
Palestine Polytechnic University

Deanship of Graduate Studies and Scientific Research

Master Program of Mathematics

Iterative methods for Moore-Penrose

inverse

Zainab Abu-Iram

M.Sc. Thesis

Hebron - Palestine

December, 2018



Iterative methods for Moore-Penrose

inverse

Prepared by: Zainab Abu-Iram

Supervisor: Dr. Ali Zein

M.Sc. Thesis

Submitted to the Department of Mathematics at Palestine Poly-
technic University as a partial fulfillment of the requirement for the
degree of Master of Science.

Hebron - Palestine



Dedication

To my parents,

To my husband Taleb and his parents and

To my brothers and sisters.

Zainab Ali Abu-Iram

i



Acknowledgement

I am very grateful to my supervisor Dr. Ali Zein for all his help and encouragement.

I am very grateful to my internal referee Dr. Mohammad Adm for his valuable sugges-

tions on this thesis.

I thank my external referee Dr. Hasan Almanasreh for his useful comments and advice.

Also, my thanks to the members of the department of mathematics at the Palestine

Polytechnic University.

ii



Abstract

The Moore-Penrose inverse is one of the most important generalized inverses for arbitrary

singular square or rectangular matrix. It finds many applications in engineering and

applied sciences. The direct methods to find such inverse is expensive, especially for

large matrices. Therefore, various numerical methods have been developed to compute

the Moore-Penrose inverse.

This thesis is mainly concerned with the development of iterative methods to compute

the Moore-Penrose inverse. Besides our new results the thesis contains several recent

known iterative methods. The convergence properties of these methods are presented.

And, several numerical examples are given.

Our own results involve new family of second-order iterative algorithms for computing

the Moore-Penrose inverse. The construction of this algorithm is based on the usage of

Penrose equations with approximations for p-th root for a product of the matrix with

its inverse approximations. Convergence properties are considered. Numerical results

are also presented and a comparison with Newton’s method is made. It is observed

that the new methods require less number of iterations than that of Newton’s method.

In addition, numerical experiments show that these methods are more effective than

Newton’s method when the number of columns increases than the number of rows.

In addition, we establish a new iterative scheme by using a square of the product of

the matrix with its inverse approximations. By convergence analysis, we show that this

scheme is also a second order. Several numerical tests are made. It is observed that the

above family is more effective than this method.
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Chapter 1

Introduction

1.1 Overview

The inverse of a matrix appears frequently in various areas of applied mathematics and

engineering systems. In many applications, the matrix appears as singular or rectangu-

lar. The theory of generalized inverse has attracted a considerable attention over the

past few decades in order to deal with such matrices. The most important generalized

inverses is the so called Moore-Penrose inverse.

Moore-Penrose inverse initially introduced in 1920 by Moore and independently redis-

covered by Penrose in 1955 [1]. Since then, it has been extensively studied by many

researchers and many methods are proposed to compute it.

The Moore-Penrose inverse of an m× n complex matrix A, denoted by A†, is a unique

n×m matrix X satisfying the following four Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA,

where A∗ the conjugate transpose of a matrix A.

The importance of the Moore-Penrose inverse arises in several applications, for example,

in statistical regression analysis, prediction theory, control of robot manipulators as well

as signal and image processing, see [3, 11, 18, 19]. Recently, Soleimani et.al. [24] used

the Moore-Penrose inverse for balancing chemical equations.
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Chapter 1 – Introduction

In the last decades, many important methods to find the Moore-Penrose inverse of a

matrix have been developed. Both direct and iterative methods can be used to compute

the Moore-Penrose inverse.

One of the most commonly used direct methods is the Singular Value Decomposition

(SVD) method, see e.g. [1, 7]. This method is very accurate but time intensive since

it requires a large amount of computational resources, especially in the case of large

matrices.

An alternative and very important approach to calculate the Moore-Penrose inverse is to

use iterative methods. Iterative methods have attracted more attention in recent years,

see [5, 9, 13, 26–28] and the references cited there in.

The most frequently used iterative methods for approximating the inverse of a matrix

A ∈ Cm×n is the famous Newton’s Method [21]

Xk+1 = Xk(2I − AXk), k = 0, 1, 2, . . . . (1.1)

This method is a second-order iterative methods. Shultz in [21] found that the eigenval-

ues of I − AX0 must have magnitude less than 1 to ensure the convergence, where X0

is the initial choice.

Li et al. in [9] investigated the following third-order method, known as Chebyshev’s

Method,

Xk+1 = Xk(3I − AXk(3I − AXk)), k = 0, 1, 2, . . . . (1.2)

Esmaeili et. al. in [5] proposed new fourth-order method to compute the Moore-Penrose

inverse as follows

Xk+1 = Xk[9I − 26(AXk) + 34(AXk)
2 − 21(AXk)

3 + 5(AXk)
4], k = 0, 1, 2, . . . . (1.3)

2



Chapter 1 – Introduction

Among many such matrix iterative methods, the hyper-power iteration of the order p is

defined by the following scheme, see e.g. [26]

Xk+1 = Xk(I +Rk + · · ·+Rp−1
k ) = Xk

p−1∑
i=0

Ri
k, Rk = I − AXk. (1.4)

The iterative Equation (1.4) requires p matrix-matrix multiplications to achieve the p-th

order of convergence. The construction of this algorithm is based on Penrose equation

(2).

It is clear that the class of higher order iterative methods [26] coincide with Newton’s

method if the order is reduced to 2. Moreover, if p = 3 it reduces to Chebyshev method.

In 2018, Pan et. al. [15] proposed a matrix iterative method based on (1.4) which achieve

18th order of convergence by using only seven matrix multiplications per iteration loop.

In addition, the authors of [5, 23, 24] were able to reduce the number of matrix multi-

plications for higher order methods using (1.4).

Moreover, various iterative methods have been developed based on the matrix equation

f(X) = X−1 − A = 0, see e.g. [9, 23].

This thesis is mainly concerned with the iterative methods for computing the Moore-

Penrose inverse. Initially, we present basic definition of the Moore-Penrose inverse and

basic properties. Then, we consider the problem of balancing chemical equations as an

applications for the Moore Penrose inverse. In addition, several known iterative methods

are given. After that, we introduce our new iterative methods for computing the Moore

Penrose inverse. Several numerical experiments are made to show the applicability of

our results.
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Chapter 1 – Introduction

1.2 New results

Our attention is devoted to find a fast and efficient iterative method to compute the

Moore-Penrose inverse. We use the idea of A
1
2A

1
2 = A and the Penrose equations (1)

and (2) to propose the following iterative method

Xk+1 = Xk − 2Xk((AXk)
1
2 − I), (1.5)

after studying the convergence we find this method is a second-order iterative method.

Moreover, we study the properties of this method.

In addition, by using the idea of (1.5) we construct the family of second-order iterative

methods to compute the Moore-Penrose inverse as

Xk+1 = Xk − pXk((AXk)
1
p − I), p ∈ {2, 3, 4, . . . }. (1.6)

These methods are written in terms of p-th root of a square matrix AXk. Then ap-

proximations for the p-th root of a square matrix is used in computation. A wide set of

numerical tests show that these methods require less number of iterations than Newton’s

method. In addition, numerical experiments show that these methods are more efficient

than Newton’s method when the number of columns increases than the number of rows.

In this case the CPU time of our methods is also less than Newton’s method.

In addition, we propose other iterative method written as

Xk+1 = Xk − βXk((AXk)
2 − I). (1.7)

We prove that this method converges to the Moore-Penrose inverse and its convergence

is quadratic if β =
1

2
. Also, we discuss the properties of this method.

1.3 Outline

This thesis is organized as follows
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Chapter 1 – Introduction

Chapter 1 is an introduction chapter. It contains a short overview and a brief of our

new results.

Then Chapter 2 considers the basic definitions and basic properties of the Moore-Penrose

inverse. In addition, we present the theory of the singular value decomposition for the

computation of the Moore-Penrose inverse. Moreover, we give a practical application

for the Moore-Penrose inverse in chemical balancing equations.

Chapter 3 is devoted to some known iterative methods for computing the Moore-Penrose

inverse. Convergence properties of these methods are presented. Also, we give numerical

examples.

In Chapter 4, our new iterative methods are introduced. Two approaches are established.

Convergence analysis is studied and a set of numerical tests are given to investigate the

new methods.
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Chapter 2

Preliminaries

In this chapter, we present the singular value decomposition as a direct method to

compute the Moore-Penrose inverse. Then, Penrose equations and some properties of

the Moore-Penrose inverse are discussed. After that, least squares solutions are presented

as an application for the Moore-Penrose inverse. Indeed, linear least squares problems

occur in solving overdetermined linear systems, i.e. we are given more equations than

unknowns. In general, such an overdetermined system has no solution, but we may

find a meaningful approximate solution by minimizing some norm of the residual vector.

This solution is computed by using the Moore-Penrose inverse.

In addition, we present a practical application for the Moore-Penrose inverse in balancing

chemical equations. At the end of this chapter, some basic definitions and lemmas which

are essential in the rest of our thesis are given.

2.1 Singular value decomposition

In this section, we present a computationally simple and accurate way to compute the

Moore-Penrose inverse of a matrix by using the singular value decomposition (SVD), see

[1, 7].

For each m× n matrix A, the n× n matrix A∗A is Hermitian and positive semidefinite.

Therefore, the eigenvalues of A∗A are real and nonnegative.

For an m × n matrix A of rank r, the null space N (A) = {x ∈ Cn| Ax = 0} has

dimension dim(N (A)) = n− r.
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Definition 2.1.1. The nonnegative square roots of the eigenvalues of A∗A are called the

singular values of A.

Lemma 2.1.1. ([7]) For an n× n matrix A and it is adjoint A∗ we have

(Ax, y) = (x,A∗y),

for all x, y ∈ Cn, where (., .) denotes the Euclidean scalar product, (x, y) =
∑n

j=1 xjyj.

Theorem 2.1.2. ([7]) Let A be an m×n matrix of rank r. Then there exist nonnegative

numbers

µ1 ≥ µ2 ≥ . . . ≥ µr > µr+1 = · · · = µn = 0,

and orthonormal vectors u1, . . . , un ∈ Cn and v1, . . . , vm ∈ Cm such that

Auj = µjvj, A∗vj = µjuj, j = 1, . . . , r, (2.1a)

Auj = 0, j = r + 1, . . . , n, (2.1b)

A∗vj = 0, j = r + 1, . . . ,m. (2.1c)

For each x ∈ Cn we have the singular value decomposition

Ax =
r∑
j=1

µj(x, uj)vj. (2.2)

Each system (µj, uj, vj) with these properties is called a singular system of the matrix A.

Proof. The Hermitian and semipositive definite matrix A∗A of rank r has n orthonormal

eigenvectors u1, . . . , un with nonnegative eigenvalues µ2
1, . . . , µ

2
n, i.e.

A∗Auj = µ2
juj, j = 1, . . . , n, (2.3)

where µj can be ordered as

µ1 ≥ µ2 ≥ . . . ≥ µr > 0 and µr+1 = · · · = µn = 0.

Define

vj :=
1

µj
Auj, j = 1, . . . , r.

7



Chapter 2 – Preliminaries

Then,

(vj, vk) =
( 1

µj
Auj,

1

µk
Auk

)
=

1

µjµk
(uj, A

∗Auk)

=
1

µjµk
(uj, µ

2
kuk)

=
µk
µj

(uj, uk)

=

{
1 j = k,

0 j 6= k.

Hence, v1, . . . , vm are orthonormal.

Now, for (2.1a)

A∗vj = A∗
1

µj
Auj

=
1

µj
A∗Auj

=
1

µj
µ2
juj = µjuj, j = 1, . . . , r.

And from vj =
1

µj
Auj, we have

Auj = µjvj, j = 1, . . . , r.

Hence (2.1a) is proved.

Since N (A) = N (A∗A), then for j = r + 1, . . . , n we have

Auj = 0.

If r < m, by Gram-Schmidt orthogonalization procedure we can extend v1, . . . , vr to an

orthonormal basis v1, . . . , vm of Cm.

Since A∗ has rank r, we have

dim(N (A∗)) = m− r.
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From this we can conclude (2.1c).

Since u1, . . . , un form an orthonormal basis of Cn, then for x ∈ Cn

x =
n∑
j=1

(x, uj)uj,

then

Ax =
n∑
j=1

(x, uj)Auj

=
r∑
j=1

(x, uj)µjvj

=
r∑
j=1

µj(x, uj)vj.

Clearly, we can rewrite the Equations (2.1) in the form

A = V DU∗,

where U = (u1, . . . , un) and V = (v1, . . . , vm) are unitary n × n and m × m matrices,

respectively, and where D is an m× n diagonal matrix with entries

djj =

{
µj j = 1, . . . , r,

0 otherwise.

Example 2.1. Consider the matrix A =


0 1 1

√
2 2 0

0 1 1

.

9



Chapter 2 – Preliminaries

To compute its SVD, firstly, we compute the eigenvalues of A∗A.

A∗A =


2 2

√
2 0

2
√

2 6 2

0 2 2


The matrix A∗A has eigenvalues µ2

1 = 8, µ2
2 = 2 and µ2

3 = 0 and eigenvectors

u1 =



1√
6

3√
12
1√
12

 , u2 =



1√
3

0

− 2√
6

 and u3 =



1√
2

−1

2

1

2

 .

Now, we find v1, v2 and v3 by using Auj = µjvj to get

v1 =



1√
6

2√
6

1√
6

 , v2 =


− 1√

3
1√
3

− 1√
3

 and v3 =



1√
2

0

− 1√
2

 .

Hence, we have

U =



1√
6

1√
3

1√
2

3√
12

0 −1

2

1√
12

− 2√
6

1

2

 , V =



1√
6

− 1√
3

1√
2

2√
6

1√
3

0

1√
6

− 1√
3

− 1√
2

 , and D =


2
√

2 0 0

0
√

2 0

0 0 0

 .

10
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Then,

A = V DU∗ =



1√
6

− 1√
3

1√
2

2√
6

1√
3

0

1√
6

− 1√
3

− 1√
2




2
√

2 0 0

0
√

2 0

0 0 0





1√
6

3√
12

1√
12

1√
3

0 − 2√
6

1√
2

−1

2

1

2


2.2 Moore-Penrose inverse

The Moore-Penrose inverse is a generalization of the inverse of a non-singular matrix,

we present the Moore-Penrose inverse by using singular value decomposition. Moreover,

we introduce the Penrose equations. We conclude this section with basic properties of

the Moore-Penrose inverse.

Definition 2.2.1. Let A = V DU∗ be the singular value decomposition with

D =

(
Dr

0

)
∈ Rm×n, Dr := diag(µ1, . . . , µr, 0, . . . , 0) ∈ Rn×n

with µ1 ≥ . . . ≥ µr > 0. Then the matrix A† = UD†V ∗ with

D† =
(

D†r 0
)
∈ Rn×m, D†r := diag(

1

µ1

, . . . ,
1

µr
, 0, . . . , 0) ∈ Rn×n

is called the Moore-Penrose inverse of A.

Theorem 2.2.2. (Penrose Equations) X = A† is the only solution of the matrix equa-

tions

AXA = A, (2.4a)

XAX = X, (2.4b)

(AX)∗ = AX, (2.4c)

(XA)∗ = XA. (2.4d)

Proof. To verify that A† is a solution, inserting the SVD to get the result.

11
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For (2.4a),

AA†A = V DU∗UD†V ∗V DU∗ = V DD†DU∗ = V DU∗ = A.

We can complete the proof of (2.4b), (2.4c) and (2.4d) by the same idea.

To prove uniqueness, assume that X is any solution to (2.4). Then

X = XAX

= (XA)∗X = A∗X∗X

= (AA†A)∗X∗X = A∗(A†)∗A∗X∗X

= A∗(A†)∗XAX

= A∗(A†)∗X = (A†A)∗X

= A†AX

= A†AA†AX

= A†(AA†)∗(AX)∗ = A†(A†)∗A∗X∗A∗

= A†(A†)∗A∗

= A†(AA†)∗ = A†AA†

X = A†

Equations (2.4) are the well-known Moore-Penrose equations.

Proposition 2.1. The Moore-Penrose inverse satisfies the following relations

A† = A†(A†)∗A∗, (2.5a)

A = AA∗(A†)∗, (2.5b)

A∗ = A∗AA†, (2.5c)

12
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A† = A∗(A†)∗A†, (2.5d)

A = (A†)∗A∗A, (2.5e)

A∗ = A†AA∗, (2.5f)

for all A ∈ Cm×n.

Proof. Since AA† = (AA†)∗, multiplying from left by A†, we get

A† = A†(A†)∗A∗, which is Equation (2.5a).

Replacing A→ A† and using the fact that A = (A†)†, then Equation (2.5a), leads to

A = AA∗(A†)∗, which is (2.5b).

Replacing A→ A∗ and using the fact that (A∗)† = (A†)∗, then Equation (2.5b), gives

A∗ = A∗AA†, which is (2.5c).

Relations (2.5d)-(2.5f) can be obtained from the fact that A†A = (A†A)∗, and we can

complete the proof by the same way.

Example 2.2. Let us consider the matrix A =


0 1 1

√
2 2 0

0 1 1

 that appeared in Ex-

ample 2.1.

The Moore-Penrose inverse is

A† = UD†V ∗

=



1√
6

1√
3

1√
2

3√
12

0 −1

2

1√
12

− 2√
6

1

2




1

2
√

2
0 0

0
1√
2

0

0 0 0





1√
6

2√
6

1√
6

− 1√
3

1√
3

− 1√
3

1√
2

0 − 1√
2
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=


− 1

4
√

2

1

2
√

2
− 1

4
√

2
1

8

1

4

1

8

9

24
−1

4

9

24

 .

2.3 Least squares solution

In this section, we consider one of the main applications of the Moore-Penrose inverse,

namely the optimization of linear least square problems. In many situations, a solution

of a linear system is non-existing or non-unique, but we want to find a vector x such

that the norm of the difference Ax− y is the smallest possible. For the material of this

section we refer to [1, 6, 7].

Theorem 2.3.1. ([7]) Let A be an m × n matrix of rank r with singular system

(µj, uj, vj). The linear system

Ax = y, (2.6)

is solvable if and only if

(y, z) = 0,

for all z ∈ Cm with A∗z = 0. In this case a solution of (2.6) is given by

x0 =
r∑
j=1

1

µj
(y, vj)uj. (2.7)

Proof. Let x be a solution of (2.6) and let A∗z = 0, then

(y, z) = (Ax, z) = (x,A∗z) = (x, 0) = 0.

Conversely, assume the condition (y, z) = 0 for all z ∈ Cm with A∗z = 0 is satis-

fied. Since v1, . . . , vm is a basis for Cm, then

y =
m∑
j=1

(y, vj)vj

14
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=
r∑
j=1

(y, vj)vj.

Now,

Ax0 =
r∑
j=1

1

µj
(y, vj)Auj

=
r∑
j=1

1

µj
(y, vj)µjvj

=
r∑
j=1

(y, vj)vj

= y.

Hence, x0 is a solution of (2.6).

Since N (A) = span{ur+1, . . . , un} the vector x0 defined by (2.7) has the property

(x0, x) = 0,

for all x ∈ N (A).

In the case where Equation (2.6) has more than one solution, the general solution is

obtained from (2.7) by adding an arbitrary solution x of the homogeneous equation

Ax = 0. Then

‖x0 + x‖22 = (x0 + x, x0 + x)

= ‖x0‖22+(x, x0) + (x0, x) + ‖x‖22

= ‖x0‖22+‖x‖22.

Hence,

‖x0‖22≤ ‖x0 + x‖22

We observe that (2.7) represents the uniquely determined solution of (2.6) with minimal

Euclidean norm.

15
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In the case where Equation (2.6) is not solvable, let

y =
m∑
j=1

(y, vj)vj,

Let x0 be given by (2.7) and let x ∈ Cn be arbitrary. Then

(Ax− Ax0, Ax0 − y) = 0,

since Ax− Ax0 ∈ span{v1, . . . , vr} and Ax0 − y ∈ span{vr+1, . . . , vm}.
This implies

‖Ax− y‖22 = (Ax− y, Ax− y)

= (Ax− Ax0 + Ax0 − y, Ax− Ax0 + Ax0 − y)

= ‖Ax− Ax0‖22+‖Ax0 − y‖22.

Hence,

‖Ax0 − y‖22≤ ‖Ax− y‖22.

Again, it can be shown that x0 is the uniquely determined least squares solution with

minimal Euclidean norm.

Hence, (2.7) defines a linear operator A† : Cm → Cn by

A†y :=
r∑
j=1

1

µj
(y, vj)uj, y ∈ Cm.

Theorem 2.3.2. ([6]) The general solution of the linear least squares problem Ax ≈ y

is

x = A†y + (I − A†A)w, w ∈ Cn arbitrary. (2.8)

If we calculate ‖x‖22 using (2.8) and by using (2.5d), we obtain

‖x‖22 = ‖A†y‖22+(A†y, (I − A†A)w) + ((I − A†A)w,A†y) + ‖(I − A†A)w‖22

= ‖A†y‖22+wT (I − A†A)TA†y + yTA†T (I − A†A)w + ‖(I − A†A)w‖22

= ‖A†y‖22+wT (A† − ATA†TA†)y + yT (A†T − A†TA†A)w + ‖(I − A†A)w‖22

16
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= ‖A†y‖22+‖(I − A†A)w‖22

≥ ‖A†y‖22.

Any solution to the least squares problem must have norm greater than or equal to A†y,

this means that, the Moore-Penrose inverse produces the minimum norm solution to the

least squares problem Ax ≈ y.

If A has full rank, then the solution of the linear least square problem is unique

x = A†y = A−1y.

2.4 Balancing chemical equations

This section is devoted to the applicability of Moore-Penrose inverse in balancing chem-

ical equations. The main idea is due to Soleimani et.al. [24].

It is assumed that a chemical system is modeled by a single reaction of the general

form, see e.g. [17]
r∑
j=1

xj

m∏
i=1

Ψi
aij
→

r+s∑
j=r+1

xj

m∏
i=1

Ωi
bij
, (2.9)

where xj, j = 1, . . . , r (xj, j = r + 1, . . . , r + s) are unknown rational coefficients of

the reactants (the products), Ψi, Ωi, i = 1, . . . ,m are chemical elements in reactants

and products, respectively,

and, aij, i = 1, . . . ,m, j = 1, . . . ,m and bij, i = 1, . . . ,m, j = r + 1, . . . , r + s are the

numbers of atoms Ψi and Ωi, respectively, in the j−th molecule.

It is necessary to form an m × n matrix A, called the reaction matrix, whose columns

represent the reactants and products and the rows represent the distinct atoms in the

chemical reaction. More precisely, the (i, j)-th element of A represents the number of

atoms of type i in each element (reactant or product). An arbitrary element aij is posi-

tive or negative according to wheather it corresponds to a reactant or a product.

Hence, the balancing chemical equation problem can be formulated as the homogeneous

matrix equation

Ax = 0.
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The general solution of the balancing problem is given by

x = (I − A†A)w, w ∈ Cn arbitrary. (2.10)

Hence, we can find the exact solution of balancing chemical equation by finding the

Moore-Penrose inverse A†. Then, compute the vector x using Equation (2.10). Finally,

transform real numbers included in x into an exact solution by divide x by the minimum

of numerators in x.

Example 2.3. Consider a specific skeletal chemical equation from [20]

x1KNO3 + x2C → x3K2CO3 + x4CO + x5N2, (2.11)

where the left hand side of the arrow consists of elements called reactants, while the right

hand side comprises elements called the products.

Hence, (2.11) is formulated as the homogeneous equation Ax = 0, wherein 0 denotes the

null column vector and

A =



1 0 −2 0 0

1 0 0 0 −2

3 0 −3 −1 0

0 1 −1 −1 0


By using pinv() command in MATLAB, we get

A† =



−0.5161 0.0323 0.4516 −0.2581

−0.0323 0.0645 −0.0968 0.4839

−0.7581 0.0161 0.2258 −0.1290

0.7258 0.0484 −0.3226 −0.3871

−0.2581 −0.4839 0.2258 −0.1290
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The final exact coefficients are defined as (x1, x2, x3, x4, x5)
T = (2, 4, 1, 3, 1)T . Thus,

2KNO3 + 4C → K2CO3 + 3CO +N2

2.5 Basic definitions and lemmas

This section contains basic definitions and lemmas that are needed later in the thesis.

Definition 2.5.1. ([2]) A sequence {Xk}∞k=1 of matrices in Cm×n is said to converge to

a matrix X with respect to the norm ‖.‖ if, given any ε > 0, there exists an integer N(ε)

such that

‖Xk −X‖< ε, for all k ≥ N(ε).

Definition 2.5.2. ([2]) Suppose {Xk}∞k=1 is a sequence of matrices that converges to X,

with Xk 6= X for all k. If positive constants λ and α exist with

lim
k→∞

‖Xk+1 −X‖
‖Xk −X‖α

= λ,

then {Xk}∞k=1 converges to X of order α, with asymptotic error constant λ.

Definition 2.5.3. ([2]) The n× n matrix A is said to be diagonally dominant when

|aii|≥
n∑

j=1, j 6=i

|aij| holds for each i = 1, 2, . . . , n.

Definition 2.5.4. ([2]) A matrix X ∈ Cn×n is a p-th root af a matrix A ∈ Cn×n if and

only if Xp = A.

Definition 2.5.5. ([2]) The number x is a fixed point for a given function g if g(x) = x.

Definition 2.5.6. ([2]) If A = (aij) is an n× n matrix, then ‖A‖F=
√

trace(AA∗).

Lemma 2.5.1. ([7]) Let M ∈ Cn×n and ε > 0 be given. There is at least one matrix

norm ‖.‖ such that

ρ(M) ≤ ‖M‖≤ ρ(M) + ε,

where ρ(M) = max{|λ1(M)|, ..., |λn(M)|} denotes the spectral radius of M.
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Lemma 2.5.2. ([27]) If P ∈ Cn×n and Q ∈ Cn×n are such that P = P 2 and PQ = QP ,

then

ρ(PQ) ≤ ρ(Q).

Lemma 2.5.3. ([2]) Let g ∈ C[a, b] be such that g(x) ∈ [a, b], for all x in [a, b]. Suppose,

in addition, that g′ exists on (a, b) and that a constant 0 < k < 1 exists with

|g′(x)|≤ k, for all x ∈ (a, b).

Then for any number p0 in [a, b], the sequence defined by

pn = g(pn−1), n ≥ 1,

converges to the unique fixed point p in [a, b].

Lemma 2.5.4. ([2]) Let p be a solution of the equation x = g(x). Suppose that g′(p) = 0

and g′′ is continuous with |g′′|< M on an open interval I containing p. Then there exists

a δ > 0 such that, for p0 ∈ [p − δ, p + δ], the sequence defined by pn = g(pn−1), n ≥ 1,

converges at least quadratically to p. Moreover, for sufficiently large values of n,

|pn+1 − pn|<
M

2
|pn − p|2.
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Iterative methods

In this chapter, we consider some known iterative methods for computing the Moore-

Penrose inverse. We start by presenting first and second-order iterative methods de-

veloped by Petkovic and Stanimirovic [12, 13]. The construction of this algorithm is

based on Penrose Equations (2.4b) and (2.4d). Then, we present a class of higher order

iterative method [26] based on Penrose Equation (2.4b) and by extending the iterative

method in [13]. Next, we present different iterative methods, from [8, 24, 25, 28], to

compute the Moore-Penrose inverse. Convergence properties of these algorithm are also

considered.

3.1 First and second order iterative methods

Petkovic and Stanimirovic in [13] presented first and second-order iterative methods

for computing Moore-Penrose inverse. In [12] the authors corrected and improved the

method in [13]. We consider the properties of this algorithm. Numerical examples are

also presented.

Let A ∈ Cm×n and X = A† ∈ Cn×m. We use Equations (2.4b) and (2.4d) and obtain

X∗ = (XAX)∗ = X∗(XA)∗ = X∗XA.

Hence, for arbitrary β ∈ R it holds

X∗ = X∗ − β(X∗XA−X∗) = X∗(I − βXA) + βX∗,
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or equivalently

X = (I − βXA)∗X + βX.

From the last equation we get the following iterative method

Xk+1 = (I − βXkA)∗Xk + βXk. (3.1)

Assume the starting value of the iterative method (3.1) is

X0 = αA∗, (3.2)

for an appropriate real number α.

The following lemma will be used for establishing the convergence of the iterative

method.

Lemma 3.1.1. For the sequence Xk generated by the iterative schemes (3.1) and (3.2)

the following holds

(XkA)∗ = (XkA), (3.3a)

XkAX = Xk, (3.3b)

XAXk = Xk, (3.3c)

where k ≥ 0.

Proof. We use mathematical induction. For k = 0 we have X0 = αA∗ and all statements

in (3.3) hold. Assume the statements are true for some integer k. Now we prove the

statements for k + 1.

For (3.3a), we have

(Xk+1A)∗ = ((I − βXkA)∗XkA+ βXkA)∗

= (XkA)∗(I − βXkA) + β(XkA)∗

= XkA(I − βXkA) + βXkA

22



Chapter 3 – Iterative methods

= XkA− βXkAXkA+ βXkA

= (I − βXkA)XkA+ βXkA

= (I − βXkA)∗XkA+ βXkA

= Xk+1A.

We prove (3.3b) in a similar way

Xk+1AX = ((I − βXkA)∗Xk + βXk)AX

= (I − βXkA)∗XkAX + βXkAX

= (I − βXkA)∗Xk + βXk

= Xk+1.

Now, for (3.3c)

XAXk+1 = XA(I − βXkA)∗Xk + βXAXk

= XA(I − βXkA)Xk + βXk

= XAXk − βXAXkAXk + βXk

= Xk − βXkAXk + βXk

= (I − βXkA)Xk + βXk

= (I − βXkA)∗Xk + βXk

= Xk+1.

This completes the proof of the lemma.

From Lemma 3.1.1, the scheme (3.1) can be written as

Xk+1 = (1− βXkA)∗Xk + βXk

= (1− βXkA)Xk + βXk
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= (1 + β)Xk − βXkAXk. (3.4)

Now, we want to prove that the matrix sequence Xk defined by the iterative method

(3.4) and the starting value (3.2), converges to the Moore-Penrose inverse X = A†.

Theorem 3.1.1. Iterative method (3.4) with the starting value defined in (3.2) converges

to the Moore-Penrose inverse X = A† under the assumptions

‖(X0 −X)A‖< 1, 0 < β ≤ 1. (3.5)

For β < 1 the method has a linear convergence, while for β = 1 its convergence is

quadratic.

Proof. Using Lemma 3.1.1 and substituting for Xk, we get

‖Ek‖= ‖Xk −X‖= ‖XkAX −XAX‖≤ ‖XkA−XA‖‖X‖= ‖tk‖‖X‖,

where tk = XkA−XA = EkA.

Now, by using Lemma 3.1.1 with (3.4), we get

tk+1 = Xk+1A−XA = (1 + β)XkA− βXkAXkA−XA

= XkA+ βXkA− β(XkA)2 − (XA)2

= −[−XAXkA− βXkAXA+ β(XkA)2 + (XA)2]

= −(βXkA−XA)(XkA−XA)

= −(β(XkA−XA)− (1− β)XA)(XkA−XA)

= −β(XkA−XA)2 + (1− β)(XkA−XA)

= −βt2k + (1− β)tk. (3.6)

Let sk = ‖tk‖, we require that sk → 0 as k → ∞. Condition (3.5) implies s0 < 1, then

if we assume that sk < 1, from (3.6) and inductive method, we obtain

sk+1 ≤ βs2k + (1− β)sk < βsk + (1− β)sk < sk < 1. (3.7)
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Thus, sk is a monotonically decreasing bounded sequence converging to s as k →∞ and

0 ≤ s < 1. From (3.7), we get

s ≤ βs2 + (1− β)s,

then

βs2 − βs ≥ 0.

This gives either s = 0 or s ≥ 1. Thus, s = 0.

This completes the proof that sk → 0 as k →∞. Thus, Xk → X as k →∞.

From (3.6), we conclude that iterative method (3.4) has linear convergence if β < 1,

and its convergence is quadratic if β = 1.

For Theorem 3.1.1 we need to write the condition (3.5) in an equivalent form which

does not contain the Moore-Penrose inverse X.

According to Lemma 2.5.1, necessary and sufficient condition for the convergence of

the iterative method is that ρ((αA∗ −X)A) < 1.

Theorem 3.1.2. Let the eigenvalues of a matrix A∗A satisfy

σ1(A) ≥ ... ≥ σr(A) > σr+1(A) = ... = 0.

Condition ρ((αA∗ −X)A) < 1 is satisfied under the assumptions

max1≤i≤r|1− αλi(A∗A)|< 1,

where σi are the singular values of A.

Proof. Let P = XA and Q = αA∗A− I. Since P 2 = P and

PQ = αXAA∗A−XA = α(XA)∗A∗A−XA

= αA∗A−XA

= αA∗AXA−XA
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= (αA∗A− I)XA

= QP,

from Lemma 2.5.2 we can conclude that

ρ(PQ) = ρ(XA(αA∗A− I))

= ρ((αA∗ −X)A)

≤ ρ(αA∗A− I)

= max1≤i≤r|1− αλi(A∗A)| < 1.

Remark 3.1. Note that for β = 1 the method (3.4) reduces to the well-known Newton-

Shultz method [21] for computing the Moore-Penrose inverse of a given matrix.

Lemma 3.1.2. Let A ∈ Cm×n. Sequence Xk defined by (3.4) and (3.2) satisfiesR(Xk) =

R(A∗) and N (Xk) = N (A∗), for each k ≥ 0, where N ,R are the null space and rank of

matrix, respectively.

Proof. For k = 0, the statements of the lemma holds since X0 = αA∗.

Let y ∈ N (Xk) be an arbitrary vector. From (3.4) we have

Xk+1y = (1 + β)Xky − βXkAXky = 0.

Hence, y ∈ N (Xk+1), which implies N (Xk) ⊆ N (Xk+1). Then, R(Xk) ≥ R(Xk+1).

Hence, by mathematical induction we obtain

N (Xk) ⊇ N (X0) = N (A∗),

and

R(Xk) ≤ R(X0) = R(A∗).

Now, to prove equality, let us consider N =
⋃
k∈N0
N (Xk).
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Let y ∈ N be an arbitrary vector and let y ∈ N (Xk0), for some k0 ∈ N0.

Hence, y ∈ N (Xk) for all k ≥ k0, we have Xky = 0 and using Theorem 3.1.1 we have

Xy = lim
k→∞

Xky = 0.

This implies that y ∈ N (X) = N (A∗) and we get N ⊆ N (A∗).

Moreover, we have

N (A∗) ⊆ N (Xk) ⊆ N ⊆ N (A∗),

hence, we conclude that N (Xk) = N (A∗).

Now,

R(Xk) = m− dim(N (Xk)) = m− dim(N (A∗)) = R(A∗).

Hence,

R(Xk) = R(A∗).

Next, numerical tests are given with a tolerance ε = 10−8, we use the termination

criterion as in [26]

res(X) = max{‖AXkA−A‖F , ‖XkAXk−Xk‖F , ‖(AXk)
∗−AXk‖F , ‖(XkA)∗−XkA‖F} ≤ ε,

(3.8)

where, ‖.‖F the Frobenius norm of a matrix.

Example 3.1. Consider the matrix A of order (5× 4) given by

A =



0.2794 0.1676 0.0645 0.2326

0.0065 0.2365 0.2274 0.1261

0.2271 0.1430 0.1009 0.2867

0.1265 0.1015 0.1806 0.2846

0.2773 0.0632 0.0503 0.1979


.

The choice α = 0.6 satisfies the convergence criterion given by

max1≤i≤4|1− αλi(A∗A)|= 0.9988 < 1,
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since the eigenvalues of the matrix A∗A are

(λ1, λ2, λ3, λ4) = (0.0020, 0.0146, 0.0832, 0.6152).

The iterative method (3.4) with β = 0.5 generates a sequence of iterates {Xk} after

42 steps converging to the Moore-Penrose inverse A† given by

A† =



−0.2165 1.4802 −4.9702 −1.3732 8.4865

5.0277 1.8673 4.1653 −4.6975 −6.3778

−5.3215 4.5524 −8.4278 3.4688 10.5748

0.8566 −4.0180 6.9330 3.0649 −7.8449


.

If we use β = 0.3 the method (3.4) needs 73 iterations and with β = 0.8 it needs 24

iterations. While Newton method needs 14 iterations to have the same result.

Example 3.2. Consider the ill-conditional Hilbert matrix A of order (5× 5) given by

A =



1
1

2

1

3

1

4

1

5

1

2

1

3

1

4

1

5

1

6

1

3

1

4

1

5

1

6

1

7

1

4

1

5

1

6

1

7

1

8

1

5

1

6

1

7

1

8

1

9


The choice α = 0.8 satisfies the convergence criterion given by

max1≤i≤3|1− αλi(A∗A)|= 0.9999 < 1,
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since the eigenvalues of the matrix A∗A are

(λ1, λ2, λ3) = (2.4556, 0.0435, 0.0001).

The iterative method (3.4) generates a sequence of iterates {Xk} converging to the Moore-

Penrose inverse A† given by

A† =



25 −300 1050 −1400 630

−300 4800 −18900 26880 −12600

1050 −18900 79380 −117600 56700

−1400 26880 −117600 179200 −88200

630 −12600 56700 −88200 44100


.

When we use β = 0.8 the iterative method (3.4) needs 53 iteration, but when β = 1 it

needs 42 iteration.

3.2 Higher order iterative method

We now describe the higher order iterative method introduced by Srivastava and Gupta

in [26].

Now, using only the Penrose Equation (2.4b) and for arbitrary β ∈ R, we get

X = X + β(2X − 3XAX +XAXAX),

or equivalently

X = X + βX(2I − 3AX + (AX)2).

This leads to the following third order method

Xk+1 = Xk + βXk(2I − 3AXk + (AXk)
2), k = 0, 1, . . . (3.9)
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with

X0 = αA∗,

where α is an appropriate real number.

The method (3.9) appeared also in [9].

This can further be extended to the p-th order for p ≥ 3, given by

Xk+1 = Xk +βXk((I −AXk) + (I −AXk)
2 + · · ·+ (I −AXk)

p−1), k = 0, 1, . . . (3.10)

with

X0 = αA∗,

where α is an appropriate real number.

Lemma 3.2.1. For all k ≥ 0, the sequence Xk generated by (3.9) or (3.10) satisfies:

(XkA)∗ = (XkA), (3.11a)

XkAX = Xk, (3.11b)

XAXk = Xk. (3.11c)

Proof. We use mathematical induction. For k = 0 we have X0 = αA∗ and all statements

in (3.11) hold. Assume the statements are true for some integer k. To show that it also

holds for k + 1, we consider

(Xk+1A)∗ = (XkA)∗ + β{2(XkA)∗ − 3((XkA)∗)2 + ((XkA)∗)3}

= XkA+ β(2XkA− 3(XkA)2 + (XkA)3)

= XkA+ β(2Xk − 3XkAXk +Xk(AXk)
2)A

= Xk+1A.

Hence it holds for all k ≥ 0. Likewise for p-th order method (3.10), we get

(Xk+1A)∗ = {XkA+ βXk((I − AXk) + · · ·+ (I − AXk)
p−1)A}∗
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= (XkA)∗ + β((Xk(I − AXk)A)∗ + · · ·+ (Xk(I − AXk)
p−1A)∗)

= (XkA) + β((Xk(I − AXk)A) + · · ·+ (Xk(I − AXk)
p−1A))

= XkA+ βXk((I − AXk) + · · ·+ (I − AXk)
p−1)A

= Xk+1A,

note that, we prove

(Xk(I − AXk)
pA)∗ = Xk(I − AXk)

pA, p ≥ 1

by mathematical induction. The statement is clear when p = 1. Assume that it is true

for a fixed integer p ≥ 1. Then

(Xk(I − AXk)
p+1A)∗ = (Xk(I − AXk)

p(I − AXk)A)∗

= (Xk(I − AXk)
pA(I −XkA))∗

= (I −XkA)∗(Xk(I − AXk)
pA)∗

= (I −XkA)(Xk(I − AXk)
pA)

= (Xk −XkAXk)(I − AXk)
pA

= Xk(I − AXk)
p+1A.

Now, for (3.11b)

Xk+1AX = XkAX + βXk(2I − 3AXk + (AXk)
2)AX

= Xk + βXk(2I − 3AXk + (AXk)
2)

= Xk+1.

Likewise for p-th order method (3.10) with the fact that (AX)p = (AX), we get

Xk+1AX = XkAX + βXk((I − AXk) + (I − AXk)
2 + · · ·+ (I − AXk)

p−1)AX

= Xk + βXk((I − AXk)AX + (I − AXk)
2(AX)2 + · · ·+ (I − AXk)

p−1(AX)p−1)
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= Xk + βXk((AX − AXAXkAX) + (AX − AXAXkAX)2 + · · ·+ (AX − AXAXkAX)p−1)

= Xk + βXk(AX(I − AXk) + (AX)2(I − AXk)
2 + · · ·+ (AX)p−1(I − AXk)

p−1)

= Xk + βXkAX((I − AXk) + (I − AXk)
2 + · · ·+ (I − AXk)

p−1)

= Xk + βXk((I − AXk) + (I − AXk)
2 + · · ·+ (I − AXk)

p−1)

= Xk+1.

For (3.11c), we have

XAXk+1 = XAXk + βXAXk(2I − 3AXk + (AXk)
2)

= Xk + βXk(2I − 3AXk + (AXk)
2)

= Xk+1.

And for p-th order method (3.10), we get

XAXk+1 = XAXk + βXAXk((I − AXk) + (I − AXk)
2 + · · ·+ (I − AXk)

p−1)

= Xk + βXk((I − AXk) + (I − AXk)
2 + · · ·+ (I − AXk)

p−1)

= Xk+1.

This completes the proof of the lemma.

Theorem 3.2.1. Iterative method (3.9) with the initial approximation X0 = αA∗ con-

verges to the Moore-Penrose inverse X = A† under the assumptions

‖(X0 −X)A‖< 1, 0 < β ≤ 1. (3.12)

It has linear convergence for β < 1 and third order convergence for β = 1.

Proof. Using Lemma 3.2.1 and substituting for Xk, we get

‖Ek‖= ‖Xk −X‖= ‖XkAX −XAX‖≤ ‖XkA−XA‖‖X‖= ‖tk‖‖X‖,
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where tk = XkA−XA = EkA.

Again using Lemma 3.2.1 with (3.9), we get

tk+1 = Xk+1A−XA = (Xk + βXk(2I − 3AXk + (AXk)
2))A−XA

= XkA−XA+ β(2XkA− 3(XkA)2 + (XkA)3)

= XkA−XA+ β((XkA)3 −XA+ 3(XkA)− 3(XkA)2 − (XkA−XA))

= XkA−XA+ β((XkA−XA)3 − (XkA−XA))

= βt3k + (1− β)tk. (3.13)

Let sk = ‖tk‖, we require that sk → 0 as k →∞. Condition (3.12) implies s0 < 1, then

by an assumption that sk < 1, from (3.13) and inductive method, we obtain

sk+1 ≤ βs3k + (1− β)sk < βsk + (1− β)sk < sk < 1. (3.14)

Thus, sk is a monotonically decreasing bounded sequence converging to s as k →∞ and

0 ≤ s < 1. From (3.14), we get

s ≤ βs3 + (1− β)s,

then

βs3 − βs ≥ 0.

This gives either s = 0 or s ≥ 1. Thus, s = 0.

This completes the proof that sk → 0 as k →∞. Thus, Xk → X as k →∞.

From (3.13), we conclude that iterative method (3.9) has linear convergence if β < 1,

and its convergence is third if β = 1.

In general, we have the following theorem.

Theorem 3.2.2. Iterative method (3.10) with the initial approximation X0 = αA∗ con-
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verges to the Moore-Penrose inverse X = A† under the assumptions

‖(X0 −X)A‖< 1, 0 < β ≤ 1. (3.15)

It has linear convergence for β < 1 and p-th order convergence for β = 1, where, p ≥ 2

is a positive integer.

Next, we consider some numerical tests.

Example 3.3. Consider the matrix A of order (5× 6) given by

A =



1 0 0 −1 0 0

4 0 0 0 −1 0

0 1 0 0 −2 0

0 0 1 0 0 −1

−1 1 2 −2 0 −3


.

The choice α = 0.0185 satisfies the convergence criterion given by

max1≤i≤5|1− αλi(A∗A)|= 0.9988 < 1,

since the eigenvalues of the matrix A∗A are

(λ1, λ2, λ3, λ4, λ5) = (0.0623, 1.2229, 4.7108, 15.9912, 23.0128).

The iterative method (3.10) with tolerance ε = 10−8 converges to the Moore-Penrose

inverse A† in 14 iteration for p = 2 and with 9 iterations for p = 3.
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A† =



−0.1439 0.3030 −0.1364 −0.1894 0.0758

−1.1515 0.4242 −0.0909 −1.5152 0.6061

1.2803 −0.4848 0.3182 2.0530 −0.6212

−1.1439 0.3030 −0.1384 −0.1894 0.0758

−0.5758 0.2121 −0.5455 −0.7576 0.3030

1.2803 −0.4848 0.3182 1.0530 −0.6212


.

Example 3.4. Consider the ill-conditional Hilbert matrix A of order (5 × 5) appeared

in Example 3.2.

The iterative method (3.10) generates a sequence of iterates {Xk} converging to the

Moore-Penrose inverse A† given by

A† =



25 −300 1050 −1400 630

−300 4800 −18900 26880 −12600

1050 −18900 79380 −117600 56700

−1400 26880 −117600 179200 −88200

630 −12600 56700 −88200 44100


.

A comparison for number of iterations versus the order are plotted in Figure 3.1. It can

be observed that the iterative method (3.10) converges to the Moore-Penrose inverse A†

in 42 iterations for p = 2 and as the order p increases, it reduces to 14 for p = 10. We

note that after p = 7 the number of iteration still fixed.
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Figure 3.1: Number of iterations versus the value of p, Example 3.4.

Example 3.5. Let A = rand(50, 50), we have tested 50 times with MATLAB. The

number of iterations and average of CPU time required for convergence are compared

between Newton method and third order method (3.9) in figures 3.2 and 3.3, respectively.
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Figure 3.2: Comparison number of iterations, Example 3.5.
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Figure 3.3: The results of comparisons of computational time, Example 3.5.

3.3 Fourth order iterative method

In this section, we present fourth order iterative method for computing Moore-Penrose

inverse. Convergence analysis is considered.

Esmaeili et. al. in [5] proposed the following fourth-order iterative method

Xk+1 = Xk[9I − 26(AXk) + 34(AXk)
2− 21(AXk)

3 + 5(AXk)
4], k = 0, 1, 2, . . . , (3.16)

with

X0 = αA∗,

where α is an appropriate real number.

Let us consider the following singular value decomposition of the matrix A ∈ Cm×n

of rank(A) = r ≤ min{m,n}

A = V

[
S 0

0 0

]
U∗, S = diag(σ1, ..., σr), σ1 ≥ ... ≥ σr > 0.
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The Moore-Penrose inverse is given by

A† = U

[
S−1 0

0 0

]
V ∗.

Where U and V are unitary matrices. Using

X0 = αA∗,

in which α is a constant, we can deduce that each iterate of the method (3.16) has a

singular value decomposition of the form

Xk = USkV
∗, Sk = diag(s

(k)
1 , ..., s(k)r ),

where

S0 = αS,

we have

USk+1V
∗ = USkV

∗[9I−26(V SSKV
∗)+34(V SSKV

∗)2−21(V SSKV
∗)3 +5(V SSKV

∗)4].

Hence,

Sk+1 = Sk[9I − 26SSK + 34(SSK)2 − 21(SSK)3 + 5(SSK)4].

Therefore, the diagonal matrices Rk = SSk = diag(r
(k)
1 , ..., r

(k)
r ) satisfy

Rk+1 = g(Rk) = 9Rk − 26R2
k + 34R3

k − 21R4
k + 5R5

k,

that means

r
(k+1)
i = g(r

(k)
i ), (3.17)

where g(r) = 9r − 26r2 + 34r3 − 21r4 + 5r5.

In the following theorem, we show that the sequences (3.17) are fourth-order conver-

gent to ri = 1 for any r
(0)
i ∈ (0, 1 + γ), in which γ is a suitable constant.

Theorem 3.3.1. For any initial point r(0) ∈ (0, 1 + γ), the sequence r(k+1) = g(r(k))

is fourth-order convergent to r = 1, in which the function g(r) is defined by (3.17) and

γ ≈ 0.53.

38



Chapter 3 – Iterative methods

Proof. The real fixed points and the critical points of g(r) as follows

g(r) = r ⇒ r = 0, 1, 1 + γ,

g′(r) = 0 ⇒ r = 0.36, 1, 1, 1,

in which

γ =
1

15

[
1 +

3

√
316 + 30

√
114− 14

3

√
316 + 30

√
114

]
≈ 0.53.

Now, g′′(0.36) = −6.55 < 0 and g(4)(1) = 96 > 0, we can deduce that 0.36 is a local

maximizer and 1 is a local minimizr of g(r).

On the other hand, g(0) = 0 < 1 = g(1) and g(0.36) ≈ 1.13 < 1 + γ = g(1 + γ).

Therefore, r = 0, 1 and r = 0.36, 1 + γ are minimizer and maximizer of g(r) in the

interval [0, 1 + γ], respectively.

Moreover, the interval [0, 1 + γ] maps into itself by the function g(r).

For any arbitrary r(0) ∈ (0, 1 + γ), we obtain

• The unique solution of the equation g(r) = 1 in the interval [0, 1) is
1

5
.

• g(r) increasing in the interval
(

0,
1

5

)
. Therefore, if r(k) ∈

(
0,

1

5

)
, for some k, then

r(k+1) ∈
[1

5
, 1
]
.

• If r(k) ∈
(1

5
, 1
)

, for some k, then r(k+1) ∈
(

1, 1 + γ
)

.

• If r(k) ∈
(

1, 1+γ
)

, for some k, then the sequence
{
r(r+l)

}
l≥1
⊆ [1, 1+γ) is strictly

decreasing sequence converging to 1, See Figure 3.4.
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Figure 3.4: Graphs of the line y = x and the function y = g(x).

We can conclude that the sequence r(k+1) = g(r(k)) is convergent to r = 1. On the other

hand,

g′(1) = g′′(1) = g(3)(1) = 0,

implies that the convergence is fourth order, see Lemma 2.5.4.

By using Theorem 3.3.1, we conclude that if ασ2
1 = r

(0)
1 ∈ (0, 1.53), then ασ2

i = r
(0)
i ∈

(0, 1.53), for all i, and

lim
k→∞

Rk = I.

Hence,

lim
k→∞

Sk = S−1,

so

lim
k→∞

Xk = U

[
S−1 0

0 0

]
V ∗ = A†.

Moreover, the order of convergence is four. Therefore, the following theorem is proved.

Theorem 3.3.2. Consider the matrix A, and suppose that σ2
1 denotes the largest singular

value of A. Moreover, assume that the initial approximation X0 is defined by X0 = αA∗,
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in which

0 < α <
1.53

σ2
1

.

Then, the sequence {Xk}k≥0 generated by (3.16) converges to the Moore-Penrose inverse

A† with fourth-order.

Example 3.6. Let A = rand(50, 50), we have tested 50 times with MATLAB. The

number of iterations and average of CPU time required for convergence are compared

between fourth order method in (3.16) and fourth order reduced from (3.10) when p = 4

in figures 3.5 and 3.6, respectively.

We observed that from figures 3.5 and 3.6 the fourth order method (3.16) is better than

the fourth order reduced from (3.10) in terms of number of iterations and CPU time.
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Figure 3.5: Comparison number of iteration, Example 3.6.
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Figure 3.6: The results of comparisons of computational time, Example 3.6.

Example 3.7. Let A = rand(50, 50), we have tested 50 times with MATLAB. The

number of iterations and average of CPU time required for convergence are compared

between fourth order method in (3.16), Newton and third order method in figures 3.7

and 3.8, respectively.
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Figure 3.7: Comparison number of iteration, Example 3.7.
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Figure 3.8: The results of comparisons of computational time, Example 3.7.
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3.4 Other iterative methods

Krishnamurthy and Sen [8] provided the following fourth-order method that contains 4

matrix multiplications

Yk = I − AXk,

Xk+1 = Xk(I + Yk(I + Yk(I + Yk))). (3.18)

Solymani et. al [25] provided the following sixth-order method that contains 5 matrix

multiplications

Bk = AXk

Sk = Bk(−I +Bk) (3.19)

Xk+1 = Xk(2I −Bk)(3I − 2Bk + Sk)(I + Sk)

Toutounian and Soleymani [28] proposed the following fourth-order method that involves

5 matrix multiplications

Xk+1 = 0.5Xk(9I − AXk(16I − AXk(14I − AXk(6I − AXk)))). (3.20)

Soleymani et. al. [23] presented the following ninth-order method that has 7 matrix

multiplications in each iteration

Bk = AXk

Sk = 3I +Bk(−3I +Bk)

Tk = BkSk (3.21)

Xk+1 = −1

4
XkSk(13I + Tk(15I + Tk(−7I + Tk)))

44



Chapter 3 – Iterative methods

Sharifi et. al. [22] proposed the following 30-order method that has only 9 matrix

multiplications in each iteration

Rk = I − AXk

Xk+1 = Xk(I +Rk)(I +R2
k +R4

k)(I + (R2
k +R8

k)(R
4
k +R16

k )). (3.22)

Soleimani et. al. [24] proposed the following 31-order method that has only 9 matrix

multiplications in each iteration

Rk = I − AXk

Xk+1 = Xk(I + (Rk +R2
k)(I +R2

k +R4
k)(I + (R2

k +R8
k)(R

4
k +R16

k ))). (3.23)

3.5 The choices of the initial value X0

The choices for the initial value X0 on iterative (3.1), (3.9) and (3.10) are very important

to preserve convergence. Recently, there exist many different forms for the initial value

X0. In this work, we use the initial value as in [14].

For a square m×m matrix A, Rajagopalan in [16] constructed the initial value as

X0 =
AT

m‖A‖1‖A‖∞
,

or X0 = αI, where I is the identity matrix and α ∈ R should adaptively be determined

such that ‖I − αA‖< 1.

For diagonally dominant matrices, Sciavicco and Siciliano in [19] used

X0 = diag
( 1

a11
,

1

a22
, . . . ,

1

amm

)
,

where aii is the i− th diagonal entry of A, i = 1, 2, . . . ,m.

For a symmetric positive definite matrix, Codevico et.al. in [4] used

X0 =
1

‖A‖F
I,
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where ‖.‖F is the Frobenius norm.

For rectangular or singular matrices, one may choose

X0 =
A∗

(‖A‖1‖A‖∞)
or X0 =

AT

(‖A‖1‖A‖∞)
,

based on [14].

We could choose initial value as in [1]

X0 = αA∗,

where 0 < α <
2

ρ(A∗A)
.
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Our new iterative methods

In this chapter, we present our methods for computing the Moore-Penrose inverse. The

construction of these algorithm is based on the usage of Penrose Equations (2.4a) and

(2.4b). Two different schemes are established. And convergence properties are consid-

ered. Numerical result is also presented and a comparison with Newton’s method is

made.

In Section 4.1, we establish a new family of second order iterative methods. These

methods are written interms of p − th root of a matrix AXk. In Section 4.2, a second

order iterative method uses (AXk)
2 is constructed.

4.1 A new family of second-order iterative methods

In this section, we establish a fast and efficient new family of second-order iterative

algorithms for computing the Moore-Penrose inverse.

Let A ∈ Cm×n and X = A† ∈ Cn×m. We use Equations (2.4a) and (2.4b) to obtain

X = XAX = X(AXAX)
1
2 = X(AX)

1
2 .

Hence, we have

X = X − 2(X(AX)
1
2 −X).

From the last equation we get the following iterative method

Xk+1 = Xk − 2Xk((AXk)
1
2 − I). (4.1)
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Assume the starting value for the iterative method (4.1) is

X0 = αA∗, (4.2)

for an appropriate real number α.

Continuing in a similar manner, this can further be extended to a family of second-

order iterative method, given by

Xk+1 = Xk − pXk((AXk)
1
p − I), p ∈ {2, 3, 4, . . . }. (4.3)

Lemma 4.1.1. The iterative schemes (4.1) and (4.3) satisfy the following relations

XAXk = Xk, (4.4a)

XkAX = Xk, (4.4b)

where k ≥ 0.

Proof. We use mathematical induction. For k = 0 we have X0 = αA∗ and all statements

in (4.4) hold. Assume the statements are true for some integer k. Now we prove the

statements for k + 1.

For (4.4a), we have

XAXk+1 = XA(Xk − 2Xk((AXk)
1
2 − I))

= XAXk − 2XAXk((AXk)
1
2 − I)

= Xk − 2Xk((AXk)
1
2 − I)

= Xk+1.

we prove (4.4b) in a similar way

Xk+1AX = (Xk − 2Xk((AXk)
1
2 − I))AX
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= XkAX − 2(Xk(AXk)
1
2AX −XkAX)

= Xk − 2(Xk(AXk)
1
2 (AX)

1
2 −Xk)

= Xk − 2(Xk(AXkAX)
1
2 −Xk)

= Xk − 2(Xk(AXk)
1
2 −Xk)

= Xk+1.

Proceeding in a similar manner, (4.4) can easily be proved for (4.3).

This completes the proof of the lemma.

Now, we follow the idea of [5] to prove that the matrix sequence Xk defined by the iter-

ative method (4.1) and the starting value (4.2), converges to the Moore-Penrose inverse

X = A†.

Let us consider the following singular value decomposition of the matrix A ∈ Cm×n

of rank(A) = r ≤ min{m,n}

A = V

[
S 0

0 0

]
U∗, S = diag(σ1, ..., σr), σ1 ≥ ... ≥ σr > 0.

Where σi are the singular values of A.

The Moore-Penrose is given by

A† = U

[
S−1 0

0 0

]
V ∗.

Where U and V are unitary matrices. Using

X0 = αA∗,

in which α is a constant, we can deduce that each iterate of the method (4.1) has a

singular value decomposition of the form

Xk = USkV
∗, Sk = diag(s

(k)
1 , ..., s(k)r ),
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where

S0 = αS,

we have

USk+1V
∗ = USkV

∗ − 2USkV
∗((V SSkV

∗)
1
2 − I)

= 3USkV
∗ − 2USkV

∗(V SSkV
∗)

1
2

= 3USkV
∗ − 2USkV

∗V (SSk)
1
2V ∗.

Hence,

Sk+1 = 3Sk − 2Sk(SSk)
1
2 .

Therefore, the diagonal matrices Rk = SSk = diag(r
(k)
1 , ..., r

(k)
r ) satisfy

Rk+1 = g(Rk) = 3Rk − 2Rk(Rk)
1
2 ,

that means

r
(k+1)
i = g(r

(k)
i ) = 3r

(k)
i − 2r

(k)
i

3
2 . (4.5)

In general, for (4.3) we have

Sk+1 = (p+ 1)Sk − pSk(SSk)
1
p .

Therefore, the diagonal matrices Rk = SSk = diag(r
(k)
1 , ..., r

(k)
r ) satisfy

Rk+1 = g(Rk) = (p+ 1)Rk − pRk(Rk)
1
p ,

hence

r
(k+1)
i = g(r

(k)
i ) = (p+ 1)r

(k)
i − pr

(k)
i

p+1
p . (4.6)

Theorem 4.1.1. For any initial point r(0) ∈
(

0,
16

9

)
, the sequence r(k+1) = g(r(k)) is of

a second order convergence to r = 1, in which the function g(r) is defined by (4.5).
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Proof. The fixed points and the critical points of g(r) are

g(r) = r ⇒ r = 0, 1,

g′(r) = 0 ⇒ r = 1.

We can find that 1 is local maximizer of g(r). It is easy to see that the interval
(4

9
,
16

9

)
is mapped into itself.

Moreover, g(r) is a continuous function on the interval
(4

9
,
16

9

)
, and |g′(r)|< 1 on this

interval.

We conclude that the sequence r(k+1) = g(r(k)) is convergent to r = 1, by Lemma 2.5.3.

For the interval

(
0,

4

9

]
the sequence r(k+1) = g(r(k)) > r(k), increasing and bounded

above, see Figure 4.1 . Hence we obtain convergent for any r(0) ∈
(

0,
16

9

)
. On the

other hand,

g(1) = 1, g′(1) = 0,

implies that the convergence is second order, by Lemma 2.5.4.
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Figure 4.1: Graph of the function y = g(x) and the line y = x.

Considering Theorem 4.1.1, we conclude that if ασ2
1 = r

(0)
1 ∈

(
0,

16

9

)
, then ασ2

i = r
(0)
i ∈(

0,
16

9

)
, for all i, and

lim
k→∞

Rk = I.
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Hence,

lim
k→∞

Sk = S−1,

so

lim
k→∞

Xk = U

[
S−1 0

0 0

]
V ∗ = A†.

Hence, the following theorem is proved.

Theorem 4.1.2. Let A be an m×n nonzero complex matrix. If the initial approximation

X0 is defined by

X0 = αA∗, with 0 < α <
16
9

σ2
1

, (4.7)

then the iterative method (4.1) converges to A† with second order, where σ2
1 denotes the

largest singular value of A.

In addition, we have the following theorem.

Theorem 4.1.3. Let A be an m×n nonzero complex matrix. If the initial approximation

X0 is defined by

X0 = αA∗, with 0 < α <
16
9

σ2
1

, (4.8)

then

‖A(X −X0)‖< 1.

Proof. Take P = AX and Q = I − AX0. Since P 2 = P and

PQ = AX − AXAX0 = AX − AX0

= AX − AX0AX

= (I − AX0)AX

= QP,

from Lemma 2.5.2 we can conclude that

ρ(A(X−X0)) ≤ ρ(I−AX0) = ρ(I−αAA∗) = max1≤i≤r|1−αλi(AA∗)|= max1≤i≤r|1−ασ2
i |.
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By using (4.8), we conclude that

ρ(A(X − αA∗)) ≤ max1≤i≤r|1− ασ2
i |< 1.

Then from Lemma 2.5.1, we have

‖A(X −X0)‖< 1.

Theorem 4.1.4. For any initial point r(0) ∈
(

0,
(p+ 2

p+ 1

)p)
, the sequence r(k+1) =

g(r(k)) is second order convergent to r = 1, in which the function g(r) is defined by

(4.6).

Proof. The proof is similar to that of Theorem 4.1.1. The general behaviour of g(r)

defined in (4.6) is similar to the case when p = 2.

See Figure 4.2 which is the graph of (4.6) when p = 3, p = 6 and p = 12.
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Figure 4.2: Graphs of the function y = g(x) with different values of p and the line y = x.

Our method uses the p-th root of a square matrix AXk. One can find several al-

gorithms to compute this. In this work, we replace the p-th root by finite terms from

power series expansion for a matrix of form (I +B)
1
p which is given in the next remark.
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Remark 4.1. Let p ≥ 2 be an integer and ‖B‖< 1, the power series expansion can be

applied to define the matrix p-th root of the matrix (I +B) as

(I +B)
1
p =

∞∑
n=0

1
p

(
1
p
− 1
)
. . .
(

1
p
− n+ 1

)
n!

Bn, (4.9)

see e.g. [10].

By approximating (AXk)
1
2 or (I + (AXk − I))

1
2 with n terms of (4.9) we obtain the

following iterative method

Xk+1 = Xk−2Xk(I+
1

2
(AXk−I)−1

8
(AXk−I)2+· · ·+ 1

n!

1

2

(1

2
−1
)
. . .
(1

2
−n+1

)
(AXk−I)n−I).

(4.10)

With the starting value X0 = αA∗, where 0 < α <
16
9

σ2
1
, then ρ(I − AX0) < 1.

In the following, several examples are given to show the efficient of our method. We

use (4.10) up to n = 2. We find that if we use more terms from (4.10) the number of

iteration decreases. But, after n = 4 the number of iterations is fixed.

Example 4.1. Consider the ill-conditional Hilbert matrix A of order (5 × 5) appeared

in Example 3.2.

The iterative method (4.1) generates a sequence of iterates {Xk} after 39 steps con-

verging to the Moore-Penrose inverse A† given by

A† =



25 −300 1050 −1400 630

−300 4800 −18900 26880 −12600

1050 −18900 79380 −117600 56700

−1400 26880 −117600 179200 −88200

630 −12600 56700 −88200 44100


.
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While Newton method needs 42 iterations to have the same result.

Example 4.2. For the ill-conditional Hilbert matrix A of order (5 × 5) we used the

iterative method (4.3) for different value of p.

It can be observed from Figure 4.3 that the iterative (4.3) converges to the Moore-Penrose

inverse. The comparison of number of iterations are plotted in Figure 4.3. We note that

for p ≥ 10 the number of required iteration still fixed.
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Figure 4.3: Number of iterations versus the value of p, Example 4.2.

Example 4.3. We compute the Moore-Penrose inverse random square matrix A, where

A are randomly generated as follows

A = 20rand(600 + n, 600 + n)− 10rand(600 + n, 600 + n),

where n is n = 0, 100, 200, 300, 400, . . . , 3000.

The number of iterations and the CPU time required for convergence are compared in

figures 4.4 and 4.5, respectively.
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Figure 4.4: Comparison number of iteration, Example 4.3.
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Figure 4.5: The results of comparisons of computational time, Example 4.3.

We see that the required number of iterations for the current method is less than that

of Newton’s method. But the computational time is almost the same.

56



Chapter 4 – Our new iterative methods

We noted that for the matrices Am×n with m < n the current methods also require less

time. Next example illustrate this idea.

Example 4.4. We compute the inverse random square matrix A, where A are randomly

generated as follows

A = 20rand(500, 1000 + n)− 10rand(500, 1000 + n),

and the value of n is n = 0, 100, 200, 300, 400, . . . , 3000.

The number of iterations and the CPU time required for convergence are compared in

figures 4.6 and 4.7, respectively.
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Figure 4.6: Comparison number of iteration, Example 4.4.
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Figure 4.7: The results of comparisons of computational time, Example 4.4.

Figure 4.7 shows that as the number of columns become larger than the number of rows,

the required computational times for current methods become smaller than that of Newton

method.

Conclusion: A family of second-order iterative methods were developed based on Pen-

rose equations (2.4a) and (2.4b) and written interms of p − th root of matrix AXk.

Convergence properties were considered and numerical tests were made. Numerical re-

sults show that the number of iterations of current methods always less than that of

Newton’s method. Also, it is observed that the CPU time compared with Newton’s

method decreases when the number of columns is larger than the number of rows, this

makes the current methods more efficient for such cases.

4.2 Second order iterative method

In this section, a new second order iterative method for computing the Moore-Penrose

inverse is developed.
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Let A ∈ Cm×n and X = A† ∈ Cn×m. We use Equations (2.4a) and (2.4b) to obtain

X = XAX = X(AXA)X = X(AX)2.

Hence, for arbitrary β ∈ R we have

X = X − β(X(AX)2 −X).

From the last equation we get the following iterative method

Xk+1 = Xk − βXk((AXk)
2 − I). (4.11)

Assume the starting value of the iterative method (4.11) is

X0 = αA∗, (4.12)

for an appropriate real number α.

Lemma 4.2.1. The iterative scheme (4.11) with (4.12) satisfy the following relations

XAXk = Xk, (4.13a)

XkAX = Xk, (4.13b)

(AXk)
∗ = (AXk), (4.13c)

(XkA)∗ = (XkA), (4.13d)

where k ≥ 0.

Proof. We use mathematical induction. For k = 0 we have X0 = αA∗ and all statements

in (4.13) hold. Assume the statements are true for some integer k. Now we prove the

statements for k + 1.

For (4.13a), we have

XAXk+1 = XA(Xk − βXk((AXk)
2 − I))
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= XAXk − βXAXk((AXk)
2 − I)

= Xk − βXk((AXk)
2 − I)

= Xk+1.

We prove (4.13b) in a similar way

Xk+1AX = (Xk − βXk((AXk)
2 − I))AX

= XkAX − β(Xk(AXk)
2AX −XkAX)

= Xk − β(Xk(AXk)
2 −Xk)

= Xk+1.

Now, for (4.13c)

(AXk+1)
∗ = (A(Xk − βXk((AXk)

2 − I)))∗

= (AXk)
∗ − β(((AXk)

∗)2 − I)(AXk)
∗

= AXk − β((AXk)
2 − I)AXk

= AXk − β((AXk)
3 − AXk)

= AXk − βAXk((AXk)
2 − I)

= AXk+1.

And (4.13d) can be verified in a similar way

(Xk+1A)∗ = ((Xk − βXk((AXk)
2 − I))A)∗

= (XkA)∗ − βA∗(((AXk)
∗)2 − I)X∗k

60



Chapter 4 – Our new iterative methods

= XkA− β(((XkA)∗)3 − A∗X∗k)

= XkA− β((XkA)3 −XkA)

= Xk+1A.

This completes the proof of the lemma.

Now, we want to prove that the matrix sequence Xk defined by the iterative method

(4.11) and the starting value (4.12) converges to the Moore-Penrose inverse X = A†.

Theorem 4.2.1. Iterative method (4.11) with the starting value defined in (4.12) con-

verges to the Moore-Penrose inverse X = A† under the assumption

‖(X −X0)A‖<
−3 +

√
17

2
, 0 < β ≤ 1

2
. (4.14)

For β <
1

2
the method has a linear convergence, while for β =

1

2
its convergence is

quadratic.

Proof. Using Lemma 4.2.1 and substituting for Xk, we get

‖Ek‖= ‖X −Xk‖= ‖XAX −XkAX‖≤ ‖XA−XkA‖‖X‖= ‖tk‖‖X‖,

where tk = XA−XkA.

Now using Lemma 4.2.1 and (4.11), we get

tk+1 = XA−Xk+1A = XA− (Xk − βXk((AXk)
2 − I))A

= XA−XkA+ βXk((AXk)
2 − I)A

= tk + β(XkA)3 − β(XkA)

= tk + β(XA− tk)3 − β(XA− tk)

= tk + β((XA)3 − (XA)2tk −XAtkXA+XAt2k

− tk(XA)2 + tkXAtk + t2kXA− t3k)− βXA+ βtk
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= tk + β(XA−XAtk −XAtkXA+XAt2k

− tkXA+ tkXAtk + t2kXA− t3k)− βXA+ βtk

= tk + β(−3tk + 3t2k − t3k) + βtk

= (1− 2β)tk + 3βt2k − βt3k. (4.15)

Let sk = ‖tk‖, we require that sk → 0 as k → ∞. Condition (4.14) implies s0 <
−3 +

√
17

2
, then by mathematical induction we prove that sk <

−3 +
√

17

2
.

From (4.15) and inductive method sk <
−3 +

√
17

2
we obtain

sk+1 ≤ (1− 2β)sk + 3βs2k + βs3k < (1− 2β)sk + 2βsk < sk <
−3 +

√
17

2
. (4.16)

Thus, sk is a monotonically decreasing bounded sequence converging to s as k →∞ and

0 ≤ s <
−3 +

√
17

2
. From (4.16), we get

s ≤ (1− 2β)s+ 3βs2 + βs3,

then

βs3 + 3βs2 − 2βs ≥ 0.

This gives either s = 0 or s ≥ −3 +
√

17

2
. Thus, s = 0.

This complete the proof that sk → 0 as k →∞. Thus, Xk → X as k →∞.

From (4.15), we conclude that iterative method (4.11) has linear convergence if β <
1

2
,

and its convergence is quadratic if β =
1

2
.

We need to write condition (4.14) in an equivalent form which does not contain the

Moore-Penrose inverse X.

According to Lemma 2.5.1, necessary and sufficient condition for the convergence of
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the iterative method (4.11) is ρ((αA∗ −X)A) <
−3 +

√
17

2
.

Theorem 4.2.2. Let the eigenvalues of a matrix A∗A satisfy

σ1(A) ≥ ... ≥ σr(A) > σr+1(A) = ... = 0.

Condition ρ((X − αA∗)A) <
−3 +

√
17

2
is satisfied under the assumptions

max1≤i≤r|1− αλi(A∗A)|< −3 +
√

17

2
.

Proof. Let P = XA and Q = I − αA∗A. Since P 2 = P and

PQ = XA− αXAA∗A = XA− α(AXA)∗A

= XA− αA∗A

= XA− αA∗AXA

= (I − αA∗A)XA

= QP,

from Lemma 2.5.2 we can conclude that

ρ((X − αA∗)A) ≤ ρ(I − αA∗A) = max1≤i≤r|1− αλi(A∗A)|< −3 +
√

17

2
.

In Theorem 4.2.1 we found that the condition of convergence restrict the usage of this

method, since the condition

‖(X −X0)A‖<
−3 +

√
17

2
≈ 0.56.

Next, we follow the idea of [5] to prove that the sequence Xk defined by the iterative

method (4.11) and the starting value (4.12) still converges to the Moore-Penrose inverse
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X = A† under the condition

‖(X −X0)A‖< 1.

Let us consider the following singular value decomposition of the matrix A of rank(A) =

r ≤ min{m,n}

A = V

[
S 0

0 0

]
U∗, S = diag(σ1, ..., σr), σ1 ≥ ... ≥ σr > 0.

The Moore-Penrose is given by

A† = U

[
S−1 0

0 0

]
V ∗.

Where U and V are unitary matrices. Using

X0 = αA∗,

in which α is a constant. We can deduce that each iterate of the method (4.11) has a

singular value decomposition of the form

Xk = USkV
∗, Sk = diag(s

(k)
1 , ..., s(k)r ),

where

S0 = αS,

and when β =
1

2
, we have

USk+1V
∗ = USkV

∗ − 1

2
USkV

∗((V SSkV
∗)2 − I)

=
3

2
USkV

∗ − 1

2
USkSSkSSkV

∗.

Hence,

Sk+1 = Sk

(3

2
I − 1

2
(SSk)

2
)
.

Therefore, the diagonal matrices Rk = SSk = diag(r
(k)
1 , ..., r

(k)
r ) satisfy

Rk+1 = g(Rk) =
3

2
Rk −

1

2
R3
k,
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that means

r
(k+1)
i = g(r

(k)
i ) =

3

2
r
(k)
i −

1

2
r
(k)
i

3
. (4.17)

Theorem 4.2.3. For any initial point r(0) ∈ (0,
√

5
3
), the sequence r(k+1) = g(r(k)) is

second order convergent to r = 1, in which the function g(r) is defined by (4.17).

Proof. The fixed points and the critical points of g(r) are

g(r) = r ⇒ r = −1, 0, 1,

g′(r) = 0 ⇒ r = −1, 1.

We can find that 1 is local maximizer and 0 is local minimizer of g(r). It is easy to see

that the interval (0,
√

5
3
) is mapped into itself.

Moreover, g(r) is a continuous function on the interval (0,
√

5
3
), and |g′(r)|< 1 on this

interval, see Figure 4.8.

We conclude that the sequence r(k+1) = g(r(k)) is convergent to r = 1. On the other

hand,

g(1) = 1, g′(1) = 0,

implies that the convergence is second order by Lemma 2.5.4 .
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Figure 4.8: Graph of the function y = g(x) and the line y = x.

65



Chapter 4 – Our new iterative methods

Considering Theorem 4.2.3, we conclude that if ασ2
1 = r

(0)
1 ∈ (0,

√
5
3
), then ασ2

i = r
(0)
i ∈

(0,
√

5
3
), for all i, and

lim
k→∞

Rk = I.

Hence,

lim
k→∞

Sk = S−1,

so

lim
k→∞

Xk = U

[
S−1 0

0 0

]
V ∗ = A†.

Hence, we have the following theorem.

Theorem 4.2.4. Let A be an m×n nonzero complex matrix. If the initial approximation

X0 is defined by:

X0 = αA∗, with 0 < α <

√
5
3

σ2
1

, (4.18)

then

‖(X −X0)A‖< 1,

and iterative method (4.11) converges to A† with second order when β =
1

2
, where σ2

1

denotes the largest singular value of A.

Proof. Take P = XA and Q = I − αA∗A. Then P 2 = P and PQ = QP , so we proved

that

ρ((X − αA∗)A) ≤ max1≤i≤r‖1− αλi(A∗A)‖= max1≤i≤r‖1− ασ2
i ‖.

By using (4.18), we conclude that

‖(X −X0)A‖≤ ρ((X − αA∗)A) ≤ max1≤i≤r‖1− ασ2
i ‖< 1.
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Example 4.5. Consider the matrix A of order (6× 5) given by

A =



1 2 3 4 1

1 3 4 6 2

2 3 4 5 3

3 4 5 6 4

4 5 6 7 6

6 6 7 7 8


,

of rank(A) = 4.

The choice α = 0.002 satisfies the convergence criteria given by

max1≤i≤4|1− αλi(A∗A)|= 0.9999 < 1,

since the eigenvalues of the matrix A∗A are

(λ1, λ2, λ3, λ4) = (640.6455, 17.0053, 0.3315, 0.0177).

The iterative method (4.11) when β =
1

2
generates a sequence of iterates {Xk} after 30

steps converging to the Moore-Penrose inverse A† given by

A† =



0.5 −0.125 −1 0.875 −0.625 0.375

−1 1.875 −4.5 2.875 −0.625 0.375

1.25 −1.625 3.25 −1.875 0.125 −0.125

−0.25 0.375 −0.25 0.125 0.125 −0.125

−0.5 −0.25 1.5 −1.25 0.75 −0.25


,

Example 4.6. Consider the ill-conditional Hilbert matrix A of order (5 × 5) appeared

in Example 3.2
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The iterative method (4.11) when β =
1

2
generates a sequence of iterates {Xk} after

68 steps converging to the Moore-Penrose inverse A† given by

A† =



25 −300 1050 −1400 630

−300 4800 −18900 26880 −12600

1050 −18900 79380 −117600 56700

−1400 26880 −117600 179200 −88200

630 −12600 56700 −88200 44100


.

Example 4.7. Let A = rand(50, 50), we have tested 50 times with MATLAB. The

number of iterations and average of CPU time required for convergence are compared

between (4.11) and (4.3) in figures 4.9 and 4.10, respectively.
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Figure 4.9: Comparison number of iteration, Example 4.7.
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Figure 4.10: The results of comparisons of computational time, Example 4.7.

Conclusion: A second-order iterative methods were developed based on Penrose equa-

tions (2.4a) and (2.4b) and written interms of square of matrix AXk. Convergence

properties were considered and numerical tests were made. It is observed that the fam-

ily of second order methods (4.3) is more effective than the method (4.11).
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