submit-

ted by Firas ”Mohammed Jawdi” Al-haddad in partial fulfillment of

the requirements for the degree of Master in Mechtronics Engineering.

Graduate Advisory Committee:

Dr. Jasem Tamimi (Supervisor), Palestine Polytechnic University.

Signature: Date:

Dr. Saleh altakrouri (Internal committee member), Palestine Polytechnic

University.

Signature: Date:

Dr. Hakam Shehadeh (External committee member), Birzeit University.

Signature: Date:

Thesis Approved
Dr. Murad Abu Sbieh

Dean of Graduate Studies and Scientific Research
Palestine Polytechnic University

Signature: Date:

i



DECLARATION

I declare that the Master Thesis entitled ”Control of a Ball and Plate

System Using Model-Based Controllers” is my original work, and hereby

certify that unless stated, all work contained within this thesis is my own in-

dependent research and has not been submitted for the award of any other

degree at any institution, except where due acknowledgement is made in the

text.

Firas ”Mohammed Jawdi” Al-haddad

Signature: Date:

ii



STATEMENT OF

PERMISSION TO USE

In presenting this thesis in partial fulfillment of the requirements for the mas-

ter degree in Mechatronics Engineering at Palestine Polytechnic University,

I agree that the library shall make it available to borrowers under rules of

the library.

Brief quotations from this thesis are allowable without special permission,

provided that accurate acknowledgement of the source is made.

Permission for extensive quotation from, reproduction, or publication of

this thesis may be granted by my main supervisor, or in his absence, by the

Dean of Graduate Studies and Scientific Research when, in the opinion of

either, the proposed use of the material is for scholarly purposes.

Any coping or use of the material in this thesis for financial gain shall

not be allowed without my written permission.

Firas ”Mohammed Jawdi” Al-haddad

Signature: Date:

iii



Acknowledgement

A lot of people have contributed to the completion of my thesis. I feel so

grateful to all those people who made it possible to prepare this thesis. I do

value and appreciate the efforts of my supervisor Dr. Jasem Tamimi, where

I had extremely fortunate to have such an advisor and mentor, who gave

me the chance to work and research on my own, and at the same time to

be guided and supported when needed. He taught me how to deeply think,

analyze and perform to reach and achieve my goals. I have faced several

obstacles, and without the help and support of my supervisor it wouldn’t be

possible to overcome and pass them.

I would like to express my warm thanks to all the staff members of the

mechanical engineering department who formed a supportive factor in com-

pleting my thesis. In addition, the surrounding friends who helped me stay

on track and overcome many difficulties have a major part of my gratitude

and appreciation.

Not to forget the main reason that kept me standing and pushing me

forward toward this success, which represents my family, where none of this

would be achieved without them. I do dedicate my dissertation to them.

They filled me with love, care and concern all the time.

iv



�
	

jÊÖÏ @

�
IJ
m

�'
. ,

�
éJ
ªÓAm.

Ì'@ Õºj
�
JË @

�
H@Q�.

�
J
	
m× Ñ

	
¢ªÓ ú




	
¯ hñÊË@ úÎ«

�
èQºË@

	
à@ 	Q

�
K @



ÐA
	

¢
	
� Yg. @ñ

�
JK


éÓ@Y
	

j
�
J�@



Õ
�
æK
 AÓ

�
èXA«ð ,

�
H@Q�


	
ª

�
JÖÏ @ XYª

�
JÓð Q

�
®
�
J�Ó Q�


	
«ð ù



¢

	
k Q�


	
« ÐA

	
¢

	
� é

	
K


AK.

	Q�
Ò
�
JK


.
�
éJ
¢

	
kCË@

�
éÒ

	
¢

	
�


B@ ©Ó ÉÓAª

�
J
�
K ú




�
æË @

�
èYK
Ym.

Ì'@ Õºj
�
JË @

�
éÒ

	
¢

	
�


@

�
HAJ
j. �


�
K @Q

�
��@ 	áÓ

�
�

�
®j

�
JÊË

©
	

�ñ
�
K .

	á�
»Qm× ð �ÖÏ
�
é

�
�A

�
� ð

�
éJ


	
KYªÓ

�
èQ» 	áÓ ú



æ�A�



@ É¾

�
��. ÐA

	
¢

	
JË @ @

	
Yë

	
àñº

�
JK


Ð@Y
	

j
�
J�A



K.

	áK
YÓAª
�
JÖÏ @ 	áK
PñjÖÏ @ ú




	
¯ é

�
JËAÓ@



Õ
�
æK
 ø




	
YË@ ú




	
GYªÖÏ @ hñÊË@ úÎ« �ÒÊË@

�
é

�
�A

�
�

. �ÒÊË@
�
é

�
�A

�
�

�
�ñ

	
¯ ©

	
�ñ

�
K ú




�
æË @

�
éJ


	
KYªÖÏ @

�
èQºË@

�
é
	
K 	P@ñÖÏ 	áK
P 	P@



ñÖÏ @

	á�
»QjÖÏ @

Õºm�
�
' �

H@Ygð Õæ


Ò�

�
� Õç

�
' Õç

�
' 	áÓð , ÐA

	
¢

	
JÊË

�
ék.

	
YÖ

	
ß ÉÔ« Õç

�
' ,

�
ékðQ£



B@ è

	
Yë ú




	
¯

�
�Q£ l .

�


'A

�
J
	
K

�
é
	
KPA

�
®ÖÏ H. C

�
KAÖÏ @ l .

×A
	
KQK. Ð @Y

	
j

�
J�AK.

�
èA¿ AjÖÏ @

�
H@PAJ.

�
J

	
k@ Z @Qk. @



Õç

�
' .

�
éJ
¢

	
k

�
é

	
®Ê

�
J
	
m×

�
HAÒºj

�
JÓ �Ô

	
g Õæ



Ò�

�
� Õç

�
' Y

�
®

	
¯ , ÐA

	
¢

	
JË AK. Õºj

�
JË @ Õ

�
æK
 ú



¾Ë .

�
é

	
®Ê

�
J

	
jÖÏ @ Õºj

�
JË @

Ñ
	

¢
	
JÖÏ @ Õºj

�
JÖÏ @ 3− . ú



ÎÓA¾

�
JË @ ú



æ
.
�A

	
J
�
JË @ Õºj

�
JÖÏ @ 2− . ú






æJ.

	
�
�
K Õºm�

�
' h.

	
XñÖ

	
ß 1− : ù



ëð

5− .
�
éJ


	
K A

�
JË @

�
ék. PYË@ 	áÓ ù



¢

	
mÌ'@ I.

�
®ª

�
JÖÏ @ Õºj

�
JÖÏ @ 4− .

�
éJ


	
K A

�
JË @

�
ék. PYË@ 	áÓ ù



¢

	
mÌ'@

�
ém.
�
�
'A

	
JË @

�
HAÒºj

�
JÖÏ @

	
YJ


	
®

	
J
�
K Õç

�
' Y

�
¯ð . ÐA

	
¢

	
JË @

�
HBAm�'

.
�
é�A

	
mÌ'@ Éª

	
®Ë @ XðXP Õºj

�
JÓ

.(ñ
	
Kð



@ ñ

	
JK
ðXP



@)

�
�J


�
¯YË@ Õºj

�
JÖÏ @ Ð @Y

	
j

�
J�AK.

h. QkY
�
J
�
K

�
èQ»

�
é
	
K 	P@ñÖÏ Õºj

�
JË @

�
H@Ygð Z@X



@

	á�
K.
�
é
	
KPA

�
®ÒÊË

�
ékðQ£B@ è

	
Yë

�
I

	
¯Yëð

úÎ«
	á�
ªÓ PA�Ó ú




	
¯ AêºK
Qj

�
JË ð



@ , hñÊË@ úÎ«

	á�
ªÓ ©
	

�ñÓ ú



	
¯

�
IJ.

�
�
�
K ú



¾Ë

�
éK
Qm�'

.

. ÉÒ
�
Jm×



A¢

	
k É

�
¯


@ð P@Q

�
®
�
J�@



�

I
�
¯ð É

�
¯


AK.

�
ékñÊË@

v



Abstract

A ball and plate system (BPS) is a benchmark system in control engineer-

ing. BPS is known to be nonlinear, a multivariable and an unstable system,

has been widely used to investigate and demonstrate new control strategies

that can deal with nonlinearities. The BPS consists of a metal ball, a plate

which can be a resisitive touch screen and two servo motors with a link-

age mechanism to move the plate. A resistive touch screen is placed over

the plate, a plate is pivoted at its center such that the slope of the plate

can be manipulated in two perpendicular directions with two servo motors

to tilte the plate. In this thesis, the modeling of our BPS is based on the

Euler-Lagrange approach, which is represented in the state space form with

plate angles as inputs to the system. Then, the obtained model is linearized

to be able to design linear controllers. Matlab and simulink programs are

used for simulation tests to evaluate the closed loop system response and

to determine the parameters and gains for different controllers. Moreover,

the effect of the disturbances in the measurement is analyzed. Five con-

trol stratigies are selected for static and dynamic position tracking: model

predictive control (MPC), proportional-integral-derivative (PID), state feed-

back, linear quadratic regulator (LQR) and linear quadratic tracker (LQT)

controllers. These controllers have been implemented using the Arduino Uno

ATmega328P. Therefore, the aim of this project can be summarized as to

vi



compare between the performance of the five different controllers for balanc-

ing a freely rolling ball in a specific position or to move it in a circle or square

trajectory on the plate with the smallest settling time and the least possible

error achieved for the dynamics of the real-time system.
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Chapter 1

Introduction

Modern control engineering theory is a sub-field of applied mathematics that

is based on using of new control design strategies to improve the system

performance as well as the system efficiency [34, 25]. Balancing systems are

one of most challenging problems in Control engineering field, which are used

for testing a new control design strategies. There are lots of platforms for this

inverted pendulum, double and multiple inverted pendulums and ball-beam

system [47].

A ball and plate system (BPS) is one of the popular and important sys-

tems that is a generalized of the traditional ball and beam benchmark [9, 27].

The BPS has four degrees of freedom in which a ball can roll freely on a rigid

platform which its inclination can be manipulated in two independent direc-

tions [71]. The rigid plate can consist of a resistive or capacitive touch panel

that measures the position of the ball regards to the centre or a predeter-

mined point of the plate. This system is inherently unstable since even a

small disturbance causes that the ball will roll far away from the stationary

point. In addition, it cannot be restored to an equilibrium or to a prede-

termined point on the plate without substituting force. Thus, some sort of

1



1.1. LITERATURE REVIEW

control is necessary to maintain a balanced ball on a plate. Therefore, BPS is

considered a well-suited system for testing designed different control methods

for unstable system in real environment. In other words, the control objective

is to balance the ball on a plate within a boundary or at the predetermined

points. When the ball moves outside the the boundary or a predetermined

points, a proposed controller will move the two independent coordinates that

are needed to stabilize the ball to its designated location.

Generally, the system is a two-dimensional, multivariable and nonlinear

system, which has a dynamic that includes a second order nonlinear differen-

tial equations [21, 18]. Since the BPS has a complex dynamics, an accurate

nonlinear model must be developed for studying model-based controllers. To

obtain the BPS dynamics, a Lagrange -Euler method can be used to derive

the nonlinear equations, so the kinetic and potential energies of the system

must be found. The kinetic energy is comprised of the energy due to both

linear and angular motions in the system. While the potential energies can

be computed for the all rigid bodies in the system [61].

1.1 Literature Review

The BPS has been used and studied in several control methods that ranged

from linear control method like an optimal controller, and nonlinear control

such as sliding mode controller. Some of the recent available researches on

the BPS are reviewed in this section.

Proportional integral derivative (PID) controller is the most widely used

method to control the BPS. However, it is difficult to obtain an excellent

performance response with using traditional PID controller. For example,

Gharieb and Nagib [27] demonstrated that for the BPS, the PID controller

2



1.1. LITERATURE REVIEW

has a lot of restrictions and limitations such as a long settling time with a

high value of overshoot than what is designed to stabilize the ball. Jadlovska

et al . [33] designed three controllers to compare them; PID, proportional-

derivative (PD) , and proportional-sum-derivative (PSD) controllers. These

controllers are designed for trajectory tracking of the BPS. The result showed

that the PD controller is much better than PID and PSD controllers with a

small overshoot. Integer order proportional derivative (IOPD) and fractional

order proportional derivative (FOPD) controllers are designed by Borah et al .

[14] for the trajectory tracking of a ball. Both controllers are designed us-

ing different three algorithms to minimise the integral square error. The

result verify that, that FOPD outperforms IOPD when tuned by the same

algorithm.

A linear state feedback regulator control is presented by Awtar et al . [9]

and Acosta et al . [52]. These controllers were designed by linearizing the

BPS dynamics around the central operating point. In [9], the result showed

that, the accuracy of the controller for the stabilization test was 5 mm, and

for the circle following, an average steady state error was 18 mm while the

tracking velocity was less than 4.2 mm/s, while in [52], the result showed

that the accuracy of the controller for the stabilization test was 3 mm with

1 s settling time.

A linear quadratic regulator (LQR) control method for a BPS visual

servo control was presented by Cheng et al . in [17], the proposed controller

was implemented on a real system for positioning the ball at central point of

the plate with steady state error less than 7 mm. This controller also allow

the ball to follow a circular path with an average steady state error was 15

mm.

A linear model predictive control (LMPC) for a BPS was presented using

3
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Matlab simulation by Oravec et al . [55] for testing the circle and square ref-

erence trajectory tracking including constraints. However, in the simulation

results, the MPC strategy was compared to the optimal linear quadratical

controller (LQ) which is presented in [54]. The simulation result showed

that, the MPC strategy has shown better results for the reference trajectory

tracking than the LQ controller.

On the other hand, for a model-free controllers, a fuzzy logic controller

was designed for circular tracking experiments in [72] by Yubazaki et al .

using the single input rule module (SIRM) dynamically connected fuzzy in-

ference model. The experimental results of the proposed controller showed a

good performance with maximum tracking error of less than 50 mm. Wang

et al . [67] have designed a trajectory tracking controller with a double loop

strcture, where the inner loop has a servo controller, and the outer loop was

designed for a position regulator. The outer loop consist of a single rule fuzzy

logic controller with a plate angle as an output , while the position, velocity

and acceleration as an input. A fuzzy logic controller was designed by Bai

et al . [10] for trajectory tracking, where the steady-error of the trajectory

tracking is unable to be eliminated. In order to solve the problem of trajec-

tory tracking of the BPS, Han et al . [30] and Amin et al . [5] have designed

a neural network PID controller (PIDNN). Han et al . [30] used two PIDNN

controllers for two axes. To train a neural network , a differential evaluation

PSO (DEPSO) has been used. On the other hand, Amin et al . [5] used two

parallel sub controllers: Base linear controller with input-output feedback

linearization method and NN-based PID compensator for compensation the

ignored nonlinear effects that result from base linear controller, Where the

final torque input of the real system consisted from the control inputs of the
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two subsystem.

A fuzzy PD controller for stabilization and trajectory tracking of the BPS

with an adaptive integral action to eliminate the steady-state error was de-

signed by Pattanapong and Deelertpaiboon [56]. However, the result showed

that, the proposed algorithm of ball detection under various lighting condi-

tions is not robust enough. Gozde [28] presented an evolutionary computa-

tion based gain scheduling controller to examine its control performances on

a stabilization system. For tuning controller parameters, swarm intelligence-

based particle swarm optimization (PSO) algorithm, evolutionary algorithm

based differential evolution (DE) algorithms and the classical tuning algo-

rithm are used. The results are compared to the original proportional (P)

and probational derivative (PD) controllers that are given on the real BPS.

The results showed that, the stability performance of PSO algorithm is bet-

ter than DE and classical algorithm due to smaller maximum overshoot and

greater damping ratio. An observer integrated back-stepping control is de-

signed by Ma et al . [44]. A linear extended state observer and a tracking

differentiator are used to estimate the uncertainties of the model and deriva-

tives of the virtual controls in the back-stepping design. The results of circle

and square trajectory experiments show that the proposed control has the

ability of decoupling and suppressing uncertainty while achieving excellent

tracking performance.

Moreover, Liu et al . [41] have designed a sliding mode controller for the

BPS. To deal with disturbances and uncertainties, two scenarios have been

used. In the first scenario, the limitation boundary (upper and lower) has

been assumed for disturbances and uncertainties. In the second scenario, an

observer has been used to estimate it which gives a better response time with

a good disturbances rejection when compared to the first one. A sliding mode
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controller (SMC) with error integration was designed by Bang et al . [11] to

compare it with linear quadratic (LQ) controller results. This controller

was implemented to a stewart platform with rotary actuators to manipulate

the plate. From the experiments results for circle trajectory, SMC normally

works better than LQ control for a ball and plate system with 4 mm and 12

mm error steady state for SMC and LQ controller respectively. Ali et et al .

[4] design a new procedure of an optimal nonlinear controller, the proposed

procedure depnds on the invasive weed optimization (IWO) to obtain the

optimal parameters of the nonlinear controller. However, the controller has

proven its effectiveness in tracking the desired trajectories with the presence

of these uncertainties and disturbances.

Debono and Bugeja [19] have compared between a designed integral slid-

ing mode and state feedback controllers for the BPS, where both controllers

are designed to follow a certain trajectory. The result showed that the sliding

mode controller is very quick and managed to obtain a more precise response

at much higher speeds, moreover, it is able to track a sinusoidal signal with

a magnitude of ± 0.11 m.

On the other hand, the state feedback controller is found to be precise

but slow to follow the predefined trajectory. A sliding mode controller with

a fuzzy logic controller have been used to control the BPS by Negash and

Singh [49], where the controller consisted of a double loop structure. It was

noticed that, the sliding mode chattering factor has been reduced by using

fuzzy logic. Moezi et al . [46] have designed an optimal adaptive interval

type-2 fuzzy fractional-order backstepping sliding mode control method to

improve the performance of closed loop control of BPS. A fractional-order

back-stepping sliding surface is designed to reduce the error , while an adap-

tive interval type-2 fuzzy compensator is used to compensate the nonlinear
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effects. However, the experimental results showed the superiority of the pro-

posed method in comparison to other type of SMC.

A BPS controller which presented by Yuan et al . [71] and Awtar et al . [9]

consist from two-loop cascaded control strategy, where the inner loop is used

to control the motor angle. The outer loop is used for adjusting the angle

of the plates to controls the ball’s position. The outer loop must adjust the

plat’s angle to the desired angle before the ball’s position is measured again.

It means that the ball position readings sensor must be available before any

control action. The inner loop controller consisted of PID controller. For

the outer loop, a different strategies have been implemented, a fuzzy logic

controller supervisor for a sliding mode and PD controller are used by Yuan

et al . [71]. For stabilizing the ball on a desired position, each controller takes

a long time (roughly 10 second). The result of trajectory tracking showed

that the controller takes a long time to measure the ball’s position, with

high overshoot and error. Awtar et al . [9] have designed a standard pole

placement and LQR design procedures for the outer loop.

Awtar et al . [9], Rastin et al . [57] and Moarref [45] present different mech-

anisms of the mechanical designs that can used for the real BPS. Awtar et al .

[9] designed an L-shaped mechanism to transmit the required torque from

the motor to the plate. This is a most popular mechanical structure which

is used to couple the motors to the plate and provide the necessary torque.

The main limitation of the L-shaped structure ignores the small angle plate

deflection which is lead to the ball slipping on the plate. Rastin et al . [57]

presented a different actuation of the mechanical structure approach where

the system has three actuators. This approach is more complicated than

L-shaped approach where the axes of rotation of the plate are not indepen-

dent. The design used by Moarref et al . [45] uses a long arm to transmit the
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torque from the motor to the plate. The main limitation of the both motors

when they move, the controller must be slow as possible to avoid the damage

for the system. The design of Debono, and Bugeja [19] allows the plate of

the system to be rotated independently by each motor, where the system

was designed with an inner plate and external frame. The external plate is

moved by one motor which is fixed on the base and the inner plate is moving

by a fixed motor on the external frame.

For sensing the position of the ball on the plate, the two most common

approaches are using a resistive touch screen in [9, 72], or an overhead camera

in [27, 52, 52, 10, 19, 57]. Both sensing method convey signals that are used

for a driver circuit to process the information and then convert it to the

coordinates (x,y). An array of phototransistors [73] is arranged on the plate

to sense the position of ball by interruption of light.

In this thesis, the stability of the five selected algorithim was checked

in [40, 65, 74, 70] based on lyapunov stability, where Lewis in [40] proved

the stability of LQR and LQT controller based on lyapunov function. Val-

luri et al . in [65] proved the stability of liner and nonlinear system with

MPC controller. For a state feedback controller, Zhao et al . in [74] present

a state feedback switching parameters controller and proved the stability of

the controller. Antonito et al . in [70] checked and proved the stability of the

Classical PID Controller via Lyapunov stability theory.

1.2 Thesis Objectives and Contributions

The main objectives of this thesis are to compare between different types

of linear controller stratigies of a position and trajectory tracking control
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approaches for the BPS .

Therefore, the following analysis and experiments will be done to achieve

our objectives:

� Analyze and model of the BPS using Euler-lagrangian method.

� Analyze the controllability and observability of the system using the

obtained model.

� Apply different control strategies for the BPS for regulation and track-

ing and then compare between them.

� Design observers for different controller, and compare between methods

to obtain the best results in terms of performance and robustness.

� Simulate the system controllers with observer using the exact nonlinear

model in Simulink.

� Design a real time control system for real time simulation and imple-

mentation of the LMPC algorithm.

� Perform experimental stability and tracking tests of the control system,

and compare between the results of different controllers.

1.3 Thesis Organization

The remaining parts of the thesis are organized as follows:

Chapter 2 describes the mechanical and electrical setup of the BPS that

are used in this thesis. Specifically, the main characteristics of the linkage

mechanism that are used for motion transmission from the servo motor to

the system plate as well as the main characteristics and restrictions of the
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hardware components, such as the touch screen, servo system and different

drivers. It also presents the physical configuration with electrical connection

diagram of these components in order to have a better understanding of the

system operation .

Chapter 3 presents the considerations and assumption that are taken for

the mathematical modeling of the BPS. This chapter also presents the cal-

culation of the kinetic and potential energies, kinematics with the deduction

of the dynamics equations using the Euler-Lagrange approach to derive the

nonlinear model. Also, this chapter presents the BPS using state space repre-

sentation and the assumption that are used to linearize the system dynamics.

Chapter 4 presents the design process of linear controllers including the

theory of these controllers, controller design in the continuous and discrete

time fashions. In the same way for the observer, the design process is pre-

sented using linear approaches, such as the Luenberger observer. The pole

placement and LQR method are considered in the designing of the different

controllers.

In Chapter 5, simulations result are presented and the performance of the

different controllers are compared.

Chapter 6 presents the experimental results of each approach that are

raised in Chapter 5 using different reference trajectories.

Conclusions and outlook of the thesis are presented in Chapter 7.
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Chapter 2

Structure of the BPS

2.1 Mechanical Structure of the BPS

Since our BPS must be designed such that the ball is free to roll on the

plate, two servo motors that are controlled independently must be linked to

the plate through a two-linkage mechanism. Each linkage mechanism has

a universal joint which enables the plate to rotate in both directions at the

same time. A third universal joint is attached to the center rod and the plate.

The mechanical parts of the BPS is illustrated in Fig. 2.1,which contains;

1. The BPS base which caries all the other components of the system.

2. Plate holder which is used to hold the resistive touch screen.

3. The central shaft which is used between structure base and the middle

of plate holder. Its job is holding the plate holder from the center point.

4. The servo motor holder which fits the main base, and it will be fixed

by nuts and screw.
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2.1. MECHANICAL STRUCTURE OF THE BPS

Figure 2.1: 2D view of BPS.

5. Two independent two-linkage mechanism which is used to convert ro-

tation motion from servo motor to linear motion in the plate.

To analyze our linkage mechanism of our system, Fig. 2.2, can be used

to show all dimensions and angles.

Figure 2.2: Linkage mechanism for the plate rotation.

(3.11)-(3.12)
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To understand the linkage mobility, initially, the value of the angles (ε

and ε1 ) and the lengths of all straight lines (a, b, c and d) in Fig. 2.2

are supposed to be known. When the motor arm (Link 1) is moved with a

specific angle θ1, then the value of the angle γ1 can be found by:

θ1 + ε+ γ1 = 180 (2.1)

Then, based on the value of the angle γ1, the length ’e’ can be computed

by :

e =
√
a2 + b2 − 2ab cos γ1 (2.2)

Therefore, the values of angles γ3, γ6 and γ7 can be computed as :

γ3 = cos−1
[
d2 + e2 − c2

2de

]
(2.3)

γ6 = cos−1
[
a2 + e2 − b2

2ae

]
(2.4)

γ7 = 90− (γ6 + ε1) (2.5)

Accordingly, when the servo motor is moved with a specific angle (θ1),

then the value of angle that will deliverd to the plate (θ3) is as follows:

θ3 = γ3 − γ7 (2.6)

These equations (2.1)-(2.6) will be used within the Arduino programming

code to calculate the specific final angle that the servo motor will move to

balance the rolling ball on a specific point on the plate.
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The mechanical values and parameters of the BPS that are used in this

thesis can be summarized in Table 2.1, where the x, y, z axes are shown in

Fig. 2.2 and the mass moment of inertia of the plate and ball were calculated

according to [24] .

Table 2.1: Parameters of the BPS

Parameters Description Value Unit

m Ball mass 0.260 Kg

r Radius of the ball 0.02 m

Ipx Mass moment of inertia of the plate about x axis 0.4 Kg.m2

Ipy Mass moment of inertia of the plate about y axis 0.676 Kg.m2

Ipz Mass moment of inertia of the plate about z axis 1.076 Kg.m2

Ib Mass moment of inertia of the ball 10.4104 ×

10−4

Kg.m2

g Gravitational acceleration 9.89 m/s2
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2.2 Electrical Structure of the BPS

To stabilize the ball on the desired position on the plate, the system must

be able to alter the inclination of the plate around the two orthogonal x

and y axis. This is achieved by two servo motors which is connected to

the plate by two pairs of universal linkage rod. A four wire resistive touch

screen which acts as a plate, will provide the ball position in two dimensions

(x and y) as an input to the Arduino microcontroller. Then the Arduino

microcontroller will be used to calculate the necessary output signals from

a control law. Finally, the servo motors receive these control signals and

rotate the plate with angles α and β to result the ball movement on the

plate in x and y directions, respectively. The state variables of the BPS are

sent from the Arduino microcontroller to the personal computer (PC) via

serial port to draw the state variables outputs. For the MPC strategy, A new

Arduino library was created to connect Arduino uno microcontroller with PC,

where an Arduino uno is being used as a central control to manage the input

and output signals between BPS system and PC. Firstly, the resistive touch

screen will provide the ball position (x, y) to the Arduino microcontroller,

then the arduino will sent the data of ball position directly via serial port

to the PC. The PC contains a Matlab program that is used for designing

and implementation a real-time MPC strategy and to calculate the control

signals, then the PC will sent the control signals serially to the Arduino

microcontroller. The servo motors receives these signals from Arduino to

rotate the plate with α and β. Fig. 2.3 below visualizes the basic elements

and flow of information through the system.
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Figure 2.3: Flow of information in BPS.

The electrical parts of the BPS include a touch screen to determine the

ball position, servo motors to change the title angles of the plate and the

interfacing circuits that connect touch screen and servo motors with the

controller. Fig. 2.4 demonstrates the electrical connection between different

parts of BPS.
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Figure 2.4: Electrical schimatic diagram of the BPS.

2.2.1 Resistive Touch Screen.

A resistive touch screen is a two dimensional sensing device which is con-

structed of two separated material by spacers. A dc voltage must be applied

across resistor network. Therefore, when a screen is touched by a ball, the

value of resistance will change at a given point [42]. Fig. 2.5 illustrates the

interface circuit between the Arduino microcontroller with a four wires touch

screen. To get the y touch screen position, the Arduino microcontroller sets

A0 to +5V and A2 to GND, after that, the microcontroller uses Pin 3 to read

the analogue value to represent the y coordinate of the touch point. To get

the x touch screen position, the microcontroller sets A1 to +5V and A3 to

GND, then the controller uses Pin 2 to read the analogue value to calculate

the x coordinate of the touch point.
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Figure 2.5: Arduino microcontroller and four wires touch screen interface

circuit.

2.2.2 Servo Motors

A servomotor is a simple electric motor with a rotary or linear actuator which

has the ability to provide precise control of torque, speed, acceleration or posi-

tion using closed-loop feedback. It also has a relatively customized controller.

It often has a dedicated console to control of a servo motor [32]. In this the-

sis we use FS5106B servo motor which has operating speeds (0.18sec/60◦ at

4.8V and 0.16sec/60◦ at 6.0V ). In addition, the operated torque that can

delivered by the servo motor (5Kg.cm at 4.8V and 6Kg.cm at6.0V ) [22].
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2.2.3 Microcontroller

In this work, Arduino Uno R3 will be used as a microcontroller. Arduino Uno

is a microcontroller board based on 8-bit the ATmega 328P. It has 14 digital

input/output terminals, where six of them can be used as a pulse width mod-

ulation (PWM) outputs. It has six analog inputs, a 16 MHz quartz crystal,

a USB connection, a power jack, and a reset button [2].

Four of analogue pins and two digital pins were used from Arduino Uno

for reading x and y positions from resistive touch screen. In addition, two

digital pins were used as a PWM outputs as a control law to move a servo

motor at a predicted angle.
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Chapter 3

Mathematical Modeling of the

BPS

The mathematical model of any mechanical system can be derived using two

methods; 1- The classical Newton method which is used for the systems that

have multiple degrees of freedom. 2- Modern Euler-Lagrange method which

will be used in this thesis. First, the Lagrangian function is defined as follows

[71, 23, 39]:

L(qi, q̇i, t) = T (q̇i, t)− V (qi, t) (3.1)

where L is the Lagrangian function which represents the difference be-

tween the potential energy V and the kinetic energy T , qi ∈ {x, y, α, β}

stands for x and y direction coordinate to represent the system states and

q̇i ∈
{
ẋ, ẏ, α̇, β̇

}
is the system state derivatives.

Then, the general Euler-Lagrange equations is defined as:

d

dt

∂T

∂q̇i
− ∂T

∂qi
+
∂V

∂qi
= Qi (3.2)
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where Qi represents the composite force which acting on the system.

3.1 Mathematical Model of the BPS

For the derivation of the mathematical model of BPS, the following assump-

tions are made for the free body diagram of BPS shown in Figure 3.1 [6, 35]:-

1. The ball and the plate are in contact all the time and the rolling occurs

without slipping.

2. The ball is completely symmetric and homogeneous.

3. All friction forces and rotational moments are neglected.

The free body diagram of BPS as shown in Fig. 3.1.

Figure 3.1: A free body diagram of the BPS.

Since the generalized coordinates of the ball position are x and y axis with

the origin at the plate center, we must assume that the plate inclination α

and β are driven by generalized torques τx and τy which act on the plate

in the corresponding direction. Therefore, the system has four degree of
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freedom (DOF); two for ball motion along the x and y-axis respectively and

two in the inclination of plate in rotation about the x and y-axis [69].

The kinetic energy of the ball is given by rotational energy relative to the

centre of the rolling ball as well as translational energy of the center of the

ball, that means :

Tb =
1

2
m(ẋ2 + ẏ2) +

1

2
Ib(w

2
x + w2

y) (3.3)

where the relations between translational and rotational velocities are:

ẋ = rwx and (3.4)

ẏ = rwy (3.5)

Therefore, the kinetic energy of the ball is given by

Tb =
1

2
(m+

Ib
r2

)(ẋ2 + ẏ2) (3.6)

We consider that the ball is a point mass which is placed in any (x,y)

position and it rotates around its center. Then the kinetic energy of the plate

is

Tp =
1

2
(Ip + Ib)(α̇2 + β̇2) +

1

2
m(x2α̇2 + 2xα̇yβ̇ + y2β̇2) (3.7)

Then the total kinetic energy of the system T can be yielded by summing

Tb and Tp, i.e.;

T =
1

2
(m1 +

Ib1
r21

)(ẋ21 + ẏ21) +
1

2
(Ip + Ib)(α̇2 + β̇2

+
1

2
m(x2α̇2 + 2xα̇yβ̇ + y2β̇2)

(3.8)

22



3.1. MATHEMATICAL MODEL OF THE BPS

The total potential energy of the ball with respect to horizontal plane in

the center of the inclined plate is given by:

V = mg(x sinα + y sin β) (3.9)

Then, the total energy L of the system by substituting Eqs (3.8) and (3.9)

in Eq. (3.1) we yield :

L =
1

2
(m+

Ib
r2

)(ẋ2 + ẏ2) +
1

2
(Ip + Ib)(α̇2 + β̇2

+
1

2
m(x2α̇2 + 2xα̇yβ̇ + y2β̇2)−mg(xsinα + ysinβ)

(3.10)

Applying Lagrange-Euler equation of motion Eq. (3.2) to the total energy

of the BPS Eq. (3.10), we obtain the following nonlinear differential equations

:

τx = (Ip + Ib +mx2)α̈ + 2mxẋα̇ +mxyβ̈ + (mẋy +mxẏ)β̇ +mgxcosα

(3.11)

τy = (Ip + Ib +my2)β̈ + 2myẏβ̇ +mxyα̈ + (mẋy +mxẏ)α̇ +mgycosβ

(3.12)

(m+
Ib
r2

)ẍ−mα̇2x−mα̇yβ̇ +mgsinα = 0 (3.13)

(m+
Ib
r2

)ÿ −mxα̇β̇ −mβ̇2y +mgsinβ = 0 (3.14)
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The description of variables and parameters of model-deducing process

definitions, are listed in Table 3.1.

Table 3.1: The Parameters and Variables of Mathematical Model

Symbol Description Unit

m Ball mass. Kg

r Radius of the ball. m

Ip Mass moment of inertia of the plate. Kg.m2

Ib Mass moment of inertia of the ball. Kg.m2

x, y Ball displacement in the x or y directions, respectively. m

ẋ, ẏ Velocity of the ball in the x or y axes, respectively. m/s

α,β Plate inclination angle in the x or y directions, respectively rad

α̇, β̇ Angular velocity of the plate from x or y axes, respectively. rad/s

τx, τy Torque applied to the plate in the x or y axes, respectively. Kgm2/s2

wx, wy Angular Velocity of the ball in the x or y axes, respectively. rad/s

g Gravitational acceleration. m/s2

The Eqs. (3.11)-(3.12) show the effect of external torque on BPS and how

the plate inclination dynamics is influenced by these tourques. Eqs. (3.13)-

(3.14) describe the ball motion on the plate, and show that the acceleration

of the ball movements depends on the angle and angular velocity of the plate

inclination [20].

The interpretation of the some terms in Eqs. (3.13)-(3.14) are listed in

Table 3.2 [29, 31].
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Table 3.2: Interpretation of the particular terms in Eqs (3.13)-(3.14)

Term Interpretation

(Ip+Ib+mx
2)α̈ and (Ip+Ib+my

2)β̈ Torques as a product of inertia of the ball and plate

with angular acceleration about x and y axes, respec-

tively.

mα̇2x+mα̇yβ̇ The centrifugal torque resulting from plate rotation

mxyβ̈ + mẋyβ̇ + mxẏβ̇ ,mxyα̈ +

mẋyα̇ +mxẏα̇

Influence of gyroscopic moments in x and y axes, re-

spectively.

2mxẋα̇ and 2myẏβ̇ Coriolis accelerations in x and y axes, respectively.

mgsinα and mgsinβ Moment as a product of ball weigh in x and y axes,

respectively.

3.2 Linear Model of the BPS

The BPS system can be rewritten in a matrix form due to Eqs (3.11)-(3.14)

by choosing [x1 x2 x3 x4 x5 x6 x7 x8]
T = [x ẋ α α̇ y ẏ β β̇]T and u = [τx τy]

T

25



3.2. LINEAR MODEL OF THE BPS

as follows:-



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8



=



x2

A(x1x
2
4 + x4x5x8 − g sinx3)

x4

0

x6

Ax5x
2
8 + x1x4x8 − g sinx7)

x8

0



+



0 0

0 0

0 0

1 0

0 0

0 0

0 0

0 1



u

where A = m

m+
Ib
r2

.

The approximate moment of inertia value for the solid ball’s is Ib = 2
5
mr2.

Therefore Eqs. (3.13)-(3.14) can be written as:

m(
5

7
ẍ− (xα̇2 + yα̇β̇ + g sinα)) = 0 (3.15)

m(
5

7
ÿ − (yβ̇2 + xα̇β̇ + g sin β)) = 0 (3.16)

However, above Eq. (3.15)-(3.16) can be simplified by considering the

following assumptions:

1. We assume that, the angle of inclination for the plate −30◦ ≤ (α, β) ≤

30◦ with slow rate of change for the plate inclination, which means that

sinα ' α, sin β ' β, α̇2 ' 0, β̇2 ' 0 and α̇β̇ ' 0.

2. We assume α and β angels are considered as an system inputs instead of

the torque moments τx and τy, which means that the Eqs. (3.11)-(3.12)
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3.2. LINEAR MODEL OF THE BPS

could be dropped out from the state-space representation.

After these simplifications the equations of the system can be rewritten

as follow:

5

7
ẍ+ gα = 0 (3.17)

5

7
ÿ + gβ = 0 (3.18)

By assuiming α and β as inputs to BPS, the transfer function of seperate

x and y axes as follow:

G(s) =
x(s)

α(s)
=

g
5
7
s2

=
7.07

s2
(3.19)

G(s) =
y(s)

β(s)
=

g
5
7
s2

=
7.07

s2
(3.20)

Based on basic linearizing assumptions , the simplified BPS state space

representation can be obtained as follows:-



ẋ1

ẋ2

ẋ5

ẋ6


=



x2

0

x6

0


+



0 0

−5
7
g 0

0 0

0 −5
7
g


α
β



y1
y2

 =

1 0 0 0

0 0 1 0




x1

x2

x5

x6


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3.2. LINEAR MODEL OF THE BPS

The BPS dynamics shows that the multi-input-multi-output (MIMO)

BPS system which can be regarded as two single-input-single-output (SISO)

sub-systems
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Chapter 4

Control Approaches of the BPS

Since the BPS is commonly used system in a control lab for testing. Several

control theories and strategies can be tested using the BPS in a control lab.

The main challenge of the BPS is to build a controller that can stabilize the

ball on a desired position on the plate, or to track the ball to a predefined

position. Furthermore, such a controller must reject random disturbances

which act on the ball or on the plate within physical constrains of the device.

However, several challenges in BPS raise due to the following facts :

1. In general, the open loop of BPS is unstable at a desired operating

point.

2. Some of the BPS states are not measured directly such as linear veloc-

ities which must be accurately estimated.

3. The external disturbances that act on the system are not measurable.

The control scheme for the BPS consists of two main loops. The outer

loop is used to regulate a ball position (x, y) on the plate to a desired position.

The outputs of this loop are plate inclinations. Then, the inclinations of the

plate are sent to the inner loop as reference. A servo motor controller in
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the inner loop will derive plate slopes to follow the desired reference [12, 68].

To implement this design, the plate must reach the angle that is given by

the outer loop before the ball’s position is measured again [62]. Moreover,

the inner control loop can be only designed by taking the motor physical

limitations into account; motor current, motor torque and maximum angles .

The block diagram of the control loops of the BPS is shown in Fig. 4.1 . The

inner loop consists of the servo motor which has an internal proportional-

integral (PI) controller that controls its shaft position with a desired plate

angle (α or β), so the torque of the servo motor is controlled indirectly [1].

Figure 4.1: Control loops of the BPS.

In this work, we use five control methods to control the ball position of

the BPS. In order to compare between the responses and performances of

these methods, some of the requirements are fixed, namely the maximum

response settling time (Ts), the maximum percentage overshoot (OS%) and

the steady state error (ess). These requirements are fixed to, 2.1 second, 10

% and zero, respectively.

In the upcoming sections, control theories and strategies that are based

on the linearized BPS model will be designed and discussed, namely;

� PID controller.
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4.1. PID CONTROLLER

� State feedback controllers (regulator, observer and discrete controller).

� Linear quadratic regulator and tracker (LQR and LQT), that are based

on the linear optimal control theory.

� Linear model predictive controller (LMPC).

4.1 PID controller

The general PID control formula in continuous time is as follows [66]:

u(t) = KP e(t) +KI

∫ t

0

e(t)dt+KD
de(t)

dt
(4.1)

where KP , KI , KD are the proportional, integral and derivative gains that

interprets current, past and future errors, respectively.

By taking the Laplace transformation for the both side of the Eq. (4.1)

[60]. The transfer function of the PID controller that represent the relations

between inputs and outputs of the system is as follow:

K(s) = KP +KI
1

s
+KDs (4.2)

The transfer function of the PID controller in Eq. (4.2) can be also repre-

sented by a proportional plus derivative (PD) compensator that is cascaded

by a proportional plus integral (PI) compensator. Thus, the PID controller

configuration is of the form:

GPID(s) =
KD(s2 + KI

KD
s+ KP

KD
)

s
(4.3)

In the designing of PID control algorithm, there are several algorithms

that can be used to satisfy the given performance [7]. In order to obtain an
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4.1. PID CONTROLLER

easier PID control algorithm, the MIMO system of BPS is simplified to a

simpler combination of two SISO systems, then both of x axis and y axes

can be controlled individually. For designing a PID controller, a MATLAB

SISOtool was used to get a controller gains and make tuning of the PID

controller [64], where the MATLAB SISOtool depends on the root locus

that examine how the roots of the system change with variation of system

parameter.

To use this tool, the open loop transfer function of the BPS in Eq. (3.19)

must be defined, then to achieve the desired response, two zeros of the PID

controller are used and located at left side of the root locus with one pole at

the origin, thus introduce additional -135 degrees. For more detail on this

method and tool see [64]. The PID controller gains are listed in Table 4.1.

Table 4.1: PID controller parameters.
KP KI KD

1.69 1.12 0.662

To find the discrete time of PID controller that is will be implemented

on the microcontroller, we define and differentiate with respect to the time

the continuous time PID controller of Eq. (4.1), that means;

du(t)

dt
= Kp

de(t)

dt
+KIe(t) +KD

d2e(t)

dt2
(4.4)

where the values of KP , KI and KD in discrete time will be the same of

continous time.

Applying the backward differentiation method to Eq. (4.4) using Euler

approximation with sampling time (T ) and instant time (k)gives :
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4.2. STATE-SPACE CONTROLLERS

u(kT )− u(kT − T )

T
= Kp

e(kT )− e(kT − T )

T
+KIe(kT )+KD

ė(kT )− ė(kT − T )

T

(4.5)

Solving for u(KT ) finally gives the discrete-time PID controller:

u(kT ) = (
Kp

T
+KI+

KD

T 2
)e(kT )−(

Kp

T
+

2KD

T 2
)e(kT−T )+

KD

T 2
e(kT−2T )+u(kT−T )

(4.6)

4.2 State-Space Controllers

The general linear time invariant state space model of a system with states

X, inputs u and outputs Y is written in the following form [15]:

Ẋ = AX +Bu (4.7)

Y = CX +Du (4.8)

where X ∈ R4, u ∈ R2 , Y ∈ R2 and p ∈ R2 are the system state, input,

output and disturbances vectors, respectively, and A ∈ R4×2, B ∈ R4×2,

C ∈ R2×4 and D ∈ R2×2, are the system, input, output and feed-forward

matrices, respectively.

The state-space representation of our BPS can be shown in Fig. 4.2.
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4.2. STATE-SPACE CONTROLLERS

Figure 4.2: Block diagram representation of the state space equations.

To design a controllers based on a state space matrices, the controllability

is a key issue that must be studied firstly. The BPS is said controllable if and

only if the input can be found that takes every state variables from a desired

initial state to a desired final state [59]. A system is said to be completely

state controllable if the Kalman controllability matrix Cm ∈ R4×2 is of full

rank, that is it contains n linearly independent column or row vectors [16].

Therefore :

CM = [B AB A2B A3B] (4.9)

When CM has a full row rank, then the system is controllable, and it

is possible to find a gain vector K. To check the controllability of the pair

matrices (A,B) of the BPS, the controllability matrix is calculated firstly,

and then its rank is found. The controllability test is performed using Matlab

1.

Since CM has a full row rank 4, it follows that the system is fully con-

trollable, and the gain vector K can be calculated, so that to achieve the

1To calculate the controllability matrix and it is rank, we use ’ctrl’ and ’rank’ commands,
respectively.
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4.2. STATE-SPACE CONTROLLERS

stability response at the desired operating point, meet the transient specifi-

cations, and satisfy robustness specification. Two methods can be used to

find the gain matrix vector K, which are represented by the pole placement

method [37] and optimal method; however the pole placement method is used

to design a state feedback controller, on the other hand, the optimal method

is used to design the optimal quadratic controller.

4.2.1 Regulator Design

A state space regulator is designed to bring the ball at the origin of the plate,

and to improve its dynamic response specifications by keeping the ball at it

is stationary point as shown in Fig. 4.3. This regulator overcomes the effects

of disturbances and non-zero initial conditions. Two methods are used to

design the state space regulator, namely:

1. State feedback method.

2. Quadratic optimal method.
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4.2. STATE-SPACE CONTROLLERS

Figure 4.3: Regulator blocks diagram.

State Feedback Regulator

The gain matrix K can be computed by using the state feedback method

to place the eigenvalues of the system matrix (closed-loop poles ) in the

desired location. Now, form the closed-loop system by feeding back each

state variable to the input as shown in Fig. 4.3 , forming :

u = −KX (4.10)

where K ∈ R2×4

This means that the control signal u is determined by an instantaneous

state which is known as state feedback. Substituting equation (4.10) in Eq.

(4.7) gives the state equations for the closed-loop system as follow :
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4.2. STATE-SPACE CONTROLLERS

Ẋ = (A−BK)X (4.11)

Y = CX (4.12)

where the eigen values of matrix (A−BK) are called regulator poles.

Assuming the natural frequency (wn) and the damping ratio (ζ) of the

desired closed loop poles which meet the system requirements rang between

(3.2 to 3.3) rad/s and( 0.6 to 6.5) respectively to avoid the axes redundancy.

The closed loop poles (p) location will be at :

p =

−1.9048 + 2.5976i −1.9048− 2.5976i

−2.1450 + 2.5078i −2.1450− 2.5078i


the gain matrix K are found using Matlab program 2, which achieves the

desired closed loop poles.

K =

−1.5470 −0.6062 −0.0643 −0.0167

0.0431 −0.0046 −1.4858 −0.5497


In order to implement the state feedback controller on the Arduino mi-

crocontroller, we need to get the discrete equation form of the continuous

state space equations that is represented in the Eqs. (4.7)-(4.8). Assuming

that, the sampling time of the discretization Ts is very small value (Ts � 1),

the state equations for the discrete time state feedback controller are set as

follows:

~X(k + 1) = F ~X(k) +G~u(k) (4.13)

2We use the Matlab function ’place’ to find the closed loop gain.
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4.2. STATE-SPACE CONTROLLERS

~Y(k) = C~X(k) (4.14)

where k ∈ N is a discrete time instances , F ∈ R4×4 ≈ 1 + TsA and

G ∈ R4×2 ≈ TsB are the state and input matrices, respectively.

Now design a descrite time state feedback controller, the controllability

of the pair F,G were checked, this can be performed using Matlab 3. Which

also leads the full rank and thus fully controllable system. However, we can

get the discrete time model equation using Matlab software by using some

built in commands 4, which is converts continuous time dynamic system to

discrete time dynamic system with using zero-order-hold(ZOH) method [3].

By defining the sampling time Ts = 10 ms, the discrete time poles Pd to

place the eigenvalues of the system at the desired location will be at :

Pd =

0.7988 + 0.2123i 0.7988− 0.2123i

0.7817 + 0.2002i 0.7817− 0.2002i


This follows that the discrete time giants Kd that achieve the desired

closed loop poles as follow:

Kd =

−1.5145 −0.6011 −0.0615 −0.0167

0.0410 −0.0047 −1.4574 −0.5465


The simulink discrete state feedback regulator schematic diagram is shown

in Fig. 4.4.

3We use the Matlab function ’ctrb’ and ’rank’ to find the controllability of the system.
4We use the Matlab function ’c2d’ to find the discrete-time system.
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4.2. STATE-SPACE CONTROLLERS

Figure 4.4: The simulink model for discrete time state feedback controller.

Linear Quadratic Regulator (LQR)

The Linear quadratic regulator (LQR) method serves to find the optimal

control input u(t), which will drive the system from its initial states X(t0) to

some final values X(tf ). It is a powerful technique for designing controllers

for complex systems that seeks to find the optimal controller which mini-

mizes a given cost functional. The cost functional is parameterized by two

matrices, R which represent the weight of system input, and Q to represent

the weight of state vector. LQR obtains the optimal control input by solving

the algebraic Riccatti equation based on the state space model [53].

The cost function to calculate the state feedback control gains is given as

J =

∫ ∞
0

(XTQX + uTRu)dt (4.15)

where Q ∈ R4×4 and R ∈ R2×2 are positive semi-definite matrices which rep-

resent the state penalty matrix and the control penalty matrix, respectively

[13], X and u respectively represents matrices corresponding to system state
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4.2. STATE-SPACE CONTROLLERS

and input. The matrix Q and R determine the relative importance of the

error and the expenditure of this energy [36, 43].

The optimal gain vector K is calculated as

K = R−1BTS (4.16)

where S is symmetric positive definite matrix which is determined by alge-

braic Riccati equation as

− SA− ATS −Q+ SBR−1BTS = 0 (4.17)

The designer is free to select the matrices Q and R, but the selection of

matrices Q and R is normally based on an iterative procedure using experi-

ence and physical understanding of our problem.

The optimal feedback control law of LQR controller is then

u = −KX(t) (4.18)

so the state equations for the closed-loop system can be rewritten as :

Ẋ = (A−BK)X (4.19)

Y = CX (4.20)
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4.2. STATE-SPACE CONTROLLERS

In this work, Q and R were chosen as follow :

Q =



90 0 0 0

0 1 0 0

0 0 85 0

0 0 0 1


, R =

20 0

0 20

 (4.21)

The Q and R matrices were selected based on achieving the requirements

of the controller design in terms of settling time and maximum percentage

overshoot, and to be able to apply the control law of linear quadratic regulater

with the mechanical and electrical system parts that were selected such as

the servo motors. These matrices were evaluated according to the obtained

simulation results.

After the Riccati Eq. (4.17) is solved, the optimal gains that minimize

the objective functional of Eq. (4.15) is computed as 5

K =

−2.1213 −0.8096 0.0000 0.0000

−0.0000 −0.0000 −2.0616 −0.7990


Therefore, the corresponding closed loop poles (p) of the system are lo-

cated in the left side and represented as follow :

p =

−2.8365− 2.6112i −2.8365 + 2.6112i

−2.7994 + 2.5708i −2.7994− 2.5708i


The state equations for the discrete time optimal linear quadratic con-

trollers are set in Eqs. (4.13)-(4.14). By defining the sampling time Ts = 10

ms, the discrete-time poles (Pd) to place the poles at the desired location

5We use the matlab function ’lqr’ to find the closed loop gain.
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will be in the discrete time as :

Pd =

0.9721 + 0.0250i 0.9721− 0.0250i

0.9717− 0.0254i 0.97170.0254i


The discrete time quadratic optimal controller state gain matrix (Kd) is

calculated by using Matlab software using built in commands 6, the discrete

value of the gain matrix Kd for the LQR controller as follow :

Kd =

−2.0620 −0.7974 0.0000 0.0000

0.0000 0.0000 −2.0046 −0.7871


4.2.2 Tracker Design

In this section, it is desired to design an optimal controller that able to track

trajectories that changed over the time as a desired reference input of the

ball, that means to stabilize the ball at any position on the plate.

Linear Quadratic Tracker (LQT)

The linear quadratic tracker (LQT) is formulated to reduce a cost function in

terms of the plant’s states and inputs. The LQT controller typically consist of

two terms feed-forward and state feedback . The feed-forward term is needed

to provide the optimal tracking of time varying reference trajectories, while

the state feedback guarantees system stability by computing the gain matrix

as in previous section. These characteristics of solving the problem over

time varying make the LQT controller more appropriate than the LQR when

trying to accomplish more precise trajectory following. LQT block diagram

is shown in Fig. 4.5.

6We use the Matlab function ’dlq”’ to find the discrete-time system gains and poles.
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Figure 4.5: LQT schematic diagram.

The LQT controller is applied to our system to find the optimal control

input sequence (u) to make the ball on the plate to track a reference trajectory

in an optimal manner. This can be obtained by minimizing the finite-horizon

performance index (J):

J =
1

2
(CX−r)TS(CX−r)+

1

2

∫ ∞
0

[(CX−r)TQ(CX−r)+uTRu]dt (4.22)

where r ∈ R2×2 is a reference trajectory.

Therefore, the solution of the finite-horizon LQT problems will be:

u = −KX +R−1BTv (4.23)

where v is acquired with solving algebraic equation

v = −((A−Bk)T )−1CTQr (4.24)

The specifications design of LQT controller are the same of the specification

design of LQR controller. According to that, Q and R matrices were chosen
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4.3. LINEAR MODEL PREDICTIVE CONTROL (LMPC)

with the same value and the state gain matrix K that are used in the design

as follow :

K =

−2.1213 −0.8096 0.0000 0.0000

−0.0000 −0.0000 −2.0616 −0.7990


ince the specification design and weighting matrices (Q, R) of LQR con-

troller is similar to LQT controller, then the discrete time poles (Pd) and the

state gain matrix (Kd) of LQR and LQT are the same as follow :

Pd =

0.9721 + 0.0250i 0.9721− 0.0250i

0.9717− 0.0254i 0.97170.0254i



Kd =

−2.0620 −0.7974 0.0000 0.0000

0.0000 0.0000 −2.0046 −0.7871


4.3 Linear Model Predictive Control (LMPC)

Linear model predictive control (LMPC) is a type of a control algorithm

that optimize (minimize) an open loop performance objective by compute

a manipulated input profile within utilizing process model that subject to

model equations and constraints on states and controls over a future time

horizon. This means, at instate time k, we measure and estimate system

state variables. Then we compute an optimal control by solving an open-

loop optimal control problem [48, 63]. The MPC principle is depicted in Fig.

4.6.
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Figure 4.6: MPC Strategy [26].

Consider a discrete-time dynamic system in the state space form:

~X(k + 1) = F ~X(k) +G~u(k) (4.25)

~Y(k) = C~X(k) +D~u(k) (4.26)

where k ∈ N is a discrete time instances (k = 1, 2, 3...), F ∈ R4×4 ≈ 1 + TsA

and G ∈ R4×2 ≈ TsB are the state and input matrices, respectively.

The system is subject to the following constraints:

umin ≤ u(k) ≤ umax, ≤ |∆u(k)|∆umax, Ymin ≤ Y(k) ≤ Ymax

where umin ≤ umax, Ymin ≤ Ymax, and ∆umax > 0 are vectors of upper

and lower bounds.
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MPC strategy is based on the iterative optimization technique, that

means at each sampling time k, MPC estimate the current state, then obtain

the optimal input of the system by solving an optimization problem. For the

discrete time model, the following cost function can be formulated and used

for calculation of the optimal input trajectory over the control horizon:

J(k) =

Np∑
i=1

Q(i)[Ỹ(k + i|k)− r(k + i|k)]2 +
Nu∑
i=1

R(i)[u(k + i− 1|k)]2 (4.27)

where Q ∈ R4×4 and R ∈ R2×2 are appropriate weighting matrices, Ỹ(k+i|k)

denotes the predicted output, r(k + i|k) denotes the reference trajectory of

the desired output signal at sampling instant k, u(k + i − 1|k) denotes the

vector of control predicted values, Np is the predictive horizon where Np ≥ 1

and Nu is the control horizon where 0 < Nu ≤ Np.

The predicted state vectors can be obtained by using the previous pre-

dicted state vectors [58], which can be computed as follows:

X(k + 1|k) = F (X(k)) +G(X(k))(u(k − 1) + ∆u(k|k)),

X(k+2|k) = F (X(k+1|k−1))+G(X(k+1|k−1))(u(k−1)+∆u(k|k)+∆u(k+1|k)),

...

X(k +Np|k) = F (X(k +Np − 1|k − 1)) +G(X(k +Np − 1|k − 1))

(u(k − 1) + ∆u(k|k) · · ·∆u(k +Np − 1|k)) (4.28)

Define following vectors:

Ỹ(k) = [Y(k|k) Y(k + 1|k) · · · Y(k +Np − 1|k)]T ,

46



4.3. LINEAR MODEL PREDICTIVE CONTROL (LMPC)

ũ(k) = [u(k|k) u(k + 1|k) · · · u(k +Np − 1|k)]T ,

X̃(k) = [X(k|k) X(k + 1|k) · · · X(k +Np − 1|k)],

r(k) = [r(k|k) r(k + 1|k) · · · r(k +Np − 1|k)]T

The linear predictor of the system output in matrix form based on the

state space description of the system (4.25) is defined as [58]:

Ỹ(k) = W0X(k) + E0u(k) (4.29)

where W0 represent the response of the system and E0 represent the forced

response of the system. Both matrices have form:

W0 =



C

CF

...

CFNp



E0 =



D 0 · · · 0

CG D

CFG CG D
...

...
. . . 0

CFNp−1G CFG CG D


Substitute Eq. (4.29) in Eq. (4.27), we obtain the the cost function of

the predictor as follows:

J(k) = [W0X(k|k)+E0u(k|k)−r(k|k)]TQ(W0X(k|k)+E0u(k|k)−r(k|k))+u(k|k)TRu(k|k)

(4.30)
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4.4. OBSERVER DESIGN

Based on the derivation of the vectors according to [58] with minimizing

the cost function of the predictor with the condition ∂J(k)
∂u(k)

= 0, the final form

of the optimal control law is as :

uoptimal =
1

2
(ET

0 QE0 +R)−1((Y (k)− r(k))TQE0) (4.31)

The optimal control of MPC controller is computed by optimization

method based on quadratic programming, which are implemented in the

Matlab simulink environment as the (MPC toolbox). The optimal control

law subject to the inputs constraints is given by the minimization of the

relation:

min(
1

2
u(k)T (ET

0 QE0 +R)u(k) + (Y (k)− r(k))TQE0u(k)) (4.32)

where (ET
0 QE0 + R) and ((Y (k) − r(k))TQE0) are denotes as the Hessian

and gradient matrices.

4.4 Observer Design

The state space controllers assumes that all states of the system are measured

and available. However, we only measure the position of the ball (x, y)

directly. For this reason, an observer must be used to calculate or to estimate

the state variables that are not reachable directly from the plant. Here, the

observer is a model of the plant, which is done by creating a copy of the

system linear dynamic equations, and adding an output term. Furthermore,

the use of state space observer reduces the noise data by dealing with system

mathematical equations away from derivation and integration.
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4.4. OBSERVER DESIGN

Fig. 4.7 shows the basic concept of observer design, where the mea-

sured outputs of the BPS Y are compared with the estimated outputs of the

observer Ỹ, and then the estimated error output signal is fed back to the

observer.

Figure 4.7: Observer design process.

The state equation of the observer is found in Fig. 4.7 as follows:

˙̃X = AX̃ +Bu + L(Y − Ỹ) (4.33)

Ỹ = CX̃ +D~u(k) (4.34)

where X ∈ R4 and Ỹ ∈ R2 are the estimated system states and estimated

output measurements vectors, respectively, and L ∈ R4×2 is the observer gain

matrix.

The error signal between the measured output Y and the observer output

Ỹ is:

ẽ = X− X̃ (4.35)
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4.4. OBSERVER DESIGN

Thus from Eq. (4.33) and Eq. (4.7)we get

Ẋ− ˙̃X = (A− LC)(X− X̃) (4.36)

Now, the error dynamic equation is:

˙̃e = (A− LC)ẽ (4.37)

However, the dynamics of the observer must be made much faster than

the dynamics of control system, so the poles of the error characteristic equa-

tion Eq. (4.37) must be place faraway to the left from those of the controlled

system to achieve the desired speed of the observer, which can be achieved by

choosing an appropriate gain vector L [51]. By using pole placement method

or optimal control method, the gain vector L can be obtained in a similar

way to the feedback gain, where observer poles are selected to be four to ten

times faster than the poles of system.

However, to check the observability, if the system states can be found by

the knowledge and observing the input u(t) and output Y(t), then the system

is said to be observable, otherwise the system is said to be unobservable [8].

The observability of the pair matrix A,C can be checked by the observability

matrix OM , such that:

OM = [C CA CA2 CA3]T (4.38)

We also use the built in commands in the Matlab to check the observ-

ability 7 which also implies that the BPS is observable.

7We use the Matlab function ’obsv’ and ’rank’ commands to find the rank and observ-
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4.4. OBSERVER DESIGN

The poles of observer should be faster ten times than the poles of con-

troller as mentioned previously, so the poles of observer Po is:

Po =

[
−19.7920 + 20.1919 −19.7920− 20.1919i −25.1327 + 18.8496ii −25.1327− 18.8496i

]

By using the pole placement and optimal methods respectively within

Matlab command 8 , the gains vector L are found to be:

L =



40.0000 −5.1522

1056.0000 −584.0000

−1.8000 41.1398

81.3000 1056.0000



L =



24.2499 0

2.5451 0

0 23.5726

0 2.5451


4.4.1 Discrete Time Observe Design

In order to implement the observer on the Arduino microcontroller, we need

to discretize the continuous time observer to discrete time observer with

discrete time instances k. The observer equations in the discrete time are set

as follows:

˜X(k + 1) = F X̃(k) +G~u(k) + Ld(~Y − Ỹ(k)) (4.39)

ability of the system.
8We use the Matlab function ’place’ and ’lqr’ commands to find the closed loop poles

of the system.
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4.4. OBSERVER DESIGN

Ỹ(k) = CX̃(k) +D~u(k) (4.40)

By subtract Eq. (4.39) from Eq. (4.13), we get the final observer error

dynamic equation :

~e(k + 1) = (F − LdC)~e(k) (4.41)

The discrete-time observer schematic is shown in Fig. 4.8.

Figure 4.8: Discrete-time observer.

Since the pair (A,B) is observable, so the pair of matrices (F,G) is observ-

able. To get the discrete time observer gain vector (Ld), the pole placement

and optimal methods respectively are used through Matlab software:
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4.4. OBSERVER DESIGN

Ld =



0.4234 0.0119

8.6692 0.5949

−0.0116 0.4156

−0.5857 8.6186



Ld =



−0.1487 −0.0006

0.6287 0.0043

0.0000 −0.1482

−0.0016 0.6264


In order to implement the discrete observer, we write the discrete state

space in explicit equations. Eq. (4.35) can be as;

X̃(k + 1) = (F − Ld)X̃(k) +Gu(k) + LdY (k) (4.42)

Therefor, Eq. (4.42) will be rewritten as follows



X̃1(k + 1)

X̃2(k + 1)

X̃3(k + 1)

˜X4(k + 1)


=





F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44


−



Ld11 Ld12

Ld21 Ld22

Ld31 Ld32

Ld41 Ld42


C11 C12 C13 C14

C21 C22 C23 C24






X̃1(k)

X̃2(k)

X̃3(k)

X̃4(k)


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4.4. OBSERVER DESIGN

+



G1

G2

G3

G4


u1
u2

+



Ld11 Ld12

Ld21 Ld22

Ld31 Ld32

Ld41 Ld42


Y1(k)

Y2(k)

 (4.43)
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Chapter 5

Simulation Results

The next step after controller design process is simulation. The simulation

step is very important to check wether the response of the simulation result

meets the design specification or not. MATLAB and simulink platforms are

used to simulate system response and performance based on the controller

gain martix (K) and observer gain vector (L) that are obtained in Chapter

4, with the nonlinear system model that is derived in Chapter 3.

Since the equations of motion of the x and y axis are similar, the re-

sults that were applied to the x axis are represented only. Initially, a step

resposne of magnitued 0.1 m is simulated, which mean the ball was required

to track the position from (0,0) to (0.1,0.1). Then, a sine wave is simulated

to represent motion along x axis with radius = 0.1 m for all different type of

controllers.
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5.1. PID CONTROLLER

5.1 PID Controller

In order to stabilize the ball on a desired position with respect to the re-

quirements, a PID controller are designed for x -axis and another one for y

-axis as they are expressed in two separate differential equations. Analysis

of the motion along the x - and y -axes is similar and hence only the former

is presented. Fig. 5.1 shows the simulation result for step response with

disturbance at second 6 for obtained controller for the position of the ball

with velocity and angular velocity along x - axis. The controller parameters

that are used in the simulation as following; KP = 1.69, KI = 1.12 and

KD = 0.662.

Fig. 5.1 shows the response of ball with approximated settling time of

3.13 sec which is does not meet the design requirement, a random disturbance

was applied to the controller at the second 6. Table 5.1 includes a comparison

between the simulated result and desired response.

Table 5.1: Compared performance specifications for PID controller.
- Design Simulated

Percentage overshoot 10 18.3
Settling time (sec.) 2.1 3.13
Steady state error 0 0

In Fig. 5.2 , the simulation result for the tracking of a desired sine wave

is presented for the position of the ball with velocity and angular velocity

along x - axis with some arbitrary disturbances.

5.2 State Feedback Controller

The second control method that is tested within simulation result is a state

feedback controller. The simulation object is to stabilize the ball on the center
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5.2. STATE FEEDBACK CONTROLLER

Figure 5.1: Simulated response for ball position, velocity and angle α by using
a PID controller for tracking a step reference along x -axis with disturbance.

point at the plate with reject any disturbances that effect on the system.

To satisfy the system requirements , the state feedback gain K:

K =

−1.5470 −0.6062 −0.0643 −0.0167

0.0431 −0.0046 −1.4858 −0.5497


Fig. 5.3 shows the simulation result for stabilizing the ball on a desired

position for step response with a random disturbance at the second 6, the

position of the ball with the velocity and inclination plate on the x - axis was

presented in the result .

Fig. 5.3 shows the response of the ball with settling time of 2.105 sec
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5.2. STATE FEEDBACK CONTROLLER

Figure 5.2: Simulated response for ball position, velocity and angle α by using
a PID controller for tracking of sine wave along x -axis with disturbance.

which approximately meets the design requirement. Table 5.2 includes a

comparison between the simulated result and desired response.

Table 5.2: Compared performance specifications for state feedback controller.
- Design Simulated

Percentage overshoot 10 6.36
Settling time (sec.) 2.1 2.105
Steady state error 0 0

In Fig. 5.4, the tracking of desired sine wave are presented with arbitrary

disturbance.

58



5.3. LQR AND LQT CONTROLLER

Figure 5.3: Simulated response for ball position, velocity and angle α by
using a state feedback controller for a step input along the x -axis with
disturbance.

5.3 LQR and LQT Controller

Since the specifications design and weighting matrices Q and R of LQR

controller are simillar to LQT controller, then the simulation results of the

both controllers are identical. Here, the feedback gain of the both controllers

are based upon the minimization of a quadratic cost function. We chose the

Q, R matrices as in Eq. (4.21).
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5.3. LQR AND LQT CONTROLLER

Figure 5.4: Simulated response for ball position, velocity and angle α by
using a state feedback controller for tracking of sine wave along x -axis with
disturbance.

Q =



90 0 0 0

0 1 0 0

0 0 85 0

0 0 0 10


, R =

20 0

0 20



The state-feedback gain K is

K =

−2.1213 −0.8096 0.0000 0.0000

−0.0000 −0.0000 −2.0616 −0.7990


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5.3. LQR AND LQT CONTROLLER

Simulation results of the proposed controllers for x - axis dynamics are

presented in Fig. 5.5 for fixed step reference point, and in Fig. 5.6 for

time-varying reference trajectory of tracking sine wave. From Fig. 5.5, the

settling time is exactly equals to 1.956 second which meets to the design

requirements.

Figure 5.5: Simulated response for ball position, velocity and angle α by
using LQR and LQT controller for a step step reference along x -axis with
disturbance.

Table 5.3 compares between the simulated result with desired response

designed.
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5.4. LMPC CONTROLLER

Table 5.3: Compared performance specifications for LQR and LQT con-
troller.

- Design Simulated

Percentage overshoot 10 3.006
Settling time (sec.) 2.1 1.965
Steady state error 0 0

5.4 LMPC Controller

The last control method that is tested within simulation result is a LMPC.

The simulation object is to stabilize the ball on the center point at the plate

with reject any disturbances that effect on the system. Here, the simulation

parameters are listed in table 5.4

Table 5.4: Simulation parameters for LMPC.
Description Value Unit

Simulation time 10 sec.
Sample period 0.01 sec.
Prediction horizon 10 samples
Control horizon 2 samples

Fig. 5.7 shows the response of ball with approximated settling time of 1.83

sec. which is meet the design requirement. Table 5.5 includes a comparison

between the simulated result and desired response.

Table 5.5: Compared performance specifications for LMPC.
- Design Simulated

Percentage overshoot 20 2.7
Settling time (sec.) 2.1 1.83
Steady state error 0 0

In Fig. 5.8 , the simulation result for the tracking of a desired sine wave

is presented for the position of the ball with velocity and angular velocity

along x - axis with some arbitrary disturbances.
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5.4. LMPC CONTROLLER

Figure 5.6: Simulated response for ball position, velocity and angle α by
using LQR and LQT controller for a sine wave trajectory along x -axis with
disturbance.
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5.4. LMPC CONTROLLER

Figure 5.7: Simulated response for ball position, velocity and angle α by
using LMPC for a step reference along x -axis with disturbance.
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5.4. LMPC CONTROLLER

Figure 5.8: Simulated response for ball position, velocity and angle α by
using LMPC for a sine wave trajectory along x -axis with disturbance.
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Chapter 6

Experimental Results

The state variables of the BPS such as the ball position (x, y), ball velocity

(ẋ, ẏ), plate deflection angle (α, β) and deflection angle velocity (α̇, β̇) can be

obtained from the system as a feedback data. These data can be used to an-

alyze the performance of the system and can be plotted to demonstrate and

analyze the response of the system to stabilizing the ball and to the external

disturbances. The process of transferring data from Arduino microcontroller

to another software affects on the stability of the system and increase mea-

surements error because this process requires an additional communication

time. In order to reduce the measurements error, the feedback digital data

are sent directly from Arduino serially to the Excel program to save the quan-

tified digital data, then the ”MATLAB” program is used to draw the outputs

[50, 38]. For LMPC strategy, the Matlab program was used directly to save

and draw the outputs.

In the BPS, each plate side is supported mainly through the pivot at the

center with a deticated servomotor. The plate deflection angles (α and β)

are changed from these two servomotor according to feedback state variables

in which to move the ball to roll to the center of the plate or to follow a
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predefined trajectory. Initially, the ball begins rolling on the plate at specified

or at any location at the plate, then the controller will move the ball to roll

to a stable location or to follow a predefined trajectory. To test the stability

and the performance of system, a random disturbance is applied on the ball

spontaneously.

There are two types of experiment that are performed to verify the BPS

performance. The first experiment is using a random location stabilization

to set the ball at the center of the plate, this experiments is used for some

of control strategy such as (MPC, PID, LQR and state feedback controller).

The second experiment is using curve trajectory tracking to create a circle

and square tracking on the plate for some of control approach. The trajectory

experiment is used for tracker controller like (MPC, PID and LQT controller).

In Arduino microcontroller, there are two sampling rates that are used to

perform the control strategy. The first sampling rate is 1 ms using accurate

timing loop based on microcontroller internal clock for acquiring the ball

position from touch screen. The second sampling rate is 10 ms using the

internal interrupt to perform the control action of the control method.

In order to perform the different control strategy, there are some problems

that must be solved, namely:

1. The softness surface of the touch screen affects on the ball speed and

orientation, and the speed unifirmity may lead to control difficulties.

2. The inclination of the plate is limited (±30◦), so the contol action is

constrained.

3. Different nonlinear factors in the system mechanism, which may affect

to the stability of the system.

67



6.1. STABILITY TEST

The BPS system presented in Fig. 6.1 is used to validate the dynamical

model and to perform the experimental tests of the different control system

designed in this thesis.

Figure 6.1: BPS.

6.1 Stability Test

For stability test, regardless of the initial conditions of the system, the ball

position (x,y) should be enforced to move to at the expected location on the

plate.

In this test, the ball will move smoothly to the central point of the plate.

In order to verify and to evaluate the performance of our different controllers,

the initial x and y ball position have been set as [x(0), y(0)]=[0.08, 0.05]m.

All other states have been initialized to zero. After stabilizing the ball at the

central point of the plate, bounded disturbances are applied to the system.

6.1.1 PID Controller

Using the PID controller, the BPS was tested to control the ball on the

central point. The actual value of controller gain that are used on the real

system are; KP = 1.69, KI = 1.12 and KD = 0.662.
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6.1. STABILITY TEST

Figure 6.2 and Figure 6.3 show the response of position and velocity on

the x and y - axes for stabilizing the ball at a central position using the

PID controller. Initially, it is obvious the system starts to oscillate for a

long time to stabilize the ball on the central point. The system needs for 4.8

sec. to settle the ball with an error less than 3 mm and velocity of 0 mm/s

on the central point. Then, the ball was pushed by the hand to the third

qudrant, but after 6 seconds, the ball was returned to the central point again.

The plate deflection angles (α,β) are not settled at 0 ◦ along the x and y -

axes ,which means that the controller is affected by the small disturbances as

shown in Figure 6.4. The ball position trajectory on the xy-plane is presented

on the Figure 6.5.

Figure 6.2: x-y position of ball with disturbance for PID controller stability
test.

Table 6.1 compares between the actual result of PID controller with the

simulated result and the value that are used in the design.
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6.1. STABILITY TEST

Figure 6.3: Velocity of the ball along x-y-axis for PID controller stability
test.

Table 6.1: Performance specifications with simulated and real results for PID
controller.

- Design Simulated Actual

Percentage overshoot 10 18.3 26.8
Settling time (sec.) 2.1 3.13 4.8
Steady state error 0 0 3

6.1.2 State Feedback Controller

The ball is moved to the central point of the plate by applying the state

feedback controller with controller gains K as

K =

−1.5145 −0.6011 −0.0615 −0.0167

0.0410 −0.0047 −1.4574 −0.5465


By applying this controller, the ball and plate start oscillate for 2.87 sec.,

the ball is then settled at the plate’s center with an error less than 0.6mm
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6.1. STABILITY TEST

Figure 6.4: Plate deflection angles (α,β) along x-y-axis for PID controller
stability test.

and ball velocity of 0 mm/s. The plate’s angle are settled at 0◦. As an input

disturbance, e.g., the ball was pushed by a hand toward the third quadrant

at the 14th sec. to check the robustness of this controller. The BPS oscillated

again and then settled after 1.6 sec., the ball return to center of the plate

again. Figure 6.6 and Figure 6.7 show the response on the x and y axes for

stabilizing the ball at the central location with the velocity of the ball on the

time domain, while the plate deflection angles (α, β) are demonstrated in the

Figure 6.8, it should be noted that the system needs to tilt the plate to the

maximum possible degree in order to back the ball to the central position,

which means a high exerting torque is needed . The ball position trajectory

with disturbance on the x and y axes is shown in the Figure 6.9.

Table 6.2 compares between the actual result of state feedback controller

with the simulated result and the value that are used in the design.
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6.1. STABILITY TEST

Figure 6.5: System equilibrium with disturbance for ball position for PID
controller stability test.

Table 6.2: Performance specifications with simulated and real result for state
feedback controller.

- Design Simulated Actual

Percentage overshoot 10 6.36 11.30
Settling time (sec.) 2.1 2.105 2.87
Steady state error 0 0 0.6

6.1.3 LQR Controller

LQR controller is applied here to the real system. This controller tends to

stabilize the ball on the central position of the plate by the lowest torque

exerted as quickly as possible. The actual controller gains K that are used

on the real system upon the calculation of Chapter 4:

K =

−2.0620 −0.7974 0.0000 0.0000

0.0000 0.0000 −2.0046 −0.7871


We test the performance of the static position tracking to the central point

using the LQR controller. Figure 6.10 shows the response of the position of

the ball on the x and y - axes. Initially, the system starts to oscillate for about

1.92 sec. to stabilize the ball on the central point with an error less than 1.3
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6.1. STABILITY TEST

Figure 6.6: x-y position of ball with disturbance for state feedback controller
stability test.

mm and ball velocity of 0mm/s and the angle of plate’s are settled at 0 ◦.

At the 11th sec., the ball was pushed by the hand to the third quadrant, but

after 1.86 sec., the ball returned to the plate’s central location again. Figure

6.11 shows the velocity of the ball on the x and y axes. The plate deflection

angles α, β are shown in Figure 6.12, we can see that, LQR controller uses

less torque to stabilize the system, so the maximum angle is needed since

stabilize the system is 20◦.

The trajectory of the ball position with disturbance on the x andy axes

is shown in Figure 6.13.

Table 6.3 compares between the actual result of LQR controller with the

simulated result and the value that are used in the design.
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6.1. STABILITY TEST

Figure 6.7: Velocity of the ball along x-y-axes for state feedback controller
stability test.

Table 6.3: Performance specifications with simulated and real result for LQR
controller.

- Design Simulated Actual

Percentage overshoot 10 3.006 11.9
Settling time (sec.) 2.1 1.965 1.84
Steady state error 0 0 1.3

6.1.4 LMPC Controller

LMPC strategy is applied here to the real system. This controller tends to

stabilize the ball on the central position of the plate by the lowest torque

exerted as quickly as possible. The LMPC parameters that are used on the

real system are; sampling time= 0.01 sec., prediction horizon = 10 samples

and control horizon = 2 samples. These horizon lengths are set to use the

maximum amount of memory allowed by the Matlab software.

By applying this controller for the static position tracking to the central

point , the ball and plate start oscillate for about 1.09 sec., the ball is then

settled at the plate’s center with an error less than 1 mm and ball velocity
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6.1. STABILITY TEST

Figure 6.8: Plate deflection angles (α,β) along x-y-axes for state feedback
controller stability test.

of 0 mm/s. The plate’s angle are settled at 0◦. The ball was pushed by the

hand as an input disturbance toward the third quadrant at the 14th sec. to

check the performance of this controller. The BPS oscillated again and then

settled after 2.26 sec., the ball return to center of the plate again. Figure 6.14

and Figure 6.15 show the response on the x and y axes for stabilizing the

ball at the central location with the velocity of the ball on the time domain,

while the plate deflection angles (α, β) are demonstrated in the Figure 6.16,

it should be noted that the system needs to tilt the plate by 18◦ to back the

ball to the central position, which means less exerting torque is needed . The

ball position trajectory with disturbance on the x and y axes is shown in the

Figure 6.17.

Based on the result that are obtained from LMPC and comparing it

with the results of other controllers, we note the extent of LMPC controller
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6.1. STABILITY TEST

Figure 6.9: System equilibrium with disturbance for ball position for state
feedback controller stability test.

superior performance compared to other controllers for the use of real time

control with Matlab simulink. Real time contol brings two main adanteges:

reduced time for control and it can be easy to change and update the real

model according to the real measured data andit allows to obtain information

about the real process in a fast way.

Table 6.4 compares between the actual result of LMPC with the simulated

result and the value that are used in the design.

Table 6.4: Performance specifications with simulated and real results for
LMPC controller.

- Design Simulated Actual

Percentage overshoot 10 2.7 3.1
Settling time (sec.) 2.1 1.83 1.09
Steady state error 0 0 1

A comparison between the five selected methods of control to stabilize the

ball in a stable position is presented in Table 6.5. We can say that the LMPC

algorithm has the best performance with settling time of 1.09 sec. and an

error less than 1 mm, and had the best performance with respect of optimal

of used energy of the BPS with 11 ◦ of plate deflection angle. Although the
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6.2. TRAJECTORY TRACKING TEST

Figure 6.10: x-y position of ball with disturbance for LQR controller stability
test.

LMPC algorithm showed the best results for stabilizing the ball in a stable

position in terms of the least posible time to recover the ball at the specific

positionand the lowest possible angle to tilt the plate, the LMPC algorithm

required to use a personal computer with specific speifications like a high

performance of central processing unit and random access memory in order

to control the BPS, in addition to using an Arduino uno to transfer data to

and from the personal computer.

6.2 Trajectory Tracking Test

Two types of the trajectories are selected for these tests: circle and rectan-

gular trajectories. To make the ball follows a circular trajectory in the x-y

plane, two arbitrary sinusoidal signals trajectories are applied to the system

along x axis (xd = M sin qt) and along y axis (yd = M cos qt), where M

=0.065m and q=1rad/s. However, in the square trajectory, there are four

points which represent corners of the square. To move from one point to an-
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6.2. TRAJECTORY TRACKING TEST

Figure 6.11: Velocity of the ball along x-y-axes for LQR controller stability
test.

other point, the control will change only one coordinate of the ball position

with the fixed value of the other coordinate

6.2.1 LQT Controler

The linear quadratic tracker (LQT) was tested to track a circular trajectory.

The actual controller gains for LQT are:

K =

−2.0620 −0.7974 0.0000 0.0000

0.0000 0.0000 −2.0046 −0.7871


The LQT controller tracking time for a circle trajectory is about 4.13 sec.

. Figure 6.18 shows the tracking profile for motion along the x and y axes.

The output position of the trajectory tracking along x and y axes gives a

circular trajectory with a radius of 0.065 m with an error less than 2 mm as

shown in Figure 6.19.
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6.2. TRAJECTORY TRACKING TEST

Figure 6.12: Plate deflection angles (α,β) along x-y-axes for LQR controller
stability test.

For a square trajectory, the control process through all sides of rectangular

takes 7 sec,. Figure 6.20 shows the motion of the square tracking along x

and y axes. Figure 6.21 shows the ball tracking trajectory of the xy plane.

6.2.2 PID Controller

The performance of PID controller for trajectory tracking was tested on the

real system. For a circle trajectory tracking test, the tracking time is about

5.9 second. The tracking position along x and y axes is shown on the Figure

6.22. The output position of the x-y plane gives a circular trajectory with a

radius of 0.065 m with an error 2 mm as shown in the Figure 6.23.

In the square trajectory test, the controller takes about 16.67 sec. to

complete one cycle with maximum steady state error of 1.5 mm. Figure 6.24

shows the motion of the square tracking along x and y axes and Figure 6.25
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6.2. TRAJECTORY TRACKING TEST

Figure 6.13: System equilibrium and and disturbance test of ball position for
LQR controller stability test.

shows the ball square tracking trajectory of the x-y plane.

6.2.3 LMPC

The linear model predictive control (LMPC) was tested to track a circular

trajectory.The LMPC algorithm tracking time for a circle trajectory is about

4.25 second. Figure 6.26 shows the tracking profile for motion along the x

and y axes. The output position of the trajectory tracking along x and y

axes gives a circular trajectory with a radius of 0.065 m with an error less

than 1 mm as shown in Figure 6.27.

For a square trajectory, the control process through all sides of square

takes 8 seconds. Figure 6.28 shows the motion of the square tracking along

x and y axes. Figure 6.29 shows the ball tracking trajectory of the xy plane.

Table 6.6 presents a comparison between the selected methods of control

for circle and square trajectorty. It can be said that through the results,

the LQT and LMPC controllers showed close results through in terms of the

lowest maximum steady state error, but for the the lowest average steady

state error in tracking the rolling ball to the desired path, LQT controller
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6.2. TRAJECTORY TRACKING TEST

Figure 6.14: x-y position of ball with disturbance for LMPC stability test.

showed the best result for a circle tracking path and LMPC strategy for a

square tracking path.
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6.2. TRAJECTORY TRACKING TEST

Figure 6.15: Velocity of the ball along x-y-axes for LMPC stability test.

Figure 6.16: Plate deflection angles (α,β) along x-y-axes forLMPC stability
test.
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6.2. TRAJECTORY TRACKING TEST

Figure 6.17: System equilibrium with disturbance for ball position for LMPC
stability test.

Table 6.5: Static position tracking comparison.

Control
method

Settling time
(sec.)

Maximum an-
gle (◦)

Error steady
state (mm)

Hardware

PID 4.8 16 3 Arduino uno micro-
controller (20$).

State-
feedback

2.87 30 1 Arduino uno micro-
controller (20$).

LQR 1.84 18 1.3 Arduino uno micro-
controller (20$).

LMPC 1.09 11 1 PC with Arduino
uno microcontroller
(1000$).
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6.2. TRAJECTORY TRACKING TEST

Figure 6.18: x-y position of ball for circle LQT controller tracking test.

Figure 6.19: Circular trajectory of ball for circle LQT controller tracking
test.
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6.2. TRAJECTORY TRACKING TEST

Figure 6.20: x-y position of ball for rectangular LQT controller tracking test.

Figure 6.21: Square trajectory of ball for rectangular LQT controller tracking
test.

85



6.2. TRAJECTORY TRACKING TEST

Figure 6.22: x-y position of ball for PID controller circle tracking test.

Figure 6.23: Circular trajectory of ball for PID controller circle tracking test.
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6.2. TRAJECTORY TRACKING TEST

Figure 6.24: x-y position of ball for PID controller square tracking test.

Figure 6.25: Square trajectory of ball for PID controller square tracking test.
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6.2. TRAJECTORY TRACKING TEST

Figure 6.26: x-y position of ball for circle LMPC controller tracking test.

Figure 6.27: Circular trajectory of ball for circle LMPC controller tracking
test.
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6.2. TRAJECTORY TRACKING TEST

Figure 6.28: x-y position of ball for square LMPC controller tracking test.

Figure 6.29: Square trajectory of ball for square LMPC controller tracking
test.
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6.2. TRAJECTORY TRACKING TEST

Table 6.6: circle and Square position tracking comparison.

Control method Tracking
time (sec.)

Maximum error
(mm)

Average error
(mm)

PID (Circle) 6.69 2.3 1.4

LQT (Circle) 4.13 2 0.6

LMPC (circle) 4.25 1.8 1.2

PID (Square) 16.67 1.5 1.3

LQT (Square) 7 1.5 1.1

LMPC (Square) 8 1.3 0.7
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Chapter 7

Conclusion

In this thesis, a BPS is developed, tested and controlled. With this BPS,

five different control strategies were applied. It could be concluded that all

of the controllers were able to stabilize the BPS with different performances

and tracking some reference position such as circle and square for the rolling

ball. However it was difficult to have the same results as simulation, because

of the nonlinear characteristics of the real BPS, .

Different control schemes including (LMPC, PID and state space con-

trollers) are applied to design a regulator and tracker controllers for the BPS.

These controllers are designed based on the linearized mathematical model

of the BPS, and then these controllers discretize using digital control theory

which are applied to the real BPS. The ball position is provided from the

resistive touch screen, but the other states of the system are not provided, so

the observer is then designed to get the other states of the system since it is

an essential part of the controller algorithm. It is found that such linear con-

trollers work well with the nonlinear BPS. To achieve further improvements

on the performance of the BPS, a nonlinear control theories may be used.

It can be observed with a detailed examination of the simulation results
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of different types of the selected controllers that the response of the stability

test and trajectory tracking test had some differernt result from experimen-

tal results. The reason for this difference is interconnection terms in the

dynamical model that are neglected in controller design procedure. These

uncompensated neglected terms are act on the ball adversely and cause this

unexpected behaviour for some controllers.

For stability test, although the LMPC controller need for a special per-

sonal computer to control of BPS, but the controller showed superior per-

formance over other types of controllers, since it needs less time to stabilize

the ball on the origin point and lowest used energy. On other hand, LMPC

and LQT cotrollers showed similar result for trajectroty tracking test, where

LQT controller has best result for following the circle trajectory and LMPC

strategy for the square trajectory in terms of minimum average steady state

error.

Several problems and difficulties were encountered during working with

this project. One of the main difficulties was existed in the frequency of

the Arduino microcontroller, as the frequency of the Arduino is not fully

sufficient to perform the required tasks, so the computation time of the tasks

becomes slow, which leads to slowing down in sending the commands and

sometimes the system becomes unstable.

Further improvements on system performance can be achieved using an

accurate solution for speed estimation. Several ideas are being studied to

tackle this problem including continuous observers and discrete observers.

Although the controllers has been successfully stabilized the ball on the

center of the plate with different performance and some controllers track the

predefined trajectory , controller technique must be improved so that a robust

controller and a better response can be achieved. More control theories can
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be applied and tested, like a neural networks, sliding mode controller (SMC)

and other fuzzy logic controller.
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Appendix A

LQR and LQT Matlab Code

% Firas Al-haddad

% Modeling and Control of a Ball and Plate System

% January, 2021

% LQR and LQT Matlab Code

% LQR controller

clear

clc

close all

syms z1 z2 z3 z4 u1 u2 % system state and inputs

z0=[0 0 0 0]*0;%cm % initail condition [X Xdot Y Ydot]

% System parameters

mb=112e-3; % mass in Kg

r=30e-3/2; % radius in m

Ib=(2/5)*mb*r2̂

g=9.81; % gravity
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% Input forces (u1,u2)

f1=-mb*g*sin(u1)/(mb+Ib/2̂);

f2=-mb*g*sin(u2)/(mb+Ib/r2̂);

% System states (z1 ... z4)

zdot1=z2;

zdot2=f1;

zdot3=z4;

zdot4=f2;

z=[z1; z2; z3; z4];

zdot=[zdot1; zdot2; zdot3; zdot4];

u=[u1; u2];

% System matrix A

Az=jacobian(zdot,z);

A=subs(Az,{z1, z2, z3, z4, u1, u2},{0,0, 0, 0,0, 0});

A=double(A);

% Input matrix B

Bu=jacobian(zdot,u);

B=subs(Bu,{z1, z2, z3, z4, u1, u2},{0,0, 0, 0,0, 0});

B=double(B);

C=[1 0 0 0; 0 0 1 0];

Co = ctrb(A,B); % System Controllability

RANK=rank(Co) % System Rank

n=4;% 4 states
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m=2;% 2 inputs

p=2;% 2 outputs

% LQR Method

Q= [90 0 0 0

0 1 0 0

0 0 80 0

0 0 0 1];

R= [10 0; 0 10]*2;

K=lqr(A,B,Q,R) % Gain matrix

Pc= eig (A-B*K) % closed poles

K10= lqr(A,B,Q*2.78,R/46.6);

Pc10= eig (A-B*K10)

%% Observer design

Om=obsv(A,C); % observability matrix Om

Ro=rank (Om) % Check the rank of Om, if rank == n --> the system

is observable

L=lqr(A’,C’,Q*2.78,R/46.6)’

%% Discrete system

[Kd,P,Pcz] = dlqr(F,G,Q,R);

Poz= exp(10*Ts)*Pcz;

Ld= place (F’,C’,Poz)’

%% LQT
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C1= [1 0 0 0;0 0 0 0;0 0 1 0;0 0 0 0];

r=[0.1,0,0.1,0];r=r’;

V= inv ((A-B*K)’)* C1’*Q*r;

S= -inv (R)*B’*V;

S=S’;

%% Discrete LQT

[Kd,P,Pcz] = dlqr(F,G,Q,R);

Sd=F-G*Kd;

Sd=-inv(Sd’);

Vd=Sd*C1’*Q*r;

%% Discrete LQR

Nd = inv(-C*inv(F-G*K - eye(n))*G)

N = inv(-C*inv(A-B*K - eye(n))*B)
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Appendix B

MPC Matlab Code and

Simulink

% Firas Al-haddad

% Modeling and Control of a Ball and Plate System

% January, 2021

% MPCMatlab Code

function zdot=BPMatFun(x)

u1=x(1);

u2=x(2);

z1=x(3);

z2=x(4);

z3=x(5);

z4=x(6);

Ib=1.67e-5;

m=0.15;
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r=0.02;

g=9.81;

f1=-m*g*sin(u1)/(m+Ib/r2̂);

f2=-m*g*sin(u2)/(m+Ib/r2̂);

zdot1=z2;

zdot2=f1;

zdot3=z4;

zdot4=f2;

zdot=[zdot1 zdot2 zdot3 zdot4];

end
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Appendix C

PID Matlab Code and Simulink

% Firas Al-haddad

% Modeling and Control of a Ball and Plate System

% January, 2021

% PID Matlab Code

% PID controller

clear

clc

close all

syms z1 z2 z3 z4 u1 u2 % system state and inputs

z0=[0 0 0 0]*0;%cm % initail condition [X Xdot Y Ydot]

% System parameters

mb=112e-3; % mass in Kg

r=30e-3/2; % radius in m

Ib=(2/5)*mb*r2̂

g=9.81; % gravity

100



% Input forces (u1,u2)

f1=-mb*g*sin(u1)/(mb+Ib/2̂);

f2=-mb*g*sin(u2)/(mb+Ib/r2̂);

% System states (z1 ... z4)

zdot1=z2;

zdot2=f1;

zdot3=z4;

zdot4=f2;

z=[z1; z2; z3; z4];

zdot=[zdot1; zdot2; zdot3; zdot4];

u=[u1; u2];

% System matrix A

Az=jacobian(zdot,z);

A=subs(Az,{z1, z2, z3, z4, u1, u2},{0,0, 0, 0,0, 0});

A=double(A);

% Input matrix B

Bu=jacobian(zdot,u);

B=subs(Bu,{z1, z2, z3, z4, u1, u2},{0,0, 0, 0,0, 0});

B=double(B);

C=[1 0 0 0 ; 0 0 1 0];

% From SISOTOOL

Kp = 1.69; % Proportional gain

Ki = 1.12; % Integral gain
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Kd = 0.662; % Derivative gain
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Appendix D

State Feedback Matlab Code

% Firas Al-haddad

% Modeling and Control of a Ball and Plate System

% January, 2021

% State Feedback Matlab Code

% State Feedback controller

clear

clc

close all

syms z1 z2 z3 z4 u1 u2 % system state and inputs

z0=[0 0 0 0]*0;%cm % initail condition [X Xdot Y Ydot]

% System parameters

mb=112e-3; % mass in Kg

r=30e-3/2; % radius in m

Ib=(2/5)*mb*r2̂

g=9.81; % gravity
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% Input forces (u1,u2)

f1=-mb*g*sin(u1)/(mb+Ib/2̂);

f2=-mb*g*sin(u2)/(mb+Ib/r2̂);

% System states (z1 ... z4)

zdot1=z2;

zdot2=f1;

zdot3=z4;

zdot4=f2;

z=[z1; z2; z3; z4];

zdot=[zdot1; zdot2; zdot3; zdot4];

u=[u1; u2];

% System matrix A

Az=jacobian(zdot,z);

A=subs(Az,{z1, z2, z3, z4, u1, u2},{0,0, 0, 0,0, 0});

A=double(A);

% Input matrix B

Bu=jacobian(zdot,u);

B=subs(Bu,{z1, z2, z3, z4, u1, u2},{0,0, 0, 0,0, 0});

B=double(B);

C=[1 0 0 0; 0 0 1 0];

Co = ctrb(A,B); % System Controllability

RANK=rank(Co) % System Rank

n=4;% 4 states
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m=2;% 2 inputs

p=2;% 2 outputs

z1=0.59133; z2=0.65; wn1=3.221148; wn2=3.3;

p1=-z1*wn1+i*wn1*sqrt(1-z12̂);

p2=conj (p1);

p3=-z2*wn2+i*wn2*sqrt(1-z22̂);

p4=conj (p3);

pc= [p1 p2 p3 p4]

K= place (A,B,pc)

Pc= eig (A-B*K)

% Observer design

Om=obsv(A,C); % observability matrix Om

Ro=rank (Om) % Check the rank of Om, if rank == n --> the system

is observable

Po=10*pc(1:4)

L=place(A’,C’,Po)’

% Discrete system

Ts= 1e-2;

[F,G]=c2d(A,B,Ts);

Pd=exp(pc*Ts);

Kd=place(F,G,Pd)

Poz=exp(Po*Ts)
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Ld=place(F’,C’,Poz)’
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